1
|
Pan Q, Ai W, Chen Y, Kim DM, Shen Z, Yang W, Jiang W, Sun Y, Safe S, Guo S. Reciprocal Regulation of Hepatic TGF-β1 and Foxo1 Controls Gluconeogenesis and Energy Expenditure. Diabetes 2023; 72:1193-1206. [PMID: 37343276 PMCID: PMC10450826 DOI: 10.2337/db23-0180] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Obesity and insulin resistance are risk factors for the pathogenesis of type 2 diabetes (T2D). Here, we report that hepatic TGF-β1 expression positively correlates with obesity and insulin resistance in mice and humans. Hepatic TGF-β1 deficiency decreased blood glucose levels in lean mice and improved glucose and energy dysregulations in diet-induced obese (DIO) mice and diabetic mice. Conversely, overexpression of TGF-β1 in the liver exacerbated metabolic dysfunctions in DIO mice. Mechanistically, hepatic TGF-β1 and Foxo1 are reciprocally regulated: fasting or insulin resistance caused Foxo1 activation, increasing TGF-β1 expression, which, in turn, activated protein kinase A, stimulating Foxo1-S273 phosphorylation to promote Foxo1-mediated gluconeogenesis. Disruption of TGF-β1→Foxo1→TGF-β1 looping by deleting TGF-β1 receptor II in the liver or by blocking Foxo1-S273 phosphorylation ameliorated hyperglycemia and improved energy metabolism in adipose tissues. Taken together, our studies reveal that hepatic TGF-β1→Foxo1→TGF-β1 looping could be a potential therapeutic target for prevention and treatment of obesity and T2D. ARTICLE HIGHLIGHTS Hepatic TGF-β1 levels are increased in obese humans and mice. Hepatic TGF-β1 maintains glucose homeostasis in lean mice and causes glucose and energy dysregulations in obese and diabetic mice. Hepatic TGF-β1 exerts an autocrine effect to promote hepatic gluconeogenesis via cAMP-dependent protein kinase-mediated Foxo1 phosphorylation at serine 273, endocrine effects on brown adipose tissue action, and inguinal white adipose tissue browning (beige fat), causing energy imbalance in obese and insulin-resistant mice. TGF-β1→Foxo1→TGF-β1 looping in hepatocytes plays a critical role in controlling glucose and energy metabolism in health and disease.
Collapse
Affiliation(s)
- Quan Pan
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Weiqi Ai
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yunmei Chen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Da Mi Kim
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Zheng Shen
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Wanbao Yang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Wen Jiang
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Yuxiang Sun
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX
| | - Shaodong Guo
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
2
|
Altered Secretome of Diabetic Monocytes Could Negatively Influence Fracture Healing-An In Vitro Study. Int J Mol Sci 2021; 22:ijms22179212. [PMID: 34502120 PMCID: PMC8430926 DOI: 10.3390/ijms22179212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a main risk factor for delayed fracture healing and fracture non-unions. Successful fracture healing requires stimuli from different immune cells, known to be affected in diabetics. Especially, application of mononuclear cells has been proposed to promote wound and fracture healing. Thus, aim was to investigate the effect of pre-/diabetic conditions on mononuclear cell functions essential to promote osteoprogenitor cell function. We here show that pre-/diabetic conditions suppress the expression of chemokines, e.g., CCL2 and CCL8 in osteoprogenitor cells. The associated MCP-1 and MCP-2 were significantly reduced in serum of diabetics. Both MCPs chemoattract mononuclear THP-1 cells. Migration of these cells is suppressed under hyperglycemic conditions, proposing that less mononuclear cells invade the site of fracture in diabetics. Further, we show that the composition of cytokines secreted by mononuclear cells strongly differ between diabetics and controls. Similar is seen in THP-1 cells cultured under hyperinsulinemia or hyperglycemia. The altered secretome reduces the positive effect of the THP-1 cell conditioned medium on migration of osteoprogenitor cells. In summary, our data support that factors secreted by mononuclear cells may support fracture healing by promoting migration of osteoprogenitor cells but suggest that this effect might be reduced in diabetics.
Collapse
|
3
|
Adharini WI, Nilamsari RV, Lestari ND, Widodo N, Rifa'i M. Immunomodulatory Effects of Formulation of Channa micropeltes and Moringa oleifera through Anti-Inflammatory Cytokines Regulation in Type 1 Diabetic Mice. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Wahyu Isnia Adharini
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang 65145, Indonesia
| | - Ruri Vivian Nilamsari
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang 65145, Indonesia
| | - Noviana Dwi Lestari
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang 65145, Indonesia
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang 65145, Indonesia
| | - Muhaimin Rifa'i
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Brawijaya, Malang 65145, Indonesia
| |
Collapse
|
4
|
Use of in vitro bone models to screen for altered bone metabolism, osteopathies, and fracture healing: challenges of complex models. Arch Toxicol 2020; 94:3937-3958. [PMID: 32910238 PMCID: PMC7655582 DOI: 10.1007/s00204-020-02906-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Approx. every third hospitalized patient in Europe suffers from musculoskeletal injuries or diseases. Up to 20% of these patients need costly surgical revisions after delayed or impaired fracture healing. Reasons for this are the severity of the trauma, individual factors, e.g, the patients’ age, individual lifestyle, chronic diseases, medication, and, over 70 diseases that negatively affect the bone quality. To investigate the various disease constellations and/or develop new treatment strategies, many in vivo, ex vivo, and in vitro models can be applied. Analyzing these various models more closely, it is obvious that many of them have limits and/or restrictions. Undoubtedly, in vivo models most completely represent the biological situation. Besides possible species-specific differences, ethical concerns may question the use of in vivo models especially for large screening approaches. Challenging whether ex vivo or in vitro bone models can be used as an adequate replacement for such screenings, we here summarize the advantages and challenges of frequently used ex vivo and in vitro bone models to study disturbed bone metabolism and fracture healing. Using own examples, we discuss the common challenge of cell-specific normalization of data obtained from more complex in vitro models as one example of the analytical limits which lower the full potential of these complex model systems.
Collapse
|
5
|
Ali EMT, Abdallah HI, El-Sayed SM. Histomorphological, VEGF and TGF-β immunoexpression changes in the diabetic rats' ovary and the potential amelioration following treatment with metformin and insulin. J Mol Histol 2020; 51:287-305. [PMID: 32399705 DOI: 10.1007/s10735-020-09880-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/05/2020] [Indexed: 12/29/2022]
Abstract
Diabetes mellitus (DM) affects the ovary by reducing the number and diameters of ovarian follicles and increasing atretic follicles. Follicular growth and diameters depend on VEGF production. Hyperglycemia causes ovarian stromal and follicular degeneration then fibrosis by activating TGF-β. Insulin and metformin promote development of ovarian follicles and reduce atretic follicles. Therefore, the present study investigates the ovarian VEGF and TGF-β immune-expression and its variations in diabetic, insulin and metformin-treated rats. Forty adult female albino rats were divided equally into four groups: control, diabetic (STZ-induced diabetes), diabetic metformin-treated group (100 mg/kg/day orally/eight weeks) and diabetic insulin-treated group (5 U insulin /day). Ovarian sections were stained with hematoxylin and eosin, Masson's trichrome, immunohistochemistry for VEGF and TGF-β. The diabetic group showed noticeable atrophic and degenerative changes in cortex and medulla as well as increased density and distribution of the collagenous fibers. The number and diameter of primary, secondary and tertiary follicles were decreased. However, the number of atretic follicles and corpus luteum was increased. Significant decrease in the surface area percentage of VEGF immuno-expression and significant increase in TGF-β immuno-expression surface area percentage were detected. By treating animals with metformin and insulin, there was restoration of the ovarian histological structure more or less as in control. DM negatively affects the histological and morphometric parameters of ovaries. Furthermore, insulin showed more beneficial effects than metformin in hindering these complications by modifying the expression of VEGF and TGF-β.
Collapse
Affiliation(s)
- Eyad M T Ali
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia. .,Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Hesham I Abdallah
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sayed M El-Sayed
- Department of Anatomy, Faculty of medicine, Taibah University, Madinah, Kingdom of Saudi Arabia.,Department of Anatomy, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Hung C, Napoli E, Ross-Inta C, Graham J, Flores-Torres AL, Stanhope KL, Froment P, Havel PJ, Giulivi C. Ileal interposition surgery targets the hepatic TGF-β pathway, influencing gluconeogenesis and mitochondrial bioenergetics in the UCD-T2DM rat model of diabetes. FASEB J 2019; 33:11270-11283. [PMID: 31307210 DOI: 10.1096/fj.201802714r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ileal interposition (IT) is a surgical procedure that increases the delivery of incompletely digested nutrients and biliary and pancreatic secretions to the distal intestinal mucosa. Here, we investigated the metabolic impact of this intervention in 2-mo-old prediabetic University of California, Davis type 2 diabetes mellitus rats by assessing liver gene expression at 1.5 mo post-IT surgery. Pathway analysis indicated decreased signaling via TGF-β/Smad (a family of proteins named mothers against decapentaplegic homologs), peroxisome proliferator-activated receptor (PPAR), and PI3K-Akt-AMPK-mechanistic target of rapamycin, likely targeting hepatic stellate cells because differentiation and activation of these cells is associated with decreased signaling via PPAR and TGF-β/Smad. IT surgery up-regulated the expression of genes involved in regulation of cholesterol and terpenoid syntheses and down-regulated those involved in glycerophospholipid metabolism [including cardiolipin (CL)], lipogenesis, and gluconeogenesis. Consistent with the down-regulation of the hepatic CL pathway, IT surgery produced a metabolic switch in liver, kidney cortex, and fat depots toward decreased mitochondrial fatty acid β-oxidation, the process required to fuel high energy-demanding pathways (e.g., gluconeogenesis and glyceroneogenesis), whereas opposite effects were observed in skeletal and cardiac muscles. This study demonstrates for the first time the presence of metabolic pathways that complement the effects of IT surgery to maximize its benefits and potentially identify similarly effective, durable, and less invasive therapeutic options for metabolic disease, including inhibitors of TGF-β signaling.-Hung, C., Napoli, E., Ross-Inta, C., Graham, J., Flores-Torres, A. L., Stanhope, K. L., Froment, P., Havel, P. J., Giulivi, C. Ileal interposition surgery targets the hepatic TGF-β pathway, influencing gluconeogenesis and mitochondrial bioenergetics in the UCD-T2DM rat model of diabetes.
Collapse
Affiliation(s)
- Connie Hung
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Catherine Ross-Inta
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - James Graham
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Amanda L Flores-Torres
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Biochemistry, Medical Sciences Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Kimber L Stanhope
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Pascal Froment
- Unité de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Unité Mixte de Recherche (UMR) 85, Paris, France
| | - Peter J Havel
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA.,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, California, USA
| |
Collapse
|
7
|
Fan K, Wu K, Lin L, Ge P, Dai J, He X, Hu K, Zhang L. Metformin mitigates carbon tetrachloride-induced TGF-β1/Smad3 signaling and liver fibrosis in mice. Biomed Pharmacother 2017; 90:421-426. [DOI: 10.1016/j.biopha.2017.03.079] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 02/06/2023] Open
|
8
|
Tajima H, Makino I, Ohbatake Y, Nakanuma S, Hayashi H, Nakagawara H, Miyashita T, Takamura H, Ohta T. Neoadjuvant chemotherapy for pancreatic cancer: Effects on cancer tissue and novel perspectives. Oncol Lett 2017; 13:3975-3981. [PMID: 28599404 DOI: 10.3892/ol.2017.6008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/17/2017] [Indexed: 01/05/2023] Open
Abstract
Chemotherapy for pancreatic cancer has diversified following the addition of more treatment regimens; however, in spite of this, pancreatic cancer remains a fatal disease. Preoperative (neoadjuvant) chemotherapy (NAC) or neoadjuvant chemoradiation therapy (NACRT) has been developed and implemented. For patients with borderline resectable pancreatic cancer (BRPC) and locally advanced pancreatic cancer (LAPC), a number of clinical trials have been conducted; NACRT was demonstrated to improve resectability, R0 resection rate, overall survival rate, disease-free survival rate and even an LAPC and BRPC survival advantage over NAC. However, from the knowledge obtained from resected specimens following preoperative treatment, residual pancreatic cancer tissues following NAC are rich in chemoresistant cancer stem-like cells and epithelial-mesenchymal transition (EMT) markers. Conversely, metformin, angiotensin receptor blocker, statins and low-dose paclitaxel are well-known as drugs that inhibit EMT, which is associated with cancer stem cell-like characteristics. Although clinical effectiveness is unlikely to be achieved using one of these as an anticancer agent, it is reasonable to use these drugs for patients with comorbidities in the treatment of pancreatic cancer. Furthermore, gemcitabine (GEM) affects antitumor immunity by stimulating the expression of major histocompatibility complex class I-related chain A on the surface of cancer cells to enhance the cytotoxicity of natural killer cells. Considering EMT and antitumor immunity, there is a possibility that GEM and nanoparticle albumin-bound paclitaxel therapy is the most suitable regimen for treating pancreatic cancer. However, even as preoperative treatment progresses, R0 resection is the most important factor for the long-term survival of pancreatic cancer patients.
Collapse
Affiliation(s)
- Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Isamu Makino
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yoshinao Ohbatake
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Shinichi Nakanuma
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hironori Hayashi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hisatoshi Nakagawara
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|
9
|
Ehnert S, Sreekumar V, Aspera-Werz RH, Sajadian SO, Wintermeyer E, Sandmann GH, Bahrs C, Hengstler JG, Godoy P, Nussler AK. TGF-β 1 impairs mechanosensation of human osteoblasts via HDAC6-mediated shortening and distortion of primary cilia. J Mol Med (Berl) 2017; 95:653-663. [PMID: 28271209 DOI: 10.1007/s00109-017-1526-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/29/2017] [Accepted: 02/24/2017] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) is a critical regulator of bone density owing to its multiple effects on cell growth and differentiation. Recently, we have shown that TGF-β1 effectively blocks bone morphogenetic protein (BMP) induced maturation of osteoblasts by upregulating histone deacetylase (HDAC) activity. The current study aimed at investigating the effect of rhTGF-β1 treatment on the expression of specific HDACs and their cellular effects, e.g., microtubule structures (primary cilia) and mechanosensation. Exposure to TGF-β1 most significantly induced expression of HDAC6 both on gene and protein level. Being most abundant in the cytoplasm HDAC6 effectively deacetylates microtubule structures. Thus, TGF-β1-induced expression of HDAC6 led to deformation and shortening of primary cilia as well as to reduced numbers of ciliated cells. Primary cilia are described to sense mechanical stimuli. Thus, fluid flow was applied to the cells, which stimulated osteoblast function (AP activity and matrix mineralization). Compromised primary cilia in TGF-β1-treated cells were associated with reduced osteogenic function, despite exposure to fluid flow conditions. Chemical inhibition of HDAC6 with Tubacin restored primary cilium structure and length. These cells showed improved osteogenic function especially under fluid flow conditions. Summarizing our results, TGF-β1 impairs human osteoblast maturation partially via HDAC6-mediated distortion and/or shortening of primary cilia. This knowledge opens up new treatment options for trauma patients with chronically elevated TGF-β1-levels (e.g., diabetics), which frequently suffer from delayed fracture healing despite adequate mechanical stimulation. KEY MESSAGES Exposure to TGF-β1 induces expression of HDAC6 in human osteoblasts. TGF-β1 exposed human osteoblasts show less and distorted primary cilia. TGF-β1 exposed human osteoblasts are less sensitive towards mechanical stimulation. Mechanosensation can be recovered by HDAC6 inhibitor Tubacin in human osteoblasts.
Collapse
Affiliation(s)
- Sabrina Ehnert
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany.
| | - Vrinda Sreekumar
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Romina H Aspera-Werz
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Sahar O Sajadian
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Elke Wintermeyer
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Gunther H Sandmann
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Christian Bahrs
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Jan G Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, Dortmund, Germany
| | - Patricio Godoy
- IfADo-Leibniz Research Centre for Working Environment and Human Factors at the Technical University Dortmund, Ardeystraße 67, Dortmund, Germany
| | - Andreas K Nussler
- Siegfried Weller Institute for trauma research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| |
Collapse
|
10
|
Bowcutt R, Malter LB, Chen LA, Wolff MJ, Robertson I, Rifkin DB, Poles M, Cho I, Loke P. Isolation and cytokine analysis of lamina propria lymphocytes from mucosal biopsies of the human colon. J Immunol Methods 2015; 421:27-35. [PMID: 25769417 DOI: 10.1016/j.jim.2015.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/09/2015] [Accepted: 02/26/2015] [Indexed: 01/07/2023]
Abstract
Much of our understanding of gut-microbial interactions has come from mouse models. Intestinal immunity is complex and a combination of host genetics and environmental factors play a significant role in regulating intestinal immunity. Due to this complexity, no mouse model to date gives a complete and accurate representation of human intestinal diseases, such as inflammatory bowel diseases. However, intestinal tissue from patients undergoing bowel resection reflects a condition of severe disease that has failed treatment; hence a more dynamic perspective of varying inflammatory states in IBD could be obtained through the analyses of pinch biopsy material. Here we describe our protocol for analyzing mucosal pinch biopsies collected predominantly during colonoscopies. We have optimized flow cytometry panels to analyze up to 8 cytokines produced by CD4+ and CD8+ cells, as well as for characterizing nuclear proteins and transcription factors such as Ki67 and Foxp3. Furthermore, we have optimized approaches to analyze the production of cytokines, including TGF-beta from direct ex vivo cultures of pinch biopsies and LPMCs isolated from biopsies. These approaches are part of our workflow to try and understand the role of the gut microbiota in complex and dynamic human intestinal diseases.
Collapse
Affiliation(s)
- Rowann Bowcutt
- Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA
| | - Lisa B Malter
- Department of Medicine, Division of Gastroenterology, New York University School of Medicine, New York, NY, USA
| | - Lea Ann Chen
- Department of Medicine, Division of Gastroenterology, New York University School of Medicine, New York, NY, USA
| | - Martin J Wolff
- Department of Medicine, Division of Gastroenterology, New York University School of Medicine, New York, NY, USA
| | - Ian Robertson
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Daniel B Rifkin
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Michael Poles
- Department of Medicine, Division of Gastroenterology, New York University School of Medicine, New York, NY, USA
| | - Ilseug Cho
- Department of Medicine, Division of Gastroenterology, New York University School of Medicine, New York, NY, USA
| | - P'ng Loke
- Department of Microbiology, New York University School of Medicine, New York, NY 10010, USA.
| |
Collapse
|
11
|
Ehnert S, Freude T, Ihle C, Mayer L, Braun B, Graeser J, Flesch I, Stöckle U, Nussler AK, Pscherer S. Factors circulating in the blood of type 2 diabetes mellitus patients affect osteoblast maturation – Description of a novel in vitro model. Exp Cell Res 2015; 332:247-58. [DOI: 10.1016/j.yexcr.2014.12.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/09/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
12
|
Pandya KG, Budhram R, Clark GJ, Lau-Cam CA. Taurine can enhance the protective actions of metformin against diabetes-induced alterations adversely affecting renal function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:227-50. [PMID: 25833502 DOI: 10.1007/978-3-319-15126-7_20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kashyap G Pandya
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, 11439, USA
| | | | | | | |
Collapse
|
13
|
Gingery A, Yang TH, Passe SM, An KN, Zhao C, Amadio PC. TGF-β signaling regulates fibrotic expression and activity in carpal tunnel syndrome. J Orthop Res 2014; 32:1444-50. [PMID: 25073432 PMCID: PMC4222071 DOI: 10.1002/jor.22694] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/23/2014] [Indexed: 02/04/2023]
Abstract
Fibrosis of the subsynovial connective tissue (SSCT) is a predominant feature of carpal tunnel syndrome (CTS). While the nature of CTS has been extensively studied, little is known about the etiology of this disease. We investigated SSCT tissue from patients with CTS and control subjects using fibrosis arrays and cell culture analysis. Twofold changes in fibrotic gene expression were found in multiple genes from patient SSCT using fibrosis arrays. This data was confirmed via qRT-PCR on a subset of genes; collagen I (Col1), collagen III (Col3), connective tissue growth factor (CTGF), transforming growth factor β (TGF-β), and SMAD3 (P < 0.05) which significantly corroborate the fold changes found in the fibrosis arrays. To further explore the nature of SSCT fibrosis, cells were isolated from patient and control tissue. Col1, Col3, TGF-β, and SMAD3 were highly expressed in patient SSCT fibroblasts as compared to control (P < 0.05). Further, fibrotic genes expression was decreased by inhibiting TGF-β receptor I (TβRI) activity (P < 0.05). TGF-β second messenger SMAD activity was significantly activated in SSCT fibroblasts from patients and this activation was abrogated by inhibiting TβRI signaling (P < 0.05). These findings suggest that blocking TGF-β signaling may be an important therapeutic approach to treating the underlying fibrosis of SSCT in CTS patients.
Collapse
Affiliation(s)
- Anne Gingery
- Department of Biochemistry and Molecular Biology, Biomechanics and Tendon & Soft Tissue Biology Laboratory Mayo Clinic, Rochester, MN
| | - Tai-Hua Yang
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory Mayo Clinic, Rochester, MN
| | - Sandra M. Passe
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory Mayo Clinic, Rochester, MN
| | - Kai-Nan An
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory Mayo Clinic, Rochester, MN
| | - Chunfeng Zhao
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory Mayo Clinic, Rochester, MN
| | - Peter C. Amadio
- Department of Orthopedic Surgery, Biomechanics and Tendon & Soft Tissue Biology Laboratory Mayo Clinic, Rochester, MN
| |
Collapse
|
14
|
Gene expression changes in cancellous bone of type 2 diabetics: a biomolecular basis for diabetic bone disease. Langenbecks Arch Surg 2014; 399:639-47. [PMID: 24715035 DOI: 10.1007/s00423-014-1188-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
PURPOSE Diabetes mellitus type 2 (2DM) is associated with altered bone quality. In order to analyze associated changes on a molecular level, we investigated the gene expression of key factors of osteoblast metabolism in type 2 diabetics. METHODS Total mRNA and protein of bone samples from 2DM patients and non-diabetic patients were isolated, and subsequently, reverse transcription polymerase chain reaction (RT-PCR) or Western blot was performed. Furthermore, pro- and anti-inflammatory serum cytokine levels were determined using a cytokine array. RESULTS Expression of runt-related transcription factor 2 (RUNX2) was increased by 53 %. Expression of the bone sialoproteins, secreted phosphoprotein 1 (SPP1; osteopontin), and integrin-binding sialoprotein (IBSP), was elevated by more than 50 %, and activating transcription factor 4 (ATF4) expression was 13 % lower in the investigated diabetes group compared to the control group. Similarly, the expression of versican (VCAN) and decorin (DCN) was upregulated twofold in the diabetic group. At the same time, 2DM patients and controls show alterations in pro- and anti-inflammatory cytokine levels in the serum. CONCLUSIONS This study identifies considerable changes in the expression of transcription factors and extracellular matrix (ECM) components of bone in 2DM patients. Furthermore, the analysis of key differentiation factors of osteoblasts revealed significant alterations in gene expression of these factors, which may contribute to the dysregulation of energy metabolism in 2DM.
Collapse
|
15
|
Wang Q, Zhao Z, Shang J, Xia W. Targets and candidate agents for type 2 diabetes treatment with computational bioinformatics approach. J Diabetes Res 2014; 2014:763936. [PMID: 25401107 PMCID: PMC4221868 DOI: 10.1155/2014/763936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 09/03/2014] [Indexed: 12/14/2022] Open
Abstract
We sought to explore the molecular mechanism of type 2 diabetes (T2D) and identify potential drug targets and candidate agents for T2D treatment. The differentially expressed genes (DEGs) were assessed between human pancreatic islets with T2D and normal islets. The dysfunctional pathways, the potential transcription factor, and microRNA targets were analyzed by bioinformatics methods. Moreover, a group of bioactive small molecules were identified based on the connectivity map database. The pathways of Eicosanoid Synthesis, TGF-beta signaling pathway, Prostaglandin Synthesis and Regulation, and Integrated Pancreatic Cancer Pathway were found to be significantly dysregulated in the progression of T2D. The genes of ZADH2 (zinc binding alcohol dehydrogenase domain containing 2), BTBD3 (BTB (POZ) domain containing 3), Cul3-based ligases, LTBP1 (latent-transforming growth factor beta binding protein 1), PDGFRA (alpha-type platelet-derived growth factor receptor), and FST (follistatin) were determined to be significant nodes regulated by potential transcription factors and microRNAs. Besides, two small molecules (sanguinarine and DL-thiorphan) were identified to be capable of reverse T2D. In the present study, a systematic understanding for the mechanism underlying T2D development was provided with biological informatics methods. The significant nodes and bioactive small molecules may be drug targets and candidate agents for T2D treatment.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Endocrinology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, China
- *Qiong Wang:
| | - Zhigang Zhao
- Department of Endocrinology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Jing Shang
- Department of Endocrinology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, China
| | - Wei Xia
- Department of Endocrinology, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou 450003, China
| |
Collapse
|