1
|
Renaud EA, Maupin AJM, Bordat Y, Graindorge A, Berry L, Besteiro S. Iron depletion has different consequences on the growth and survival of Toxoplasma gondii strains. Virulence 2024; 15:2329566. [PMID: 38509723 PMCID: PMC10962585 DOI: 10.1080/21505594.2024.2329566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite responsible for a pathology called toxoplasmosis, which primarily affects immunocompromised individuals and developing foetuses. The parasite can scavenge essential nutrients from its host to support its growth and survival. Among them, iron is one of the most important elements needed to sustain basic cellular functions as it is involved in a number of key metabolic processes, including oxygen transport, redox balance, and electron transport. We evaluated the effects of an iron chelator on the development of several parasite strains and found that they differed in their ability to tolerate iron depletion. The growth of parasites usually associated with a model of acute toxoplasmosis was strongly affected by iron depletion, whereas cystogenic strains were less sensitive as they were able to convert into persisting developmental forms that are associated with the chronic form of the disease. Ultrastructural and biochemical characterization of the impact of iron depletion on parasites also highlighted striking changes in both their metabolism and that of the host, with a marked accumulation of lipid droplets and perturbation of lipid homoeostasis. Overall, our study demonstrates that although acute iron depletion has an important effect on the growth of T. gondii, it has a more profound impact on actively dividing parasites, whereas less metabolically active parasite forms may be able to avoid some of the most detrimental consequences.
Collapse
Affiliation(s)
- Eléa A. Renaud
- LPHI, University Montpellier, Inserm, CNRS, Montpellier, France
| | | | - Yann Bordat
- LPHI, University Montpellier, Inserm, CNRS, Montpellier, France
| | | | - Laurence Berry
- LPHI, University Montpellier, Inserm, CNRS, Montpellier, France
| | | |
Collapse
|
2
|
Pereira-Dutra FS, Souza EK, Souza TS, Goltara-Gomes TC, Ferraro-Moreira F, Palhinha L, Cunha-Fernandes T, Rajão MA, Silva AR, Bozza PT. Accumulation of lipid droplets induced by Listeria monocytogenes in macrophages: implications for survival and evasion of innate immunity. J Leukoc Biol 2024; 116:1364-1371. [PMID: 38727078 DOI: 10.1093/jleuko/qiae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 11/28/2024] Open
Abstract
Listeriosis, caused by Listeria monocytogenes (L.m.), poses a significant public health concern as one of the most severe foodborne diseases. The pathogenesis of L.m. involves critical steps such as phagosome rupture and escape upon internalization. Throughout infection, L.m. influences various host processes, including lipid metabolism pathways, yet the role of lipid droplets (LDs) remains unclear. Here, we reported a rapid, time-dependent increase in LD formation in macrophages induced by L.m. LD biogenesis was found to be dependent on L.m. viability and virulence genes, particularly on the activity of the pore-forming protein listeriolysin O (LLO). The prevention of LD formation by inhibiting diacylglycerol O-acyltransferase 1 (DGAT1) and cytosolic phospholipase A2 (cPLA2) significantly reduced intracellular bacterial survival, impaired prostaglandin E2 synthesis, and decreased interleukin-10 production. Additionally, inhibiting LD formation led to increased levels of tumor necrosis factor α and interferon β. Collectively, our data suggest a role for LDs in promoting L.m. cell survival and evasion within macrophages.
Collapse
Affiliation(s)
- Filipe S Pereira-Dutra
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Ellen K Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Tamyris S Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Taynná C Goltara-Gomes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Felipe Ferraro-Moreira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Tamires Cunha-Fernandes
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Matheus A Rajão
- Program of Immunology and Tumor Biology, National Cancer Institute, INCA, André Cavalcanti St, Rio de Janeiro, RJ, 20231-050, Brazil
| | - Adriana R Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
- Center for Research, Innovation and Surveillance in COVID-19 and Heath Emergencies, Oswaldo Cruz Foundation, Fiocruz, Brasil Ave, Rio de Janeiro, RJ, 21040-361, Brazil
| |
Collapse
|
3
|
Su Y, Qu Q, Li J, Han Z, Fang Y, Flavorta BL, Jia Z, Yu Q, Zhang Y, Qian P, Tang X. Perilipin1 inhibits Nosema bombycis proliferation by promoting Domeless- and Hop-mediated JAK-STAT pathway activation in Bombyx mori. Microbiol Spectr 2024; 12:e0367123. [PMID: 38690912 PMCID: PMC11237581 DOI: 10.1128/spectrum.03671-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024] Open
Abstract
Lipid droplets (LDs) are dynamic organelles that participate in the regulation of lipid metabolism and cellular homeostasis inside of cells. LD-associated proteins, also known as perilipins (PLINs), are a family of proteins found on the surface of LDs that regulate lipid metabolism, immunity, and other functions. In silkworms, pébrine disease caused by infection by the microsporidian Nosema bombycis (Nb) is a severe threat to the sericultural industry. Although we found that Nb relies on lipids from silkworms to facilitate its proliferation, the relationship between PLINs and Nb proliferation remains unknown. Here, we found Nb infection caused the accumulation of LDs in the fat bodies of silkworm larvae. The characterized perilipin1 gene (plin1) promotes the accumulation of intracellular LDs and is involved in Nb proliferation. plin1 is similar to perilipin1 in humans and is conserved in all insects. The expression of plin1 was mostly enriched in the fat body rather than in other tissues. Knockdown of plin1 enhanced Nb proliferation, whereas overexpression of plin1 inhibited its proliferation. Furthermore, we confirmed that plin1 increased the expression of the Domeless and Hop in the JAK-STAT immune pathway and inhibited Nb proliferation. Taken together, our current findings demonstrate that plin1 inhibits Nb proliferation by promoting the JAK-STAT pathway through increased expression of Domeless and Hop. This study provides new insights into the complicated connections among microsporidia pathogens, LD surface proteins, and insect immunity.IMPORTANCELipid droplets (LDs) are lipid storage sites in cells and are present in almost all animals. Many studies have found that LDs may play a role in host resistance to pathogens and are closely related to innate immunity. The present study found that a surface protein of insect lipid droplets could not only regulate the morphological changes of lipid droplets but also inhibit the proliferation of a microsporidian pathogen Nosema bombycis (Nb) by activating the JAK-STAT signaling pathway. This is the first discovery of the relationship between microsporidian pathogen and insect lipid surface protein perilipin and insect immunity.
Collapse
Affiliation(s)
- Yaping Su
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qingsheng Qu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Junling Li
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhenghao Han
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yujia Fang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Billong Laura Flavorta
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhenwei Jia
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qiong Yu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yiling Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Ping Qian
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Xudong Tang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
4
|
Schroeder EA, Toro-Moreno M, Raphemot R, Sylvester K, Colón IC, Derbyshire ER. Toxoplasma and Plasmodium associate with host Arfs during infection. mSphere 2024; 9:e0077023. [PMID: 38349168 PMCID: PMC10964417 DOI: 10.1128/msphere.00770-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/17/2024] [Indexed: 03/27/2024] Open
Abstract
The apicomplexans Toxoplasma gondii and Plasmodium are intracellular parasites that reside within a host-derived compartment termed the parasitophorous vacuole (PV). During infection, the parasites must acquire critical host resources and transport them across their PV for development. However, the mechanism by which host resources are trafficked to and across the PV remains uncertain. Here, we investigated host ADP ribosylation factors (Arfs), a class of proteins involved in vesicular trafficking that may be exploited by T. gondii and Plasmodium berghei for nutrient acquisition. Using overexpressed Arf proteins coupled with immunofluorescence microscopy, we found that all Arfs were internalized into the T. gondii PV, with most vacuoles containing at least one punctum of Arf protein by the end of the lytic cycle. We further characterized Arf1, the most abundant Arf inside the T. gondii PV, and observed that active recycling between its GDP/GTP-bound state influenced Arf1 internalization independent of host guanine nucleotide exchange factors (GEFs). In addition, Arf1 colocalized with vesicle coat complexes and exogenous sphingolipids, suggesting a role in nutrient acquisition. While Arf1 and Arf4 were not observed inside the PV during P. berghei infection, our gene depletion studies showed that liver stage development and survival depended on the expression of Arf4 and the host GEF, GBF1. Collectively, these observations indicate that apicomplexans use distinct mechanisms to subvert the host vesicular trafficking network and efficiently replicate. The findings also pave the way for future studies to identify parasite proteins critical to host vesicle recruitment and the components of vesicle cargo. IMPORTANCE The parasites Toxoplasma gondii and Plasmodium live complex intracellular lifestyles where they must acquire essential host nutrients while avoiding recognition. Although previous work has sought to identify the specific nutrients scavenged by apicomplexans, the mechanisms by which host materials are transported to and across the parasite vacuole membrane are largely unknown. Here, we examined members of the host vesicular trafficking network to identify specific pathways subverted by T. gondii and Plasmodium berghei. Our results indicate that T. gondii selectively internalizes host Arfs, a class of proteins involved in intracellular trafficking. For P. berghei, host Arfs were restricted by the parasite's vacuole membrane, but proteins involved in vesicular trafficking were identified as essential for liver stage development. A greater exploration into how and why apicomplexans subvert host vesicular trafficking could help identify targets for host-directed therapeutics.
Collapse
Affiliation(s)
- Erin A. Schroeder
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Maria Toro-Moreno
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Rene Raphemot
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Kayla Sylvester
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Isabel C. Colón
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Emily R. Derbyshire
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Tan YJ, Jin Y, Zhou J, Yang YF. Lipid droplets in pathogen infection and host immunity. Acta Pharmacol Sin 2024; 45:449-464. [PMID: 37993536 PMCID: PMC10834987 DOI: 10.1038/s41401-023-01189-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
As the hub of cellular lipid metabolism, lipid droplets (LDs) have been linked to a variety of biological processes. During pathogen infection, the biogenesis, composition, and functions of LDs are tightly regulated. The accumulation of LDs has been described as a hallmark of pathogen infection and is thought to be driven by pathogens for their own benefit. Recent studies have revealed that LDs and their subsequent lipid mediators contribute to effective immunological responses to pathogen infection by promoting host stress tolerance and reducing toxicity. In this comprehensive review, we delve into the intricate roles of LDs in governing the replication and assembly of a wide spectrum of pathogens within host cells. We also discuss the regulatory function of LDs in host immunity and highlight the potential for targeting LDs for the diagnosis and treatment of infectious diseases.
Collapse
Affiliation(s)
- Yan-Jie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Jin
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yun-Fan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
6
|
Teixeira SC, Paschoalino M, de Souza G, Rosini AM, de Lima Junior JP, Luz LC, Fajardo Martínez AF, Alves RN, Almeida MPO, Damasceno JL, Silva MJB, Ietta F, Barbosa BF, Ferro EAV, Gomes Martins CH. Rottlerin impairs early and late steps of Toxoplasma gondii infection in human trophoblast cells and villous explants. Chem Biol Interact 2023; 384:110716. [PMID: 37722575 DOI: 10.1016/j.cbi.2023.110716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Congenital toxoplasmosis, caused by the opportunistic protozoan parasite T. gondii, can cause stillbirths, miscarriages and fetal abnormalities, as well as encephalitis and chorioretinitis in newborns. Available treatment options rely on antiparasitic drugs that have been linked to serious side effects, high toxicity and the development of drug-resistant parasites. The search for alternative therapeutics to treat this disease without acute toxicity for the mother and child is essential for the advancement of current therapeutic procedures. The present study aimed to unravel the mode of the anti-T. gondii action of Rottlerin, a natural polyphenol with multiple pharmacological properties described. Herein, we further assessed the antiparasitic activity of Rottlerin against T. gondii infection on the human trophoblastic cells (BeWo cells) and, for the first time, on human villous explants. We found that non-cytotoxic doses of Rottlerin impaired early and late steps of parasite infection with an irreversible manner in BeWo cells. Rottlerin caused parasite cell cycle arrest in G1 phase and compromised the ability of tachyzoites to infect new cells, thus highlighting the possible direct action on parasites. An additional and non-exclusive mechanism of action of Rottlerin involves the modulation of host cell components, by affecting lipid droplet formation, mitochondrial function and upregulation of the IL-6 and MIF levels in BeWo cells. Supporting our findings, Rottlerin also controlled T. gondii proliferation in villous explants with low toxicity and reduced the IL-10 levels, a cytokine associated with parasite susceptibility. Collectively, our results highlighted the potential use of Rottlerin as a promising tool to prevent and/or treat congenital toxoplasmosis.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marina Paschoalino
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Joed Pires de Lima Junior
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Luana Carvalho Luz
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Aryani Felixa Fajardo Martínez
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Rosiane Nascimento Alves
- Department of Agricultural and Natural Sciences, Universidade do Estado de Minas Gerais, Ituiutaba, MG, Brazil
| | - Marcos Paulo Oliveira Almeida
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Jaqueline Lopes Damasceno
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Francesca Ietta
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| | - Carlos Henrique Gomes Martins
- Laboratory of Antimicrobial Testing, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil.
| |
Collapse
|
7
|
Safi R, Sánchez-Álvarez M, Bosch M, Demangel C, Parton RG, Pol A. Defensive-lipid droplets: Cellular organelles designed for antimicrobial immunity. Immunol Rev 2023; 317:113-136. [PMID: 36960679 DOI: 10.1111/imr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.
Collapse
Affiliation(s)
- Rémi Safi
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis (CMM), University of Queensland, Brisbane, Queensland, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
8
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|
9
|
Wang X, Chen J, Zheng J. The roles of COX-2 in protozoan infection. Front Immunol 2023; 14:955616. [PMID: 36875123 PMCID: PMC9978824 DOI: 10.3389/fimmu.2023.955616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Protozoan diseases cause great harm in animal husbandry and require human-provided medical treatment. Protozoan infection can induce changes in cyclooxygenase-2 (COX-2) expression. The role played by COX-2 in the response to protozoan infection is complex. COX-2 induces and regulates inflammation by promoting the synthesis of different prostaglandins (PGs), which exhibit a variety of biological activities and participate in pathophysiological processes in the body in a variety of ways. This review explains the roles played by COX-2 in protozoan infection and analyzes the effects of COX-2-related drugs in protozoan diseases.
Collapse
Affiliation(s)
- Xinlei Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jie Chen
- Institute of Theoretical Chemistry, Jilin University, Changchun, China
| | - Jingtong Zheng
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
10
|
A. PORTES JULIANA, C. VOMMARO ROSSIANE, AYRES CALDAS LUCIO, S. MARTINS-DUARTE ERICA. Intracellular life of protozoan Toxoplasma gondii: Parasitophorous vacuole establishment and survival strategies. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
11
|
Desiatkina O, Boubaker G, Anghel N, Amdouni Y, Hemphill A, Furrer J, Păunescu E. Synthesis, Photophysical Properties and Biological Evaluation of New Conjugates BODIPY: Dinuclear Trithiolato-Bridged Ruthenium(II)-Arene Complexes. Chembiochem 2022; 23:e202200536. [PMID: 36219484 DOI: 10.1002/cbic.202200536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Indexed: 01/25/2023]
Abstract
The synthesis, photophysical properties and antiparasitic efficacy against Toxoplasma gondii β-gal (RH strain tachyzoites expressing β-galactosidase) grown in human foreskin fibroblast monolayers (HFF) of a series of 15 new conjugates BODIPY-trithiolato-bridged dinuclear ruthenium(II)-arene complexes are reported (BODIPY=4,4-difluoro-4-bora-3a,4a-diaza-s-indacene, derivatives used as fluorescent markers). The influence of the bond type (amide vs. ester), as well as that of the length and nature (alkyl vs. aryl) of the spacer between the dye and the diruthenium(II) complex moiety, on fluorescence and biological activity were evaluated. The assessed photophysical properties revealed that despite an important fluorescence quenching effect observed after conjugating the BODIPY to the diruthenium unit, the hybrids could nevertheless be used as fluorescent tracers. Although the antiparasitic activity of this series of conjugates appears limited, the compounds demonstrate potential as fluorescent probes for investigating the intracellular trafficking of trithiolato-bridged dinuclear Ru(II)-arene complexes in vitro.
Collapse
Affiliation(s)
- Oksana Desiatkina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Nicoleta Anghel
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland.,Laboratoire de Parasitologie, Université de la Manouba, Institution de la Recherche et de l'Enseignement Supérieur Agricoles, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012, Bern, Switzerland
| | - Julien Furrer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Emilia Păunescu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
12
|
Decelle J, Kayal E, Bigeard E, Gallet B, Bougoure J, Clode P, Schieber N, Templin R, Hehenberger E, Prensier G, Chevalier F, Schwab Y, Guillou L. Intracellular development and impact of a marine eukaryotic parasite on its zombified microalgal host. THE ISME JOURNAL 2022; 16:2348-2359. [PMID: 35804051 PMCID: PMC9478091 DOI: 10.1038/s41396-022-01274-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/01/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022]
Abstract
Parasites are widespread and diverse in oceanic plankton and many of them infect single-celled algae for survival. How these parasites develop and scavenge energy within the host and how the cellular organization and metabolism of the host is altered remain open questions. Combining quantitative structural and chemical imaging with time-resolved transcriptomics, we unveil dramatic morphological and metabolic changes of the marine parasite Amoebophrya (Syndiniales) during intracellular infection, particularly following engulfment and digestion of nutrient-rich host chromosomes. Changes include a sequential acristate and cristate mitochondrion with a 200-fold increase in volume, a 13-fold increase in nucleus volume, development of Golgi apparatus and a metabolic switch from glycolysis (within the host) to TCA (free-living dinospore). Similar changes are seen in apicomplexan parasites, thus underlining convergent traits driven by metabolic constraints and the infection cycle. In the algal host, energy-producing organelles (plastid, mitochondria) remain relatively intact during most of the infection. We also observed that sugar reserves diminish while lipid droplets increase. Rapid infection of the host nucleus could be a "zombifying" strategy, allowing the parasite to digest nutrient-rich chromosomes and escape cytoplasmic defense, whilst benefiting from maintained carbon-energy production of the host cell.
Collapse
Affiliation(s)
- Johan Decelle
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 38000, Grenoble, France.
| | - Ehsan Kayal
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff, 29680, Roscoff, France
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA)-Université de Caen Normandie, MNHN, SU, UA, CNRS UMR 8067, IRD 207, 14000, Caen, France
| | - Estelle Bigeard
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Benoit Gallet
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CEA, CNRS, 38044, Grenoble, France
| | - Jeremy Bougoure
- The Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
| | - Peta Clode
- The Centre for Microscopy Characterisation and Analysis, The University of Western Australia, Perth, WA, 6009, Australia
- UWA School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Nicole Schieber
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Rachel Templin
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
- Ramaciotti Centre for Cryo Electron Microscopy, Monash University, Clayton, 3800, VIC, Australia
| | - Elisabeth Hehenberger
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gerard Prensier
- Université François-Rabelais, Laboratoire Biologie cellulaire et Microscopie électronique, 37032, Tours, France
| | - Fabien Chevalier
- Laboratoire Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 38000, Grenoble, France
| | - Yannick Schwab
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Laure Guillou
- Sorbonne Université, CNRS, UMR7144 Adaptation et Diversité en Milieu Marin, Ecology of Marine Plankton (ECOMAP), Station Biologique de Roscoff, 29680, Roscoff, France.
| |
Collapse
|
13
|
Tylvalosin demonstrates anti-parasitic activity and protects mice from acute toxoplasmosis. Life Sci 2022; 294:120373. [DOI: 10.1016/j.lfs.2022.120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
|
14
|
Fader Kaiser CM, Romano PS, Vanrell MC, Pocognoni CA, Jacob J, Caruso B, Delgui LR. Biogenesis and Breakdown of Lipid Droplets in Pathological Conditions. Front Cell Dev Biol 2022; 9:826248. [PMID: 35198567 PMCID: PMC8860030 DOI: 10.3389/fcell.2021.826248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Lipid droplets (LD) have long been considered as mere fat drops; however, LD have lately been revealed to be ubiquitous, dynamic and to be present in diverse organelles in which they have a wide range of key functions. Although incompletely understood, the biogenesis of eukaryotic LD initiates with the synthesis of neutral lipids (NL) by enzymes located in the endoplasmic reticulum (ER). The accumulation of NL leads to their segregation into nanometric nuclei which then grow into lenses between the ER leaflets as they are further filled with NL. The lipid composition and interfacial tensions of both ER and the lenses modulate their shape which, together with specific ER proteins, determine the proneness of LD to bud from the ER toward the cytoplasm. The most important function of LD is the buffering of energy. But far beyond this, LD are actively integrated into physiological processes, such as lipid metabolism, control of protein homeostasis, sequestration of toxic lipid metabolic intermediates, protection from stress, and proliferation of tumours. Besides, LD may serve as platforms for pathogen replication and defense. To accomplish these functions, from biogenesis to breakdown, eukaryotic LD have developed mechanisms to travel within the cytoplasm and to establish contact with other organelles. When nutrient deprivation occurs, LD undergo breakdown (lipolysis), which begins with the LD-associated members of the perilipins family PLIN2 and PLIN3 chaperone-mediated autophagy degradation (CMA), a specific type of autophagy that selectively degrades a subset of cytosolic proteins in lysosomes. Indeed, PLINs CMA degradation is a prerequisite for further true lipolysis, which occurs via cytosolic lipases or by lysosome luminal lipases when autophagosomes engulf portions of LD and target them to lysosomes. LD play a crucial role in several pathophysiological processes. Increased accumulation of LD in non-adipose cells is commonly observed in numerous infectious diseases caused by intracellular pathogens including viral, bacterial, and parasite infections, and is gradually recognized as a prominent characteristic in a variety of cancers. This review discusses current evidence related to the modulation of LD biogenesis and breakdown caused by intracellular pathogens and cancer.
Collapse
Affiliation(s)
- Claudio M Fader Kaiser
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Patricia S Romano
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - M Cristina Vanrell
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Cristian A Pocognoni
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Julieta Jacob
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| | - Benjamín Caruso
- Instituto de Investigaciones Biologicas y Tecnologicas, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Cordoba, Cordoba, Argentina
| | - Laura R Delgui
- CONICET Dr. Mario H. Burgos Institute of Histology and Embryology (IHEM), Mendoza, Argentina
| |
Collapse
|
15
|
Silva LMR, Velásquez ZD, López-Osorio S, Hermosilla C, Taubert A. Novel Insights Into Sterol Uptake and Intracellular Cholesterol Trafficking During Eimeria bovis Macromeront Formation. Front Cell Infect Microbiol 2022; 12:809606. [PMID: 35223543 PMCID: PMC8878908 DOI: 10.3389/fcimb.2022.809606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 11/24/2022] Open
Abstract
Apicomplexan parasites are considered as defective in cholesterol synthesis. Consequently, they need to scavenge cholesterol from the host cell by either enhancing the uptake of extracellular cholesterol sources or by upregulating host cellular de-novo biosynthesis. Given that Eimeria bovis macromeront formation in bovine lymphatic endothelial host cells in vivo is a highly cholesterol-demanding process, we here examined host parasite interactions based on host cellular uptake of different low-density lipoprotein (LDL) types, i.e., of non-modified (LDL), oxidized (oxLDL), and acetylated LDL (acLDL). Furthermore, the expression of lipoprotein-oxidized receptor 1 (LOX-1), which mediates acLDL and oxLDL internalization, was monitored throughout first merogony, in vitro and ex vivo. Moreover, the effects of inhibitors blocking exogenous sterol uptake or intracellular transport were studied during E. bovis macromeront formation in vitro. Hence, E. bovis-infected primary bovine umbilical vein endothelial cells (BUVEC) were treated with inhibitors of sterol uptake (ezetimibe, poly-C, poly-I, sucrose) and of intracellular sterol transport and release from endosomes (progesterone, U18666A). As a read-out system, the size and number of macromeronts as well as merozoite I production were estimated. Overall, the internalization of all LDL modifications (LDL, oxLDL, acLDL) was observed in E. bovis-infected BUVEC but to different extents. Supplementation with oxLDL and acLDL at lower concentrations (5 and 10 µg/ml, respectively) resulted in a slight increase of both macromeront numbers and size; however, at higher concentrations (25-50 µg/ml), merozoite I production was diminished. LOX-1 expression was enhanced in E. bovis-infected BUVEC, especially toward the end of merogony. As an interesting finding, ezetimibe treatments led to a highly significant blockage of macromeront development and merozoite I production confirming the relevance of sterol uptake for intracellular parasite development. Less prominent effects were induced by non-specific inhibition of LDL internalization via sucrose, poly-I, and poly-C. In addition, blockage of cholesterol transport via progesterone and U18666A treatments resulted in significant inhibition of parasite development. Overall, current data underline the relevance of exogenous sterol uptake and intracellular cholesterol transport for adequate E. bovis macromeront development, unfolding new perspectives for novel drug targets against E. bovis.
Collapse
Affiliation(s)
- Liliana M. R. Silva
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Zahady D. Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Sara López-Osorio
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
- Veterinary Medicine School, CIBAV Investigation Group, University of Antioquia, Medellin, Colombia
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
16
|
Pereira-Dutra FS, Bozza PT. Lipid droplets diversity and functions in inflammation and immune response. Expert Rev Proteomics 2021; 18:809-825. [PMID: 34668810 DOI: 10.1080/14789450.2021.1995356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Lipid droplets (LDs) are dynamic and evolutionary conserved lipid-enriched organelles composed of a core of neutral lipids surrounded by a monolayer of phospholipids associated with a diverse array of proteins that are cell- and stimulus-regulated. Far beyond being simply a deposit of neutral lipids, accumulating evidence demonstrate that LDs act as spatial and temporal local for lipid and protein compartmentalization and signaling organization. AREAS COVERED This review focuses on the progress in our understanding of LD protein diversity and LD functions in the context of cell signaling and immune responses, highlighting the relationship between LD composition with the multiple roles of this organelle in immunometabolism, inflammation and host-response to infection. EXPERT OPINION LDs are essential platforms for various cellular processes, including metabolic regulation, cell signaling, and immune responses. The functions of LD in infection and inflammatory disease are associated with the dynamic and complexity of their proteome. Our contemporary view place LDs as critical regulators of different inflammatory and infectious diseases and key markers of leukocyte activation.
Collapse
Affiliation(s)
- Filipe S Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Wang YC, Yao X, Ma M, Zhang H, Wang H, Zhao L, Liu S, Sun C, Li P, Wu Y, Li X, Jiang J, Li Y, Li Y, Ying H. miR-130b inhibits proliferation and promotes differentiation in myocytes via targeting Sp1. J Mol Cell Biol 2021; 13:422-432. [PMID: 33751053 PMCID: PMC8436675 DOI: 10.1093/jmcb/mjab012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/29/2022] Open
Abstract
Muscle regeneration after damage or during myopathies requires a fine cooperation between myoblast proliferation and myogenic differentiation. A growing body of evidence suggests that microRNAs play critical roles in myocyte proliferation and differentiation transcriptionally. However, the molecular mechanisms underlying the orchestration are not fully understood. Here, we showed that miR-130b is able to repress myoblast proliferation and promote myogenic differentiation via targeting Sp1 transcription factor. Importantly, overexpression of miR-130b is capable of improving the recovery of damaged muscle in a freeze injury model. Moreover, miR-130b expression is declined in the muscle of muscular dystrophy patients. Thus, these results indicated that miR-130b may play a role in skeletal muscle regeneration and myopathy progression. Together, our findings suggest that the miR-130b/Sp1 axis may serve as a potential therapeutic target for the treatment of patients with muscle damage or severe myopathies.
Collapse
Affiliation(s)
- Yu-Cheng Wang
- Shanghai Xuhui District Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200001, China
| | - Xiaohan Yao
- CAS Key laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mei Ma
- CAS Key laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Huihui Zhang
- CAS Key laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Wang
- CAS Key laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhao
- Department of Neuromuscular Disease, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Shengnan Liu
- CAS Key laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Sun
- CAS Key laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng Li
- CAS Key laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuting Wu
- CAS Key laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xihua Li
- Department of Neuromuscular Disease, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200031, China
| | - Yuying Li
- CAS Key laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Ying
- CAS Key laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
| |
Collapse
|
18
|
de Souza G, Silva RJ, Milián ICB, Rosini AM, de Araújo TE, Teixeira SC, Oliveira MC, Franco PS, da Silva CV, Mineo JR, Silva NM, Ferro EAV, Barbosa BF. Cyclooxygenase (COX)-2 modulates Toxoplasma gondii infection, immune response and lipid droplets formation in human trophoblast cells and villous explants. Sci Rep 2021; 11:12709. [PMID: 34135407 PMCID: PMC8209052 DOI: 10.1038/s41598-021-92120-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/04/2021] [Indexed: 01/01/2023] Open
Abstract
Congenital toxoplasmosis is represented by the transplacental passage of Toxoplasma gondii from the mother to the fetus. Our studies demonstrated that T. gondii developed mechanisms to evade of the host immune response, such as cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) induction, and these mediators can be produced/stored in lipid droplets (LDs). The aim of this study was to evaluate the role of COX-2 and LDs during T. gondii infection in human trophoblast cells and villous explants. Our data demonstrated that COX-2 inhibitors decreased T. gondii replication in trophoblast cells and villous. In BeWo cells, the COX-2 inhibitors induced an increase of pro-inflammatory cytokines (IL-6 and MIF), and a decrease in anti-inflammatory cytokines (IL-4 and IL-10). In HTR-8/SVneo cells, the COX-2 inhibitors induced an increase of IL-6 and nitrite and decreased IL-4 and TGF-β1. In villous explants, the COX-2 inhibitors increased MIF and decreased TNF-α and IL-10. Furthermore, T. gondii induced an increase in LDs in BeWo and HTR-8/SVneo, but COX-2 inhibitors reduced LDs in both cells type. We highlighted that COX-2 is a key factor to T. gondii proliferation in human trophoblast cells, since its inhibition induced a pro-inflammatory response capable of controlling parasitism and leading to a decrease in the availability of LDs, which are essentials for parasite growth.
Collapse
Affiliation(s)
- Guilherme de Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Iliana Claudia Balga Milián
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Thádia Evelyn de Araújo
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Samuel Cota Teixeira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Mário Cézar Oliveira
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Claudio Vieira da Silva
- Laboratory of Trypanosomatids, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Science, Federal University of Uberlândia, Campus Umuarama, Av. Pará, 1720, Uberlândia, MG, 38405-320, Brazil.
| |
Collapse
|
19
|
Souza-Almeida G, Palhinha L, Liechocki S, da Silva Pereira JA, Reis PA, Dib PRB, Hottz ED, Gameiro J, Vallochi AL, de Almeida CJ, Castro-Faria-Neto H, Bozza PT, Maya-Monteiro CM. Peripheral leptin signaling persists in innate immune cells during diet-induced obesity. J Leukoc Biol 2021; 109:1131-1138. [PMID: 33070353 DOI: 10.1002/jlb.3ab0820-092rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Leptin is a pleiotropic adipokine that regulates immunometabolism centrally and peripherally. Obese individuals present increased levels of leptin in the blood and develop hypothalamic resistance to this adipokine. Here we investigated whether leptin effects on the periphery are maintained despite the hypothalamic resistance. We previously reported that leptin injection induces in vivo neutrophil migration and peritoneal macrophage activation in lean mice through TNF-α- and CXCL1-dependent mechanisms. However, leptin effects on leukocyte biology during obesity remain unclear. In this study, we investigated the in vivo responsiveness of leukocytes to i.p. injected leptin in mice with diet-induced obesity (DIO). After 14-16 wk, high-sucrose, high-fat diet (HFD)-fed mice showed hyperglycemia, hyperleptinemia, and dyslipidemia compared to normal-sucrose, normal-fat diet (ND). Exogenous leptin did not reduce food intake in DIO mice in contrast to control mice, indicating that DIO mice were centrally resistant to leptin. Regardless of the diet, we found increased levels of TNF-α and CXCL1 in the animals injected with leptin, alongside a pronounced neutrophil migration to the peritoneal cavity and enhanced biogenesis of lipid droplets in peritoneal macrophages. Supporting our in vivo results, data from ex vivo leptin stimulation experiments confirmed hypothalamic resistance in DIO mice, whereas bone marrow cells responded to leptin stimulation through mTOR signaling despite obesity. Altogether, our results show that leukocytes responded equally to leptin in ND- or HFD-fed mice. These results support a role for leptin in the innate immune response also in obesity, contributing to the inflammatory status that leads to the development of metabolic disease.
Collapse
Affiliation(s)
- Glaucia Souza-Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Current address: Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sally Liechocki
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Patrícia Alves Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
- Laboratory of Immunology, Infectious Disease and Obesity, Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Jacy Gameiro
- Laboratory of Immunology, Infectious Disease and Obesity, Department of Parasitology, Microbiology and Immunology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Adriana Lima Vallochi
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cecília Jacques de Almeida
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo Castro-Faria-Neto
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa Menezes Maya-Monteiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Tavares VDS, de Castro MV, Souza RDSO, Gonçalves IKA, Lima JB, Borges VDM, Araújo-Santos T. Lipid droplets of protozoan parasites: survival and pathogenicity. Mem Inst Oswaldo Cruz 2021; 116:e210270. [PMID: 35195194 PMCID: PMC8851939 DOI: 10.1590/0074-02760210270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Lipid droplets (LDs; lipid bodies) are intracellular sites of lipid storage and metabolism present in all cell types. Eukaryotic LDs are involved in eicosanoid production during several inflammatory conditions, including infection by protozoan parasites. In parasites, LDs play a role in the acquisition of cholesterol and other neutral lipids from the host. The number of LDs increases during parasite differentiation, and the biogenesis of these organelles use specific signaling pathways involving protein kinases. In addition, LDs are important in cellular protection against lipotoxicity. Recently, these organelles have been implicated in eicosanoid and specialised lipid metabolism. In this article, we revise the main functions of protozoan parasite LDs and discuss future directions in the comprehension of these organelles in the context of pathogen virulence.
Collapse
Affiliation(s)
| | | | | | | | - Jonilson Berlink Lima
- Universidade Federal do Oeste da Bahia, Brasil; Fundação Oswaldo Cruz-Fiocruz, Brasil
| | | | - Théo Araújo-Santos
- Universidade Federal do Oeste da Bahia, Brasil; Fundação Oswaldo Cruz-Fiocruz, Brasil
| |
Collapse
|
21
|
Metabolite salvage and restriction during infection - a tug of war between Toxoplasma gondii and its host. Curr Opin Biotechnol 2020; 68:104-114. [PMID: 33202353 DOI: 10.1016/j.copbio.2020.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/28/2020] [Indexed: 02/03/2023]
Abstract
The apicomplexans, including the coccidian pathogen Toxoplasma gondii, are obligate intracellular parasites whose growth and development are intricately linked to the metabolism of their host. T. gondii depends on its host for the salvage of energy sources, building blocks, vitamins and cofactors to survive and replicate. Additionally, host metabolites directly impact on the parasite life cycle development by triggering or halting differentiation. Although T. gondii infects a wide range of host cells, it has evolved to modulate and maximally exploit its host's metabolism. In return the host has developed strategies to restrict parasite access to metabolites. Here we discuss recent findings which have shed light on the battle over metabolites between T. gondii and its host.
Collapse
|
22
|
Gossner A, Hassan MA. Transcriptional Analyses Identify Genes That Modulate Bovine Macrophage Response to Toxoplasma Infection and Immune Stimulation. Front Cell Infect Microbiol 2020; 10:437. [PMID: 33014886 PMCID: PMC7508302 DOI: 10.3389/fcimb.2020.00437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/16/2020] [Indexed: 11/26/2022] Open
Abstract
The obligate intracellular parasite, Toxoplasma gondii, is highly prevalent among livestock species. Although cattle are generally resistant to Toxoplasma strains circulating in Europe and North America, the underlying mechanisms are largely unknown. Here, we report that bovine bone marrow-derived macrophage (BMDM) pre-stimulated with interferon gamma (IFNγ) restricts intracellular Toxoplasma growth independently of nitric oxide. While Toxoplasma promoted the expression of genes associated with alternative macrophage activation and lipid metabolism, IFNγ abrogated parasite-induced transcriptional responses and promoted the expression of genes linked to the classical macrophage activation phenotype. Additionally, several chemokines, including CCL22, that are linked to parasite-induced activation of the Wnt/β-catenin signaling were highly expressed in Toxoplasma-exposed naïve BMDMs. A chemical Wnt/β-catenin signaling pathway antagonist (IWR-1-endo) significantly reduced intracellular parasite burden in naïve BMDMs, suggesting that Toxoplasma activates this pathway to evade bovine macrophage anti-parasitic responses. Congruently, intracellular burden of a mutant Toxoplasma strain (RHΔASP5) that does not secrete dense granule proteins into the host cell, which is an essential requirement for parasite-induced activation of the Wnt/β-catenin pathway, was significantly reduced in naïve BMDMs. However, both the Wnt/β-catenin antagonist and RHASPΔ5 did not abolish parasite burden differences in naïve and IFNγ-stimulated BMDMs. Finally, we observed that parasites infecting IFNγ-stimulated BMDMs largely express genes associated with the slow dividing bradyzoite stage. Overall, this study provides novel insights into bovine macrophage transcriptional response to Toxoplasma. It establishes a foundation for a mechanistic analysis IFNγ-induced bovine anti-Toxoplasma responses and the counteracting Toxoplasma survival strategies.
Collapse
Affiliation(s)
- Anton Gossner
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Musa A Hassan
- Division of Infection and Immunity, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Tropical Livestock Genetics and Health, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
23
|
Structural, Functional, and Metabolic Alterations in Human Cerebrovascular Endothelial Cells during Toxoplasma gondii Infection and Amelioration by Verapamil In Vitro. Microorganisms 2020; 8:microorganisms8091386. [PMID: 32927732 PMCID: PMC7564162 DOI: 10.3390/microorganisms8091386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii (T. gondii), the causative agent of toxoplasmosis, is a frequent cause of brain infection. Despite its known ability to invade the brain, there is still a dire need to better understand the mechanisms by which this parasite interacts with and crosses the blood–brain barrier (BBB). The present study revealed structural and functional changes associated with infection and replication of T. gondii within human brain microvascular endothelial cells (BMECs) in vitro. T. gondii proliferated within the BMECs and disrupted the integrity of the cerebrovascular barrier through diminishing the cellular viability, disruption of the intercellular junctions and increasing permeability of the BMEC monolayer, as well as altering lipid homeostasis. Proton nuclear magnetic resonance (1H NMR)-based metabolomics combined with multivariate data analysis revealed profiles that can be attributed to infection and variations in the amounts of certain metabolites (e.g., amino acids, fatty acids) in the extracts of infected compared to control cells. Notably, treatment with the Ca2+ channel blocker verapamil rescued BMEC barrier integrity and restricted intracellular replication of the tachyzoites regardless of the time of treatment application (i.e., prior to infection, early- and late-infection). This study provides new insights into the structural and functional changes that accompany T. gondii infection of the BMECs, and sheds light upon the ability of verapamil to inhibit the parasite proliferation and to ameliorate the adverse effects caused by T. gondii infection.
Collapse
|
24
|
Vieira PDC, Waghabi MC, Beghini DG, Predes D, Abreu JG, Mouly V, Butler-Browne G, Barbosa HS, Adesse D. Toxoplasma gondii Impairs Myogenesis in vitro, With Changes in Myogenic Regulatory Factors, Altered Host Cell Proliferation and Secretory Profile. Front Cell Infect Microbiol 2019; 9:395. [PMID: 31828046 PMCID: PMC6890860 DOI: 10.3389/fcimb.2019.00395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/04/2019] [Indexed: 01/06/2023] Open
Abstract
Toxoplasma gondii is the causative agent of toxoplasmosis, a parasitic disease with a wide global prevalence. The parasite forms cysts in skeletal muscle cells and neurons, although no evident association with inflammatory infiltrates has been typically found. We studied the impact of T. gondii infection on the myogenic program of mouse skeletal muscle cells (SkMC). The C2C12 murine myoblast cell line was infected with T. gondii tachyzoites (ME49 strain) for 24 h followed by myogenic differentiation induction. T. gondii infection caused a general decrease in myotube differentiation, fusion and maturation, along with decreased expression of myosin heavy chain. The expression of Myogenic Regulatory Factors Myf5, MyoD, Mrf4 and myogenin was modulated by the infection. Infected cultures presented increased proliferation rates, as assessed by Ki67 immunostaining, whereas neither host cell lysis nor apoptosis were significantly augmented in infected dishes. Cytokine Bead Array indicated that IL-6 and MCP-1 were highly increased in the medium from infected cultures, whereas TGF-β1 was consistently decreased. Inhibition of the IL-6 receptor or supplementation with recombinant TGF-β failed to reverse the deleterious effects caused by the infection. However, conditioned medium from infected cultures inhibited myogenesis in C2C12 cells. Activation of the Wnt/β-catenin pathway was impaired in T. gondii-infected cultures. Our data indicate that T. gondii leads SkMCs to a pro-inflammatory phenotype, leaving cells unresponsive to β-catenin activation, and inhibition of the myogenic differentiation program. Such deregulation may suggest muscle atrophy and molecular mechanisms similar to those involved in myositis observed in human patients.
Collapse
Affiliation(s)
| | - Mariana Caldas Waghabi
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Daniela Gois Beghini
- Laboratório de Inovação em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Danilo Predes
- Laboratório de Embriologia de Vertebrados, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Garcia Abreu
- Laboratório de Embriologia de Vertebrados, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vincent Mouly
- Sorbonne Université, INSERM, Institut de Myologie, Myology Research Center UMRS974, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, INSERM, Institut de Myologie, Myology Research Center UMRS974, Paris, France
| | - Helene Santos Barbosa
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
25
|
Pereira-Dutra FS, Teixeira L, de Souza Costa MF, Bozza PT. Fat, fight, and beyond: The multiple roles of lipid droplets in infections and inflammation. J Leukoc Biol 2019; 106:563-580. [PMID: 31121077 DOI: 10.1002/jlb.4mr0119-035r] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Increased accumulation of cytoplasmic lipid droplets (LDs) in host nonadipose cells is commonly observed in response to numerous infectious diseases, including bacterial, parasite, and fungal infections. LDs are lipid-enriched, dynamic organelles composed of a core of neutral lipids surrounded by a monolayer of phospholipids associated with a diverse array of proteins that are cell and stimulus regulated. Far beyond being simply a deposit of neutral lipids, LDs have come to be seen as an essential platform for various cellular processes, including metabolic regulation, cell signaling, and the immune response. LD participation in the immune response occurs as sites for compartmentalization of several immunometabolic signaling pathways, production of inflammatory lipid mediators, and regulation of antigen presentation. Infection-driven LD biogenesis is a complexly regulated process that involves innate immune receptors, transcriptional and posttranscriptional regulation, increased lipid uptake, and new lipid synthesis. Accumulating evidence demonstrates that intracellular pathogens are able to exploit LDs as an energy source, a replication site, and/or a mechanism of immune response evasion. Nevertheless, LDs can also act in favor of the host as part of the immune and inflammatory response to pathogens. Here, we review recent findings that explored the new roles of LDs in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Filipe S Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Livia Teixeira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Silva LMR, Lütjohann D, Hamid P, Velasquez ZD, Kerner K, Larrazabal C, Failing K, Hermosilla C, Taubert A. Besnoitia besnoiti infection alters both endogenous cholesterol de novo synthesis and exogenous LDL uptake in host endothelial cells. Sci Rep 2019; 9:6650. [PMID: 31040348 PMCID: PMC6491585 DOI: 10.1038/s41598-019-43153-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/12/2019] [Indexed: 02/07/2023] Open
Abstract
Besnoitia besnoiti, an apicomplexan parasite of cattle being considered as emergent in Europe, replicates fast in host endothelial cells during acute infection and is in considerable need for energy, lipids and other building blocks for offspring formation. Apicomplexa are generally considered as defective in cholesterol synthesis and have to scavenge cholesterol from their host cells for successful replication. Therefore, we here analysed the influence of B. besnoiti on host cellular endogenous cholesterol synthesis and on sterol uptake from exogenous sources. GC-MS-based profiling of cholesterol-related sterols revealed enhanced cholesterol synthesis rates in B. besnoiti-infected cells. Accordingly, lovastatin and zaragozic acid treatments diminished tachyzoite production. Moreover, increased lipid droplet contents and enhanced cholesterol esterification was detected and inhibition of the latter significantly blocked parasite proliferation. Furthermore, artificial increase of host cellular lipid droplet disposability boosted parasite proliferation. Interestingly, lectin-like oxidized low density lipoprotein receptor 1 expression was upregulated in infected endothelial hostcells, whilst low density lipoproteins (LDL) receptor was not affected by parasite infection. However, exogenous supplementations with non-modified and acetylated LDL both boosted B. besnoiti proliferation. Overall, current data show that B. besnoiti simultaneously exploits both, endogenous cholesterol biosynthesis and cholesterol uptake from exogenous sources, during asexual replication.
Collapse
Affiliation(s)
- Liliana M R Silva
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Dieter Lütjohann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Laboratory for Special Lipid Diagnostics/Center Internal Medicine/Building 26/UG 68, Sigmund-Freud-Str. 25, D-53127, Bonn, Germany
| | - Penny Hamid
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.,Department of Parasitology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Jl. Fauna No. 2 Karangmalang, 55281, Yogyakarta, Indonesia
| | - Zahady D Velasquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus-Liebig-University, Giessen, Frankfurter Str. 85-89, D-35392, Germany
| | - Camilo Larrazabal
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany
| | - Klaus Failing
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Frankfurter Str. 95, D-35392, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany
| |
Collapse
|
27
|
Pereira ACA, Silva RJ, Franco PS, de Oliveira Gomes A, Souza G, Milian ICB, Ribeiro M, Rosini AM, Guirelli PM, Ramos ELP, Mineo TWP, Mineo JR, Silva NM, Ferro EAV, Barbosa BF. Cyclooxygenase (COX)-2 Inhibitors Reduce Toxoplasma gondii Infection and Upregulate the Pro-inflammatory Immune Response in Calomys callosus Rodents and Human Monocyte Cell Line. Front Microbiol 2019; 10:225. [PMID: 30809216 PMCID: PMC6379304 DOI: 10.3389/fmicb.2019.00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/28/2019] [Indexed: 12/27/2022] Open
Abstract
Toxoplasma gondii is able to infect a wide range of vertebrates, including humans. Studies show that cyclooxygenase-2 (COX-2) is a modulator of immune response in multiple types of infection, such as Trypanosoma cruzi. However, the role of COX-2 during T. gondii infection is still unclear. The aim of this study was to investigate the role of COX-2 during infection by moderately or highly virulent strains of T. gondii in Calomys callosus rodents and human THP-1 cells. C. callosus were infected with 50 cysts of T. gondii (ME49), treated with COX-2 inhibitors (meloxicam or celecoxib) and evaluated to check body weight and morbidity. After 40 days, brain and serum were collected for detection of T. gondii by real-time PCR and immunohistochemistry or cytokines by CBA. Furthermore, peritoneal macrophages or THP-1 cells, infected with RH strain or uninfected, were treated with meloxicam or celecoxib to evaluate the parasite proliferation by colorimetric assay and cytokine production by ELISA. Finally, in order to verify the role of prostaglandin E2 in COX-2 mechanism, THP-1 cells were infected, treated with meloxicam or celecoxib plus PGE2, and analyzed to parasite proliferation and cytokine production. The data showed that body weight and morbidity of the animals changed after infection by T. gondii, under both treatments. Immunohistochemistry and real-time PCR showed a reduction of T. gondii in brains of animals treated with both COX-2 inhibitors. Additionally, it was observed that both COX-2 inhibitors controlled the T. gondii proliferation in peritoneal macrophages and THP-1 cells, and the treatment with PGE2 restored the parasite growth in THP-1 cells blocked to COX-2. In the serum of Calomys, upregulation of pro-inflammatory cytokines was detected, while the supernatants of peritoneal macrophages and THP-1 cells demonstrated significant production of TNF and nitrite, or TNF, nitrite and MIF, respectively, under both COX-2 inhibitors. Finally, PGE2 treatment in THP-1 cells triggered downmodulation of pro-inflammatory mediators and upregulation of IL-8 and IL-10. Thus, COX-2 is an immune mediator involved in the susceptibility to T. gondii regardless of strain or cell types, since inhibition of this enzyme induced control of infection by upregulating important pro-inflammatory mediators against Toxoplasma.
Collapse
Affiliation(s)
- Ana Carolina Alcântara Pereira
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Rafaela José Silva
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Priscila Silva Franco
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Angelica de Oliveira Gomes
- Institute of Natural and Biological Sciences, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Guilherme Souza
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Iliana Claudia Balga Milian
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Mayara Ribeiro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Alessandra Monteiro Rosini
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Pâmela Mendonça Guirelli
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Eliézer Lucas Pires Ramos
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Tiago Wilson Patriarca Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - José Roberto Mineo
- Laboratory of Immunoparasitology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Eloisa Amália Vieira Ferro
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Bellisa Freitas Barbosa
- Laboratory of Immunophysiology of Reproduction, Institute of Biomedical Sciences, Universidade Federal de Uberlândia, Uberlândia, Brazil
| |
Collapse
|
28
|
Abstract
Toxoplasma gondii is an obligate intracellular parasite belonging to the phylum Apicomplexa that infects all warm-blooded animals, including humans. T. gondii can replicate in every nucleated host cell by orchestrating metabolic interactions to derive crucial nutrients. In this review, we summarize the current status of known metabolic interactions of T. gondii with its host cell and discuss open questions and promising experimental approaches that will allow further dissection of the host-parasite interface and discovery of ways to efficiently target both tachyzoite and bradyzoite forms of T. gondii, which are associated with acute and chronic infection, respectively.
Collapse
Affiliation(s)
- Martin Blume
- NG2 - Metabolism of Microbial Pathogens, Robert Koch-Institute, Berlin, Germany
| | - Frank Seeber
- FG16 - Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| |
Collapse
|
29
|
Novel Approaches To Kill Toxoplasma gondii by Exploiting the Uncontrolled Uptake of Unsaturated Fatty Acids and Vulnerability to Lipid Storage Inhibition of the Parasite. Antimicrob Agents Chemother 2018; 62:AAC.00347-18. [PMID: 30061287 DOI: 10.1128/aac.00347-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/21/2018] [Indexed: 12/17/2022] Open
Abstract
Toxoplasma gondii, an obligate intracellular parasite replicating in mammalian cells within a parasitophorous vacuole (PV), is an avid scavenger of lipids retrieved from the host cell. Following lipid uptake, this parasite stores excess lipids in lipid droplets (LD). Here, we examined the lipid storage capacities of Toxoplasma upon supplementation of the culture medium with various fatty acids at physiological concentrations. Supplemental unsaturated fatty acids (oleate [OA], palmitoleate, linoleate) accumulate in large LD and impair parasite replication, whereas saturated fatty acids (palmitate, stearate) neither stimulate LD formation nor impact growth. Examination of parasite growth defects with 0.4 mM OA revealed massive lipid deposits outside LD, indicating enzymatic inadequacies for storing neutral lipids in LD in response to the copious salvage of OA. Toxoplasma exposure to 0.5 mM OA led to irreversible growth arrest and lipid-induced damage, confirming a major disconnect between fatty acid uptake and the parasite's cellular lipid requirements. The importance of neutral lipid synthesis and storage to avoid lipotoxicity was further highlighted by the selective vulnerability of Toxoplasma, both the proliferative and the encysted forms, to subtoxic concentrations of the acyl coenzyme A:diacylglycerol acyltransferase 1 (DGAT1) pharmacological inhibitor T863. T863-treated parasites did not form LD but instead built up large membranous structures within the cytoplasm, which suggests improper channeling and management of the excess lipid. Dual addition of OA and T863 to infected cells intensified the deterioration of the parasite. Overall, our data pinpoint Toxoplasma DGAT as a promising drug target for the treatment of toxoplasmosis that would not incur the risk of toxicity for mammalian cells.
Collapse
|
30
|
Taubert A, Silva LMR, Velásquez ZD, Larrazabal C, Lütjohann D, Hermosilla C. Modulation of cholesterol-related sterols during Eimeria bovis macromeront formation and impact of selected oxysterols on parasite development. Mol Biochem Parasitol 2018; 223:1-12. [PMID: 29909067 DOI: 10.1016/j.molbiopara.2018.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
Abstract
Obligate intracellular apicomplexan parasites are considered as deficient in cholesterol biosynthesis and scavenge cholesterol from their host cell in a parasite-specific manner. Compared to fast proliferating apicomplexan species producing low numbers of merozoites per host cell, (e. g. Toxoplasma gondii), the macromeront-forming protozoa Eimeria bovis is in extraordinary need for cholesterol for offspring production (≥ 170,000 merozoites I/macromeront). Interestingly, optimized in vitro E. bovis merozoite I production occurs under low foetal calf serum (FCS, 1.2%) supplementation. To analyze the impact of extensive E. bovis proliferation on host cellular sterol metabolism we here compared the sterol profiles of E. bovis-infected primary endothelial host cells grown under optimized (1.2% FCS) and non-optimized (10% FCS) cell culture conditions. Therefore, several sterols indicating endogenous de novo cholesterol synthesis, cholesterol conversion and sterol uptake (phytosterols) were analyzed via GC-MS-based approaches. Overall, significantly enhanced levels of phytosterols were detected in both FCS conditions indicating infection-triggered sterol uptake from extracellular sources as a major pathway of sterol acquisition. Interestingly, a simultaneous induction of endogenous cholesterol synthesis based on increased levels of distinct cholesterol precursors was only observed in case of optimized parasite proliferation indicating a parasite proliferation-dependent effect. Considering side-chain oxysterols, 25 hydroxycholesterol levels were selectively found increased in E. bovis-infected host cells, while 24 hydroxycholesterol and 27 hydroxycholesterol contents were not significantly altered by infection. Exogenous treatments with 25 hydroxycholesterol, 27 hydroxycholesterol, and 7 ketocholesterol revealed significant adverse effects on E. bovis intracellular development. Thus, the number and size of developing macromeronts and merozoite I production was significantly reduced indicating that these oxysterols bear direct or indirect antiparasitic properties. Overall, the current data indicate parasite-driven changes in the host cellular sterol profile reflecting the huge demand of E. bovis for cholesterol during macromeront formation and its versatility in the acquisition of cholesterol sources.
Collapse
Affiliation(s)
- A Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany.
| | - L M R Silva
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany.
| | - Z D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany.
| | - C Larrazabal
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany.
| | - D Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics of Bonn, Sigmund-Freud-Str. 25, 53127 Bonn, Germany.
| | - C Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Schubertstr. 81, 35392 Giessen, Germany.
| |
Collapse
|
31
|
Vallochi AL, Teixeira L, Oliveira KDS, Maya-Monteiro CM, Bozza PT. Lipid Droplet, a Key Player in Host-Parasite Interactions. Front Immunol 2018; 9:1022. [PMID: 29875768 PMCID: PMC5974170 DOI: 10.3389/fimmu.2018.01022] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Lipid droplets (lipid bodies, LDs) are dynamic organelles that have important roles in regulating lipid metabolism, energy homeostasis, cell signaling, membrane trafficking, and inflammation. LD biogenesis, composition, and functions are highly regulated and may vary according to the stimuli, cell type, activation state, and inflammatory environment. Increased cytoplasmic LDs are frequently observed in leukocytes and other cells in a number of infectious diseases. Accumulating evidence reveals LDs participation in fundamental mechanisms of host-pathogen interactions, including cell signaling and immunity. LDs are sources of eicosanoid production, and may participate in different aspects of innate signaling and antigen presentation. In addition, intracellular pathogens evolved mechanisms to subvert host metabolism and may use host LDs, as ways of immune evasion and nutrients source. Here, we review mechanisms of LDs biogenesis and their contributions to the infection progress, and discuss the latest discoveries on mechanisms and pathways involving LDs roles as regulators of the immune response to protozoan infection.
Collapse
Affiliation(s)
- Adriana Lima Vallochi
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | | | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
32
|
de Almeida PE, Toledo DAM, Rodrigues GSC, D'Avila H. Lipid Bodies as Sites of Prostaglandin E2 Synthesis During Chagas Disease: Impact in the Parasite Escape Mechanism. Front Microbiol 2018; 9:499. [PMID: 29616011 PMCID: PMC5869919 DOI: 10.3389/fmicb.2018.00499] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
During Chagas disease, the Trypanosoma cruzi can induce some changes in the host cells in order to escape or manipulate the host immune response. The modulation of the lipid metabolism in the host phagocytes or in the parasite itself is one feature that has been observed. The goal of this mini review is to discuss the mechanisms that regulate intracellular lipid body (LB) biogenesis in the course of this parasite infection and their meaning to the pathophysiology of the disease. The interaction host–parasite induces LB (or lipid droplet) formation in a Toll-like receptor 2-dependent mechanism in macrophages and is enhanced by apoptotic cell uptake. Simultaneously, there is a lipid accumulation in the parasite due to the incorporation of host fatty acids. The increase in the LB accumulation during infection is correlated with an increase in the synthesis of PGE2 within the host cells and the parasite LBs. Moreover, the treatment with fatty acid synthase inhibitor C75 or non-steroidal anti-inflammatory drugs such as NS-398 and aspirin inhibited the LB biogenesis and also induced the down modulation of the eicosanoid production and the parasite replication. These findings show that LBs are organelles up modulated during the course of infection. Furthermore, the biogenesis of the LB is involved in the lipid mediator generation by both the macrophages and the parasite triggering escape mechanisms.
Collapse
Affiliation(s)
- Patrícia E de Almeida
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - Gabriel S C Rodrigues
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Heloisa D'Avila
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
33
|
Moreira D, Estaquier J, Cordeiro-da-Silva A, Silvestre R. Metabolic Crosstalk Between Host and Parasitic Pathogens. EXPERIENTIA SUPPLEMENTUM (2012) 2018; 109:421-458. [PMID: 30535608 DOI: 10.1007/978-3-319-74932-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A complex network that embraces parasite-host intrinsic factors and the microenvironment regulated the interaction between a parasite and its host. Nutritional pressures exerted by both elements of this duet thus dictate this host-parasite niche. To survive and proliferate inside a host and a harsh nutritional environment, the parasites modulate different nutrient sensing pathways to subvert host metabolic pathways. Such mechanism is able to change the flux of distinct nutrients/metabolites diverting them to be used by the parasites. Apart from this nutritional strategy, the scavenging of nutrients, particularly host fatty acids, constitutes a critical mechanism to fulfil parasite nutritional requirements, ultimately defining the host metabolic landscape. The host metabolic alterations that result from host-parasite metabolic coupling can certainly be considered important targets to improve diagnosis and also for the development of future therapies. Metabolism is in fact considered a key element within this complex interaction, its modulation being crucial to dictate the final infection outcome.
Collapse
Affiliation(s)
- Diana Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Jérôme Estaquier
- CNRS FR 3636, Université Paris Descartes, Paris, France
- Centre de Recherche du CHU de Québec, Université Laval, Québec, Canada
| | - Anabela Cordeiro-da-Silva
- i3S-Instituto de Investigacão e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Bioloógicas, Faculdade de Farmaácia, Universidade do Porto, Porto, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
34
|
Host triacylglycerols shape the lipidome of intracellular trypanosomes and modulate their growth. PLoS Pathog 2017; 13:e1006800. [PMID: 29281741 PMCID: PMC5760102 DOI: 10.1371/journal.ppat.1006800] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 01/09/2018] [Accepted: 12/08/2017] [Indexed: 01/12/2023] Open
Abstract
Intracellular infection and multi-organ colonization by the protozoan parasite, Trypanosoma cruzi, underlie the complex etiology of human Chagas disease. While T. cruzi can establish cytosolic residence in a broad range of mammalian cell types, the molecular mechanisms governing this process remain poorly understood. Despite the anticipated capacity for fatty acid synthesis in this parasite, recent observations suggest that intracellular T. cruzi amastigotes may rely on host fatty acid metabolism to support infection. To investigate this prediction, it was necessary to establish baseline lipidome information for the mammalian-infective stages of T. cruzi and their mammalian host cells. An unbiased, quantitative mass spectrometric analysis of lipid fractions was performed with the identification of 1079 lipids within 30 classes. From these profiles we deduced that T. cruzi amastigotes maintain an overall lipid identity that is distinguishable from mammalian host cells. A deeper analysis of the fatty acid moiety distributions within each lipid subclass facilitated the high confidence assignment of host- and parasite-like lipid signatures. This analysis unexpectedly revealed a strong host lipid signature in the parasite lipidome, most notably within its glycerolipid fraction. The near complete overlap of fatty acid moiety distributions observed for host and parasite triacylglycerols suggested that T. cruzi amastigotes acquired a significant portion of their lipidome from host triacylglycerol pools. Metabolic tracer studies confirmed long-chain fatty acid scavenging by intracellular T. cruzi amastigotes, a capacity that was significantly diminished in host cells deficient for de novo triacylglycerol synthesis via the diacylglycerol acyltransferases (DGAT1/2). Reduced T. cruzi amastigote proliferation in DGAT1/2-deficient fibroblasts further underscored the importance of parasite coupling to host triacylglycerol pools during the intracellular infection cycle. Thus, our comprehensive lipidomic dataset provides a substantially enhanced view of T. cruzi infection biology highlighting the interplay between host and parasite lipid metabolism with potential bearing on future therapeutic intervention strategies. The development of human Chagas disease is associated with persistent intracellular infection with the protozoan parasite, Trypanosoma cruzi, which displays tropism for tissues with characteristically high fatty acid flux, such as heart and adipose tissues. Previous studies have highlighted fatty acid metabolism as likely critical to support the growth and survival of this intracellular pathogen, however biochemical data supporting this prediction is currently lacking. Employing an untargeted lipid mass spectrometry approach, we defined the lipidome of intracellular T. cruzi parasites and their mammalian host cells. Comparative analyses revealed that the fatty acid signatures in the triacylglycerol (TG) pools were highly conserved between parasite and host, suggesting a major route of fatty acid acquisition by this pathogen via host TG. Metabolic tracer studies demonstrated intracellular parasite incorporation of exogenous palmitate into both neutral and phospholipid subclasses that was diminished in host cells deficient for TG synthesis. Moreover, parasites grown in these cells displayed reduced proliferation, demonstrating the importance of parasite coupling to host TG pools during the intracellular infection cycle.
Collapse
|
35
|
Nolan SJ, Romano JD, Coppens I. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog 2017; 13:e1006362. [PMID: 28570716 PMCID: PMC5469497 DOI: 10.1371/journal.ppat.1006362] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/13/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma is an obligate intracellular parasite that replicates in mammalian cells within a parasitophorous vacuole (PV) that does not fuse with any host organelles. One mechanism developed by the parasite for nutrient acquisition is the attraction of host organelles to the PV. Here, we examined the exploitation of host lipid droplets (LD), ubiquitous fat storage organelles, by Toxoplasma. We show that Toxoplasma replication is reduced in host cells that are depleted of LD, or impaired in TAG lipolysis or fatty acid catabolism. In infected cells, the number of host LD and the expression of host LD-associated genes (ADRP, DGAT2), progressively increase until the onset of parasite replication. Throughout infection, the PV are surrounded by host LD. Toxoplasma is capable of accessing lipids stored in host LD and incorporates these lipids into its own membranes and LD. Exogenous addition of oleic acid stimulates LD biogenesis in the host cell and results in the overaccumulation of neutral lipids in very large LD inside the parasite. To access LD-derived lipids, Toxoplasma intercepts and internalizes within the PV host LD, some of which remaining associated with Rab7, which become wrapped by an intravacuolar network of membranes (IVN). Mutant parasites impaired in IVN formation display diminished capacity of lipid uptake from host LD. Moreover, parasites lacking an IVN-localized phospholipase A2 are less proficient in salvaging lipids from host LD in the PV, suggesting a major contribution of the IVN for host LD processing in the PV and, thus lipid content release. Interestingly, gavage of parasites with lipids unveils, for the first time, the presence in Toxoplasma of endocytic-like structures containing lipidic material originating from the PV lumen. This study highlights the reliance of Toxoplasma on host LD for its intracellular development and the parasite’s capability in scavenging neutral lipids from host LD. Toxoplasma is an obligate intracellular pathogen that multiplies in mammalian cells within a specialized compartment, named the parasitophorous vacuole (PV). While the vacuole does not fuse with host organelles, the parasite scavenges nutrients, including lipids, from these compartments. Present in all mammalian cells, lipid droplets (LD) are dynamic structures that store neutral lipids. Whether Toxoplasma targets host LD for their nutritional content remains to be investigated. We demonstrate that the parasite relies on host LD lipids and their lipolytic enzymatic activities to grow. Toxoplasma salvages lipids from host LD, which surround the PV and, at least partially, accesses these lipids by intercepting and engulfing within the PV host Rab7-associated LD. In the PV lumen, a parasite lipase releases lipids from host LD, thus making them available to the parasite. Exogenous addition of fatty acids stimulates host LD biogenesis and results in the accumulation of enlarged LD containing neutral lipids in Toxoplasma. This study highlights the ability of Toxoplasma to scavenge and store lipids from host LD. Interestingly, exposure of Toxoplasma to excess lipids reveals, for the first time, coated invaginations of the parasite’s plasma membrane and cytoplasmic vesicles containing lipids originating from the PV lumen, potentially involved in endocytosis.
Collapse
Affiliation(s)
- Sabrina J. Nolan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Hu X, Binns D, Reese ML. The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem 2017; 292:11009-11020. [PMID: 28487365 DOI: 10.1074/jbc.m116.768176] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/05/2017] [Indexed: 11/06/2022] Open
Abstract
Upon infection, the intracellular parasite Toxoplasma gondii co-opts critical functions of its host cell to avoid immune clearance and gain access to nutritional resources. One route by which Toxoplasma co-opts its host cell is through hijacking host organelles, many of which have roles in immunomodulation. Here we demonstrate that Toxoplasma infection results in increased biogenesis of host lipid droplets through rewiring of multiple components of host neutral lipid metabolism. These metabolic changes cause increased responsiveness of host cells to free fatty acid, leading to a radical increase in the esterification of free fatty acids into triacylglycerol. We identified c-Jun kinase and mammalian target of rapamycin (mTOR) as components of two distinct host signaling pathways that modulate the parasite-induced lipid droplet accumulation. We also found that, unlike many host processes dysregulated during Toxoplasma infection, the induction of lipid droplet generation is conserved not only during infection with genetically diverse Toxoplasma strains but also with Neospora caninum, which is closely related to Toxoplasma but has a restricted host range and uses different effector proteins to alter host signaling. Finally, by showing that a Toxoplasma strain deficient in exporting a specific class of effectors is unable to induce lipid droplet accumulation, we demonstrate that the parasite plays an active role in this process. These results indicate that, despite their different host ranges, Toxoplasma and Neospora use a conserved mechanism to co-opt these host organelles, which suggests that lipid droplets play a critical role at the coccidian host-pathogen interface.
Collapse
Affiliation(s)
- Xiaoyu Hu
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Derk Binns
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Michael L Reese
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| |
Collapse
|
37
|
Abstract
The cAMP-dependent protein kinase PKA is a well-characterized member of the serine-threonine protein AGC kinase family and is the effector kinase of cAMP signaling. As such, PKA is involved in the control of a wide variety of cellular processes including metabolism, cell growth, gene expression and apoptosis. cAMP-dependent PKA signaling pathways play important roles during infection and virulence of various pathogens. Since fluxes in cAMP are involved in multiple intracellular functions, a variety of different pathological infectious processes can be affected by PKA signaling pathways. Here, we highlight some features of cAMP-PKA signaling that are relevant to Plasmodium falciparum-infection of erythrocytes and present an update on AKAP targeting of PKA in PGE2 signaling via EP4 in Theileria annulata-infection of leukocytes and discuss cAMP-PKA signling in Toxoplasma.
Collapse
Affiliation(s)
- M. Haidar
- Cochin Institute, Inserm U1016, CNRS UMR8104, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France
| | - G. Ramdani
- Cochin Institute, Inserm U1016, CNRS UMR8104, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France
- Departments of Medicine, University of California, San Diego, La Jolla, California, USA
| | - E. J. Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA
| | - G. Langsley
- Cochin Institute, Inserm U1016, CNRS UMR8104, Paris, France
- Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
38
|
Roingeard P, Melo RCN. Lipid droplet hijacking by intracellular pathogens. Cell Microbiol 2016; 19. [PMID: 27794207 DOI: 10.1111/cmi.12688] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 12/15/2022]
Abstract
Lipid droplets were long considered to be simple storage structures, but they have recently been shown to be dynamic organelles involved in diverse biological processes, including emerging roles in innate immunity. Various intracellular pathogens, including viruses, bacteria, and parasites, specifically target host lipid droplets during their life cycle. Viruses such as hepatitis C, dengue, and rotaviruses use lipid droplets as platforms for assembly. Bacteria, such as mycobacteria and Chlamydia, and parasites, such as trypanosomes, use host lipid droplets for nutritional purposes. The possible use of lipid droplets by intracellular pathogens, as part of an anti-immunity strategy, is an intriguing question meriting further investigation in the near future.
Collapse
Affiliation(s)
- Philippe Roingeard
- INSERM U966 and IBiSA Electron Microscopy Facility, François Rabelais University and CHRU de Tours, Tours, France
| | - Rossana C N Melo
- Laboratory of Cell Biology, Institute of Biological Sciences, Federal University of Juiz de Fora-UFJF, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
39
|
Toledo DAM, D'Avila H, Melo RCN. Host Lipid Bodies as Platforms for Intracellular Survival of Protozoan Parasites. Front Immunol 2016; 7:174. [PMID: 27199996 PMCID: PMC4853369 DOI: 10.3389/fimmu.2016.00174] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022] Open
Abstract
Pathogens induce several changes in the host cell signaling and trafficking mechanisms in order to evade and manipulate the immune response. One prominent pathogen-mediated change is the formation of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in the host cell cytoplasm. Protozoan parasites, which contribute expressively to the burden of infectious diseases worldwide, are able to induce LB genesis in non-immune and immune cells, mainly macrophages, key players in the initial resistance to the infection. Under host–parasite interaction, LBs not only accumulate in the host cytoplasm but also relocate around and move into parasitophorous vacuoles. There is increasing evidence that protozoan parasites may target host-derived LBs either for gaining nutrients or for escaping the host immune response. Newly formed, parasite-induced LBs may serve as lipid sources for parasite growth and also produce inflammatory mediators that potentially act in the host immune response deactivation. In this mini review, we summarize current knowledge on the formation and role of host LBs as sites exploited by intracellular protozoan parasites as a strategy to maintain their own survival.
Collapse
Affiliation(s)
- Daniel A M Toledo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences (ICB), Federal University of Juiz de Fora (UFJF) , Juiz de Fora, Minas Gerais , Brazil
| | - Heloísa D'Avila
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences (ICB), Federal University of Juiz de Fora (UFJF) , Juiz de Fora, Minas Gerais , Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences (ICB), Federal University of Juiz de Fora (UFJF) , Juiz de Fora, Minas Gerais , Brazil
| |
Collapse
|
40
|
Hamid PH, Hirzmann J, Kerner K, Gimpl G, Lochnit G, Hermosilla CR, Taubert A. Eimeria bovis infection modulates endothelial host cell cholesterol metabolism for successful replication. Vet Res 2015; 46:100. [PMID: 26395984 PMCID: PMC4579583 DOI: 10.1186/s13567-015-0230-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/04/2015] [Indexed: 11/10/2022] Open
Abstract
During first merogony Eimeria bovis forms large macromeronts in endothelial host cells containing >120 000 merozoites I. During multiplication, large amounts of cholesterol are indispensable for the enormous offspring membrane production. Cholesterol auxotrophy was proven for other apicomplexan parasites. Consequently they scavenge cholesterol from their host cell apparently in a parasite-specific manner. We here analyzed the influence of E. bovis infection on endothelial host cell cholesterol metabolism and found considerable differences to other coccidian parasites. Overall, free cholesterol significantly accumulated in E. bovis infected host cells. Furthermore, a striking increase of lipid droplet formation was observed within immature macromeronts. Artificial host cell lipid droplet enrichment significantly improved E. bovis merozoite I production confirming the key role of lipid droplet contents for optimal parasite proliferation. The transcription of several genes being involved in both, cholesterol de novo biosynthesis and low density lipoprotein-(LDL) mediated uptake, was significantly up-regulated at a time in infected cells suggesting a simultaneous exploitation of these two cholesterol acquisition pathways. E. bovis scavenges LDL-derived cholesterol apparently through significantly increased levels of surface LDL receptor abundance and LDL binding to infected cells. Consequently, LDL supplementation significantly improved parasite replication. The up-regulation of the oxidized LDL receptor 1 furthermore identified this scavenger receptor as a key molecule in parasite-triggered LDL uptake. Moreover, cellular cholesterol processing was altered in infected cells as indicated by up-regulation of cholesterol-25-hydroxylase and sterol O-acyltransferase. Overall, these results show that E. bovis considerably exploits the host cell cholesterol metabolism to guarantee its massive intracellular growth and replication.
Collapse
Affiliation(s)
- Penny H Hamid
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Joerg Hirzmann
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Katharina Kerner
- Institute for Hygiene and Infectious Diseases of Animals, Justus LiebigUniversity Giessen, Frankfurter Str. 85-89, D-35392, Giessen, Germany.
| | - Gerald Gimpl
- Institute of Pharmacy and Biochemistry, Department of Biochemistry, Johann-Joachim-Becherweg 30, D-55099, Mainz, Germany.
| | - Guenter Lochnit
- Institute of Biochemistry, Justus Liebig University Giessen, Friedrichstr. 24, D-35392, Giessen, Germany.
| | - Carlos R Hermosilla
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Centre, Justus Liebig University Giessen, Schubertstr. 81, D-35392, Giessen, Germany.
| |
Collapse
|
41
|
Melo RCN, Weller PF. Unraveling the complexity of lipid body organelles in human eosinophils. J Leukoc Biol 2014; 96:703-12. [PMID: 25210147 DOI: 10.1189/jlb.3ru0214-110r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lipid-rich organelles are common in many cell types. In cells, such as adipocytes, these organelles are termed LDs, whereas in other cells, such as leukocytes, they are called LBs. The study of leukocyte LBs has attracted attention as a result of their association with human diseases. In leukocytes, such as eosinophils, LB accumulation has been documented extensively during inflammatory conditions. In these cells, LBs are linked to the regulation of immune responses by compartmentalization of several proteins and lipids involved in the control and biosynthesis of inflammatory mediators (eicosanoids). However, it has been unclear how diverse proteins, including membrane-associated enzymes involved in eicosanoid formation, incorporate into LBs, especially if the internal content of LBs is assumed to consist solely of stores of neutral lipids, as present within adipocyte LDs. Studies of the formation, function, and ultrastructure of LBs in eosinophils have been providing insights pertinent to LBs in other leukocytes. Here, we review current knowledge of the composition and function of leukocyte LBs as provided by studies of human eosinophil LBs, including recognitions of the internal architecture of eosinophil LBs based on 3D electron tomographic analyses.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Brazil; and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Peter F Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Mota LAM, Roberto Neto J, Monteiro VG, Lobato CSS, Oliveira MAD, Cunha MD, D'Ávila H, Seabra SH, Bozza PT, DaMatta RA. Culture of mouse peritoneal macrophages with mouse serum induces lipid bodies that associate with the parasitophorous vacuole and decrease their microbicidal capacity against Toxoplasma gondii. Mem Inst Oswaldo Cruz 2014; 109:767-74. [PMID: 25317704 PMCID: PMC4238769 DOI: 10.1590/0074-0276140119] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 06/26/2014] [Indexed: 11/22/2022] Open
Abstract
Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production.
Collapse
Affiliation(s)
- Laura Azeredo Miranda Mota
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil
| | - João Roberto Neto
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil
| | - Verônica Gomes Monteiro
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil
| | - Caroliny Samary Silva Lobato
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil
| | - Marco Antonio de Oliveira
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil
| | - Maura da Cunha
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil
| | - Heloisa D'Ávila
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Sérgio Henrique Seabra
- Laboratório de Tecnologia em Bioquímica e Microscopia, Centro Universitário Estadual da Zona Oeste, Rio de Janeiro, RJ, Brasil
| | | | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brasil
| |
Collapse
|
43
|
Ihara F, Nishikawa Y. Starvation of low-density lipoprotein-derived cholesterol induces bradyzoite conversion in Toxoplasma gondii. Parasit Vectors 2014; 7:248. [PMID: 24885547 PMCID: PMC4046157 DOI: 10.1186/1756-3305-7-248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background Lacking enzymes for sterol synthesis, the intracellular protozoan Toxoplasma gondii scavenges cholesterol from host cells to multiply. T. gondii has a complex life cycle consisting of two asexual stages; the proliferative stage (tachyzoite), and the latent stage characterized by tissue cysts (bradyzoite). In vitro, bradyzoite development can be induced by mimicking host immune response stressors through treatment with IFN-γ, heat shock, nitric oxide, and high pH. However, the extent to which host nutrients contribute to stage conversion in T. gondii is unknown. In this study, we examined the impact of host cholesterol levels on stage conversion in this parasite. Methods Growth of T. gondii tachyzoites (ME49 strain) was investigated in Chinese hamster ovary (CHO) cells using various concentrations of low-density lipoprotein (LDL), oleic acid, or glucose. Squalestatin, which is an inhibitor of squalene synthase and is, therefore, an inhibitor of sterol synthesis, was used to treat the CHO cells. Tachyzoite to bradyzoite conversion rates were analyzed by indirect fluorescent antibody tests. Results Parasite growth was significantly enhanced by addition of exogenous LDL, whereas no such enhancement occurred with oleic acids or glucose. In ME49, growth inhibition from squalestatin treatment was not obvious. Although growth of the RH strain was unaffected by squalestatin in the presence of lipoprotein, in its absence growth of this strain was suppressed. The frequency of BAG1-positive vacuoles in ME49 increased under lipoprotein-free conditions. However, addition of exogenous LDL did not increase tachyzoite to bradyzoite conversion in this strain. Furthermore, treatment with squalestatin did not enhance stage conversion. Conclusion Our results suggest that LDL-derived cholesterol levels play a crucial role in bradyzoite conversion in T. gondii.
Collapse
Affiliation(s)
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro Hokkaido 080-8555, Japan.
| |
Collapse
|