1
|
Jurkowska RZ. Role of epigenetic mechanisms in the pathogenesis of chronic respiratory diseases and response to inhaled exposures: From basic concepts to clinical applications. Pharmacol Ther 2024; 264:108732. [PMID: 39426605 DOI: 10.1016/j.pharmthera.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Epigenetic modifications are chemical groups in our DNA (and chromatin) that determine which genes are active and which are shut off. Importantly, they integrate environmental signals to direct cellular function. Upon chronic environmental exposures, the epigenetic signature of lung cells gets altered, triggering aberrant gene expression programs that can lead to the development of chronic lung diseases. In addition to driving disease, epigenetic marks can serve as attractive lung disease biomarkers, due to early onset, disease specificity, and stability, warranting the need for more epigenetic research in the lung field. Despite substantial progress in mapping epigenetic alterations (mostly DNA methylation) in chronic lung diseases, the molecular mechanisms leading to their establishment are largely unknown. This review is meant as a guide for clinicians and lung researchers interested in epigenetic regulation with a focus on DNA methylation. It provides a short introduction to the main epigenetic mechanisms (DNA methylation, histone modifications and non-coding RNA) and the machinery responsible for their establishment and removal. It presents examples of epigenetic dysregulation across a spectrum of chronic lung diseases and discusses the current state of epigenetic therapies. Finally, it introduces the concept of epigenetic editing, an exciting novel approach to dissecting the functional role of epigenetic modifications. The promise of this emerging technology for the functional study of epigenetic mechanisms in cells and its potential future use in the clinic is further discussed.
Collapse
Affiliation(s)
- Renata Z Jurkowska
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK.
| |
Collapse
|
2
|
Onuzulu CD, Lee S, Basu S, Comte J, Hai Y, Hizon N, Chadha S, Fauni MS, Halayko AJ, Pascoe CD, Jones MJ. Novel DNA methylation changes in mouse lungs associated with chronic smoking. Epigenetics 2024; 19:2322386. [PMID: 38436597 PMCID: PMC10913724 DOI: 10.1080/15592294.2024.2322386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Smoking is a potent cause of asthma exacerbations, chronic obstructive pulmonary disease (COPD) and many other health defects, and changes in DNA methylation (DNAm) have been identified as a potential link between smoking and these health outcomes. However, most studies of smoking and DNAm have been done using blood and other easily accessible tissues in humans, while evidence from more directly affected tissues such as the lungs is lacking. Here, we identified DNAm patterns in the lungs that are altered by smoking. We used an established mouse model to measure the effects of chronic smoke exposure first on lung phenotype immediately after smoking and then after a period of smoking cessation. Next, we determined whether our mouse model recapitulates previous DNAm patterns observed in smoking humans, specifically measuring DNAm at a candidate gene responsive to cigarette smoke, Cyp1a1. Finally, we carried out epigenome-wide DNAm analyses using the newly released Illumina mouse methylation microarrays. Our results recapitulate some of the phenotypes and DNAm patterns observed in human studies but reveal 32 differentially methylated genes specific to the lungs which have not been previously associated with smoking. The affected genes are associated with nicotine dependency, tumorigenesis and metastasis, immune cell dysfunction, lung function decline, and COPD. This research emphasizes the need to study CS-mediated DNAm signatures in directly affected tissues like the lungs, to fully understand mechanisms underlying CS-mediated health outcomes.
Collapse
Affiliation(s)
- Chinonye Doris Onuzulu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Samantha Lee
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeannette Comte
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Yan Hai
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikho Hizon
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shivam Chadha
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maria Shenna Fauni
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J. Halayko
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher D. Pascoe
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Meaghan J. Jones
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Biology of Breathing Theme, Children’s Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Skov-Jeppesen SM, Kobylecki CJ, Jacobsen KK, Bojesen SE. Aryl hydrocarbon receptor repressor ( AHRR ) methylation predicts risk of vascular disease: A cohort study of the general population. Int J Surg 2024; 110:6953-6961. [PMID: 38990298 PMCID: PMC11573105 DOI: 10.1097/js9.0000000000001922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
AIMS Smoking is a risk factor for cardiovascular disease, but there is currently no clinically established biomarker for its cardiovascular damage. We aimed to investigate the hypothesis that aryl hydrocarbon receptor repressor ( AHRR ) methylation at CpG site cg05575921, a biomarker of smoking behavior, is associated with the risk of peripheral artery disease (PAD) and aortic aneurysm (AA) in the general population. METHODS AND RESULTS In this prospective cohort study of the general population, we measured AHRR methylation in individuals from three visits to the Copenhagen City Heart Study. Information on risk factors was collected at visits with 10 years intervals; visit 1 (1991-1994), visit 2 (2001-2003), and visit 3 (2011-2015). Individuals were followed up in the Danish National Patient Register for PAD and AA until December 2018. Subhazard ratios were calculated using Fine and Gray competing risk regression. In 11 332 individuals from visit 1 ( n =9234), visit 2 ( n =5384), and visit 3 ( n =4387), there were 613 and 219 events of PAD and AA during up to 26.5 years of follow-up. AHRR hypomethylation was associated with a higher risk of PAD and AA with multivariable-adjusted subhazard ratios of 2.82 (1.91; 4.15) for PAD and 2.88 (1.42; 5.88) for AA in individuals within the lowest versus highest methylation quintile. CONCLUSIONS We found that AHRR methylation, a strong biomarker for smoking, was associated with the risk of PAD and AA. AHRR methylation could be a useful tool in more personalized risk prediction of PAD and AA.
Collapse
Affiliation(s)
- Sune M. Skov-Jeppesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital
| | - Camilla J. Kobylecki
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital
| | - Katja K. Jacobsen
- Department of Technology, Faculty of Health and Technology, University College Copenhagen
| | - Stig E. Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital
- The Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Abidha CA, Meeks KAC, Chilunga FP, Venema A, Schindlmayr R, Hayfron-Benjamin C, Klipstein-Grobusch K, Mockenhaupt FP, Agyemang C, Henneman P, Danquah I. A comprehensive lifestyle index and its associations with DNA methylation and type 2 diabetes among Ghanaian adults: the rodam study. Clin Epigenetics 2024; 16:143. [PMID: 39415250 PMCID: PMC11481717 DOI: 10.1186/s13148-024-01758-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND A series of modifiable lifestyle factors, such as diet quality, physical activity, alcohol intake, and smoking, may drive the rising burden of type 2 diabetes (T2DM) among sub-Saharan Africans globally. It is unclear whether epigenetic changes play a mediatory role in the associations between these lifestyle factors and T2DM. We assessed the associations between a comprehensive lifestyle index, DNA methylation and T2DM among Ghanaian adults. METHODS We used whole-blood Illumina 450 k DNA methylation data from 713 Ghanaians from the Research on Obesity and Diabetes among African Migrants (RODAM) study. We constructed a comprehensive lifestyle index based on established cut-offs for diet quality, physical activity, alcohol intake, and smoking status. In the T2DM-free discovery cohort (n = 457), linear models were fitted to identify differentially methylated positions (DMPs) and differentially methylated regions (DMRs) associated with the lifestyle index after adjustment for age, sex, body mass index (BMI), and technical covariates. Associations between the identified DMPs and the primary outcome (T2DM), as well as secondary outcomes (fasting blood glucose (FBG) and HbA1c), were determined via logistic and linear regression models, respectively. RESULTS In the present study population (mean age: 52 ± 10 years; male: 42.6%), the comprehensive lifestyle index showed a significant association with one DMP annotated to an intergenic region on chromosome 7 (false discovery rate (FDR) = 0.024). Others were annotated to ADCY7, SMARCE1, AHRR, LOXL2, and PTBP1 genes. One DMR was identified and annotated to the GFPT2 gene (familywise error rate (FWER) from bumphunter bootstrap = 0.036). None of the DMPs showed significant associations with T2DM; directions of effect were positive for the DMP in the AHRR and inverse for all the other DMPs. Higher methylation of the ADCY7 DMP was associated with higher FBG (p = 0.024); LOXL2 DMP was associated with lower FBG (p = 0.023) and HbA1c (p = 0.049); and PTBP1 DMP was associated with lower HbA1c (p = 0.002). CONCLUSIONS In this explorative epigenome-wide association study among Ghanaians, we identified one DMP and DMR associated with a comprehensive lifestyle index not previously associated with individual lifestyle factors. Based on our findings, we infer that lifestyle factors in combination, affect DNA methylation, thereby influencing the risk of T2DM among Ghanaian adults living in different contexts.
Collapse
Affiliation(s)
- C A Abidha
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - K A C Meeks
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, USA
| | - F P Chilunga
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - A Venema
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - R Schindlmayr
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany
| | - C Hayfron-Benjamin
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Department of Physiology, University of Ghana Medical School, Accra, Ghana
| | - Kerstin Klipstein-Grobusch
- Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, Julius Global Health, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin and Humboldt-Universitaet Zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - C Agyemang
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P Henneman
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - I Danquah
- Faculty of Medicine and University Hospital, Heidelberg Institute of Global Health (HIGH), Heidelberg University, Heidelberg, Germany.
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
| |
Collapse
|
5
|
Bahman F, Choudhry K, Al-Rashed F, Al-Mulla F, Sindhu S, Ahmad R. Aryl hydrocarbon receptor: current perspectives on key signaling partners and immunoregulatory role in inflammatory diseases. Front Immunol 2024; 15:1421346. [PMID: 39211042 PMCID: PMC11358079 DOI: 10.3389/fimmu.2024.1421346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a versatile environmental sensor and transcription factor found throughout the body, responding to a wide range of small molecules originating from the environment, our diets, host microbiomes, and internal metabolic processes. Increasing evidence highlights AhR's role as a critical regulator of numerous biological functions, such as cellular differentiation, immune response, metabolism, and even tumor formation. Typically located in the cytoplasm, AhR moves to the nucleus upon activation by an agonist where it partners with either the aryl hydrocarbon receptor nuclear translocator (ARNT) or hypoxia-inducible factor 1β (HIF-1β). This complex then interacts with xenobiotic response elements (XREs) to control the expression of key genes. AhR is notably present in various crucial immune cells, and recent research underscores its significant impact on both innate and adaptive immunity. This review delves into the latest insights on AhR's structure, activating ligands, and its multifaceted roles. We explore the sophisticated molecular pathways through which AhR influences immune and lymphoid cells, emphasizing its emerging importance in managing inflammatory diseases. Furthermore, we discuss the exciting potential of developing targeted therapies that modulate AhR activity, opening new avenues for medical intervention in immune-related conditions.
Collapse
Affiliation(s)
- Fatemah Bahman
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Khubaib Choudhry
- Department of Human Biology, University of Toronto, Toronto, ON, Canada
| | - Fatema Al-Rashed
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
- Animal & Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology & Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
6
|
Huang BZ, Binder AM, Quon B, Patel YM, Lum-Jones A, Tiirikainen M, Murphy SE, Loo L, Maunakea AK, Haiman CA, Wilkens LR, Koh WP, Cai Q, Aldrich MC, Siegmund KD, Hecht SS, Yuan JM, Blot WJ, Stram DO, Le Marchand L, Park SL. Epigenome-wide association study of total nicotine equivalents in multiethnic current smokers from three prospective cohorts. Am J Hum Genet 2024; 111:456-472. [PMID: 38367619 PMCID: PMC10940014 DOI: 10.1016/j.ajhg.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
The impact of tobacco exposure on health varies by race and ethnicity and is closely tied to internal nicotine dose, a marker of carcinogen uptake. DNA methylation is strongly responsive to smoking status and may mediate health effects, but study of associations with internal dose is limited. We performed a blood leukocyte epigenome-wide association study (EWAS) of urinary total nicotine equivalents (TNEs; a measure of nicotine uptake) and DNA methylation measured using the MethylationEPIC v1.0 BeadChip (EPIC) in six racial and ethnic groups across three cohort studies. In the Multiethnic Cohort Study (discovery, n = 1994), TNEs were associated with differential methylation at 408 CpG sites across >250 genomic regions (p < 9 × 10-8). The top significant sites were annotated to AHRR, F2RL3, RARA, GPR15, PRSS23, and 2q37.1, all of which had decreasing methylation with increasing TNEs. We identified 45 novel CpG sites, of which 42 were unique to the EPIC array and eight annotated to genes not previously linked with smoking-related DNA methylation. The most significant signal in a novel gene was cg03748458 in MIR383;SGCZ. Fifty-one of the 408 discovery sites were validated in the Singapore Chinese Health Study (n = 340) and the Southern Community Cohort Study (n = 394) (Bonferroni corrected p < 1.23 × 10-4). Significant heterogeneity by race and ethnicity was detected for CpG sites in MYO1G and CYTH1. Furthermore, TNEs significantly mediated the association between cigarettes per day and DNA methylation at 15 sites (average 22.5%-44.3% proportion mediated). Our multiethnic study highlights the transethnic and ethnic-specific methylation associations with internal nicotine dose, a strong predictor of smoking-related morbidities.
Collapse
Affiliation(s)
- Brian Z Huang
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA.
| | - Alexandra M Binder
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA; Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brandon Quon
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Yesha M Patel
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Annette Lum-Jones
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Maarit Tiirikainen
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lenora Loo
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Alika K Maunakea
- Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Christopher A Haiman
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Lynne R Wilkens
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Melinda C Aldrich
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kimberly D Siegmund
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA; Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Blot
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel O Stram
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Loïc Le Marchand
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Sungshim L Park
- Population Sciences of the Pacific Program-Epidemiology, University of Hawaii Cancer Center, Honolulu, HI, USA.
| |
Collapse
|
7
|
Garrett ME, Dennis MF, Bourassa KJ, Hauser MA, Kimbrel NA, Beckham JC, Ashley-Koch AE. Genome-wide DNA methylation analysis of cannabis use disorder in a veteran cohort enriched for posttraumatic stress disorder. Psychiatry Res 2024; 333:115757. [PMID: 38309009 PMCID: PMC10922626 DOI: 10.1016/j.psychres.2024.115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
Cannabis use has been increasing over the past decade, not only in the general US population, but particularly among military veterans. With this rise in use has come a concomitant increase in cannabis use disorder (CUD) among veterans. Here, we performed an epigenome-wide association study for lifetime CUD in an Iraq/Afghanistan era veteran cohort enriched for posttraumatic stress disorder (PTSD) comprising 2,310 total subjects (1,109 non-Hispanic black and 1,201 non-Hispanic white). We also investigated CUD interactions with current PTSD status and examined potential indirect effects of DNA methylation (DNAm) on the relationship between CUD and psychiatric diagnoses. Four CpGs were associated with lifetime CUD, even after controlling for the effects of current smoking (AHRR cg05575921, LINC00299 cg23079012, VWA7 cg22112841, and FAM70A cg08760398). Importantly, cg05575921, a CpG strongly linked to smoking, remained associated with lifetime CUD even when restricting the analysis to veterans who reported never smoking cigarettes. Moreover, CUD interacted with current PTSD to affect cg05575921 and cg23079012 such that those with both CUD and PTSD displayed significantly lower DNAm compared to the other groups. Finally, we provide preliminary evidence that AHRR cg05575921 helps explain the association between CUD and any psychiatric diagnoses, specifically mood disorders.
Collapse
Affiliation(s)
- Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University Medical Center, 300N Duke St, Durham, NC 27701, USA
| | - Michelle F Dennis
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Kyle J Bourassa
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC, USA; Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
| | - Michael A Hauser
- Duke Molecular Physiology Institute, Duke University Medical Center, 300N Duke St, Durham, NC 27701, USA
| | - Nathan A Kimbrel
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Jean C Beckham
- Durham Veterans Affairs (VA) Health Care System, Durham, NC, USA; VA Mid-Atlantic Mental Illness Research, Education, and Clinical Center, Durham, NC, USA; Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, 300N Duke St, Durham, NC 27701, USA.
| |
Collapse
|
8
|
Ridany I, Akika R, Saliba NA, Tamim H, Badr K, Zgheib NK. Aromatic Hydrocarbon Receptor Repressor (AHRR) is a biomarker of ambient air pollution exposure and Coronary Artery Disease (CAD). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104344. [PMID: 38103810 DOI: 10.1016/j.etap.2023.104344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Two hundred and twenty subjects were recruited while undergoing cardiac catheterization. AHRR cg05575921 methylation was shown to be significantly decreased in ever smokers compared to never smokers (Mean± SD = 64.2 ± 17.2 vs 80.1 ± 11.1 respectively; P < 0.0001). In addition, higher urinary levels of 2-OHNAP and 2-OHFLU were significantly associated with more AHRR cg05575921 hypomethylation, even after correcting for smoking (β[95%CI]= -4.161[-7.553, -0.769]; P = 0.016 and -5.190[-9.761, -0.618]; P = 0.026, respectively) but not 1-OHPYR (β[95%CI]= -3.545 [-10.935, 3.845]; P = 0.345). Additionally, hypomethylation of AHRR ROI was significantly associated with obstructive coronary artery disease (CAD) after adjusting for smoking, age, sex, diabetes and dyslipidemia (OR [95%CI] = 1.024[1.000 - 1.048]; P = 0.046). Results of this study necessitate further validation to potentially consider clinical incorporation of AHRR methylation status as an early predictive biomarker for the potential association between ambient air pollution and CAD.
Collapse
Affiliation(s)
- Ibrahim Ridany
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reem Akika
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Najat Aoun Saliba
- Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon; Vascular Medicine Program, American University of Beirut, Beirut, Lebanon
| | - Hani Tamim
- Vascular Medicine Program, American University of Beirut, Beirut, Lebanon; Clinical Research Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Kamal Badr
- Vascular Medicine Program, American University of Beirut, Beirut, Lebanon; Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nathalie Khoueiry Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Vascular Medicine Program, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
9
|
Philibert R, Dogan TK, Knight S, Ahmad F, Lau S, Miles G, Knowlton KU, Dogan MV. Validation of an Integrated Genetic-Epigenetic Test for the Assessment of Coronary Heart Disease. J Am Heart Assoc 2023; 12:e030934. [PMID: 37982274 PMCID: PMC10727271 DOI: 10.1161/jaha.123.030934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/16/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Coronary heart disease (CHD) is the leading cause of death in the world. Unfortunately, many of the key diagnostic tools for CHD are insensitive, invasive, and costly; require significant specialized infrastructure investments; and do not provide information to guide postdiagnosis therapy. In prior work using data from the Framingham Heart Study, we provided in silico evidence that integrated genetic-epigenetic tools may provide a new avenue for assessing CHD. METHODS AND RESULTS In this communication, we use an improved machine learning approach and data from 2 additional cohorts, totaling 449 cases and 2067 controls, to develop a better model for ascertaining symptomatic CHD. Using the DNA from the 2 new cohorts, we translate and validate the in silico findings into an artificial intelligence-guided, clinically implementable method that uses input from 6 methylation-sensitive digital polymerase chain reaction and 10 genotyping assays. Using this method, the overall average area under the curve, sensitivity, and specificity in the 3 test cohorts is 82%, 79%, and 76%, respectively. Analysis of targeted cytosine-phospho-guanine loci shows that they map to key risk pathways involved in atherosclerosis that suggest specific therapeutic approaches. CONCLUSIONS We conclude that this scalable integrated genetic-epigenetic approach is useful for the diagnosis of symptomatic CHD, performs favorably as compared with many existing methods, and may provide personalized insight to CHD therapy. Furthermore, given the dynamic nature of DNA methylation and the ease of methylation-sensitive digital polymerase chain reaction methodologies, these findings may pave a pathway for precision epigenetic approaches for monitoring CHD treatment response.
Collapse
Affiliation(s)
- Robert Philibert
- Cardio Diagnostics IncChicagoILUSA
- Department of PsychiatryUniversity of IowaIowa CityIAUSA
- Department of Biomedical EngineeringUniversity of IowaIowa CityIAUSA
| | | | - Stacey Knight
- Intermountain Heart Institute, Intermountain HealthcareSalt Lake CityUTUSA
- Department of Internal MedicineUniversity of UtahSalt Lake CityUTUSA
| | - Ferhaan Ahmad
- Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of IowaIowa CityIAUSA
| | - Stanley Lau
- Southern California Heart CentersSan GabrielCAUSA
| | - George Miles
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTXUSA
| | - Kirk U. Knowlton
- Intermountain Heart Institute, Intermountain HealthcareSalt Lake CityUTUSA
| | - Meeshanthini V. Dogan
- Cardio Diagnostics IncChicagoILUSA
- Department of Biomedical EngineeringUniversity of IowaIowa CityIAUSA
| |
Collapse
|
10
|
Vidal AC, Chandramouli SA, Marchesoni J, Brown N, Liu Y, Murphy SK, Maguire R, Wang Y, Abdelmalek MF, Mavis AM, Bashir MR, Jima D, Skaar DA, Hoyo C, Moylan CA. AHRR Hypomethylation mediates the association between maternal smoking and metabolic profiles in children. Hepatol Commun 2023; 7:e0243. [PMID: 37755881 PMCID: PMC10531191 DOI: 10.1097/hc9.0000000000000243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/09/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Tobacco smoking during pregnancy is associated with metabolic dysfunction in children, but mechanistic insights remain limited. Hypomethylation of cg05575921 in the aryl hydrocarbon receptor repressor (AHRR) gene is associated with in utero tobacco smoke exposure. In this study, we evaluated whether AHRR hypomethylation mediates the association between maternal smoking and metabolic dysfunction in children. METHODS We assessed metabolic dysfunction using liver fat content (LFC), serum, and clinical data in children aged 7-12 years (n=78) followed since birth. Maternal smoking was self-reported at 12 weeks gestation. Methylation was measured by means of pyrosequencing at 3 sequential CpG sites, including cg05575921, at birth and at ages 7-12. Regression models were used to evaluate whether AHRR methylation mediated the association between maternal smoking and child metabolic dysfunction. RESULTS Average AHRR methylation at birth was significantly higher among children of nonsmoking mothers compared with children of mothers who smoked (69.8% ± 4.4% vs. 63.5% ± 5.5, p=0.0006). AHRR hypomethylation at birth was associated with higher liver fat content (p=0.01), triglycerides (p=0.01), and alanine aminotransferase levels (p=0.03), and lower HDL cholesterol (p=0.01) in childhood. AHRR hypomethylation significantly mediated associations between maternal smoking and liver fat content (indirect effect=0.213, p=0.018), triglycerides (indirect effect=0.297, p=0.044), and HDL cholesterol (indirect effect = -0.413, p=0.007). AHRR methylation in childhood (n=78) was no longer significantly associated with prenatal smoke exposure or child metabolic parameters (p>0.05). CONCLUSIONS AHRR hypomethylation significantly mediates the association between prenatal tobacco smoke exposure and features of childhood metabolic dysfunction, despite the lack of persistent hypomethylation of AHRR into childhood. Further studies are needed to replicate these findings and to explore their causal and long-term significance.
Collapse
Affiliation(s)
- Adriana C. Vidal
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | | | - Joddy Marchesoni
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Nia Brown
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Yukun Liu
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University Medical Center, Durham, North Carolina, USA
| | - Rachel Maguire
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Yaxu Wang
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Manal F. Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Alisha M. Mavis
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Duke University Medical Center, Durham, North Carolina, USA
| | - Mustafa R. Bashir
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Dereje Jima
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina, USA
| | - David A. Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA
| | - Cynthia A. Moylan
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
11
|
Zhou X, Xiao Q, Jiang F, Sun J, Wang L, Yu L, Zhou Y, Zhao J, Zhang H, Yuan S, Timofeeva M, Spiliopoulou A, Mesa-Eguiagaray I, Farrington SM, Law PJ, Houlston RS, Ding K, Dunlop MG, Theodoratou E, Li X. Dissecting the pathogenic effects of smoking and its hallmarks in blood DNA methylation on colorectal cancer risk. Br J Cancer 2023; 129:1306-1313. [PMID: 37608097 PMCID: PMC10576058 DOI: 10.1038/s41416-023-02397-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Tobacco smoking is suggested as a risk factor for colorectal cancer (CRC), but the complex relationship and the potential pathway are not fully understood. METHODS We performed two-sample Mendelian randomisation (MR) analyses with genetic instruments for smoking behaviours and related DNA methylation in blood and summary-level GWAS data of colorectal cancer to disentangle the relationship. Colocalization analyses and prospective gene-environment interaction analyses were also conducted as replication. RESULTS Convincing evidence was identified for the pathogenic effect of smoking initiation on CRC risk and suggestive evidence was observed for the protective effect of smoking cessation in the univariable MR analyses. Multivariable MR analysis revealed that these associations were independent of other smoking phenotypes and alcohol drinking. Genetically predicted methylation at CpG site cg17823346 [ZMIZ1] were identified to decrease CRC risk; while genetically predicted methylation at cg02149899 would increase CRC risk. Colocalization and gene-environment interaction analyses added further evidence to the relationship between epigenetic modification at cg17823346 [ZMIZ1] as well as cg02149899 and CRC risk. DISCUSSION Our study confirms the significant association between tobacco smoking, DNA methylation and CRC risk and yields a novel insight into the pathogenic effect of tobacco smoking on CRC risk.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Qian Xiao
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangyuan Jiang
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Sun
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lijuan Wang
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Lili Yu
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yajing Zhou
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhui Zhao
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Han Zhang
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Timofeeva
- Danish Institute for Advanced Study (DIAS), Epidemiology, Biostatistics and Biodemography Research Unit, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Athina Spiliopoulou
- Centre for Population Health Sciences, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Ines Mesa-Eguiagaray
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susan M Farrington
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Kefeng Ding
- Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Colon Cancer Genetics Group, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, and Centre of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
12
|
Hsu PC, Daughters SB, Bauer MA, Su LJ, Addicott MA. Association of DNA methylation signatures with cognitive performance among smokers and ex-smokers. Tob Induc Dis 2023; 21:106. [PMID: 37605769 PMCID: PMC10405227 DOI: 10.18332/tid/168568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 08/23/2023] Open
Abstract
INTRODUCTION Alterations in DNA methylation profiles have been associated with cancer, and can be influenced by environmental factors such as smoking. A small but growing literature indicates there are reproducible and robust differences in methylation levels among smokers, never smokers, and ex-smokers. Here, we compared differences in salivary DNA methylation levels among current and ex-smokers (at least 2 years abstinent). METHODS Smokers (n=26) and ex-smokers (n=30) provided detailed smoking histories, completed the Paced Auditory Serial Addition Test (PASAT), and submitted a saliva sample. Whole-genome DNA methylation from saliva was performed, and ANCOVA models and a receiver operating characteristic (ROC) curve were used for the differences between groups and the performance of significant CpG sites. RESULTS After controlling for race, age, and gender, smokers had significantly lower methylation levels than ex-smokers in two CpG sites: cg05575921 (AHRR) and cg21566642 (ALPPL2). Based on the ROC analyses, both CpGs had strong classification potentials (cg05575921 AUC=0.97 and cg21566642 AUC=0.93) in differentiating smoking status. Across all subjects, the percent methylation of cg05575921 (AHRR) and cg21566642 (ALPPL2) positively correlated with the length of the last quit attempt (r=0.65 and 0.64, respectively, p<0.001) and PASAT accuracy (r=0.29 and 0.30, respectively, p<0.05). CONCLUSIONS In spite of the small sample size and preliminary research, our results replicate previously reported differences in AHRR hypomethylation among smokers. Furthermore, we show that the duration of smoking abstinence is associated with a recovery of methylation in ex-smokers, which may be linked to a reduced risk of smoking-associated diseases. The association with cognitive performance suggests that the hypomethylation of AHRR in saliva may reflect systemic exposure to cigarette-related toxicants that negatively affect cognitive performance, and should be validated in larger studies.
Collapse
Affiliation(s)
- Ping-Ching Hsu
- Department of Environmental Health Sciences, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, United States
| | - Stacey B. Daughters
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Michael A. Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, United States
| | - L. Joseph Su
- Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, United States
| | - Merideth A. Addicott
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, United States
| |
Collapse
|
13
|
Philibert R, Moody J, Philibert W, Dogan MV, Hoffman EA. The Reversion of the Epigenetic Signature of Coronary Heart Disease in Response to Smoking Cessation. Genes (Basel) 2023; 14:1233. [PMID: 37372412 PMCID: PMC10297911 DOI: 10.3390/genes14061233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Coronary heart disease (CHD) is the leading cause of death worldwide. However, current diagnostic tools for CHD, such as coronary computed tomography angiography (CCTA), are poorly suited for monitoring treatment response. Recently, we have introduced an artificial-intelligence-guided integrated genetic-epigenetic test for CHD whose core consists of six assays that determine methylation in pathways known to moderate the pathogenesis of CHD. However, whether methylation at these six loci is sufficiently dynamic to guide CHD treatment response is unknown. To test that hypothesis, we examined the relationship of changes in these six loci to changes in cg05575921, a generally accepted marker of smoking intensity, using DNA from a cohort of 39 subjects undergoing a 90-day smoking cessation intervention and methylation-sensitive digital PCR (MSdPCR). We found that changes in epigenetic smoking intensity were significantly associated with reversion of the CHD-associated methylation signature at five of the six MSdPCR predictor sites: cg03725309, cg12586707, cg04988978, cg17901584, and cg21161138. We conclude that methylation-based approaches could be a scalable method for assessing the clinical effectiveness of CHD interventions, and that further studies to understand the responsiveness of these epigenetic measures to other forms of CHD treatment are in order.
Collapse
Affiliation(s)
- Robert Philibert
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (J.M.); (W.P.)
- Cardio Diagnostics Inc., Chicago, IL 60642, USA;
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA;
| | - Joanna Moody
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (J.M.); (W.P.)
| | - Willem Philibert
- Department of Psychiatry, University of Iowa, Iowa City, IA 52242, USA; (J.M.); (W.P.)
| | - Meeshanthini V. Dogan
- Cardio Diagnostics Inc., Chicago, IL 60642, USA;
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA;
| | - Eric A. Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA;
- Department of Radiology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
14
|
Addicott MA, Sutfin EL, Reynolds LM, Donny E, Matich EK, Hsu PC. Biochemical validation of self-reported electronic nicotine delivery system and tobacco heaviness of use. Exp Clin Psychopharmacol 2023; 31:715-723. [PMID: 36107700 PMCID: PMC10184506 DOI: 10.1037/pha0000604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Research on tobacco use disorder relies on a combination of self-reported use (e.g., cigarettes per day) and biochemical validation to quantify heaviness of use. However, electronic nicotine delivery system (ENDS) users may be unaware of how much they have vaped per day. The aim of this study was to test the relationship between self-reported heaviness of ENDS/tobacco use and nicotine biomarkers. Young adults (n = 30) who currently use ENDS and other tobacco products completed a detailed tobacco use history, timeline follow-back, and an ENDS topography session. We evaluated the self-reports of own-brand ENDS use and tested correlations to determine which self-report measures of own-brand use, and which self-reported measures of puff topography, had the strongest correlations with urine and/or blood biomarkers of nicotine use. Participants reported using a variety of different ENDS devices and had a range of usage. The sum of the self-reported number of occasions or hours of ENDS use, along with the number of cigarettes and other tobacco products used, over the past 24 hr was significantly correlated with plasma cotinine levels. Puff topography measures correlated with increased nicotine concentrations, although participants underestimated the number of puffs they took during the topography session. This study provides preliminary evidence that summing together the hours of ENDS use, or the number of occasions of ENDS use, in addition to the number of other tobacco products used (i.e., cigarettes) based on self-report may be an accurate method of quantification. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Merideth A. Addicott
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Erin L. Sutfin
- Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC
| | - Lindsay M. Reynolds
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Eric Donny
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Eryn K. Matich
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ping-Ching Hsu
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
15
|
Fang F, Andersen AM, Philibert R, Hancock DB. Epigenetic biomarkers for smoking cessation. ADDICTION NEUROSCIENCE 2023; 6:100079. [PMID: 37123087 PMCID: PMC10136056 DOI: 10.1016/j.addicn.2023.100079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Cigarette smoking has been associated with epigenetic alterations that may be reversible upon cessation. As the most-studied epigenetic modification, DNA methylation is strongly associated with smoking exposure, providing a potential mechanism that links smoking to adverse health outcomes. Here, we reviewed the reversibility of DNA methylation in accessible peripheral tissues, mainly blood, in relation to cigarette smoking cessation and the utility of DNA methylation as a biomarker signature to differentiate current, former, and never smokers and to quantify time since cessation. We summarized thousands of differentially methylated Cytosine-Guanine (CpG) dinucleotides and regions associated with smoking cessation from candidate gene and epigenome-wide association studies, as well as the prediction accuracy of the multi-CpG predictors for smoking status. Overall, there is robust evidence for DNA methylation signature of cigarette smoking cessation. However, there are still gaps to fill, including (1) cell-type heterogeneity in measuring blood DNA methylation; (2) underrepresentation of non-European ancestry populations; (3) limited longitudinal data to quantitatively measure DNA methylation after smoking cessation over time; and (4) limited data to study the impact of smoking cessation on other epigenetic features, noncoding RNAs, and histone modifications. Epigenetic machinery provides promising biomarkers that can improve success in smoking cessation in the clinical setting. To achieve this goal, larger and more-diverse samples with longitudinal measures of a broader spectrum of epigenetic marks will be essential to developing a robust DNA methylation biomarker assay, followed by meeting validation requirements for the assay before being implemented as a clinically useful tool.
Collapse
Affiliation(s)
- Fang Fang
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, 3040 East Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709, USA
| | - Allan M. Andersen
- Department of Psychiatry, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | - Robert Philibert
- Department of Psychiatry, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
- Behavioral Diagnostics LLC, 2500 Crosspark Rd, Coralville, IA 52241, USA
- Department of Biomedical Engineering, 5601 Seamans Center for the Engineering Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Dana B. Hancock
- GenOmics, Bioinformatics, and Translational Research Center, RTI International, 3040 East Cornwallis Road, P.O. Box 12194, Research Triangle Park, NC 27709, USA
| |
Collapse
|
16
|
Skov-Jeppesen SM, Kobylecki CJ, Jacobsen KK, Bojesen SE. Changing Smoking Behavior and Epigenetics: A Longitudinal Study of 4,432 Individuals From the General Population. Chest 2023; 163:1565-1575. [PMID: 36621758 PMCID: PMC10258440 DOI: 10.1016/j.chest.2022.12.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Hypomethylation of the aryl hydrocarbon receptor repressor (AHRR) gene indicates long-term smoking exposure and might therefore be a monitor for smoking-induced disease risk. However, studies of individual longitudinal changes in AHRR methylation are sparse. RESEARCH QUESTION How does the recovery of AHRR methylation depend on change in smoking behaviors and demographic variables? STUDY DESIGN AND METHODS This study included 4,432 individuals from the Copenhagen City Heart Study, with baseline and follow-up blood samples and smoking information collected approximately 10 years apart. AHRR methylation at the cg05575921 site was measured in bisulfite-treated leukocyte DNA. Four smoking groups were defined: participants who never smoked (Never-Never), participants who formerly smoked (Former-Former), participants who quit during the study period (Current-Former), and individuals who smoked at both baseline and follow-up (Current-Current). Methylation recovery was defined as the increase in AHRR methylation between baseline and follow-up examination. RESULTS Methylation recovery was highest among participants who quit, with a median methylation recovery of 5.58% (interquartile range, 1.79; 9.15) vs 1.64% (interquartile range, -1.88; 4.96) in the Current-Current group (P < .0001). In individuals who quit smoking, older age was associated with lower methylation recovery (P < .0001). In participants who quit aged > 65 years, methylation recovery was 5.9% at 5.6 years after quitting; methylation recovery was 8.5% after 2.8 years for participants who quit aged < 55 years. INTERPRETATION AHRR methylation recovered after individuals quit smoking, and recovery was more pronounced and occurred faster in younger compared with older interim quitters.
Collapse
Affiliation(s)
- Sune Moeller Skov-Jeppesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Camilla Jannie Kobylecki
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Katja Kemp Jacobsen
- Department of Technology, Faculty of Health and Technology, University College Copenhagen, Copenhagen, Denmark
| | - Stig Egil Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark; The Copenhagen City Heart Study, Copenhagen University Hospital, Frederiksberg and Bispebjerg Hospital, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Wang X, Campbell MR, Cho HY, Pittman GS, Martos SN, Bell DA. Epigenomic profiling of isolated blood cell types reveals highly specific B cell smoking signatures and links to disease risk. Clin Epigenetics 2023; 15:90. [PMID: 37231515 PMCID: PMC10211291 DOI: 10.1186/s13148-023-01507-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Tobacco smoking alters the DNA methylation profiles of immune cells which may underpin some of the pathogenesis of smoking-associated diseases. To link smoking-driven epigenetic effects in specific immune cell types with disease risk, we isolated six leukocyte subtypes, CD14+ monocytes, CD15+ granulocytes, CD19+ B cells, CD4+ T cells, CD8+ T cells, and CD56+ natural killer cells, from whole blood of 67 healthy adult smokers and 74 nonsmokers for epigenome-wide association study (EWAS) using Illumina 450k and EPIC methylation arrays. RESULTS Numbers of smoking-associated differentially methylated sites (smCpGs) at genome-wide significance (p < 1.2 × 10-7) varied widely across cell types, from 5 smCpGs in CD8+ T cells to 111 smCpGs in CD19+ B cells. We found unique smoking effects in each cell type, some of which were not apparent in whole blood. Methylation-based deconvolution to estimate B cell subtypes revealed that smokers had 7.2% (p = 0.033) less naïve B cells. Adjusting for naïve and memory B cell proportions in EWAS and RNA-seq allowed the identification of genes enriched for B cell activation-related cytokine signaling pathways, Th1/Th2 responses, and hematopoietic cancers. Integrating with large-scale public datasets, 62 smCpGs were among CpGs associated with health-relevant EWASs. Furthermore, 74 smCpGs had reproducible methylation quantitative trait loci single nucleotide polymorphisms (SNPs) that were in complete linkage disequilibrium with genome-wide association study SNPs, associating with lung function, disease risks, and other traits. CONCLUSIONS We observed blood cell-type-specific smCpGs, a naïve-to-memory shift among B cells, and by integrating genome-wide datasets, we identified their potential links to disease risks and health traits.
Collapse
Affiliation(s)
- Xuting Wang
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - Michelle R Campbell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Hye-Youn Cho
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Gary S Pittman
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Suzanne N Martos
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Douglas A Bell
- Environmental Epigenomics and Disease Group, Immunity, Inflammation and Disease Laboratory, Intramural Research Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
18
|
Fernández-Carrión R, Sorlí JV, Asensio EM, Pascual EC, Portolés O, Alvarez-Sala A, Francès F, Ramírez-Sabio JB, Pérez-Fidalgo A, Villamil LV, Tinahones FJ, Estruch R, Ordovas JM, Coltell O, Corella D. DNA-Methylation Signatures of Tobacco Smoking in a High Cardiovascular Risk Population: Modulation by the Mediterranean Diet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3635. [PMID: 36834337 PMCID: PMC9964856 DOI: 10.3390/ijerph20043635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Biomarkers based on DNA methylation are relevant in the field of environmental health for precision health. Although tobacco smoking is one of the factors with a strong and consistent impact on DNA methylation, there are very few studies analyzing its methylation signature in southern European populations and none examining its modulation by the Mediterranean diet at the epigenome-wide level. We examined blood methylation smoking signatures on the EPIC 850 K array in this population (n = 414 high cardiovascular risk subjects). Epigenome-wide methylation studies (EWASs) were performed analyzing differential methylation CpG sites by smoking status (never, former, and current smokers) and the modulation by adherence to a Mediterranean diet score was explored. Gene-set enrichment analysis was performed for biological and functional interpretation. The predictive value of the top differentially methylated CpGs was analyzed using receiver operative curves. We characterized the DNA methylation signature of smoking in this Mediterranean population by identifying 46 differentially methylated CpGs at the EWAS level in the whole population. The strongest association was observed at the cg21566642 (p = 2.2 × 10-32) in the 2q37.1 region. We also detected other CpGs that have been consistently reported in prior research and discovered some novel differentially methylated CpG sites in subgroup analyses. In addition, we found distinct methylation profiles based on the adherence to the Mediterranean diet. Particularly, we obtained a significant interaction between smoking and diet modulating the cg5575921 methylation in the AHRR gene. In conclusion, we have characterized biomarkers of the methylation signature of tobacco smoking in this population, and suggest that the Mediterranean diet can increase methylation of certain hypomethylated sites.
Collapse
Affiliation(s)
- Rebeca Fernández-Carrión
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José V. Sorlí
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva M. Asensio
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Eva C. Pascual
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Olga Portolés
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Andrea Alvarez-Sala
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Francesc Francès
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Alejandro Pérez-Fidalgo
- Department of Medical Oncology, University Clinic Hospital of Valencia, 46010 Valencia, Spain
- Biomedical Research Networking Centre on Cancer (CIBERONC), Health Institute Carlos III, 28029 Madrid, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Laura V. Villamil
- Department of Physiology, School of Medicine, University Antonio Nariño, Bogotá 111511, Colombia
| | - Francisco J. Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Málaga, 29590 Málaga, Spain
| | - Ramon Estruch
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Internal Medicine, Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain
| | - Jose M. Ordovas
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain
| | - Oscar Coltell
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Computer Languages and Systems, Universitat Jaume I, 12071 Castellón, Spain
| | - Dolores Corella
- Department of Preventive Medicine and Public Health, School of Medicine, University of Valencia, 46010 Valencia, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
19
|
Blostein FA, Fisher J, Dou J, Schneper L, Ware EB, Notterman DA, Mitchell C, Bakulski KM. Polymethylation scores for prenatal maternal smoke exposure persist until age 15 and are detected in saliva in the Fragile Families and Child Wellbeing cohort. Epigenetics 2022; 17:2223-2240. [PMID: 35980258 PMCID: PMC9665138 DOI: 10.1080/15592294.2022.2112815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/05/2022] [Indexed: 01/18/2023] Open
Abstract
Prenatal maternal smoking is associated with low birthweight, neurological disorders, and asthma in exposed children. DNA methylation signatures can function as biomarkers of prenatal smoke exposure. However, the robustness of DNA methylation signatures across child ages, genetic ancestry groups, or tissues is not clear. Using coefficients from a meta-analysis of prenatal smoke exposure and DNA methylation in newborn cord blood, we created polymethylation scores of saliva DNA methylation from children at ages 9 and 15 in the Fragile Families and Child Wellbeing study. In the full sample at age 9 (n = 753), prenatal smoke exposure was associated with a 0.51 (95%CI: 0.35, 0.66) standard deviation higher polymethylation score. The direction and magnitude of the association was consistent in European and African genetic ancestry samples. In the full sample at age 15 (n = 747), prenatal smoke exposure was associated with a 0.48 (95%CI: 0.32, 0.63) standard deviation higher polymethylation score, and the association was attenuated among the European and Admixed-Latin genetic ancestry samples. The polymethylation score classified prenatal smoke exposure accurately (AUC age 9 = 0.77, age 15 = 0.76). Including the polymethylation score increased the AUC of base model covariates by 5 (95% CI: (2.1, 7.2)) percentage points, while including a single candidate site in the AHRR gene did not (P-value = 0.19). Polymethylation scores for prenatal smoking were portable across genetic ancestries and more accurate than an individual DNA methylation site. Polymethylation scores from saliva samples could serve as robust and practical biomarkers of prenatal smoke exposure.
Collapse
Affiliation(s)
- Freida A. Blostein
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Jonah Fisher
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - John Dou
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Lisa Schneper
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Erin B. Ware
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Daniel A. Notterman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Colter Mitchell
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelly M. Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
El-Haddad NW, El Kawak M, El Asmar K, Jabbour ME, Moussa MA, Habib RR, Dhaini HR. AhRR methylation contributes to disease progression in urothelial bladder cancer. Cancer Biomark 2022; 35:167-177. [PMID: 36093686 DOI: 10.3233/cbm-220002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bladder Cancer (BCa) is the tenth most incidental malignancy worldwide. BCa is mostly attributed to environmental exposure and lifestyle, particularly tobacco smoking. The Aryl Hydrocarbon Receptor Repressor (AhRR) participates in the induction of many enzymes involved in metabolizing carcinogens, including tobacco smoke components. Additionally, studies have shown that smoking demethylates the (AhRR) gene in blood, suggesting AhRR demethylation as a specific serum smoking biomarker. OBJECTIVE This study aimed to validate AhRR demethylation as a smoking biomarker in the target tissue and investigate its contribution to bladder carcinogenesis. METHODS AhRR percent methylation was tested for its association with patient smoking status and oncogenic outcome indicators, particularly p53, RB1, and FGFR3 activating mutations, muscle-invasiveness, and tumor grade, in 180 BCa tissue-based DNA. RESULTS Results showed significantly higher AhRR percent methylation in muscle-invasive compared to non-muscle invasive tumors (42.86% vs. 33.98%; p= 0.011), while lower AhRR methylation was significantly associated with FGFR3 Codon 248 mutant genotype compared to wild-type (28.11% ± 9.44 vs. 37.87% ± 22.53; p= 0.036). All other tested associations were non-statistically significant. CONCLUSIONS Although AhRR methylation did not predict smoking status in BCa tumors, it seems to play a role in carcinogenesis and disease progression. Our findings make a basis for further research.
Collapse
Affiliation(s)
- Nataly W El-Haddad
- Department of Environmental Health, American University of Beirut, Beirut, Lebanon
| | - Michelle El Kawak
- Department of Environmental Health, American University of Beirut, Beirut, Lebanon
| | - Khalil El Asmar
- Department of Epidemiology and Population Health, American University of Beirut, Beirut, Lebanon
| | - Michel E Jabbour
- Department of Urology, St George Hospital University Medical Center, Beirut, Lebanon.,Faculty of Medicine, University of Balamand, Beirut, Lebanon
| | - Mohamad A Moussa
- Department of Urology, Lebanese University, Beirut, Lebanon.,Department of Surgery, Division of Urology, Al-Zahraa University Hospital, Beirut, Lebanon
| | - Rima R Habib
- Department of Environmental Health, American University of Beirut, Beirut, Lebanon
| | - Hassan R Dhaini
- Department of Environmental Health, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
21
|
Qi S, Fu Z, Wu L, Calhoun VD, Zhang D, Daughters SB, Hsu PC, Jiang R, Vergara VM, Sui J, Addicott MA. Cognition, Aryl Hydrocarbon Receptor Repressor Methylation, and Abstinence Duration-Associated Multimodal Brain Networks in Smoking and Long-Term Smoking Cessation. Front Neurosci 2022; 16:923065. [PMID: 35968362 PMCID: PMC9363622 DOI: 10.3389/fnins.2022.923065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cigarette smoking and smoking cessation are associated with changes in cognition and DNA methylation; however, the neurobiological correlates of these effects have not been fully elucidated, especially in long-term cessation. Cognitive performance, percent methylation of the aryl hydrocarbon receptor repressor (AHRR) gene, and abstinence duration were used as references to supervise a multimodal fusion analysis of functional, structural, and diffusion magnetic resonance imaging (MRI) data, in order to identify associated brain networks in smokers and ex-smokers. Correlations among these networks and with smoking-related measures were performed. Cognition-, methylation-, and abstinence duration-associated networks discriminated between smokers and ex-smokers and correlated with differences in fractional amplitude of low frequency fluctuations (fALFF) values, gray matter volume (GMV), and fractional anisotropy (FA) values. Long-term smoking cessation was associated with more accurate cognitive performance, as well as lower fALFF and more GMV in the hippocampus complex. The methylation- and abstinence duration-associated networks positively correlated with smoking-related measures of abstinence duration and percent methylation, respectively, suggesting they are complementary measures. This analysis revealed structural and functional co-alterations linked to smoking abstinence and cognitive performance in brain regions including the insula, frontal gyri, and lingual gyri. Furthermore, AHRR methylation, a promising epigenetic biomarker of smoking recency, may provide an important complement to self-reported abstinence duration.
Collapse
Affiliation(s)
- Shile Qi
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Lei Wu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Stacey B. Daughters
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ping-Ching Hsu
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| | - Victor M. Vergara
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Merideth A. Addicott
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
22
|
Klopack ET, Carroll JE, Cole SW, Seeman TE, Crimmins EM. Lifetime exposure to smoking, epigenetic aging, and morbidity and mortality in older adults. Clin Epigenetics 2022; 14:72. [PMID: 35643537 PMCID: PMC9148451 DOI: 10.1186/s13148-022-01286-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cigarette smoke is a major public health concern. Epigenetic aging may be an important pathway by which exposure to cigarette smoke affects health. However, little is known about how exposure to smoke at different life stages affects epigenetic aging, especially in older adults. This study examines how three epigenetic aging measures (GrimAge, PhenoAge, and DunedinPoAm38) are associated with parental smoking, smoking in youth, and smoking in adulthood, and whether these epigenetic aging measures mediate the link between smoke exposure and morbidity and mortality. This study utilizes data from the Health and Retirement Study (HRS) Venous Blood Study (VBS), a nationally representative sample of US adults over 50 years old collected in 2016. 2978 participants with data on exposure to smoking, morbidity, and mortality were included. RESULTS GrimAge is significantly increased by having two smoking parents, smoking in youth, and cigarette pack years in adulthood. PhenoAge and DunedinPoAm38 are associated with pack years. All three mediate some of the effect of pack years on cancer, high blood pressure, heart disease, and mortality and GrimAge and DunedinPoAm38 mediate this association on lung disease. CONCLUSIONS Results suggest epigenetic aging is one biological mechanism linking lifetime exposure to smoking with development of disease and earlier death in later life. Interventions aimed at reducing smoking in adulthood may be effective at weakening this association.
Collapse
Affiliation(s)
- Eric T Klopack
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA, 90089, USA.
| | - Judith E Carroll
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry & Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - Steve W Cole
- Cousins Center for Psychoneuroimmunology, Jane & Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Teresa E Seeman
- Division of Geriatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Eileen M Crimmins
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave., Los Angeles, CA, 90089, USA
| |
Collapse
|
23
|
Takeuchi F, Takano K, Yamamoto M, Isono M, Miyake W, Mori K, Hara H, Hiroi Y, Kato N. Clinical Implication of Smoking-Related Aryl-Hydrocarbon Receptor Repressor (AHRR) Hypomethylation in Japanese Adults. Circ J 2022; 86:986-992. [PMID: 35110429 DOI: 10.1253/circj.cj-21-0958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Tobacco smoking is a leading preventable cause of morbidity and mortality worldwide; still, the success rate of smoking cessation is low in general. From the viewpoint of public health and clinical care, an objective biomarker of long-term smoking behavior is sought. METHODS AND RESULTS This study assessed DNA methylation as a biomarker of smoking in a hospital setting through a combination of molecular approaches including genetic, DNA methylation and mRNA expression analyses. First, in an epigenome-wide association study involving Japanese individuals with chronic cardiovascular disease (n=94), genome-wide significant smoking association was identified at 2 CpG sites on chromosome 5, with the strongest signal at cg05575921 located in intron 3 of the aryl-hydrocarbon receptor repressor (AHRR) gene. Highly significant (P<1×10-27) smoking-cg05575921 association was validated in 2 additional panels (n=339 and n=300). For the relationship of cg05575921 methylation extent with time after smoking cessation and cumulative cigarette consumption among former smokers, smoking-related hypomethylation was found to remain for ≥20 years after smoking cessation and to be affected by multiple factors, such as cis-interaction of genetic variation. There was a significant inverse correlation (P=0.0005) between cg05575921 methylation extent and AHRR mRNA expression. CONCLUSIONS The present study results support that reversion of AHRR hypomethylation can be a quantifiable biomarker for progress in and observance of smoking cessation, although some methodological points need to be considered.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine
| | - Kozue Takano
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine
- Department of Genomic Medicine, Center Hospital, National Center for Global Health and Medicine
| | - Masaya Yamamoto
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine
| | - Wataru Miyake
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Kotaro Mori
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine
| | - Hisao Hara
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Yukio Hiroi
- Department of Cardiology, Center Hospital, National Center for Global Health and Medicine
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine
- Department of Genomic Medicine, Center Hospital, National Center for Global Health and Medicine
| |
Collapse
|
24
|
Affiliation(s)
- Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
25
|
Richmond RC, Sillero-Rejon C, Khouja JN, Prince C, Board A, Sharp G, Suderman M, Relton CL, Munafò M, Gage SH. Investigating the DNA methylation profile of e-cigarette use. Clin Epigenetics 2021; 13:183. [PMID: 34583751 PMCID: PMC8479883 DOI: 10.1186/s13148-021-01174-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Little evidence exists on the health effects of e-cigarette use. DNA methylation may serve as a biomarker for exposure and could be predictive of future health risk. We aimed to investigate the DNA methylation profile of e-cigarette use. RESULTS Among 117 smokers, 117 non-smokers and 116 non-smoking vapers, we evaluated associations between e-cigarette use and epigenome-wide methylation from saliva. DNA methylation at 7 cytosine-phosphate-guanine sites (CpGs) was associated with e-cigarette use at p < 1 × 10-5 and none at p < 5.91 × 10-8. 13 CpGs were associated with smoking at p < 1 × 10-5 and one at p < 5.91 × 10-8. CpGs associated with e-cigarette use were largely distinct from those associated with smoking. There was strong enrichment of known smoking-related CpGs in the smokers but not the vapers. We also tested associations between e-cigarette use and methylation scores known to predict smoking and biological ageing. Methylation scores for smoking and biological ageing were similar between vapers and non-smokers. Higher levels of all smoking scores and a biological ageing score (GrimAge) were observed in smokers. A methylation score for e-cigarette use showed poor prediction internally (AUC 0.55, 0.41-0.69) and externally (AUC 0.57, 0.36-0.74) compared with a smoking score (AUCs 0.80) and was less able to discriminate lung squamous cell carcinoma from adjacent normal tissue (AUC 0.64, 0.52-0.76 versus AUC 0.73, 0.61-0.85). CONCLUSIONS The DNA methylation profile for e-cigarette use is largely distinct from that of cigarette smoking, did not replicate in independent samples, and was unable to discriminate lung cancer from normal tissue. The extent to which methylation related to long-term e-cigarette use translates into chronic effects requires further investigation.
Collapse
Affiliation(s)
- Rebecca C Richmond
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK.
| | - Carlos Sillero-Rejon
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- National Institute for Health Research Applied Research Collaboration West (NIHR ARC West), University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| | - Jasmine N Khouja
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Claire Prince
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Alexander Board
- Department of Experimental Psychology, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Gemma Sharp
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Matthew Suderman
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, BS8 2BN, UK
| | - Marcus Munafò
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Suzanne H Gage
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
26
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
27
|
Andersen A, Gerrard M, Gibbons FX, Beach SRH, Philibert R. An Examination of Risk Factors for Tobacco and Cannabis Smoke Exposure in Adolescents Using an Epigenetic Biomarker. Front Psychiatry 2021; 12:688384. [PMID: 34504443 PMCID: PMC8421639 DOI: 10.3389/fpsyt.2021.688384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/23/2021] [Indexed: 01/23/2023] Open
Abstract
Objective: Evolving patterns of nicotine and cannabis use by adolescents require new tools to understand the changing epidemiology of these substances. Here we describe the use of a novel epigenetic biomarker sensitive to both tobacco and cannabis smoke in a longitudinal sample of high-risk adolescents. We examine risk factors for positivity for this epigenetic biomarker in comparison to positivity for conventional serum biomarkers of nicotine and cannabis use. Method: Eastern Iowa 10th graders who had a friend or family member who smoked were eligible to participate in a longitudinal study over 10-12th grades. Subjects provided self-report data on nicotine, tobacco, and cannabis use patterns as well as blood samples that were used for serum cotinine and THC assays. DNA was prepared for analysis of methylation at the CpG cg05575921, a sensitive indicator of smoke exposure. Relationships between positivity for each these biomarkers and a variety of risk factors, including demographics, family and peer relationships, psychopathology, willingness to smoke, and perceptions of typical cigarette and cannabis users, were examined at the 10th (n = 442), 11th (n = 376), and 12th (n = 366) grade timepoints. Results: A increasing proportion of subjects were positive for cotinine (5-16%), THC (3-10%), and cg05575921 methylation (5-7%) across timepoints, with some overlap. Self-reported combusted tobacco and cannabis use was strongly correlated with all biomarkers, whereas cg05575921 methylation was not correlated with reported e-cigarette use. Dual users, defined as those positive for nicotine and THC in the 12th grade showed the greatest cumulative smoke exposure, indicated by cg05575921 methylation. Subjects reported more positive attitudes toward cannabis users than cigarette smokers, and willingness to smoke and positive perceptions of tobacco and cannabis smokers were significant risk factors for biomarker positivity across timepoints. Conclusion: We conclude that measurement of cg05575921 methylation in adolescents is a useful tool in detecting tobacco smoking in adolescents, and may be a novel tool for the detection of cannabis smoking and cannabis and tobacco co-use, though non-combusted forms of nicotine use do not appear to be detectable by this method.
Collapse
Affiliation(s)
- Allan Andersen
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
| | - Meg Gerrard
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Frederick X. Gibbons
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, United States
| | - Steven R. H. Beach
- Center for Family Research, University of Georgia, Athens, GA, United States
- Department of Psychological Sciences, University of Georgia, Athens, GA, United States
| | - Robert Philibert
- Department of Psychiatry, University of Iowa, Iowa City, IA, United States
- Behavioral Diagnostics, Coralville, IA, United States
| |
Collapse
|
28
|
Awada Z, Bouaoun L, Nasr R, Tfayli A, Cuenin C, Akika R, Boustany RM, Makoukji J, Tamim H, Zgheib NK, Ghantous A. LINE-1 methylation mediates the inverse association between body mass index and breast cancer risk: A pilot study in the Lebanese population. ENVIRONMENTAL RESEARCH 2021; 197:111094. [PMID: 33839117 DOI: 10.1016/j.envres.2021.111094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/28/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Lebanon is among the top countries worldwide in combined incidence and mortality of breast cancer, which raises concern about risk factors peculiar to this country. The underlying molecular mechanisms of breast cancer require elucidation, particularly epigenetics, which is recognized as a molecular sensor to environmental exposures. PURPOSE We aim to explore whether DNA methylation levels of AHRR (marker of cigarette smoking), SLC1A5 and TXLNA (markers of alcohol consumption), and LINE-1 (a genome-wide repetitive retrotransposon) can act as molecular mediators underlying putative associations between breast cancer risk and pertinent extrinsic (tobacco smoking and alcohol consumption) and intrinsic factors [age and body mass index (BMI)]. METHODS This is a cross-sectional pilot study which includes breast cancer cases (N = 65) and controls (N = 54). DNA methylation levels were measured using bisulfite pyrosequencing on available peripheral blood samples (N = 119), and Multivariate Imputation by Chained Equations (MICE) was used to impute missing DNA methylation values in remaining samples. Multiple mediation analysis was performed to assess direct and indirect (via DNA methylation) effects of intrinsic and extrinsic factors on breast cancer risk. RESULTS In relation to exposure, AHRR hypo-methylation was associated with cigarette but not waterpipe smoking, suggesting potentially different biomarkers of these two forms of tobacco use; SLC1A5 and TXLNA methylation were not associated with alcohol consumption; LINE-1 methylation was inversely associated with BMI (β-value [95% confidence interval (CI)] = -0.04 [-0.07, -0.02]), which remained significant after adjustment for age, smoking and alcohol consumption. In relation to breast cancer, there was no detectable association between AHRR, SLC1A5 or TXLNA methylation and cancer risk, but LINE-1 methylation was significantly higher in breast cancer cases when compared to controls (mean ± SD: 72.00 ± 0.66 versus 70.89 ± 0.73, P = 4.67 × 10-14). This difference remained significant after adjustment for confounders (odds ratio (OR) [95% CI] = 9.75[3.74, 25.39]). Moreover, LINE-1 hypo-methylation mediated 83% of the inverse effect of BMI on breast cancer risk. CONCLUSION This pilot study demonstrates that alterations in blood LINE-1 methylation mediate the inverse effect of BMI on breast cancer risk. This warrants large scale studies and stratification based on clinic-pathological types of breast cancer.
Collapse
Affiliation(s)
- Zainab Awada
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon; International Agency for Research on Cancer, Lyon, France
| | | | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Arafat Tfayli
- Division of Hematology and Oncology, Department of Internal Medicine, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Cyrille Cuenin
- International Agency for Research on Cancer, Lyon, France
| | - Reem Akika
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Rose-Mary Boustany
- Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine, Beirut, Lebanon; Department of Neurology, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Joelle Makoukji
- Department of Biochemistry and Molecular Genetics, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Hani Tamim
- Department of Internal Medicine and Clinical Research Institute, American University of Beirut Faculty of Medicine, Beirut, Lebanon
| | - Nathalie K Zgheib
- Department of Pharmacology and Toxicology, American University of Beirut Faculty of Medicine, Beirut, Lebanon.
| | - Akram Ghantous
- International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
29
|
Liu Z, Shen J, Barfield R, Schwartz J, Baccarelli AA, Lin X. Large-Scale Hypothesis Testing for Causal Mediation Effects with Applications in Genome-wide Epigenetic Studies. J Am Stat Assoc 2021; 117:67-81. [PMID: 35989709 PMCID: PMC9385159 DOI: 10.1080/01621459.2021.1914634] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 04/04/2021] [Accepted: 04/04/2021] [Indexed: 01/03/2023]
Abstract
In genome-wide epigenetic studies, it is of great scientific interest to assess whether the effect of an exposure on a clinical outcome is mediated through DNA methylations. However, statistical inference for causal mediation effects is challenged by the fact that one needs to test a large number of composite null hypotheses across the whole epigenome. Two popular tests, the Wald-type Sobel's test and the joint significant test using the traditional null distribution are underpowered and thus can miss important scientific discoveries. In this paper, we show that the null distribution of Sobel's test is not the standard normal distribution and the null distribution of the joint significant test is not uniform under the composite null of no mediation effect, especially in finite samples and under the singular point null case that the exposure has no effect on the mediator and the mediator has no effect on the outcome. Our results explain why these two tests are underpowered, and more importantly motivate us to develop a more powerful Divide-Aggregate Composite-null Test (DACT) for the composite null hypothesis of no mediation effect by leveraging epigenome-wide data. We adopted Efron's empirical null framework for assessing statistical significance of the DACT test. We showed analytically that the proposed DACT method had improved power, and could well control type I error rate. Our extensive simulation studies showed that, in finite samples, the DACT method properly controlled the type I error rate and outperformed Sobel's test and the joint significance test for detecting mediation effects. We applied the DACT method to the US Department of Veterans Affairs Normative Aging Study, an ongoing prospective cohort study which included men who were aged 21 to 80 years at entry. We identified multiple DNA methylation CpG sites that might mediate the effect of smoking on lung function with effect sizes ranging from -0.18 to -0.79 and false discovery rate controlled at level 0.05, including the CpG sites in the genes AHRR and F2RL3. Our sensitivity analysis found small residual correlations (less than 0.01) of the error terms between the outcome and mediator regressions, suggesting that our results are robust to unmeasured confounding factors.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Statistics and Actuarial Science, University of Hong Kong
| | - Jincheng Shen
- Department of Population Health Sciences, University of Utah School of Medicine
| | - Richard Barfield
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine
| | - Joel Schwartz
- Environmental Epidemiology, Harvard T.H. Chan School of Public Health
| | - Andrea A. Baccarelli
- Environmental Health Sciences, Mailman School of Public Health, Columbia University
| | - Xihong Lin
- Biostatistics at Harvard T.H. Chan School of Public Health and Statistics at Faculty of Arts and Sciences, Harvard University
| |
Collapse
|
30
|
Karabegović I, Portilla-Fernandez E, Li Y, Ma J, Maas SCE, Sun D, Hu EA, Kühnel B, Zhang Y, Ambatipudi S, Fiorito G, Huang J, Castillo-Fernandez JE, Wiggins KL, de Klein N, Grioni S, Swenson BR, Polidoro S, Treur JL, Cuenin C, Tsai PC, Costeira R, Chajes V, Braun K, Verweij N, Kretschmer A, Franke L, van Meurs JBJ, Uitterlinden AG, de Knegt RJ, Ikram MA, Dehghan A, Peters A, Schöttker B, Gharib SA, Sotoodehnia N, Bell JT, Elliott P, Vineis P, Relton C, Herceg Z, Brenner H, Waldenberger M, Rebholz CM, Voortman T, Pan Q, Fornage M, Levy D, Kayser M, Ghanbari M. Epigenome-wide association meta-analysis of DNA methylation with coffee and tea consumption. Nat Commun 2021; 12:2830. [PMID: 33990564 PMCID: PMC8121846 DOI: 10.1038/s41467-021-22752-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
Coffee and tea are extensively consumed beverages worldwide which have received considerable attention regarding health. Intake of these beverages is consistently linked to, among others, reduced risk of diabetes and liver diseases; however, the mechanisms of action remain elusive. Epigenetics is suggested as a mechanism mediating the effects of dietary and lifestyle factors on disease onset. Here we report the results from epigenome-wide association studies (EWAS) on coffee and tea consumption in 15,789 participants of European and African-American ancestries from 15 cohorts. EWAS meta-analysis of coffee consumption reveals 11 CpGs surpassing the epigenome-wide significance threshold (P-value <1.1×10-7), which annotated to the AHRR, F2RL3, FLJ43663, HDAC4, GFI1 and PHGDH genes. Among them, cg14476101 is significantly associated with expression of the PHGDH and risk of fatty liver disease. Knockdown of PHGDH expression in liver cells shows a correlation with expression levels of genes associated with circulating lipids, suggesting a role of PHGDH in hepatic-lipid metabolism. EWAS meta-analysis on tea consumption reveals no significant association, only two CpGs annotated to CACNA1A and PRDM16 genes show suggestive association (P-value <5.0×10-6). These findings indicate that coffee-associated changes in DNA methylation levels may explain the mechanism of action of coffee consumption in conferring risk of diseases.
Collapse
Affiliation(s)
- Irma Karabegović
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Genetic Identification, Erasmus University Medical Center, Rotterdam, the Netherlands
- Epidemiology and Microbial Genomics, National Health Laboratory, Dudelange, Luxembourg
| | | | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jiantao Ma
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland and the Framingham Heart Study, Framingham, MA, USA
| | - Silvana C E Maas
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Genetic Identification, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daokun Sun
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Emily A Hu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Yan Zhang
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Srikant Ambatipudi
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- AMCHSS, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, Cedex 08, France
| | - Giovanni Fiorito
- Laboratory of Biostatistics, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, UK
| | - Jian Huang
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
- Imperial College NIHR Biomedical Research Centre, London, UK
| | - Juan E Castillo-Fernandez
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Kerri L Wiggins
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, CHRU, Seattle, WA, USA
| | - Niek de Klein
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sara Grioni
- Epidemiology and Prevention Unit, IRCCS National Cancer Institute Foundation, Milan, Italy
| | - Brenton R Swenson
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, CHRU, Seattle, WA, USA
| | - Silvia Polidoro
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, UK
- Italian Institute for Genomic Medicine (IIGM, former HuGeF), c/o IRCCS Candiolo, Candiolo, Italy
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam UMC, Amsterdam, the Netherlands
| | - Cyrille Cuenin
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, Cedex 08, France
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Ricardo Costeira
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Veronique Chajes
- Nutritional Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Kim Braun
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Niek Verweij
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Genomics plc, Park End St, Oxford, UK
| | - Anja Kretschmer
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Lude Franke
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Abbas Dehghan
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sina A Gharib
- Computational Medicine Core at Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, CHRU, Seattle, WA, USA
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Paul Elliott
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, UK
- UK Dementia Research Institute at Imperial College London, London, UK
- Imperial College NIHR Biomedical Research Centre, London, UK
- Health Data Research UK-London, London, UK
| | - Paolo Vineis
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, St Mary's Campus, Imperial College London, Norfolk Place, London, UK
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, Cedex 08, France
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Myriam Fornage
- Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland and the Framingham Heart Study, Framingham, MA, USA
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Chilunga FP, Henneman P, Venema A, Meeks KAC, Gonzalez JR, Ruiz-Arenas C, Requena-Méndez A, Beune E, Spranger J, Smeeth L, Bahendeka S, Owusu-Dabo E, Klipstein-Grobusch K, Adeyemo A, Mannens MMAM, Agyemang C. DNA methylation as the link between migration and the major noncommunicable diseases: the RODAM study. Epigenomics 2021; 13:653-666. [PMID: 33890479 PMCID: PMC8173498 DOI: 10.2217/epi-2020-0329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/29/2021] [Indexed: 01/19/2023] Open
Abstract
Aim: We assessed epigenome-wide DNA methylation (DNAm) differences between migrant and non-migrant Ghanaians. Materials & methods: We used the Illumina Infinium® HumanMethylation450 BeadChip to profile DNAm of 712 Ghanaians in whole blood. We used linear models to detect differentially methylated positions (DMPs) associated with migration. We performed multiple post hoc analyses to validate our findings. Results: We identified 13 DMPs associated with migration (delta-beta values: 0.2-4.5%). Seven DMPs in CPLX2, EIF4E3, MEF2D, TLX3, ST8SIA1, ANG and CHRM3 were independent of extrinsic genomic influences in public databases. Two DMPs in NLRC5 were associated with duration of stay in Europe among migrants. All DMPs were biologically linked to migration-related factors. Conclusion: Our findings provide the first insights into DNAm differences between migrants and non-migrants.
Collapse
Affiliation(s)
- Felix P Chilunga
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Peter Henneman
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Andrea Venema
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Karlijn AC Meeks
- Center for Research on Genomics & Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Juan R Gonzalez
- Barcelona Institute for Global Health (ISGlobal, University of Barcelona), 08003 Barcelona, Spain
| | - Carlos Ruiz-Arenas
- Barcelona Institute for Global Health (ISGlobal, University of Barcelona), 08003 Barcelona, Spain
| | - Ana Requena-Méndez
- Barcelona Institute for Global Health (ISGlobal, University of Barcelona), 08003 Barcelona, Spain
- Department of Global Public Health, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Erik Beune
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Joachim Spranger
- Department of Endocrinology, Diabetes & Metabolism, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Liam Smeeth
- Department of Non-communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, 1E 7HT, UK
| | - Silver Bahendeka
- Department of Medicine, MKPGMS-Uganda Martyrs University, 8H33+5M Kampala, Uganda
| | - Ellis Owusu-Dabo
- School of Public Health, Kwame Nkrumah University of Science & Technology, MCFH+R9 Kumasi, Ghana
| | - Kerstin Klipstein-Grobusch
- Julius Global Health, Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of The Witwatersrand, 2193 Johannesburg, South Africa
| | - Adebowale Adeyemo
- Center for Research on Genomics & Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Marcel MAM Mannens
- Department of Clinical Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Charles Agyemang
- Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
32
|
Fuemmeler BF, Dozmorov MG, Do EK, Zhang J(J, Grenier C, Huang Z, Maguire RL, Kollins SH, Hoyo C, Murphy SK. DNA Methylation in Babies Born to Nonsmoking Mothers Exposed to Secondhand Smoke during Pregnancy: An Epigenome-Wide Association Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57010. [PMID: 34009014 PMCID: PMC8132610 DOI: 10.1289/ehp8099] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Maternal smoking during pregnancy is related to altered DNA methylation in infant umbilical cord blood. The extent to which low levels of smoke exposure among nonsmoking pregnant women relates to offspring DNA methylation is unknown. OBJECTIVE This study sought to evaluate relationships between maternal prenatal plasma cotinine levels and DNA methylation in umbilical cord blood in newborns using the Infinium HumanMethylation 450K BeadChip. METHODS Participants from the Newborn Epigenetics Study cohort who reported not smoking during pregnancy had verified low levels of cotinine from maternal prenatal plasma (0 ng / mL to < 4 ng / mL ), and offspring epigenetic data from umbilical cord blood were included in this study (n = 79 ). Multivariable linear regression models were fit to the data, controlling for cell proportions, age, race, education, and parity. Estimates represent changes in response to any 1 -ng / mL unit increase in exposure. RESULTS Multivariable linear regression models yielded 29,049 CpGs that were differentially methylated in relation to increases in cotinine at a 5% false discovery rate. Top CpGs were within or near genes involved in neuronal functioning (PRKG1, DLGAP2, BSG), carcinogenesis (FHIT, HSPC157) and inflammation (AGER). Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggest cotinine was related to methylation of gene pathways controlling neuronal signaling, metabolic regulation, cell signaling and regulation, and cancer. Further, enhancers associated with transcription start sites were enriched in altered CpGs. Using an independent sample from the same study population (n = 115 ), bisulfite pyrosequencing was performed with infant cord blood DNA for two genes within our top 20 hits (AGER and PRKG1). Results from pyrosequencing replicated epigenome results for PRKG1 (cg17079497, estimate = - 1.09 , standard error ( SE ) = 0.45 , p = 0.018 ) but not for AGER (cg09199225; estimate = - 0.16 , SE = 0.21 , p = 0.44 ). DISCUSSION Secondhand smoke exposure among nonsmoking women may alter DNA methylation in regions involved in development, carcinogenesis, and neuronal functioning. These novel findings suggest that even low levels of smoke exposure during pregnancy may be sufficient to alter DNA methylation in distinct sites of mixed umbilical cord blood leukocytes in pathways that are known to be altered in cord blood from pregnant active smokers. https://doi.org/10.1289/EHP8099.
Collapse
Affiliation(s)
- Bernard F. Fuemmeler
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Mikhail G. Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Pathology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Elizabeth K. Do
- Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, Virginia, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Junfeng (Jim) Zhang
- Nicholas School of the Environment and Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Rachel L. Maguire
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Biological Sciences, Center for Human Health and the Environment North Carolina State University, Raleigh, North Carolina, USA
| | - Scott H. Kollins
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment North Carolina State University, Raleigh, North Carolina, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
33
|
"GrimAge," an epigenetic predictor of mortality, is accelerated in major depressive disorder. Transl Psychiatry 2021; 11:193. [PMID: 33820909 PMCID: PMC8021561 DOI: 10.1038/s41398-021-01302-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/21/2021] [Accepted: 03/05/2021] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder (MDD) is associated with premature mortality and is an independent risk factor for a broad range of diseases, especially those associated with aging, such as cardiovascular disease, diabetes, and Alzheimer's disease. However, the pathophysiology underlying increased rates of somatic disease in MDD remains unknown. It has been proposed that MDD represents a state of accelerated cellular aging, and several measures of cellular aging have been developed in recent years. Among such metrics, estimators of biological age based on predictable age-related patterns of DNA methylation (DNAm), so-called 'epigenetic clocks', have shown particular promise for their ability to capture accelerated aging in psychiatric disease. The recently developed DNAm metric known as 'GrimAge' is unique in that it was trained on time-to-death data and has outperformed its predecessors in predicting both morbidity and mortality. Yet, GrimAge has not been investigated in MDD. Here we measured GrimAge in 49 somatically healthy unmedicated individuals with MDD and 60 age-matched healthy controls. We found that individuals with MDD exhibited significantly greater GrimAge relative to their chronological age ('AgeAccelGrim') compared to healthy controls (p = 0.001), with a median of 2 years of excess cellular aging. This difference remained significant after controlling for sex, current smoking status, and body-mass index (p = 0.015). These findings are consistent with prior suggestions of accelerated cellular aging in MDD, but are the first to demonstrate this with an epigenetic metric predictive of premature mortality.
Collapse
|
34
|
Silva CP, Kamens HM. Cigarette smoke-induced alterations in blood: A review of research on DNA methylation and gene expression. Exp Clin Psychopharmacol 2021; 29:116-135. [PMID: 32658533 PMCID: PMC7854868 DOI: 10.1037/pha0000382] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Worldwide, smoking remains a threat to public health, causing preventable diseases and premature mortality. Cigarette smoke is a powerful inducer of DNA methylation and gene expression alterations, which have been associated with negative health consequences. Here, we review the current knowledge on smoking-related changes in DNA methylation and gene expression in human blood samples. We identified 30 studies focused on the association between active smoking, DNA methylation modifications, and gene expression alterations. Overall, we identified 1,758 genes with differentially methylated sites (DMS) and differentially expressed genes (DEG) between smokers and nonsmokers, of which 261 were detected in multiple studies (≥4). The most frequently (≥10 studies) reported genes were AHRR, GPR15, GFI1, and RARA. Functional enrichment analysis of the 261 genes identified the aryl hydrocarbon receptor repressor and T cell pathways (T helpers 1 and 2) as influenced by smoking status. These results highlight specific genes for future mechanistic and translational research that may be associated with cigarette smoke exposure and smoking-related diseases. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Constanza P. Silva
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Helen M. Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America.,Correspondence concerning this article should be addressed to Helen M. Kamens, 228 Biobehavioral Health Building, The Pennsylvania State University, University Park, PA 16802; ; Phone number: 814-865-1269; Fax number: 814-863-7525
| |
Collapse
|
35
|
Morrow JD, Make B, Regan E, Han M, Hersh CP, Tal-Singer R, Quackenbush J, Choi AMK, Silverman EK, DeMeo DL. DNA Methylation Is Predictive of Mortality in Current and Former Smokers. Am J Respir Crit Care Med 2020; 201:1099-1109. [PMID: 31995399 DOI: 10.1164/rccm.201902-0439oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Rationale: Smoking results in at least a decade lower life expectancy. Mortality among current smokers is two to three times as high as never smokers. DNA methylation is an epigenetic modification of the human genome that has been associated with both cigarette smoking and mortality.Objectives: We sought to identify DNA methylation marks in blood that are predictive of mortality in a subset of the COPDGene (Genetic Epidemiology of COPD) study, representing 101 deaths among 667 current and former smokers.Methods: We assayed genome-wide DNA methylation in non-Hispanic white smokers with and without chronic obstructive pulmonary disease (COPD) using blood samples from the COPDGene enrollment visit. We tested whether DNA methylation was associated with mortality in models adjusted for COPD status, age, sex, current smoking status, and pack-years of cigarette smoking. Replication was performed in a subset of 231 individuals from the ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints) study.Measurements and Main Results: We identified seven CpG sites associated with mortality (false discovery rate < 20%) that replicated in the ECLIPSE cohort (P < 0.05). None of these marks were associated with longitudinal lung function decline in survivors, smoking history, or current smoking status. However, differential methylation of two replicated PIK3CD (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta) sites were associated with lung function at enrollment (P < 0.05). We also observed associations between DNA methylation and gene expression for the PIK3CD sites.Conclusions: This study is the first to identify variable DNA methylation associated with all-cause mortality in smokers with and without COPD. Evaluating predictive epigenomic marks of smokers in peripheral blood may allow for targeted risk stratification and aid in delivery of future tailored therapeutic interventions.
Collapse
Affiliation(s)
| | - Barry Make
- National Jewish Health, Denver, Colorado
| | | | - MeiLan Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Craig P Hersh
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | | | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts; and
| | - Augustine M K Choi
- Department of Medicine, NewYork-Presbyterian/Weill Cornell Medical Center, New York, New York
| | - Edwin K Silverman
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dawn L DeMeo
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
36
|
Lei MK, Gibbons FX, Simons RL, Philibert RA, Beach SRH. The Effect of Tobacco Smoking Differs across Indices of DNA Methylation-Based Aging in an African American Sample: DNA Methylation-Based Indices of Smoking Capture These Effects. Genes (Basel) 2020; 11:E311. [PMID: 32183340 PMCID: PMC7140795 DOI: 10.3390/genes11030311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 01/09/2023] Open
Abstract
Smoking is one of the leading preventable causes of morbidity and mortality worldwide, prompting interest in its association with DNA methylation-based measures of biological aging. Considerable progress has been made in developing DNA methylation-based measures that correspond to self-reported smoking status. In addition, assessment of DNA methylation-based aging has been expanded to better capture individual differences in risk for morbidity and mortality. Untested to date, however, is whether smoking is similarly related to older and newer indices of DNA methylation-based aging, and whether DNA methylation-based indices of smoking can be used in lieu of self-reported smoking to examine effects on DNA methylation-based aging measures. In the current investigation we examine mediation of the impact of self-reported cigarette consumption on accelerated, intrinsic DNA methylation-based aging using indices designed to predict chronological aging, phenotypic aging, and mortality risk, as well as a newly developed DNA methylation-based measure of telomere length. Using a sample of 500 African American middle aged smokers and non-smokers, we found that a) self-reported cigarette consumption was associated with accelerated intrinsic DNA methylation-based aging on some but not all DNA methylation-based aging indices, b) for those aging outcomes associated with self-reported cigarette consumption, DNA methylation-based indicators of smoking typically accounted for greater variance than did self-reported cigarette consumption, and c) self-reported cigarette consumption effects on DNA methylation-based aging indices typically were fully mediated by DNA methylation-based indicators of smoking (e.g., PACKYRS from GrimAge; or cg05575921 CpG site). Results suggest that when DNA methylation-based indices of smoking are substituted for self-reported assessments of smoking, they will typically fully reflect the varied impact of cigarette smoking on intrinsic, accelerated DNA methylation-based aging.
Collapse
Affiliation(s)
- Man-Kit Lei
- Department of Sociology, University of Georgia, Athens, GA 30602, USA; (M.-K.L.); (R.L.S.)
| | - Frederick X. Gibbons
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Ronald L. Simons
- Department of Sociology, University of Georgia, Athens, GA 30602, USA; (M.-K.L.); (R.L.S.)
| | - Robert A. Philibert
- Department of Psychiatry, University of Iowa, Iowa, IA 52242, USA;
- Behavioral Diagnostics, Coralville, Iowa, IA 52241, USA
| | - Steven R. H. Beach
- Department of Psychology, University of Georgia, Athens, GA 30602, USA
- Center for Family Research, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
37
|
Sarlak S, Lalou C, Amoedo ND, Rossignol R. Metabolic reprogramming by tobacco-specific nitrosamines (TSNAs) in cancer. Semin Cell Dev Biol 2020; 98:154-166. [PMID: 31699542 DOI: 10.1016/j.semcdb.2019.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 08/25/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer and the link between oncogenes activation, tumor supressors inactivation and bioenergetics modulation is well established. However, numerous carcinogenic environmental factors are responsible for early cancer initiation and their impact on metabolic reprogramming just starts to be deciphered. For instance, it was recently shown that UVB irradiation triggers metabolic reprogramming at the pre-cancer stage with implication for skin cancer detection and therapy. These observations foster the need to study the early changes in tissue metabolism following exposure to other carcinogenic events. According to the International Agency for Research on Cancer (IARC), tobacco smoke is a major class I-carcinogenic environmental factor that contains different carcinogens, but little is known on the impact of tobacco smoke on tissue metabolism and its participation to cancer initiation. In particular, tobacco-specific nitrosamines (TSNAs) play a central role in tobacco-smoke mediated cancer initiation. Here we describe the recent advances that have led to a new hypothesis regarding the link between nitrosamines signaling and metabolic reprogramming in cancer.
Collapse
Affiliation(s)
- Saharnaz Sarlak
- INSERM U1211, 33000 Bordeaux, France; Bordeaux University, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Claude Lalou
- INSERM U1211, 33000 Bordeaux, France; Bordeaux University, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Nivea Dias Amoedo
- CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Rodrigue Rossignol
- INSERM U1211, 33000 Bordeaux, France; Bordeaux University, 146 rue Léo Saignat, 33000 Bordeaux, France; CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33000 Bordeaux, France.
| |
Collapse
|
38
|
Cigarette and Cannabis Smoking Effects on GPR15+ Helper T Cell Levels in Peripheral Blood: Relationships with Epigenetic Biomarkers. Genes (Basel) 2020; 11:genes11020149. [PMID: 32019074 PMCID: PMC7074551 DOI: 10.3390/genes11020149] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Smoking causes widespread epigenetic changes that have been linked with an increased risk of smoking-associated diseases and elevated mortality. Of particular interest are changes in the level of T cells expressing G-protein-coupled receptor 15 (GPR15), a chemokine receptor linked with multiple autoimmune diseases, including inflammatory bowel disease, multiple sclerosis and psoriasis. Accordingly, a better understanding of the mechanisms by which smoking influences variation in the GPR15+ helper T cell subpopulation is of potential interest. Methods: In the current study, we used flow cytometry and digital PCR assays to measure the GPR15+CD3+CD4+ populations in peripheral blood from a cohort of n = 62 primarily African American young adults (aged 27–35 years) with a high rate of tobacco and cannabis use. Results: We demonstrated that self-reported tobacco and cannabis smoking predict GPR15+CD3+CD4+ helper T cell levels using linear regression models. Further, we demonstrated that methylation of two candidate CpGs, cg19859270, located in GPR15, and cg05575921, located in the gene Aryl Hydrocarbon Receptor Repressor (AHRR), were both significant predictors of GPR15+CD3+CD4+ cell levels, mediating the relationship between smoking habits and increases in GPR15+CD3+CD4+ cells. As hypothesized, the interaction between cg05575921 and cg19859270 was also significant, indicating that low cg05575921 methylation was more strongly predictive of GPR15+CD3+CD4+ cell levels for those who also had lower cg19859270 methylation. Conclusions: Smoking leads changes in two CpGs, cg05575921 and cg19859270, that mediate 38.5% of the relationship between tobacco and cannabis smoking and increased GPR15+ Th levels in this sample. The impact of cg19859270 in amplifying the association between cg05575921 and increased GPR15+ Th levels is of potential theoretical interest given the possibility that it reflects a permissive interaction between different parts of the adaptive immune system.
Collapse
|
39
|
Mukherjee N, Sutter TR, Arshad SH, Holloway JW, Zhang H, Karmaus W. Breastfeeding duration modifies the effect of smoking during pregnancy on eczema from early childhood to adolescence. Clin Exp Allergy 2019; 48:1688-1697. [PMID: 30311981 DOI: 10.1111/cea.13294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cigarette smoke contains compounds similar to coal tar, an ancient remedy of eczema. Some studies have reported protective effects of maternal gestational smoking on offspring eczema; however, others have shown no or increased risks. Similarly, studies linking breastfeeding duration and eczema have demonstrated contradictory findings. No study has yet investigated combined effects of these two factors on eczema. OBJECTIVE Since tobacco compounds can pass to offspring via breast milk, we investigated their combined effects on eczema development from childhood to adolescence. METHODS We obtained information regarding gestational smoking, exclusive breastfeeding duration, and eczema at ages 1-or-2, 4, 10, and 18 years from the Isle of Wight (IOW) birth cohort, UK. Using generalized estimating equations, we assessed the interaction of gestational smoking and residual exclusive breastfeeding duration (Resid-BF-duration, obtained by regressing the latter on maternal smoking) on eczema over time adjusting for confounders. For the three transition periods of 1-or-2 to 4 years, 4-10, and 10-18 years, we estimated risks of persistent, incident, and remitting eczema associated with the interaction using repeated measurements. RESULTS If the mother smoked during gestation, longer Resid-BF-duration was associated with a lower risk of eczema, compared to if she did not smoke. The risk ratios (95% CI) if the mother smoked during gestation and exclusively breastfed for at least 3, 9, 15, 21 weeks are 0.7 (0.6, 1.7), 0.6 (0. 4, 0.9), 0.5 (0.3, 0.8), and 0.4 (0.2, 0. 8), respectively. Additionally, in all three transition periods, the risk of persistent eczema was lower with longer Resid-BF-duration if the mother smoked during gestation. CONCLUSIONS AND CLINICAL RELEVANCE Results suggest a protective effect of gestational smoking combined with longer duration of exclusive breastfeeding on early-onset persistent eczema. Future studies should examine underlying biological mechanisms. Prolonged breastfeeding should be encouraged even if the mother smoked during gestation.
Collapse
Affiliation(s)
- Nandini Mukherjee
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee
| | - Thomas R Sutter
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,The David Hide Asthma and Allergy Research Centre, Isle of Wight, UK.,NIHR Respiratory Biomedical Research Unit, University Hospital Southampton, Southampton, UK
| | - John W Holloway
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee
| |
Collapse
|
40
|
Zong D, Liu X, Li J, Ouyang R, Chen P. The role of cigarette smoke-induced epigenetic alterations in inflammation. Epigenetics Chromatin 2019; 12:65. [PMID: 31711545 PMCID: PMC6844059 DOI: 10.1186/s13072-019-0311-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China. .,Research Unit of Respiratory Disease, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
41
|
Philibert RA, Dogan MV, Mills JA, Long JD. AHRR Methylation is a Significant Predictor of Mortality Risk in Framingham Heart Study. J Insur Med 2019; 48:79-89. [PMID: 31618096 DOI: 10.17849/insm-48-1-1-11.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background.-The ability to predict mortality is useful to clinicians, policy makers and insurers. At the current time, prediction of future mortality is still an inexact process with some proposing that epigenetic assessments could play a role in improving prognostics. In past work, we and others have shown that DNA methylation status at cg05575921, a well-studied measure of smoking intensity, is also a predictor of mortality. However, the exact extent of that predictive capacity and its independence of other commonly measured mortality risk factors are unknown. Objective.-To determine the capacity of methylation to predict mortality. Method.-We analyzed the relationship of methylation at cg05575921 and cg04987734, a recently described quantitative marker of heavy alcohol consumption, to mortality in the Offspring Cohort of the Framingham Heart Study using proportional hazards survival analysis. Results.-In this group of participants (n = 2278) whose average age was 66 ± 9 years, we found that the inclusion of both cg05575921 and cg04987734 methylation to a base model consisting of age and sex only, or to a model containing 11 commonly used mortality risk factors, improved risk prediction. What is more, prediction accuracy for the base model plus methylation data was increased compared to the base model plus known predictors of mortality (CHD, COPD, or stroke). Conclusion.-Cg05575921, and to a smaller extent cg04987734, are strong predictors of mortality risk in older Americans and that incorporation of DNA methylation assessments to these and other loci may be useful to population scientists, actuaries and policymakers to better understand the relationship of environmental risk factors, such as smoking and drinking, to mortality.
Collapse
Affiliation(s)
- Robert A Philibert
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA 52242.,Behavioral Diagnostics LLC, Coralville, IA, USA
| | - Meeshanthini V Dogan
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA 52242.,CardioDiagnostics LLC, Coralville, IA, USA
| | - James A Mills
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA 52242
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA 52242.,Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
42
|
Corley J, Cox SR, Harris SE, Hernandez MV, Maniega SM, Bastin ME, Wardlaw JM, Starr JM, Marioni RE, Deary IJ. Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936. Transl Psychiatry 2019; 9:248. [PMID: 31591380 PMCID: PMC6779733 DOI: 10.1038/s41398-019-0576-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022] Open
Abstract
Recent advances in genome-wide DNA methylation (DNAm) profiling for smoking behaviour have given rise to a new, molecular biomarker of smoking exposure. It is unclear whether a smoking-associated DNAm (epigenetic) score has predictive value for ageing-related health outcomes which is independent of contributions from self-reported (phenotypic) smoking measures. Blood DNA methylation levels were measured in 895 adults aged 70 years in the Lothian Birth Cohort 1936 (LBC1936) study using the Illumina 450K assay. A DNA methylation score based on 230 CpGs was used as a proxy for smoking exposure. Associations between smoking variables and health outcomes at age 70 were modelled using general linear modelling (ANCOVA) and logistic regression. Additional analyses of smoking with brain MRI measures at age 73 (n = 532) were performed. Smoking-DNAm scores were positively associated with self-reported smoking status (P < 0.001, eta-squared ɳ2 = 0.63) and smoking pack years (r = 0.69, P < 0.001). Higher smoking DNAm scores were associated with variables related to poorer cognitive function, structural brain integrity, physical health, and psychosocial health. Compared with phenotypic smoking, the methylation marker provided stronger associations with all of the cognitive function scores, especially visuospatial ability (P < 0.001, partial eta-squared ɳp2 = 0.022) and processing speed (P < 0.001, ɳp2 = 0.030); inflammatory markers (all P < 0.001, ranges from ɳp2 = 0.021 to 0.030); dietary patterns (healthy diet (P < 0.001, ɳp2 = 0.052) and traditional diet (P < 0.001, ɳp2 = 0.032); stroke (P = 0.006, OR 1.48, 95% CI 1.12, 1.96); mortality (P < 0.001, OR 1.59, 95% CI 1.42, 1.79), and at age 73; with MRI volumetric measures (all P < 0.001, ranges from ɳp2 = 0.030 to 0.052). Additionally, education was the most important life-course predictor of lifetime smoking tested. Our results suggest that a smoking-associated methylation biomarker typically explains a greater proportion of the variance in some smoking-related morbidities in older adults, than phenotypic measures of smoking exposure, with some of the accounted-for variance being independent of phenotypic smoking status.
Collapse
Affiliation(s)
- Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK.
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Sarah E Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Maria Valdéz Hernandez
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Brain Research Imaging Centre, Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Susana Muñoz Maniega
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Brain Research Imaging Centre, Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Brain Research Imaging Centre, Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Joanna M Wardlaw
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Brain Research Imaging Centre, Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Royal Victoria Building, Western General Hospital, Porterfield Road, Edinburgh, UK
| | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| |
Collapse
|
43
|
Kaur G, Begum R, Thota S, Batra S. A systematic review of smoking-related epigenetic alterations. Arch Toxicol 2019; 93:2715-2740. [PMID: 31555878 DOI: 10.1007/s00204-019-02562-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023]
Abstract
The aim of this study is to provide a systematic review of the known epigenetic alterations caused by cigarette smoke; establish an evidence-based perspective of their clinical value for screening, diagnosis, and treatment of smoke-related disorders; and discuss the challenges and ethical concerns associated with epigenetic studies. A well-defined, reproducible search strategy was employed to identify relevant literature (clinical, cellular, and animal-based) between 2000 and 2019 based on AMSTAR guidelines. A total of 80 studies were identified that reported alterations in DNA methylation, histone modifications, and miRNA expression following exposure to cigarette smoke. Changes in DNA methylation were most extensively documented for genes including AHRR, F2RL3, DAPK, and p16 after exposure to cigarette smoke. Likewise, miR16, miR21, miR146, and miR222 were identified to be differentially expressed in smokers and exhibit potential as biomarkers for determining susceptibility to COPD. We also identified 22 studies highlighting the transgenerational effects of maternal and paternal smoking on offspring. This systematic review lists the epigenetic events/alterations known to occur in response to cigarette smoke exposure and identifies the major genes and miRNAs that are potential targets for translational research in associated pathologies. Importantly, the limitations and ethical concerns related to epigenetic studies are also highlighted, as are the effects on the ability to address specific questions associated with exposure to tobacco/cigarette smoke. In the future, improved interpretation of epigenetic signatures will lead to their increased use as biomarkers and/or in drug development.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory of Pulmonary Immuno-toxicology, Department of Environmental Toxicology, 129 Health Research Centre, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Rizwana Begum
- Laboratory of Pulmonary Immuno-toxicology, Department of Environmental Toxicology, 129 Health Research Centre, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immuno-toxicology, Department of Environmental Toxicology, 129 Health Research Centre, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-toxicology, Department of Environmental Toxicology, 129 Health Research Centre, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
44
|
Maas SCE, Vidaki A, Wilson R, Teumer A, Liu F, van Meurs JBJ, Uitterlinden AG, Boomsma DI, de Geus EJC, Willemsen G, van Dongen J, van der Kallen CJH, Slagboom PE, Beekman M, van Heemst D, van den Berg LH, Duijts L, Jaddoe VWV, Ladwig KH, Kunze S, Peters A, Ikram MA, Grabe HJ, Felix JF, Waldenberger M, Franco OH, Ghanbari M, Kayser M. Validated inference of smoking habits from blood with a finite DNA methylation marker set. Eur J Epidemiol 2019; 34:1055-1074. [PMID: 31494793 PMCID: PMC6861351 DOI: 10.1007/s10654-019-00555-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022]
Abstract
Inferring a person’s smoking habit and history from blood is relevant for complementing or replacing self-reports in epidemiological and public health research, and for forensic applications. However, a finite DNA methylation marker set and a validated statistical model based on a large dataset are not yet available. Employing 14 epigenome-wide association studies for marker discovery, and using data from six population-based cohorts (N = 3764) for model building, we identified 13 CpGs most suitable for inferring smoking versus non-smoking status from blood with a cumulative Area Under the Curve (AUC) of 0.901. Internal fivefold cross-validation yielded an average AUC of 0.897 ± 0.137, while external model validation in an independent population-based cohort (N = 1608) achieved an AUC of 0.911. These 13 CpGs also provided accurate inference of current (average AUCcrossvalidation 0.925 ± 0.021, AUCexternalvalidation0.914), former (0.766 ± 0.023, 0.699) and never smoking (0.830 ± 0.019, 0.781) status, allowed inferring pack-years in current smokers (10 pack-years 0.800 ± 0.068, 0.796; 15 pack-years 0.767 ± 0.102, 0.752) and inferring smoking cessation time in former smokers (5 years 0.774 ± 0.024, 0.760; 10 years 0.766 ± 0.033, 0.764; 15 years 0.767 ± 0.020, 0.754). Model application to children revealed highly accurate inference of the true non-smoking status (6 years of age: accuracy 0.994, N = 355; 10 years: 0.994, N = 309), suggesting prenatal and passive smoking exposure having no impact on model applications in adults. The finite set of DNA methylation markers allow accurate inference of smoking habit, with comparable accuracy as plasma cotinine use, and smoking history from blood, which we envision becoming useful in epidemiology and public health research, and in medical and forensic applications.
Collapse
Affiliation(s)
- Silvana C E Maas
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Athina Vidaki
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Rory Wilson
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Walther-Rathenau-Str. 48, 17475, Greifswald, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Greifswald, 17475 Greifswald, Germany
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, NO.1 Beichen West Road, Chaoyang District, 100101 Beijing, People's Republic of China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, 100049 Beijing, People's Republic of China
| | - Joyce B J van Meurs
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit, Van der Boechorststraat 7-9, 1081 BT, Amsterdam, The Netherlands
| | - Carla J H van der Kallen
- Department of Internal Medicine, Maastricht University Medical Center, Randwycksingel 35, 6229 EG, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, P.O. box 9600, 2300 RC, Leiden, The Netherlands
| | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, P.O. box 9600, 2300 RC, Leiden, The Netherlands
| | - Diana van Heemst
- Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, P.O. box 9600, 2300 RC, Leiden, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Postbus 85500, 3508 GA, Utrecht, The Netherlands
| | | | - Liesbeth Duijts
- Division of Respiratory Medicine and Allergology and Division of Neonatology, Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Vincent W V Jaddoe
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Karl-Heinz Ladwig
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Sonja Kunze
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80802 Munich, Germany.,Institute for Medical Informatics, Biometrics and Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Ellernholzstraße 1-2, 17475, Greifswald, Germany
| | - Janine F Felix
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80802 Munich, Germany
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands. .,Department of Genetics, School of Medicine, Mashhad University of Medical Science, PO Box 91735-951, 9133913716 Mashhad, Iran.
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
45
|
Rauschert S, Melton PE, Burdge G, Craig JM, Godfrey KM, Holbrook JD, Lillycrop K, Mori TA, Beilin LJ, Oddy WH, Pennell C, Huang RC. Maternal Smoking During Pregnancy Induces Persistent Epigenetic Changes Into Adolescence, Independent of Postnatal Smoke Exposure and Is Associated With Cardiometabolic Risk. Front Genet 2019; 10:770. [PMID: 31616461 PMCID: PMC6764289 DOI: 10.3389/fgene.2019.00770] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Several studies have shown effects of current and maternal smoking during pregnancy on DNA methylation of CpG sites in newborns and later in life. Here, we hypothesized that there are long-term and persistent epigenetic effects following maternal smoking during pregnancy on adolescent offspring DNA methylation, independent of paternal and postnatal smoke exposure. Furthermore, we explored the association between DNA methylation and cardiometabolic risk factors at 17 years of age. Materials and Methods: DNA methylation was measured using the Illumina HumanMethylation450K BeadChip in whole blood from 995 participants attending the 17-year follow-up of the Raine Study. Linear mixed effects models were used to identify differential methylated CpGs, adjusting for parental smoking during pregnancy, and paternal, passive, and adolescent smoke exposure. Additional models examined the association between DNA methylation and paternal, adolescent, and passive smoking over the life course. Offspring CpGs identified were analyzed against cardiometabolic risk factors (blood pressure, triacylglycerols (TG), high-density lipoproteins cholesterol (HDL-C), and body mass index). Results: We identified 23 CpGs (genome-wide p level: 1.06 × 10-7) that were associated with maternal smoking during pregnancy, including associated genes AHRR (cancer development), FTO (obesity), CNTNAP2 (developmental processes), CYP1A1 (detoxification), MYO1G (cell signalling), and FRMD4A (nicotine dependence). A sensitivity analysis showed a dose-dependent relationship between maternal smoking and offspring methylation. These results changed little following adjustment for paternal, passive, or offspring smoking, and there were no CpGs identified that associated with these variables. Two of the 23 identified CpGs [cg00253568 (FTO) and cg00213123 (CYP1A1)] were associated with either TG (male and female), diastolic blood pressure (female only), or HDL-C (male only), after Bonferroni correction. Discussion: This study demonstrates a critical timing of cigarette smoke exposure over the life course for establishing persistent changes in DNA methylation into adolescence in a dose-dependent manner. There were significant associations between offspring CpG methylation and adolescent cardiovascular risk factors, namely, TG, HDL-C, and diastolic blood pressure. Future studies on current smoking habits and DNA methylation should consider the importance of maternal smoking during pregnancy and explore how the persistent DNA methylation effects of in utero smoke exposure increase cardiometabolic risk.
Collapse
Affiliation(s)
- Sebastian Rauschert
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Phillip E. Melton
- Centre for Genetic Origins of Health and Disease, The University of Western Australia and Curtin University, Perth, WA, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Bentley, WA, Australia
| | - Graham Burdge
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jeffrey M. Craig
- Early Life Epigenetics Group, MCRI, Royal Children’s Hospital, Flemington Road, Parkville, VIC, Australia
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Keith M. Godfrey
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Joanna D. Holbrook
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Karen Lillycrop
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, United Kingdom
| | - Trevor A. Mori
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Lawrence J. Beilin
- Medical School, Royal Perth Hospital Unit, University of Western Australia, Perth, WA, Australia
| | - Wendy H. Oddy
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Rae-Chi Huang
- Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
46
|
McGinnis KA, Justice AC, Tate JP, Kranzler HR, Tindle HA, Becker WC, Concato J, Gelernter J, Li B, Zhang X, Zhao H, Crothers K, Xu K. Using DNA methylation to validate an electronic medical record phenotype for smoking. Addict Biol 2019; 24:1056-1065. [PMID: 30284751 DOI: 10.1111/adb.12670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/22/2018] [Accepted: 07/22/2018] [Indexed: 12/14/2022]
Abstract
A validated, scalable approach to characterizing (phenotyping) smoking status is needed to facilitate genetic discovery. Using established DNA methylation sites from blood samples as a criterion standard for smoking behavior, we compare three candidate electronic medical record (EMR) smoking metrics based on longitudinal EMR text notes. With data from the Veterans Aging Cohort Study (VACS), we employed a validated algorithm to translate each smoking-related text note into current, past or never categories. We compared three alternative summary characterizations of smoking: most recent, modal and trajectories using descriptive statistics and Spearman's correlation coefficients. Logistic regression and area under the curve analyses were used to compare the associations of these phenotypes with the DNA methylation sites, cg05575921 and cg03636183, which are known to have strong associations with current smoking. DNA methylation data were available from the VACS Biomarker Cohort (VACS-BC), a sub-study of VACS. We also considered whether the associations differed by the certainty of trajectory group assignment (<0.80/≥0.80). Among 140 152 VACS participants, EMR summary smoking phenotypes varied in frequency by the metric chosen: current from 33 to 53 percent; past from 16 to 24 percent and never from 24 to 33 percent. The association between the EMR smoking pairs was highest for modal and trajectories (rho = 0.89). Among 728 individuals in the VACS-BC, both DNA methylation sites were associated with all three EMR summary metrics (p < 0.001), but the strongest association with both methylation sites was observed for trajectories (p < 0.001). Longitudinal EMR smoking data support using a summary phenotype, the validity of which is enhanced when data are integrated into statistical trajectories.
Collapse
Affiliation(s)
| | - Amy C. Justice
- Veterans Affairs Connecticut Healthcare System; West Haven CT USA
- Yale School of Medicine; New Haven CT USA
- Yale School of Public Health; New Haven CT USA
| | - Janet P. Tate
- Veterans Affairs Connecticut Healthcare System; West Haven CT USA
- Yale School of Medicine; New Haven CT USA
| | - Henry R. Kranzler
- VISN 4 MIRECC; Crescenz VAMC; Philadelphia PA USA
- University of Pennsylvania Perelman School of Medicine; Philadelphia PA USA
| | - Hilary A. Tindle
- Vanderbilt University Medical Center; Nashville TN USA
- Geriatric Research Education and Clinical Centers (GRECC), Veterans Affairs Tennessee Valley Healthcare System; Nashville TN USA
| | - William C. Becker
- Veterans Affairs Connecticut Healthcare System; West Haven CT USA
- Yale School of Medicine; New Haven CT USA
| | - John Concato
- Veterans Affairs Connecticut Healthcare System; West Haven CT USA
- Yale School of Medicine; New Haven CT USA
| | - Joel Gelernter
- Veterans Affairs Connecticut Healthcare System; West Haven CT USA
- Yale School of Medicine; New Haven CT USA
| | - Boyang Li
- Yale School of Medicine; New Haven CT USA
| | | | - Hongyu Zhao
- Yale School of Medicine; New Haven CT USA
- Yale School of Public Health; New Haven CT USA
| | | | - Ke Xu
- Veterans Affairs Connecticut Healthcare System; West Haven CT USA
| | | |
Collapse
|
47
|
Smoking-Related DNA Methylation is Associated with DNA Methylation Phenotypic Age Acceleration: The Veterans Affairs Normative Aging Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16132356. [PMID: 31277270 PMCID: PMC6651499 DOI: 10.3390/ijerph16132356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022]
Abstract
DNA methylation may play a critical role in aging and age-related diseases. DNA methylation phenotypic age (DNAmPhenoAge) is a new aging biomarker and predictor of chronic disease risk. While smoking is a strong risk factor for chronic diseases and influences methylation, its influence on DNAmPhenoAge is unknown. We investigated associations of self-reported and epigenetic smoking indicators with DNAmPhenoAge acceleration in a longitudinal aging study in eastern Massachusetts. DNA methylation was measured in whole blood samples from multiple visits for 692 male participants in the Veterans Affairs Normative Aging Study during 1999–2013. Acceleration was defined using residuals from linear regression of the DNAmPhenoAge on the chronological age. Cumulative smoking (pack-years) was significantly associated with DNAmPhenoAge acceleration, whereas self-reported smoking status was not. We observed significant validated associations between smoking-related loci and DNAmPhenoAge acceleration for 52 CpG sites, where 18 were hypomethylated and 34 were hypermethylated, mapped to 16 genes. The AHRR gene had the most loci (N = 8) among the 16 genes. We generated a smoking aging index based on these 52 loci, which showed positive significant associations with DNAmPhenoAge acceleration. These epigenetic biomarkers may help to predict age-related risks driven by smoking.
Collapse
|
48
|
Jordahl KM, Phipps AI, Randolph TW, Tindle HA, Liu S, Tinker LF, Kelsey KT, White E, Bhatti P. Differential DNA methylation in blood as a mediator of the association between cigarette smoking and bladder cancer risk among postmenopausal women. Epigenetics 2019; 14:1065-1073. [PMID: 31232174 DOI: 10.1080/15592294.2019.1631112] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Smoking accounts for approximately 52% of bladder cancer incidence among postmenopausal women, but the underlying mechanism is poorly understood. Our study investigates whether changes in DNA methylation, as measured in blood, mediate the impact of smoking on bladder cancer risk among postmenopausal women. We conducted analyses among 206 cases and 251 controls that were current or never smokers at baseline from a previous case-control study of bladder cancer and genome-wide DNA methylation nested within the Women's Health Initiative. Separate mediation analyses were conducted for three CpG sites demonstrating robust associations with smoking in prior methylome-wide association studies: cg05575921 (AhRR), cg03636183 (F2RL3), and cg19859270 (GPR15). We estimated causal effects using the regression-based, four-way decomposition approach, which addresses the interaction between smoking and each CpG site. The overall proportion of the excess relative risk mediated by cg05575921 was 92% (p-value = 0.004) and by cg19859270 was 79% (p-value = 0.02). The largest component of the excess relative risk of bladder cancer due to 30 pack-years of smoking history in current smokers was the mediated interaction for both cg05575921 (72%, p = 0.02) and cg19859270 (72%, p-value = 0.04), where the mediated interaction is the effect of smoking on bladder cancer that both acts through differential methylation and depends on smoking history. There was little evidence that smoking was mediated through cg03636183. Our results suggest that differential methylation of cg05575921 and cg19859270 mediate the effects of smoking on bladder cancer, potentially revealing downstream effects of smoking relevant for carcinogenesis.
Collapse
Affiliation(s)
- Kristina M Jordahl
- Department of Epidemiology, School of Public Health, University of Washington , Seattle , WA , USA.,Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Amanda I Phipps
- Department of Epidemiology, School of Public Health, University of Washington , Seattle , WA , USA.,Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Timothy W Randolph
- Program in Biostatistics, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Hilary A Tindle
- Department of Medicine, Vanderbilt University Medical Center , Nashville , TN , USA
| | - Simin Liu
- Departments of Epidemiology, Medicine, and Surgery, Brown University , Providence , RI , USA
| | - Lesley F Tinker
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Karl T Kelsey
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University , Providence , RI , USA
| | - Emily White
- Department of Epidemiology, School of Public Health, University of Washington , Seattle , WA , USA.,Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Parveen Bhatti
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,Cancer Control Research, BC Cancer , Vancouver , BC , Canada
| |
Collapse
|
49
|
Wani AL, Shadab GHA. Brain, behavior and the journey towards neuroepigenetic therapeutics. Epigenomics 2019; 11:969-981. [PMID: 31144515 DOI: 10.2217/epi-2018-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epigenetics has brought about a major shift in our understanding of biological mechanisms and their associated health effects. Strong epigenetic components have been found to be involved in the progression of many diseases. In several human diseases, including debilitating psychiatric disorders, altered epigenetic status has been found as one of the main causes. With continuous progress on drug development, researchers are enthusiastic toward epigenetic therapeutics which could possibly reverse epigenetic modifications. In this article certain developments in epigenetic therapeutics are highlighted, the indiscriminate use of which could also be associated with potential risk. These risks may partly be due to our limited knowledge on genes and the mechanisms underlying epigenetic involvement in different diseases. Epigenetic changes are fundamentally important for a large number of bodily functions; nonspecific usage of therapeutics could be potentially harmful therefore there is a need to harness epigenetics positively.
Collapse
Affiliation(s)
- Ab Latif Wani
- Cytogenetics & Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Gg Hammad Ahmad Shadab
- Cytogenetics & Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| |
Collapse
|
50
|
Tantoh DM, Lee KJ, Nfor ON, Liaw YC, Lin C, Chu HW, Chen PH, Hsu SY, Liu WH, Ho CC, Lung CC, Wu MF, Liaw YC, Debnath T, Liaw YP. Methylation at cg05575921 of a smoking-related gene (AHRR) in non-smoking Taiwanese adults residing in areas with different PM 2.5 concentrations. Clin Epigenetics 2019; 11:69. [PMID: 31060609 PMCID: PMC6503351 DOI: 10.1186/s13148-019-0662-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND DNA methylation is associated with cancer, metabolic, neurological, and autoimmune disorders. Hypomethylation of aryl hydrocarbon receptor repressor (AHRR) especially at cg05575921 is associated with smoking and lung cancer. Studies on the association between AHRR methylation at cg05575921 and sources of polycyclic aromatic hydrocarbon (PAH) other than smoking are limited. The aim of our study was to assess the pattern of blood DNA methylation at cg05575921 in non-smoking Taiwanese adults living in areas with different PM2.5 levels. METHODS Data on blood DNA methylation, smoking, and residence were retrieved from the Taiwan Biobank dataset (2008-2015). Current and former smokers, as well as individuals with incomplete information were excluded from the current study. The final analysis included 708 participants (279 men and 429 women) aged 30-70 years. PM2.5 levels have been shown to increase as one moves from the northern through central towards southern Taiwan. Based on this trend, the study areas were categorized into northern, north-central, central, and southern regions. RESULTS Living in PM2.5 areas was associated with lower methylation levels: compared with the northern area (reference area), living in north-central, central, and southern areas was associated with lower methylation levels at cg05575921. However, only methylation levels in those living in central and southern areas were significant (β = - 0.01003, P = 0.009 and β = - 0.01480, P < 0.001, respectively. Even though methylation levels in those living in the north-central area were not statistically significant, the test for linear trend was significant (P < 0.001). When PM2.5 was included in the regression model, a unit increase in PM2.5 was associated with 0.00115 (P < 0.001) lower cg05575921 methylation levels. CONCLUSION Living in PM2.5 areas was inversely associated with blood AHRR methylation levels at cg05575921. The methylation levels were lowest in participants residing in southern followed by central and north-central areas. Moreover, when PM2.5 was included in the regression model, it was inversely associated with methylation levels at cg05575921. Blood methylation at cg05575921 (AHRR) in non-smokers might indicate different exposures to PM2.5 and lung cancer which is a PM2.5-related disease.
Collapse
Affiliation(s)
- Disline Manli Tantoh
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Kuan-Jung Lee
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Oswald Ndi Nfor
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Yi-Chia Liaw
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Hsin Chen
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Shu-Yi Hsu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Wen-Hsiu Liu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Chen-Chang Ho
- Department of Physical Education, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Chi Lung
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Ming-Fang Wu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
| | - Yi-Ching Liaw
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tonmoy Debnath
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan
| | - Yung-Po Liaw
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, No. 110 Sec. 1 Jianguo N. Road, Taichung City, 40201, Taiwan. .,Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung City, Taiwan.
| |
Collapse
|