1
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Morishita M, Kobayashi K, Mitsuzuka M, Takagi R, Ono K, Momma R, Tsuneoka Y, Horio S, Tsukahara S. Two-Step Actions of Testicular Androgens in the Organization of a Male-Specific Neural Pathway from the Medial Preoptic Area to the Ventral Tegmental Area for Modulating Sexually Motivated Behavior. J Neurosci 2023; 43:7322-7336. [PMID: 37722849 PMCID: PMC10621776 DOI: 10.1523/jneurosci.0361-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/16/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023] Open
Abstract
The medial preoptic area (MPOA) is a sexually dimorphic region of the brain that regulates social behaviors. The sexually dimorphic nucleus (SDN) of the MPOA has been studied to understand sexual dimorphism, although the anatomy and physiology of the SDN is not fully understood. Here, we characterized SDN neurons that contribute to sexual dimorphism and investigated the mechanisms underlying the emergence of such neurons and their roles in social behaviors. A target-specific neuroanatomical study using transgenic mice expressing Cre recombinase under the control of Calb1, a gene expressed abundantly in the SDN, revealed that SDN neurons are divided into two subpopulations, GABA neurons projecting to the ventral tegmental area (VTA), where they link to the dopamine system (CalbVTA neurons), and GABA neurons that extend axons in the MPOA or project to neighboring regions (CalbnonVTA neurons). CalbVTA neurons were abundant in males, but were scarce or absent in females. There was no difference in the number of CalbnonVTA neurons between sexes. Additionally, we found that emergence of CalbVTA neurons requires two testicular androgen actions that occur first in the postnatal period and second in the peripubertal period. Chemogenetic analyses of CalbVTA neurons indicated a role in modulating sexual motivation in males. Knockdown of Calb1 in the MPOA reduced the intromission required for males to complete copulation. These findings provide strong evidence that a male-specific neural pathway from the MPOA to the VTA is organized by the two-step actions of testicular androgens for the modulation of sexually motivated behavior.SIGNIFICANCE STATEMENT The MPOA is a sexually dimorphic region of the brain that regulates social behaviors, although its sexual dimorphism is not fully understood. Here, we describe a population of MPOA neurons that contribute to the sexual dimorphism. These neurons only exist in masculinized brains, and they project their axons to the ventral tegmental area, where they link to the dopamine system. Emergence of such neurons requires two testicular androgen actions that occur first in the postnatal period and second in the peripubertal period. These MPOA neurons endow masculinized brains with a neural pathway from the MPOA to the ventral tegmental area and modulate sexually motivated behavior in males.
Collapse
Affiliation(s)
- Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Kaito Kobayashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Moeri Mitsuzuka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Ryo Takagi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Kota Ono
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Rami Momma
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 43-8540, Japan
| | - Shuhei Horio
- Division of Endocrinology and Metabolism, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
3
|
Pickett LA, VanRyzin JW, Marquardt AE, McCarthy MM. Microglia phagocytosis mediates the volume and function of the rat sexually dimorphic nucleus of the preoptic area. Proc Natl Acad Sci U S A 2023; 120:e2212646120. [PMID: 36848562 PMCID: PMC10013839 DOI: 10.1073/pnas.2212646120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/24/2023] [Indexed: 03/01/2023] Open
Abstract
The sexually dimorphic nucleus of the preoptic area (SDN-POA) is the oldest and most robust sex difference reported in mammalian brain and is singular for its presence across a wide range of species from rodents to ungulates to man. This small collection of Nissl-dense neurons is reliably larger in volume in males. Despite its notoriety and intense interrogation, both the mechanism establishing the sex difference and the functional role of the SDN have remained elusive. Convergent evidence from rodent studies led to the conclusion that testicular androgens aromatized to estrogens are neuroprotective in males and that higher apoptosis (naturally occurring cell death) in females determines their smaller SDN. In several species, including humans, a smaller SDN correlates with a preference for mating with males. We report here that this volume difference is dependent upon a participatory role of phagocytic microglia which engulf more neurons in the female SDN and assure their destruction. Selectively blocking microglia phagocytosis temporarily spared neurons from apoptotic death and increased SDN volume in females without hormone treatment. Increasing the number of neurons in the SDN in neonatal females resulted in loss of preference for male odors in adulthood, an effect paralleled by dampened excitation of SDN neurons as evidenced by reduced immediate early gene (IEG) expression when exposed to male urine. Thus, the mechanism establishing a sex difference in SDN volume includes an essential role for microglia, and SDN function as a regulator of sexual partner preference is confirmed.
Collapse
Affiliation(s)
- Lindsay A. Pickett
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
| | - Jonathan W. VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
| | - Ashley E. Marquardt
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
| | - Margaret M. McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD21201
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
4
|
Eck SR, Palmer JL, Bavley CC, Karbalaei R, Ordoñes Sanchez E, Flowers J, Holley A, Wimmer ME, Bangasser DA. Effects of early life adversity on male reproductive behavior and the medial preoptic area transcriptome. Neuropsychopharmacology 2022; 47:1231-1239. [PMID: 35102257 PMCID: PMC9019015 DOI: 10.1038/s41386-022-01282-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/18/2021] [Accepted: 01/14/2022] [Indexed: 02/02/2023]
Abstract
Early life adversity can alter reproductive development in humans, changing the timing of pubertal onset and sexual activity. One common form of early adversity is limited access to resources. This adversity can be modeled in rats using the limited bedding/nesting model (LBN), in which dams and pups are placed in a low resource environment from pups' postnatal days 2-9. Our laboratory previously found that adult male rats raised in LBN conditions have elevated levels of plasma estradiol compared to control males. In females, LBN had no effect on plasma hormone levels, pubertal timing, or estrous cycle duration. Estradiol mediates male reproductive behaviors. Thus, here we compared reproductive behaviors in adult males exposed to LBN vs. control housing. LBN males acquired the suite of reproductive behaviors (mounts, intromissions, and ejaculations) more quickly than their control counterparts over 3 weeks of testing. However, there was no effect of LBN in males on puberty onset or masculinization of certain brain regions, suggesting LBN effects on estradiol and reproductive behaviors manifest after puberty. In male and female rats, we next used RNA sequencing to characterize LBN-induced transcriptional changes in the medial preoptic area (mPOA), which underlies male reproductive behaviors. LBN produced sex-specific alterations in gene expression, with many transcripts showing changes in opposite directions. Numerous transcripts altered by LBN in males are regulated by estradiol, linking hormonal changes to molecular changes in the mPOA. Pathway analysis revealed that LBN induced changes in neurosignaling and immune signaling in males and females, respectively. Collectively, these studies reveal novel neurobiological mechanisms by which early life adversity can alter reproductive strategies.
Collapse
Affiliation(s)
- Samantha R. Eck
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Jamie L. Palmer
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Charlotte C. Bavley
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Reza Karbalaei
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Evelyn Ordoñes Sanchez
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - James Flowers
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Amanda Holley
- grid.411024.20000 0001 2175 4264Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Mathieu E. Wimmer
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| | - Debra A. Bangasser
- grid.264727.20000 0001 2248 3398Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122 USA
| |
Collapse
|
5
|
Trouillet AC, Ducroq S, Naulé L, Capela D, Parmentier C, Radovick S, Hardin-Pouzet H, Mhaouty-Kodja S. Deletion of neural estrogen receptor alpha induces sex differential effects on reproductive behavior in mice. Commun Biol 2022; 5:383. [PMID: 35444217 PMCID: PMC9021208 DOI: 10.1038/s42003-022-03324-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022] Open
Abstract
Estrogen receptor (ER) α is involved in several estrogen-modulated neural and peripheral functions. To determine its role in the expression of female and male reproductive behavior, a mouse line lacking the ERα in the nervous system was generated. Mutant females did not exhibit sexual behavior despite normal olfactory preference, and had a reduced number of progesterone receptor-immunoreactive neurons in the ventromedial hypothalamus. Mutant males displayed a moderately impaired sexual behavior and unaffected fertility, despite evidences of altered organization of sexually dimorphic populations in the preoptic area. In comparison, males deleted for both neural ERα and androgen receptor (AR) displayed greater sexual deficiencies. Thus, these data highlight a predominant role for neural ERα in females and a complementary role with the AR in males in the regulation of sexual behavior, and provide a solid background for future analyses of neuronal versus glial implication of these signaling pathways in both sexes. Neural deletion of the estrogen receptor, ERα, inhibits sexual behavior in female mice, but only has moderately effect in male mice. These results contrast with previous studies using global ERα knockouts, which found that ERα is mandatory for reproductive behavior in both sexes.
Collapse
Affiliation(s)
- Anne-Charlotte Trouillet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Suzanne Ducroq
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Lydie Naulé
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Daphné Capela
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sally Radovick
- Unit of Pediatric Endocrinology, Department of Pediatrics, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Hélène Hardin-Pouzet
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
6
|
Tsukahara S, Morishita M. Sexually Dimorphic Formation of the Preoptic Area and the Bed Nucleus of the Stria Terminalis by Neuroestrogens. Front Neurosci 2020; 14:797. [PMID: 32848568 PMCID: PMC7403479 DOI: 10.3389/fnins.2020.00797] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
Testicular androgens during the perinatal period play an important role in the sexual differentiation of the brain of rodents. Testicular androgens transported into the brain act via androgen receptors or are the substrate of aromatase, which synthesizes neuroestrogens that act via estrogen receptors. The latter that occurs in the perinatal period significantly contributes to the sexual differentiation of the brain. The preoptic area (POA) and the bed nucleus of the stria terminalis (BNST) are sexually dimorphic brain regions that are involved in the regulation of sex-specific social behaviors and the reproductive neuroendocrine system. Here, we discuss how neuroestrogens of testicular origin act in the perinatal period to organize the sexually dimorphic structures of the POA and BNST. Accumulating data from rodent studies suggest that neuroestrogens induce the sex differences in glial and immune cells, which play an important role in the sexually dimorphic formation of the dendritic synapse patterning in the POA, and induce the sex differences in the cell number of specific neuronal cell groups in the POA and BNST, which may be established by controlling the number of cells dying by apoptosis or the phenotypic organization of living cells. Testicular androgens in the peripubertal period also contribute to the sexual differentiation of the POA and BNST, and thus their aromatization to estrogens may be unnecessary. Additionally, we discuss the notion that testicular androgens that do not aromatize to estrogens can also induce significant effects on the sexually dimorphic formation of the POA and BNST.
Collapse
Affiliation(s)
- Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
7
|
Morishita M, Koiso R, Tsukahara S. Actions of Peripubertal Gonadal Steroids in the Formation of Sexually Dimorphic Brain Regions in Mice. Endocrinology 2020; 161:5821543. [PMID: 32303738 DOI: 10.1210/endocr/bqaa063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 11/19/2022]
Abstract
The calbindin-sexually dimorphic nucleus (CALB-SDN) and calbindin-principal nucleus of the bed nucleus of the stria terminalis (CALB-BNSTp) show male-biased sex differences in calbindin neuron number. The ventral part of the BNSTp (BNSTpv) exhibits female-biased sex differences in noncalbindin neuron number. We previously reported that prepubertal gonadectomy disrupts the masculinization of the CALB-SDN and CALB-BNSTp and the feminization of the BNSTpv. This study aimed to determine the action mechanisms of testicular androgens on the masculinization of the CALB-SDN and CALB-BNSTp and whether ovarian estrogens are the hormones that have significant actions in the feminization of the BNSTpv. We performed immunohistochemical analyses of calbindin and NeuN, a neuron marker, in male mice orchidectomized on postnatal day 20 (PD20) and treated with cholesterol, testosterone, estradiol, or dihydrotestosterone during PD20-70, female mice ovariectomized on PD20 and treated with cholesterol or estradiol during PD20-70, and PD70 mice gonadectomized on PD56. Calbindin neurons number in the CALB-SDN and CALB-BNSTp in males treated with testosterone or dihydrotestosterone, but not estradiol, was significantly larger than that in cholesterol-treated males. Noncalbindin neuron number in the BNSTpv in estradiol-treated females was significantly larger than that in cholesterol-treated females. Gonadectomy on PD56 had no significant effect on neuron numbers. Additionally, an immunohistochemical analysis revealed the expression of androgen receptors in the CALB-SDN and CALB-BNSTp of PD30 males and estrogen receptors-α in the BNSTpv of PD30 females. These results suggest that peripubertal testicular androgens act to masculinize the CALB-SDN and CALB-BNSTp without aromatization, and peripubertal ovarian estrogens act to feminize the BNSTpv.
Collapse
Affiliation(s)
- Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Ryoma Koiso
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
8
|
Sano K, Matsukami H, Suzuki G, Htike NTT, Morishita M, Win-Shwe TT, Hashimoto S, Kawashima T, Isobe T, Nakayama SF, Tsukahara S, Maekawa F. Estrogenic action by tris(2,6-dimethylphenyl) phosphate impairs the development of female reproductive functions. ENVIRONMENT INTERNATIONAL 2020; 138:105662. [PMID: 32203809 DOI: 10.1016/j.envint.2020.105662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Developmental exposure to environmental chemicals with estrogen-like activity is suspected to permanently impair women's health. In this study, a mouse model was used to evaluate whether tris(2,6-dimethylphenyl) phosphate (TDMPP), a chemical with a putative estrogen-like action, impairs sexual differentiation of the brain. Either TDMPP and 17β-estradiol (E2) as positive controls or sesame oil as a negative control were administered subcutaneously to dams from gestational day (GD) 14 to parturition, and to pups from postnatal day (PND) 0 to 9. Precocious puberty, irregular estrous cycles, and a lowered lordosis response were found in the TDMPP- and E2-treated groups. A certain amount of TDMPP and its metabolites in the perinatal brain and the masculinization of sexual dimorphic nuclei in the hypothalamus of female mice after treatment were also detected. The experimental evidence demonstrates that TDMPP directly enters the fetal and neonatal brain, thereby inducing changes of sex-related brain structures and impairing female reproductive functions.
Collapse
Affiliation(s)
- Kazuhiro Sano
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan (NIES), 16-2 Onogawa, Tsukuba 305-8506, Japan
| | | | - Go Suzuki
- Center for Material Cycles and Waste Management Research, NIES, Japan
| | | | | | - Tin-Tin Win-Shwe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan (NIES), 16-2 Onogawa, Tsukuba 305-8506, Japan
| | | | | | - Tomohiko Isobe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan (NIES), 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Shoji F Nakayama
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan (NIES), 16-2 Onogawa, Tsukuba 305-8506, Japan
| | - Shinji Tsukahara
- Graduate School of Science and Engineering, Saitama University, Japan
| | - Fumihiko Maekawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Japan (NIES), 16-2 Onogawa, Tsukuba 305-8506, Japan.
| |
Collapse
|
9
|
Cisternas CD, Cortes LR, Golynker I, Castillo-Ruiz A, Forger NG. Neonatal Inhibition of DNA Methylation Disrupts Testosterone-Dependent Masculinization of Neurochemical Phenotype. Endocrinology 2020; 161:5631853. [PMID: 31742329 DOI: 10.1210/endocr/bqz022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/18/2019] [Indexed: 11/19/2022]
Abstract
Many neural sex differences are differences in the number of neurons of a particular phenotype. For example, male rodents have more calbindin-expressing neurons in the medial preoptic area (mPOA) and bed nucleus of the stria terminalis (BNST), and females have more neurons expressing estrogen receptor alpha (ERα) and kisspeptin in the ventromedial nucleus of the hypothalamus (VMH) and the anteroventral periventricular nucleus (AVPV), respectively. These sex differences depend on neonatal exposure to testosterone, but the underlying molecular mechanisms are unknown. DNA methylation is important for cell phenotype differentiation throughout the developing organism. We hypothesized that testosterone causes sex differences in neurochemical phenotype via changes in DNA methylation, and tested this by inhibiting DNA methylation neonatally in male and female mice, and in females given a masculinizing dose of testosterone. Neonatal testosterone treatment masculinized calbindin, ERα and kisspeptin cell number of females at weaning. Inhibiting DNA methylation with zebularine increased calbindin cell number only in control females, thus eliminating sex differences in calbindin in the mPOA and BNST. Zebularine also reduced the sex difference in ERα cell number in the VMH, in this case by increasing ERα neuron number in males and testosterone-treated females. In contrast, the neonatal inhibition of DNA methylation had no effect on kisspeptin cell number. We conclude that testosterone normally increases the number of calbindin cells and reduces ERα cells in males through orchestrated changes in DNA methylation, contributing to, or causing, the sex differences in both cell types.
Collapse
Affiliation(s)
| | - Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | - Ilona Golynker
- Neuroscience Institute, Georgia State University, Atlanta, GA
| | | | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA
| |
Collapse
|
10
|
Khbouz B, de Bournonville C, Court L, Taziaux M, Corona R, Arnal JF, Lenfant F, Cornil CA. Role for the membrane estrogen receptor alpha in the sexual differentiation of the brain. Eur J Neurosci 2019; 52:2627-2645. [PMID: 31833601 DOI: 10.1111/ejn.14646] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 10/30/2019] [Accepted: 12/05/2019] [Indexed: 12/25/2022]
Abstract
Estrogens exert pleiotropic effects on multiple physiological and behavioral responses. Male and female sexual behavior in rodents constitutes some of the best-characterized responses activated by estrogens in adulthood and largely depend on ERα. Evidence exists that nucleus- and membrane-initiated estrogen signaling cooperate to orchestrate the activation of these behaviors both in short- and long-term. However, questions remain regarding the mechanism(s) and receptor(s) involved in the early brain programming during development to organize the circuits underlying sexually differentiated responses. Taking advantage of a mouse model harboring a mutation of the ERα palmitoylation site, which prevents membrane ERα signaling (mERα; ERα-C451A), this study investigated the role of mERα on the expression of male and female sexual behavior and neuronal populations that differ between sexes. The results revealed no genotype effect on the expression of female sexual behavior, while male sexual behavior was significantly reduced, but not abolished, in males homozygous for the mutation. Similarly, the number of kisspeptin- (Kp-ir) and calbindin-immunoreactive (Cb-ir) neurons in the anteroventral periventricular nucleus (AVPv) and the sexually dimorphic nucleus of the preoptic area (SDN-POA), respectively, were not different between genotypes in females. In contrast, homozygous males showed increased numbers of Kp-ir and decreased numbers of Cb-ir neurons compared to wild-types, thus leading to an intermediate phenotype between females and wild-type males. Importantly, females neonatally treated with estrogens exhibited the same neurochemical phenotype as their corresponding genotype among males. Together, these data provide evidence that mERα is involved in the perinatal programming of the male brain.
Collapse
Affiliation(s)
- Badr Khbouz
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | | - Lucas Court
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | | | - Rebeca Corona
- GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Jean-François Arnal
- INSERM/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Françoise Lenfant
- INSERM/UPS UMR 1048-I2MC, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | | |
Collapse
|
11
|
Ramzan F, Phung T, Swift-Gallant A, Coome LA, Holmes MM, Monks DA. Both neural and global androgen receptor overexpression affect sexual dimorphism in the mouse brain. J Neuroendocrinol 2019; 31:e12715. [PMID: 30920021 DOI: 10.1111/jne.12715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 03/14/2019] [Accepted: 03/22/2019] [Indexed: 01/28/2023]
Abstract
Testosterone is the main endocrine mechanism mediating sexual differentiation of the mammalian brain, although testosterone signalling is complex and important mechanistic questions remain. Notably, the extent to which testosterone acts via androgen receptors (AR) in this process remains unknown and it is also not clear where testosterone acts in the body to produce sexual dimorphisms in neuroanatomy. To address these questions, we used a transgenic mouse model of Cre/loxP-driven AR overexpression in which AR was induced selectively in neural tissue (Nestin-cre) or in all tissues (CMV-cre). We then studied sexually dimorphic features of several well-characterised sexual dimorphisms: calbindin-immunoreactive neurones in the medial preoptic area (CALB-SDN), tyrosine hydroxylase neurones in the anteroventral periventricular nucleus, and vasopressin-immunoreactive neurones originating in the bed nucleus of the stria terminalis and their projections in the lateral septum. We additionally evaluated oestrogen receptor α immunoreactivity in these nuclei. Briefly, we found that global but not neural overexpression of AR resulted in masculinisation of CALB-SDN nucleus volume, cell number and cell size in transgenic females. Furthermore, neural AR overexpression resulted in increased oestrogen receptor α staining in females compared to males in the medial preoptic area. AR overexpression did not affect other measures. Overall, the results of the present study provide support for the hypothesis that androgenic mechanisms external to the nervous system can affect sexual differentiation of the brain.
Collapse
Affiliation(s)
- Firyal Ramzan
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Thanh Phung
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ashlyn Swift-Gallant
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lindsay A Coome
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - D Ashley Monks
- Department of Psychology, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Tsuneoka Y. Molecular neuroanatomy of the mouse medial preoptic area with reference to parental behavior. Anat Sci Int 2018; 94:39-52. [DOI: 10.1007/s12565-018-0468-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/28/2018] [Indexed: 11/28/2022]
|
13
|
Ogawa S, Tsukahara S, Choleris E, Vasudevan N. Estrogenic regulation of social behavior and sexually dimorphic brain formation. Neurosci Biobehav Rev 2018; 110:46-59. [PMID: 30392880 DOI: 10.1016/j.neubiorev.2018.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
It has long been known that the estrogen, 17β-estradiol (17β-E), plays a central role for female reproductive physiology and behavior. Numerous studies have established the neurochemical and molecular basis of estrogenic induction of female sexual behavior, i.e., lordosis, in animal models. In addition, 17β-E also regulates male-type sexual and aggressive behavior. In males, testosterone secreted from the testes is irreversibly aromatized to 17β-E in the brain. We discuss the contribution of two nuclear receptor isoforms, estrogen receptor (ER)α and ERβ to the estrogenic regulation of sexually dimorphic brain formation and sex-typical expression of these social behaviors. Furthermore, 17β-E is a key player for social behaviors such as social investigation, preference, recognition and memory as well as anxiety-related behaviors in social contexts. Recent studies also demonstrated that not only nuclear receptor-mediated genomic signaling but also membrane receptor-mediated non-genomic actions of 17β-E may underlie the regulation of these behaviors. Finally, we will discuss how rapidly developing research tools and ideas allow us to investigate estrogenic action by emphasizing behavioral neural networks.
Collapse
Affiliation(s)
- Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, WhiteKnights Campus, Reading, RG6 6AS, United Kingdom
| |
Collapse
|
14
|
The Neural Mechanisms of Sexually Dimorphic Aggressive Behaviors. Trends Genet 2018; 34:755-776. [PMID: 30173869 DOI: 10.1016/j.tig.2018.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Aggression is a fundamental social behavior that is essential for competing for resources and protecting oneself and families in both males and females. As a result of natural selection, aggression is often displayed differentially between the sexes, typically at a higher level in males than females. Here, we highlight the behavioral differences between male and female aggression in rodents. We further outline the aggression circuits in males and females, and compare their differences at each circuit node. Lastly, we summarize our current understanding regarding the generation of sexually dimorphic aggression circuits during development and their maintenance during adulthood. In both cases, gonadal steroid hormones appear to play crucial roles in differentiating the circuits by impacting on the survival, morphology, and intrinsic properties of relevant cells. Many other factors, such as environment and experience, may also contribute to sex differences in aggression and remain to be investigated in future studies.
Collapse
|
15
|
Forger NG. Past, present and future of epigenetics in brain sexual differentiation. J Neuroendocrinol 2018; 30. [PMID: 28585265 DOI: 10.1111/jne.12492] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
Sexual differentiation has long been considered "epigenetic", although the meaning of that word has shifted over time. Here, we track the evolution of ideas about epigenetics in sexual differentiation, and identify principles that have emerged from recent studies. Experiments manipulating a particular epigenetic mechanism during neonatal life demonstrate a role for both histone acetylation and DNA methylation in the development of sex differences in the brain and behaviour of rodents. In addition, hormone-dependent sex differences in the number of neurones of a particular phenotype may be programmed by differences in DNA methylation early in life. Genome-wide studies suggest that many effects of neonatal testosterone on the brain methylome do not emerge until adulthood, and there may be sex biases in the use of epigenetic marks that do not correlate with differences in gene expression. In other words, even when the transcription of a gene does not differ between males and females, the epigenetic underpinnings of that expression may differ. Finally, recent evidence suggests that sex differences in epigenetic marks may primarily serve to make gene expression more similar in males and females. We discuss the implications of these findings for understanding sex differences in susceptibility to disease, and point to recent conceptual and technical advances likely to influence the field going forward.
Collapse
Affiliation(s)
- N G Forger
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
16
|
Mhaouty-Kodja S, Naulé L, Capela D. Sexual Behavior: From Hormonal Regulation to Endocrine Disruption. Neuroendocrinology 2018; 107:400-416. [PMID: 30326485 DOI: 10.1159/000494558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
Abstract
Sexual behavior constitutes a chain of behavioral responses beginning with courtship and leading to copulation. These responses, which are exhibited in a sexually dimorphic manner by the two partners, are tightly regulated by sex steroid hormones as early as the perinatal period. Hormonal changes or exposure to exogenous factors exhibiting hormone-mimetic activities, such as endocrine disrupting compounds (EDC), can therefore interfere with their expression. Here we review the experimental studies in rodents performed to address the potential effects of exposure to EDC on sexual behavior and underlying mechanisms, with particular attention to molecules with estrogenic and/or anti-androgenic activities.
Collapse
|
17
|
Kanaya M, Morishita M, Tsukahara S. Temporal Expression Patterns of Genes Related to Sex Steroid Action in Sexually Dimorphic Nuclei During Puberty. Front Endocrinol (Lausanne) 2018; 9:213. [PMID: 29770127 PMCID: PMC5940742 DOI: 10.3389/fendo.2018.00213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/16/2018] [Indexed: 01/08/2023] Open
Abstract
Sex steroids play a major role in sexually dimorphic brain development during not only the perinatal period but also the pubertal period. We previously showed that, in male mice, the estrogen receptor-α (Esr1) and aromatase (Cyp19a1) genes are essential to the sexually dimorphic formation of the anteroventral periventricular nucleus (AVPV) and the principal nucleus of the bed nucleus of the stria terminalis (BNSTp), but the estrogen receptor-β (Esr2) gene is not necessary. We also showed that the androgen receptor (Ar) gene is essential to the sexually dimorphic formation of the BNSTp. These genes are expressed in the AVPV and BNSTp of perinatal mice. However, it remains unknown whether these genes are expressed in the AVPV and BNSTp during puberty, and whether the expression, if any, differs by sex, age, and brain region. Here, we dissected the AVPV and BNSTp from Nissl-stained brain sections of male and female mice on postnatal day (PD) 20 (prepuberty), PD30 (puberty onset in females), PD40 (puberty onset in males), and PD60 (young adult) using a laser microdissection system. We then examined the mRNA levels of Esr1, Esr2, Cyp19a1, and Ar in these brain regions. In the AVPV, Esr1 mRNA levels were greater in females than males during PD20-60. Esr2 and Ar mRNA expressions did not differ between sexes. Ar mRNA levels were higher at PD30 than PD20. Cyp19a1 mRNA was not detected in the AVPV at PD20-60. In the BNSTp, Esr1 and Esr2 mRNA levels were higher in females than in males during PD20-60, although the mRNA levels of Cyp19a1 and Ar did not differ between sexes. Additionally, we revealed that orchiectomy at PD20 induced a failure of normal formation of the male BNSTp and testosterone replacement in the prepubertal period rescued the effect of orchiectomy at PD20. Taken together, it is suggested that pubertal testosterone transported to the AVPV is not converted to estradiol there and does not act via ESR1 and ESR2. By contrast, the formation of the male BNSTp may be affected by testicular testosterone during puberty via AR and/or via ESR1 after conversion to estradiol by CYP19A1.
Collapse
|
18
|
Jean A, Bonnet P, Liere P, Mhaouty-Kodja S, Hardin-Pouzet H. Revisiting medial preoptic area plasticity induced in male mice by sexual experience. Sci Rep 2017; 7:17846. [PMID: 29259324 PMCID: PMC5736590 DOI: 10.1038/s41598-017-18248-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/07/2017] [Indexed: 01/25/2023] Open
Abstract
Sexual experience in male rodents, induced by a first exposure to a receptive female, improves efficiency of following copulations. In mice, the mechanisms supporting this improvement are poorly understood. We characterized molecular modifications of the mouse hypothalamic medial preoptic area (mPOA), the main integrative structure for male sexual behaviour, after a single mating event. This paradigm induced long-lasting behavioural improvements and mPOA morphological changes, evidenced by dendritic spine maturation and an increase in the acetylated and tri-methylated forms of histone H3. Ejaculation affected testosterone, progesterone and corticosterone levels in both naive and experienced mice, but sexual experience did not modify basal plasma or hypothalamic levels of steroids. In contrast to studies carried out in rats, no changes were observed, either in the nitrergic system, or in sex steroid receptor levels. However, levels of glutamate- and calcium-associated proteins, including PSD-95, calbindin and the GluN1 subunit of the NMDA receptor, were increased in sexually experienced male mice. The Iba-1 microglial marker was up-regulated in these animals suggesting multicellular interactions induced within the mPOA by sexual experience. In conclusion, plasticity mechanisms induced by sexual experience differ between rat and mouse, even if in both cases they converge to potentiation of the mPOA network.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, 75005, Paris, France
| | - Pauline Bonnet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, 75005, Paris, France
| | - Philippe Liere
- U1195 INSERM and Université Paris Sud and Université Paris-Saclay, 80 rue du Général Leclerc, 94276, Le Kremlin-Bicêtre, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, 75005, Paris, France
| | - Helene Hardin-Pouzet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris - Seine; Institut de Biologie Paris Seine, 75005, Paris, France.
| |
Collapse
|
19
|
Morishita M, Maejima S, Tsukahara S. Gonadal Hormone-Dependent Sexual Differentiation of a Female-Biased Sexually Dimorphic Cell Group in the Principal Nucleus of the Bed Nucleus of the Stria Terminalis in Mice. Endocrinology 2017; 158:3512-3525. [PMID: 28977609 DOI: 10.1210/en.2017-00240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/27/2017] [Indexed: 11/19/2022]
Abstract
We recently reported a female-biased sexually dimorphic area in the mouse brain in the boundary region between the preoptic area and the bed nucleus of the stria terminalis (BNST). We reexamined this area and found that it is a ventral part of the principal nucleus of the BNST (BNSTp). The BNSTp is a male-biased sexually dimorphic nucleus, but the ventral part of the BNSTp (BNSTpv) exhibits female-biased sex differences in volume and neuron number. The volume and neuron number of the BNSTpv were increased in males by neonatal orchiectomy and decreased in females by treatment with testosterone, dihydrotestosterone, or estradiol within 5 days after birth. Sex differences in the volume and neuron number of the BNSTpv emerged before puberty. These sex differences became prominent in adulthood with increasing volume in females and loss of neurons in males during the pubertal/adolescent period. Prepubertal orchiectomy did not affect the BNSTpv, although prepubertal ovariectomy reduced the volume increase and induced loss of neurons in the female BNSTpv. In contrast, the volume and neuron number of male-biased sexually dimorphic nuclei that are composed of mainly calbindin neurons and are located in the preoptic area and BNST were decreased by prepubertal orchiectomy but not affected by prepubertal ovariectomy. Testicular testosterone during the postnatal period may defeminize the BNSTpv via binding directly to the androgen receptor and indirectly to the estrogen receptor after aromatization, although defeminization may proceed independently of testicular hormones in the pubertal/adolescent period. Ovarian hormones may act to feminize the BNSTpv during the pubertal/adolescent period.
Collapse
Affiliation(s)
- Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Sho Maejima
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
20
|
Tsuneoka Y, Yoshida S, Takase K, Oda S, Kuroda M, Funato H. Neurotransmitters and neuropeptides in gonadal steroid receptor-expressing cells in medial preoptic area subregions of the male mouse. Sci Rep 2017; 7:9809. [PMID: 28852050 PMCID: PMC5575033 DOI: 10.1038/s41598-017-10213-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
Testosterone is involved in male sexual, parental and aggressive behaviors through the androgen receptor (AR) and estrogen receptor (ER) α expressed in the brain. Although several studies have demonstrated that ERα and AR in the medial preoptic area (MPOA) are required for exhibiting sexual and aggressive behaviors of male mice, the molecular characteristics of ERα- and AR-expressing cells in the mouse MPOA are largely unknown. Here, we performed in situ hybridization for neurotransmitters and neuropeptides, combined with immunohistochemistry for ERα and AR to quantitate and characterize gonadal steroid receptor-expressing cells in the MPOA subregions of male mice. Prodynorphin, preproenkephalin (Penk), cocaine- and amphetamine-related transcript, neurotensin, galanin, tachykinin (Tac)1, Tac2 and thyrotropin releasing hormone (Trh) have distinct expression patterns in the MPOA subregions. Gad67-expressing cells were the most dominant neuronal subtype among the ERα- and AR-expressing cells throughout the MPOA. The percentage of ERα- and AR-immunoreactivities varied depending on the neuronal subtype. A substantial proportion of the neurotensin-, galanin-, Tac2- and Penk-expressing cells in the MPOA were positive for ERα and AR, whereas the vast majority of the Trh-expressing cells were negative. These results suggest that testosterone exerts differential effects depending on both the neuronal subtypes and MPOA subregions.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Sachine Yoshida
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Kenkichi Takase
- Laboratory of Psychology, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Satoko Oda
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Masaru Kuroda
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan.
- International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
21
|
Hay-Schmidt A, Finkielman OTE, Jensen BAH, Høgsbro CF, Bak Holm J, Johansen KH, Jensen TK, Andrade AM, Swan SH, Bornehag CG, Brunak S, Jegou B, Kristiansen K, Kristensen DM. Prenatal exposure to paracetamol/acetaminophen and precursor aniline impairs masculinisation of male brain and behaviour. Reproduction 2017; 154:145-152. [DOI: 10.1530/rep-17-0165] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 12/24/2022]
Abstract
Paracetamol/acetaminophen (N-Acetyl-p-Aminophenol; APAP) is the preferred analgesic for pain relief and fever during pregnancy. It has therefore caused concern that several studies have reported that prenatal exposure to APAP results in developmental alterations in both the reproductive tract and the brain. Genitals and nervous system of male mammals are actively masculinised during foetal development and early postnatal life by the combined actions of prostaglandins and androgens, resulting in the male-typical reproductive behaviour seen in adulthood. Both androgens and prostaglandins are known to be inhibited by APAP. Through intrauterine exposure experiments in C57BL/6 mice, we found that exposure to APAP decreased neuronal number in the sexually dimorphic nucleus (SDN) of the preoptic area (POA) in the anterior hypothalamus of male adult offspring. Likewise, exposure to the environmental pollutant and precursor of APAP, aniline, resulted in a similar reduction. Decrease in neuronal number in the SDN-POA is associated with reductions in male sexual behaviour. Consistent with the changes, male mice exposed in uteri to APAP exhibited changes in urinary marking behaviour as adults and had a less aggressive territorial display towards intruders of the same gender. Additionally, exposed males had reduced intromissions and ejaculations during mating with females in oestrus. Together, these data suggest that prenatal exposure to APAP may impair male sexual behaviour in adulthood by disrupting the sexual neurobehavioral programming. These findings add to the growing body of evidence suggesting the need to limit the widespread exposure and use of APAP by pregnant women.
Collapse
|
22
|
Baum MJ. Evidence That a Sex Difference in Neonatal DNA Methylation Organizes Two Distinct Phenotypic Characteristics of Neurons in the Murine Forebrain. Endocrinology 2017; 158:1569-1571. [PMID: 28575429 DOI: 10.1210/en.2017-00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/19/2022]
Affiliation(s)
- Michael J Baum
- Department of Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
23
|
Mosley M, Weathington J, Cortes LR, Bruggeman E, Castillo-Ruiz A, Xue B, Forger NG. Neonatal Inhibition of DNA Methylation Alters Cell Phenotype in Sexually Dimorphic Regions of the Mouse Brain. Endocrinology 2017; 158:1838-1848. [PMID: 28398586 PMCID: PMC5460944 DOI: 10.1210/en.2017-00205] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Many of the best-studied neural sex differences relate to differences in cell number and are due to the hormonal control of developmental cell death. However, several prominent neural sex differences persist even if cell death is eliminated. We hypothesized that these may reflect cell phenotype "decisions" that depend on epigenetic mechanisms, such as DNA methylation. To test this, we treated newborn mice with the DNA methyltransferase (DNMT) inhibitor zebularine, or vehicle, and examined two sexually dimorphic markers at weaning. As expected, control males had more cells immunoreactive for calbindin-D28k (CALB) in the medial preoptic area (mPOA) and fewer cells immunoreactive for estrogen receptor α (ERα) in the ventrolateral portion of the ventromedial nucleus of the hypothalamus (VMHvl) and the mPOA than did females. Neonatal DNMT inhibition markedly increased CALB cell number in both sexes and ERα cell density in males; as a result, the sex differences in ERα in the VMHvl and mPOA were completely eliminated in zebularine-treated animals. Zebularine treatment did not affect developmental cell death or the total density of Nissl-stained cells at weaning. Thus, a neonatal disruption of DNA methylation apparently has long-term effects on the proportion of cells expressing CALB and ERα, and some of these effects are sex specific. We also found that sex differences in CALB in the mPOA and ERα in the VMHvl persist in mice with a neuron-specific depletion of either Dnmt1 or Dnmt3b, indicating that neither DNMT alone is likely to be required for the sexually dimorphic expression of these markers.
Collapse
Affiliation(s)
- Morgan Mosley
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Jill Weathington
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Laura R. Cortes
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Emily Bruggeman
- Department of Biology, Neuroscience Institute and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia 30302
| | - Alexandra Castillo-Ruiz
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| | - Bingzhong Xue
- Department of Biology, Neuroscience Institute and Center for Obesity Reversal, Georgia State University, Atlanta, Georgia 30302
| | - Nancy G. Forger
- Neuroscience Institute and Center for Behavioral Neuroscience, Georgia State University, Atlanta, Georgia 30302
| |
Collapse
|
24
|
Tsuneoka Y, Tsukahara S, Yoshida S, Takase K, Oda S, Kuroda M, Funato H. Moxd1 Is a Marker for Sexual Dimorphism in the Medial Preoptic Area, Bed Nucleus of the Stria Terminalis and Medial Amygdala. Front Neuroanat 2017; 11:26. [PMID: 28396628 PMCID: PMC5366752 DOI: 10.3389/fnana.2017.00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/14/2017] [Indexed: 12/26/2022] Open
Abstract
The brain shows various sex differences in its structures. Various mammalian species exhibit sex differences in the sexually dimorphic nucleus of the preoptic area (SDN-POA) and parts of the extended amygdala such as the principal nucleus of the bed nucleus of the stria terminalis (BNSTpr) and posterodorsal part of the medial amygdala (MePD). The SDN-POA and BNSTpr are male-biased sexually dimorphic nuclei, and characterized by the expression of calbindin D-28K (calbindin 1). However, calbindin-immunoreactive cells are not restricted to the SDN-POA, but widely distributed outside of the SDN-POA. To find genes that are more specific to sexually dimorphic nuclei, we selected candidate genes by searching the Allen brain atlas and examined the detailed expressions of the candidate genes using in situ hybridization. We found that the strong expression of monooxygenase DBH-like 1 (Moxd1) was restricted to the SDN-POA, BNSTpr and MePD. The numbers of Moxd1-positive cells in the SDN-POA, BNSTpr and MePD in male mice were larger than those in female mice. Most of the Moxd1-positive cells in the SDN-POA and BNSTpr expressed calbindin. Neonatal castration of male mice reduced the number of Moxd1-positive cells in the SDN-POA, whereas gonadectomy in adulthood did not change the expression of the Moxd1 gene in the SDN-POA in both sexes. These results suggest that the Moxd1 gene is a suitable marker for sexual dimorphic nuclei in the POA, BNST and amygdala, which enables us to manipulate sexually dimorphic neurons to examine their roles in sex-biased physiology and behaviors.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University Tokyo, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Sachine Yoshida
- Department of Anatomy, Faculty of Medicine, Toho UniversityTokyo, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology AgencySaitama, Japan
| | - Kenkichi Takase
- Department of Anatomy, Faculty of Medicine, Toho UniversityTokyo, Japan; Laboratory of Psychology, Jichi Medical UniversityTochigi, Japan
| | - Satoko Oda
- Department of Anatomy, Faculty of Medicine, Toho University Tokyo, Japan
| | - Masaru Kuroda
- Department of Anatomy, Faculty of Medicine, Toho University Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho UniversityTokyo, Japan; International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of TsukubaIbaraki, Japan
| |
Collapse
|
25
|
Zettergren A, Karlsson S, Studer E, Sarvimäki A, Kettunen P, Thorsell A, Sihlbom C, Westberg L. Proteomic analyses of limbic regions in neonatal male, female and androgen receptor knockout mice. BMC Neurosci 2017; 18:9. [PMID: 28056817 PMCID: PMC5217640 DOI: 10.1186/s12868-016-0332-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background It is well-established that organizational effects of sex steroids during early development are fundamental for sex-typical displays of, for example, mating and aggressive behaviors in rodents and other species. Male and female brains are known to differ with respect to neuronal morphology in particular regions of the brain, including the number and size of neurons, and the density and length of dendrites in nuclei of hypothalamus and amygdala. The aim of the present study was to use global proteomics to identify proteins differentially expressed in hypothalamus/amygdala during early development (postnatal day 8) of male, female and conditional androgen receptor knockout (ARNesDel) male mice, lacking androgen receptors specifically in the brain. Furthermore, verification of selected sexually dimorphic proteins was performed using targeted proteomics. Results Our proteomic approach, iTRAQ, allowed us to investigate expression differences in the 2998 most abundantly expressed proteins in our dissected tissues. Approximately 170 proteins differed between the sexes, and 38 proteins between ARNesDel and control males (p < 0.05). In line with previous explorative studies of sexually dimorphic gene expression we mainly detected subtle protein expression differences (fold changes <1.3). The protein MARCKS (myristoylated alanine rich C kinase substrate), having the largest fold change of the proteins selected from the iTRAQ analyses and of known importance for synaptic transmission and dendritic branching, was confirmed by targeted proteomics as differentially expressed between the sexes. Conclusions Overall, our results provide solid evidence that a large number of proteins show sex differences in their brain expression and could potentially be involved in brain sexual differentiation. Furthermore, our finding of a sexually dimorphic expression of MARCKS in the brain during development warrants further investigation on the involvement in sexual differentiation of this protein. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0332-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Zettergren
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sara Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Anna Sarvimäki
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Annika Thorsell
- The Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Carina Sihlbom
- The Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden.
| |
Collapse
|
26
|
Moe Y, Kyi-Tha-Thu C, Tanaka T, Ito H, Yahashi S, Matsuda KI, Kawata M, Katsuura G, Iwashige F, Sakata I, Akune A, Inui A, Sakai T, Ogawa S, Tsukahara S. A Sexually Dimorphic Area of the Dorsal Hypothalamus in Mice and Common Marmosets. Endocrinology 2016; 157:4817-4828. [PMID: 27726418 DOI: 10.1210/en.2016-1428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We found a novel sexually dimorphic area (SDA) in the dorsal hypothalamus (DH) of mice. The SDA-DH was sandwiched between 2 known male-biased sexually dimorphic nuclei, the principal nucleus of the bed nucleus of the stria terminalis and the calbindin-sexually dimorphic nucleus, and exhibited a female-biased sex difference in neuronal cell density. The density of neurons in the SDA-DH was increased in male mice by orchidectomy on the day of birth and decreased in female mice by treatment with testosterone, dihydrotestosterone, or estradiol within 5 days after birth. These findings indicate that the SDA-DH is defeminized under the influence of testicular testosterone, which acts via both directly by binding to the androgen receptor, and indirectly by binding to the estrogen receptor after aromatization. We measured the activity of SDA-DH neurons with c-Fos, a neuronal activity marker, in female mice during maternal and sexual behaviors. The number of c-Fos-expressing neurons in the SDA-DH of female mice was negatively correlated with maternal behavior performance. However, the number of c-Fos-expressing neurons did not change during female sexual behavior. These findings suggest that the SDA-DH contains a neuronal cell population, the activity of which decreases in females exhibiting higher performance of maternal behavior, but it may contribute less to female sexual behavior. Additionally, we examined the brain of common marmosets and found an area that appears to be homologous with the mouse SDA-DH. The sexually dimorphic structure identified in this study is not specific to mice and may be found in other species.
Collapse
Affiliation(s)
- Yadanar Moe
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Chaw Kyi-Tha-Thu
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Tomoko Tanaka
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Hiroto Ito
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Satowa Yahashi
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Ken-Ichi Matsuda
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Mitsuhiro Kawata
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Goro Katsuura
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Fumihiro Iwashige
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Ichiro Sakata
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Atsushi Akune
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Akio Inui
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Takafumi Sakai
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Sonoko Ogawa
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Shinji Tsukahara
- Division of Life Science (Y.M., C.K.-T.-T., T.T., H.I., I.S., T.S., S.T.), Graduate School of Science and Engineering, Saitama University, Sakura-ku, Saitama 338-8570, Japan; Drug Safety Research Laboratories (S.Y., F.I., A.A.), Shin Nippon Biomedical Laboratories, Ltd, Kagoshima 891-1394, Japan; Department of Anatomy and Neurobiology (K.-I.M., M.K.), Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Psychosomatic Internal Medicine (G.K., A.I.), Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; and Laboratory of Behavioral Neuroendocrinology (S.O.), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
27
|
A comparative study of sex difference in calbindin neurons among mice, musk shrews, and Japanese quails. Neurosci Lett 2016; 631:63-69. [DOI: 10.1016/j.neulet.2016.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 11/19/2022]
|
28
|
Harris EP, Abel JM, Tejada LD, Rissman EF. Calbindin Knockout Alters Sex-Specific Regulation of Behavior and Gene Expression in Amygdala and Prefrontal Cortex. Endocrinology 2016; 157:1967-79. [PMID: 27010449 PMCID: PMC4870870 DOI: 10.1210/en.2016-1055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calbindin-D(28K) (Calb1), a high-affinity calcium buffer/sensor, shows abundant expression in neurons and has been associated with a number of neurobehavioral diseases, many of which are sexually dimorphic in incidence. Behavioral and physiological end points are affected by experimental manipulations of calbindin levels, including disruption of spatial learning, hippocampal long-term potentiation, and circadian rhythms. In this study, we investigated novel aspects of calbindin function on social behavior, anxiety-like behavior, and fear conditioning in adult mice of both sexes by comparing wild-type to littermate Calb1 KO mice. Because Calb1 mRNA and protein are sexually dimorphic in some areas of the brain, we hypothesized that sex differences in behavioral responses of these behaviors would be eliminated or revealed in Calb1 KO mice. We also examined gene expression in the amygdala and prefrontal cortex, two areas of the brain intimately connected with limbic system control of the behaviors tested, in response to sex and genotype. Our results demonstrate that fear memory and social behavior are altered in male knockout mice, and Calb1 KO mice of both sexes show less anxiety. Moreover, gene expression studies of the amygdala and prefrontal cortex revealed several significant genotype and sex effects in genes related to brain-derived neurotrophic factor signaling, hormone receptors, histone deacetylases, and γ-aminobutyric acid signaling. Our findings are the first to directly link calbindin with affective and social behaviors in rodents; moreover, the results suggest that sex differences in calbindin protein influence behavior.
Collapse
Affiliation(s)
- Erin P Harris
- Neuroscience Graduate Program (E.P.H., L.D.T.) and Department of Biochemistry and Molecular Genetics (J.M.A., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Jean M Abel
- Neuroscience Graduate Program (E.P.H., L.D.T.) and Department of Biochemistry and Molecular Genetics (J.M.A., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Lucia D Tejada
- Neuroscience Graduate Program (E.P.H., L.D.T.) and Department of Biochemistry and Molecular Genetics (J.M.A., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Emilie F Rissman
- Neuroscience Graduate Program (E.P.H., L.D.T.) and Department of Biochemistry and Molecular Genetics (J.M.A., E.F.R.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
29
|
Forger NG. Epigenetic mechanisms in sexual differentiation of the brain and behaviour. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150114. [PMID: 26833835 DOI: 10.1098/rstb.2015.0114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 11/12/2022] Open
Abstract
Circumstantial evidence alone argues that the establishment and maintenance of sex differences in the brain depend on epigenetic modifications of chromatin structure. More direct evidence has recently been obtained from two types of studies: those manipulating a particular epigenetic mechanism, and those examining the genome-wide distribution of specific epigenetic marks. The manipulation of histone acetylation or DNA methylation disrupts the development of several neural sex differences in rodents. Taken together, however, the evidence suggests there is unlikely to be a simple formula for masculine or feminine development of the brain and behaviour; instead, underlying epigenetic mechanisms may vary by brain region or even by dependent variable within a region. Whole-genome studies related to sex differences in the brain have only very recently been reported, but suggest that males and females may use different combinations of epigenetic modifications to control gene expression, even in cases where gene expression does not differ between the sexes. Finally, recent findings are discussed that are likely to direct future studies on the role of epigenetic mechanisms in sexual differentiation of the brain and behaviour.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30307, USA
| |
Collapse
|
30
|
Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol 2016; 40:67-86. [PMID: 26790970 PMCID: PMC4897775 DOI: 10.1016/j.yfrne.2016.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/31/2015] [Accepted: 01/09/2016] [Indexed: 01/16/2023]
Abstract
Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | - J Alex Strahan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | | |
Collapse
|
31
|
Derouiche L, Keller M, Duittoz AH, Pillon D. Developmental exposure to Ethinylestradiol affects transgenerationally sexual behavior and neuroendocrine networks in male mice. Sci Rep 2015; 5:17457. [PMID: 26640081 PMCID: PMC4671018 DOI: 10.1038/srep17457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/29/2015] [Indexed: 12/21/2022] Open
Abstract
Reproductive behavior and physiology in adulthood are controlled by hypothalamic sexually dimorphic neuronal networks which are organized under hormonal control during development. These organizing effects may be disturbed by endocrine disrupting chemicals (EDCs). To determine whether developmental exposure to Ethinylestradiol (EE2) may alter reproductive parameters in adult male mice and their progeny, Swiss mice (F1 generation) were exposed from prenatal to peripubertal periods to EE2 (0.1–1 μg/kg/d). Sexual behavior and reproductive physiology were evaluated on F1 males and their F2, F3 and F4 progeny. EE2-exposed F1 males and their F2 to F4 progeny exhibited EE2 dose-dependent increased sexual behavior, with reduced latencies of first mount and intromission, and higher frequencies of intromissions with a receptive female. The EE2 1 μg/kg/d exposed animals and their progeny had more calbindin immunoreactive cells in the medial preoptic area, known to be involved in the control of male sexual behavior in rodents. Despite neuroanatomical modifications in the Gonadotropin-Releasing Hormone neuron population of F1 males exposed to both doses of EE2, no major deleterious effects on reproductive physiology were detected. Therefore EE2 exposure during development may induce a hypermasculinization of the brain, illustrating how widespread exposure of animals and humans to EDCs can impact health and behaviors.
Collapse
Affiliation(s)
- Lyes Derouiche
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE, Nouzilly, France
| | - Matthieu Keller
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE, Nouzilly, France
| | - Anne Hélène Duittoz
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE, Nouzilly, France
| | - Delphine Pillon
- PRC, UMR 7247 INRA/CNRS/Université François-Rabelais de Tours/IFCE, Nouzilly, France
| |
Collapse
|
32
|
Kyi-Tha-Thu C, Okoshi K, Ito H, Matsuda KI, Kawata M, Tsukahara S. Sex differences in cells expressing green fluorescent protein under the control of the estrogen receptor-α promoter in the hypothalamus of mice. Neurosci Res 2015; 101:44-52. [DOI: 10.1016/j.neures.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/26/2015] [Accepted: 07/08/2015] [Indexed: 01/06/2023]
|
33
|
McCarthy MM, Pickett LA, VanRyzin JW, Kight KE. Surprising origins of sex differences in the brain. Horm Behav 2015; 76:3-10. [PMID: 25917865 PMCID: PMC4620061 DOI: 10.1016/j.yhbeh.2015.04.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/22/2015] [Accepted: 04/06/2015] [Indexed: 11/22/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Discerning the biologic origins of neuroanatomical sex differences has been of interest since they were first reported in the late 60's and early 70's. The centrality of gonadal hormone exposure during a developmental critical window cannot be denied but hormones are indirect agents of change, acting to induce gene transcription or modulate membrane bound signaling cascades. Sex differences in the brain include regional volume differences due to differential cell death, neuronal and glial genesis, dendritic branching and synaptic patterning. Early emphasis on mechanism therefore focused on neurotransmitters and neural growth factors, but by and large these endpoints failed to explain the origins of neural sex differences. More recently evidence has accumulated in favor of inflammatory mediators and immune cells as principle regulators of brain sexual differentiation and reveal that the establishment of dimorphic circuits is not cell autonomous but instead requires extensive cell-to-cell communication including cells of non-neuronal origin. Despite the multiplicity of cells involved the nature of the sex differences in the neuroanatomical endpoints suggests canalization, a process that explains the robustness of individuals in the face of intrinsic and extrinsic variability. We propose that some neuroanatomical endpoints are canalized to enhance sex differences in the brain by reducing variability within one sex while also preventing the sexes from diverging too greatly. We further propose mechanisms by which such canalization could occur and discuss what relevance this may have to sex differences in behavior.
Collapse
Affiliation(s)
- Margaret M McCarthy
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Lindsay A Pickett
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jonathan W VanRyzin
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katherine E Kight
- Department of Pharmacology, Program in Neuroscience and Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
34
|
Oyola MG, Zuloaga DG, Carbone D, Malysz AM, Acevedo-Rodriguez A, Handa RJ, Mani SK. CYP7B1 Enzyme Deletion Impairs Reproductive Behaviors in Male Mice. Endocrinology 2015; 156:2150-61. [PMID: 25849728 PMCID: PMC4430609 DOI: 10.1210/en.2014-1786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In addition to androgenic properties mediated via androgen receptors, dihydrotestosterone (DHT) also regulates estrogenic functions via an alternate pathway. These estrogenic functions of DHT are mediated by its metabolite 5α-androstane-3β, 17β-diol (3β-diol) binding to estrogen receptor β (ERβ). CYP7B1 enzyme converts 3β-diol to inactive 6α- or 7α-triols and plays an important role as a regulator of estrogenic functions mediated by 3β-diol. Using a mutant mouse carrying a null mutation for the CYP7B1 gene (CYP7B1KO), we examined the contribution of CYP7B1 on physiology and behavior. Male, gonadectomized (GDX) CYP7B1KO and their wild type (WT) littermates were assessed for their behavioral phenotype, anxiety-related behavioral measures, and hypothalamic pituitary adrenal axis reactivity. No significant effects of genotype were evident in anxiety-like behaviors in open field (OFA), light-dark (L/D) exploration, and elevated plus maze (EPM). T significantly reduced open arm time on the EPM while not affecting L/D exploratory and OFA behaviors in CYP7B1KO and WT littermates. T also attenuated the corticosterone response to EPM in both genotypes. In GDX animals, T was able to reinstate male-specific reproductive behaviors (latencies and number of mounts, intromission, and ejaculations) in the WT but not in the CYP7B1KO mice. The male reproductive behavior defect in CYP7B1KO seems to be due to their inability to distinguish olfactory cues from a behavioral estrus female. CYP7B1KO mice also showed a reduction in androgen receptor mRNA expression in the olfactory bulb. Our findings suggest a novel role for the CYP7B1 enzyme in the regulation of male reproductive behaviors.
Collapse
Affiliation(s)
- Mario G Oyola
- Department of Neuroscience (M.G.O., A.A.-R., S.K.M.), Molecular & Cellular Biology (A.M.M., S.K.M.), Memory and Brain Research Center (M.G.O., A.M.M., A.A.-R., S.K.M.), Baylor College of Medicine, Houston, Texas 77030; and Department Of Basic Medical Sciences (D.G.Z., D.C., R.J.H.), University of Arizona College of Medicine, Phoenix, Arizona 85004
| | | | | | | | | | | | | |
Collapse
|
35
|
He Z, Ferguson SA, Cui L, Greenfield LJ, Paule MG. Development of the sexually dimorphic nucleus of the preoptic area and the influence of estrogen-like compounds. Neural Regen Res 2014; 8:2763-74. [PMID: 25206587 PMCID: PMC4145994 DOI: 10.3969/j.issn.1673-5374.2013.29.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/29/2013] [Indexed: 11/18/2022] Open
Abstract
One of the well-defined sexually dimorphic structures in the brain is the sexually dimorphic nucleus, a cluster of cells located in the preoptic area of the hypothalamus. The rodent sexually dimorphic nucleus of the preoptic area can be delineated histologically using conventional Nissl staining or immunohistochemically using calbindin D28K immunoreactivity. There is increasing use of the bindin D28K-delineated neural cluster to define the sexually dimorphic nucleus of the preoptic area in rodents. Several mechanisms are proposed to underlie the processes that contribute to the sexual dimorphism (size difference) of the sexually dimorphic nucleus of the preoptic area. Recent evidence indicates that stem cell activity, including proliferation and migration presumably from the 3rd ventricle stem cell niche, may play a critical role in the postnatal development of the sexually dimorphic nucleus of the preoptic area and its distinguishing sexually dimorphic feature: a signifi-cantly larger volume in males. Sex hormones and estrogen-like compounds can affect the size of the sexually dimorphic nucleus of the preoptic area. Despite considerable research, it remains un-clear whether estrogen-like compounds and/or sex hormones increase size of the sexually dimor-phic nucleus of the preoptic area via an increase in stem cell activity originating from the 3rd ventricle stem cell niche.
Collapse
Affiliation(s)
- Zhen He
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA ; Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72005, USA
| | - Sherry Ann Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | - Li Cui
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72005, USA
| | - Lazar John Greenfield
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR 72005, USA
| | - Merle Gale Paule
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
36
|
Onakomaiya MM, Porter DM, Oberlander JG, Henderson LP. Sex and exercise interact to alter the expression of anabolic androgenic steroid-induced anxiety-like behaviors in the mouse. Horm Behav 2014; 66:283-97. [PMID: 24768711 PMCID: PMC4127168 DOI: 10.1016/j.yhbeh.2014.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 12/14/2022]
Abstract
Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala.
Collapse
Affiliation(s)
- Marie M Onakomaiya
- Department of Physiology & Neurobiology, Hinman Box 7701, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Donna M Porter
- Department of Physiology & Neurobiology, Hinman Box 7701, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Joseph G Oberlander
- Department of Neurobiology, Northwestern University, 2205 Tech Drive, Hogan 2-160, Evanston, IL 60208, USA
| | - Leslie P Henderson
- Department of Physiology & Neurobiology, Hinman Box 7701, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
37
|
Ghahramani NM, Ngun TC, Chen PY, Tian Y, Krishnan S, Muir S, Rubbi L, Arnold AP, de Vries GJ, Forger NG, Pellegrini M, Vilain E. The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging. Biol Sex Differ 2014; 5:8. [PMID: 24976947 PMCID: PMC4074311 DOI: 10.1186/2042-6410-5-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/22/2014] [Indexed: 02/07/2023] Open
Abstract
Background The biological basis for sex differences in brain function and disease susceptibility is poorly understood. Examining the role of gonadal hormones in brain sexual differentiation may provide important information about sex differences in neural health and development. Permanent masculinization of brain structure, function, and disease is induced by testosterone prenatally in males, but the possible mediation of these effects by long-term changes in the epigenome is poorly understood. Methods We investigated the organizational effects of testosterone on the DNA methylome and transcriptome in two sexually dimorphic forebrain regions—the bed nucleus of the stria terminalis/preoptic area and the striatum. To study the contribution of testosterone to both the establishment and persistence of sex differences in DNA methylation, we performed genome-wide surveys in male, female, and female mice given testosterone on the day of birth. Methylation was assessed during the perinatal window for testosterone's organizational effects and in adulthood. Results The short-term effect of testosterone exposure was relatively modest. However, in adult animals the number of genes whose methylation was altered had increased by 20-fold. Furthermore, we found that in adulthood, methylation at a substantial number of sexually dimorphic CpG sites was masculinized in response to neonatal testosterone exposure. Consistent with this, testosterone's effect on gene expression in the striatum was more apparent in adulthood. Conclusion Taken together, our data imply that the organizational effects of testosterone on the brain methylome and transcriptome are dramatic and late-emerging. Our findings offer important insights into the long-term molecular effects of early-life hormonal exposure.
Collapse
Affiliation(s)
- Negar M Ghahramani
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| | - Tuck C Ngun
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yuan Tian
- Interdepartmental PhD Program in Bioinformatics, UCLA, Los Angeles, CA 90095, USA
| | - Sangitha Krishnan
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| | - Stephanie Muir
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cellular, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Arthur P Arnold
- Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA.,Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Matteo Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA.,Department of Human Genetics, UCLA, 695 Charles Young Drive South, Gonda Room 5506, Los Angeles, CA 90095-7088, USA
| |
Collapse
|
38
|
Reddy RC, Scheldrup M, Meaker M, Stormshak F, Estill CT, Roselli CE. Cell death in the central division of the medial preoptic nucleus of male and female lamb fetuses. Brain Res 2014; 1554:21-8. [PMID: 24491631 DOI: 10.1016/j.brainres.2014.01.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/22/2014] [Accepted: 01/25/2014] [Indexed: 10/25/2022]
Abstract
The medial preoptic area of the adult sheep contains an ovine sexually dimorphic nucleus (oSDN) that is larger and has more neurons in males than in females. In the lamb fetus, the nascent oSDN occupies the central division of the medial preoptic nucleus (MPNc) and consists of a cluster of cells that is organized by the action of testosterone during gestational days 60-90 of a 147 day term pregnancy. The current study sought to determine whether programmed cell death contributes to the emergence of the oSDN. Male and female lamb fetuses were euthanized at different ages spanning the period during which the oSDN is organized. The expression of the pro- and anti-apoptotic genes bcl-2 and bax, respectively, was measured by quantitative RT-PCR to assess possible sex differences in neuron vulnerability to programmed cell death. The appearance of DNA-fragmentation was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and used to estimate the occurrence of apoptotic cell death. We found that bcl-2 and bax mRNA expression in the medial preoptic area of the developing lamb fetus decreased during the last half of the 147-day gestation. The ratio of bcl-2/bax gene expression was highest at gestational day 85 but was equivalent between males and females. TUNEL staining in the MPNc was very low and although it decreased significantly with age, it was not significantly different between sexes. These results using two different methods to assess cell death indicate that a sex difference in the incidence of cell death is not a primary mechanism leading to sexual differentiation of the oSDN.
Collapse
Affiliation(s)
- Radhika C Reddy
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Melissa Scheldrup
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA
| | - Mary Meaker
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Fred Stormshak
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Charles T Estill
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Charles E Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| |
Collapse
|
39
|
Naulé L, Picot M, Martini M, Parmentier C, Hardin-Pouzet H, Keller M, Franceschini I, Mhaouty-Kodja S. Neuroendocrine and behavioral effects of maternal exposure to oral bisphenol A in female mice. J Endocrinol 2014; 220:375-88. [PMID: 24403293 DOI: 10.1530/joe-13-0607] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bisphenol A (BPA) is a widespread estrogenic compound. We investigated the effects of maternal exposure to BPA at reference doses on sexual behavior and neuroendocrine functions of female offspring in C57BL/6J mice. The dams were orally exposed to vehicle alone or vehicle-containing BPA at doses equivalent to the no observed adverse effect level (5 mg/kg body weight per day) and tolerable daily intake (TDI, 0.05 mg/kg body weight per day) level from gestational day 15 until weaning. Developmental exposure to BPA increased the lordosis quotient in naive females exposed to BPA at the TDI dose only. BPA exposure had no effect on olfactory preference, ability to express masculine behaviors or number of calbindin-positive cells, a sexually dimorphic population of the preoptic area. BPA at both doses selectively increased kisspeptin cell number in the preoptic periventricular nucleus of the rostral periventricular area of the third ventricle in adult females. It did not affect the number of GNRH-positive cells or percentage of kisspeptin appositions on GNRH neurons in the preoptic area. These changes were associated with higher levels of estradiol (E2) at the TDI dose while levels of LH, estrus cyclicity, ovarian and uterine weights, and fertility remained unaffected. Delay in the time of vaginal opening was observed during the postnatal period at TDI dose, without any alteration in body growth. This shows that developmental exposure to BPA at reference doses did not masculinize and defeminize the neural circuitry underlying sexual behavior in female mice. The TDI dose specifically exacerbated responses normally induced by ovarian E2, through estrogen receptor α, during the postnatal/prepubertal period.
Collapse
Affiliation(s)
- Lydie Naulé
- Sorbonne Universités, UPMC University Paris 06, UMR 7224Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 952 and Centre National de la Recherche Scientifique (CNRS) UMR 7224, Physiopathologie des Maladies du Système Nerveux Central (PMSNC), Université Pierre et Marie Curie,
9 Quai St Bernard Bât B 2ème Étage, F75005 Paris, France Institut National de la Recherche Agronomique (INRA) UMR85, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France CNRS UMR 7247, F-37380 Nouzilly, France Université François Rabelais, F-37000 Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Picot M, Naulé L, Marie-Luce C, Martini M, Raskin K, Grange-Messent V, Franceschini I, Keller M, Mhaouty-Kodja S. Vulnerability of the neural circuitry underlying sexual behavior to chronic adult exposure to oral bisphenol a in male mice. Endocrinology 2014; 155:502-12. [PMID: 24265451 DOI: 10.1210/en.2013-1639] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There are human reproduction concerns associated with extensive use of bisphenol A (BPA)-containing plastic and, in particular, the leaching of BPA into food and beverages. In this context, it remains unclear whether and how exposure to BPA interferes with the developmental organization and adult activation of male sexual behavior by testosterone. We evaluated the developmental and adult exposure to oral BPA at doses equivalent to the no-observed-adverse-effect-level (5 mg/kg body weight per day) and tolerable daily intake (TDI) (50 μg/kg body weight per day) on mouse sexual behavior and the potential mechanisms underlying BPA effects. Adult exposure to BPA reduced sexual motivation and performance at TDI dose only. Exposed males took longer to initiate mating and reach ejaculation despite normal olfactory chemoinvestigation. This deficiency was not restored by sexual experience and was associated with unchanged circulating levels of testosterone. By contrast, developmental exposure to BPA at TDI or no-observed-adverse-effect-level dose did not reduce sexual behavior or alter the neuroanatomical organization of the preoptic area. Disrupting the neural androgen receptor resulted in behavioral and neuroanatomical effects similar to those induced by adult exposure to TDI dose. Moreover, adult exposure of mutant males to BPA at TDI dose did not trigger additional alteration of sexual behavior, suggesting that BPA and neural androgen receptor mutation share a common mechanism of action. This shows, for the first time, that the neural circuitry underlying male sexual behavior is vulnerable to chronic adult exposure to low dose of BPA and suggests that BPA could act in vivo as an antiandrogenic compound.
Collapse
Affiliation(s)
- Marie Picot
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR)7224 (M.P., L.N., C.M.-L., K.R., V.G.-M., S.M.-K.), Inserm 952 (M.P., L.N., C.M.-L., K.R., V.G.-M., S.M.-K.), and Physiopathologie des Maladies du Système Nerveux Central (M.P., L.N., C.M.-L., K.R., V.G.-M., S.M.-K.), Université Pierre et Marie Curie, F-75005 Paris, France; Institut National de la Recherche Agronomique UMR85 Physiologie de la Reproduction et des Comportements (M.M., I.F., M.K.) and CNRS UMR7247 (M.M., I.F., M.K.), F-37380 Nouzilly, France; and Université François Rabelais (M.M., I.F., M.K.), F-37000 Tours, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
de Vries GJ, Fields CT, Peters NV, Whylings J, Paul MJ. Sensitive periods for hormonal programming of the brain. Curr Top Behav Neurosci 2014; 16:79-108. [PMID: 24549723 DOI: 10.1007/7854_2014_286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During sensitive periods, information from the external and internal environment that occurs during particular phases of development is relayed to the brain to program neural development. Hormones play a central role in this process. In this review, we first discuss sexual differentiation of the brain as an example of hormonal programming. Using sexual differentiation, we define sensitive periods, review cellular and molecular processes that can explain their restricted temporal window, and discuss challenges in determining the precise timing of the temporal window. We then briefly review programming effects of other hormonal systems and discuss how programming of these systems interact with sexual differentiation.
Collapse
Affiliation(s)
- Geert J de Vries
- Neuroscience Institute, Georgia State University, PO Box 5030, Atlanta, GA, 30302-5030, USA,
| | | | | | | | | |
Collapse
|
42
|
Wittmann W, McLennan IS. Anti-Müllerian hormone may regulate the number of calbindin-positive neurons in the sexually dimorphic nucleus of the preoptic area of male mice. Biol Sex Differ 2013; 4:18. [PMID: 24119315 PMCID: PMC3852321 DOI: 10.1186/2042-6410-4-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 10/02/2013] [Indexed: 01/20/2023] Open
Abstract
Background The male brain is putatively organised early in development by testosterone, with the sexually dimorphic nucleus of the medial preoptic area (SDN) a main exemplifier of this. However, pubescent neurogenesis occurs in the rat SDN, and the immature testes secrete anti-Müllerian hormone (AMH) as well as testosterone. We have therefore re-examined the development of the murine SDN to determine whether it is influenced by AMH and/or whether the number of calbindin-positive (calbindin+ve) neurons in it changes after pre-pubescent development. Methods In mice, the SDN nucleus is defined by calbindin+ve neurons (CALB-SDN). The number and size of the neurons in the CALB-SDN of male and female AMH null mutant (Amh-/-) mice and their wild-type littermates (Amh+/+) were studied using stereological techniques. Groups of mice were examined immediately before the onset of puberty (20 days postnatal) and at adulthood (129–147 days old). Results The wild-type pre-pubertal male mice had 47% more calbindin+ve neurons in the CALB-SDN than their female wild-type littermates. This sex difference was entirely absent in Amh-/- mice. In adults, the extent of sexual dimorphism almost doubled due to a net reduction in the number and size of calbindin+ve neurons in females and a net increase in neuron number in males. These changes occurred to a similar extent in the Amh-/- and Amh+/+ mice. Consequently, the number of calbindin+ve neurons in Amh-/- adult male mice was intermediate between Amh+/+ males and Amh+/+ females. The sex difference in the size of the neurons was predominantly generated by a female-specific atrophy after 20 days, independent of AMH. Conclusions The establishment of dimorphic cell number in the CALB-SDN of mice is biphasic, with each phase being subject to different regulation. The second phase of dimorphism is not dependent on the first phase having occurred as it was present in the Amh-/- male mice that have female-like numbers of calbindin+ve neurons at 20 days. These observations extend emerging evidence that the organisation of highly dimorphic neuronal networks changes during puberty or afterwards. They also raise the possibility that cellular events attributed to the imprinting effects of testosterone are mediated by AMH.
Collapse
Affiliation(s)
- Walter Wittmann
- Brain Health Research Centre, Department of Anatomy, University of Otago, PO Box 913, Dunedin 9054, New Zealand.
| | | |
Collapse
|
43
|
Gos T, Schulkin J, Gos A, Bock J, Poeggel G, Braun K. Paternal deprivation affects the functional maturation of corticotropin-releasing hormone (CRH)- and calbindin-D28k-expressing neurons in the bed nucleus of the stria terminalis (BNST) of the biparental Octodon degus. Brain Struct Funct 2013; 219:1983-90. [PMID: 23913254 PMCID: PMC4223576 DOI: 10.1007/s00429-013-0617-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/23/2013] [Indexed: 01/06/2023]
Abstract
While the critical role of maternal care on the development of brain and behavior of the offspring has been extensively studied, our knowledge about the importance of paternal care for brain development of his offspring is still comparatively scarce. The aim of this study in the biparental caviomorph rodent Octodon degus was to analyze the impact of paternal care on the development of corticotropin-releasing hormone (CRH)-expressing neurons in the bed nucleus of the stria terminalis (BNST) and hypothalamic paraventricular nucleus (PVN). Both brain areas are key players in neuronal circuits that regulate hypothalamic–pituitary–adrenal axis (HPA) activity. At the age of postnatal day (PND) 21, we found that paternal deprivation resulted in a decreased density of CRH-containing neurons in the medial, but not in the lateral BNST, whereas no changes were observed in the PVN. These deprivation-induced changes were still prominent in adulthood. At PND 21, the density of Ca-binding protein calbindin D28K (CaBP-D28K)-expressing neurons was specifically increased in the medial, but not lateral BNST of father-deprived animals. In contrast, adult father-deprived animals show significantly decreased density of CaBP-D28K-expressing neurons in the lateral, but not medial BNST. Taken together, these results may have important implications for our understanding of the experience-driven development of neural circuits that regulate HPA activity mediating acute responses to stress and chronic anxiety.
Collapse
Affiliation(s)
- Tomasz Gos
- Institute of Forensic Medicine, Medical University of Gdansk, ul. Sklodowskiej-Curie 3a, 80-210, Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
44
|
Ahern TH, Krug S, Carr AV, Murray EK, Fitzpatrick E, Bengston L, McCutcheon J, De Vries GJ, Forger NG. Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex. J Comp Neurol 2013; 521:2551-69. [PMID: 23296992 PMCID: PMC4968939 DOI: 10.1002/cne.23298] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/28/2012] [Accepted: 12/26/2012] [Indexed: 01/21/2023]
Abstract
Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain.
Collapse
Affiliation(s)
- Todd H. Ahern
- Center for Behavioral Neuroscience, Department of Psychology, Quinnipiac University, Hamden, Connecticut 06518
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Stefanie Krug
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Audrey V. Carr
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Elaine K. Murray
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Emmett Fitzpatrick
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Lynn Bengston
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jill McCutcheon
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Geert J. De Vries
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Nancy G. Forger
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
45
|
McCaffrey KA, Jones B, Mabrey N, Weiss B, Swan SH, Patisaul HB. Sex specific impact of perinatal bisphenol A (BPA) exposure over a range of orally administered doses on rat hypothalamic sexual differentiation. Neurotoxicology 2013; 36:55-62. [PMID: 23500335 DOI: 10.1016/j.neuro.2013.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) is a high volume production chemical used in polycarbonate plastics, epoxy resins, thermal paper receipts, and other household products. The neural effects of early life BPA exposure, particularly to low doses administered orally, remain unclear. Thus, to better characterize the dose range over which BPA alters sex specific neuroanatomy, we examined the impact of perinatal BPA exposure on two sexually dimorphic regions in the anterior hypothalamus, the sexually dimorphic nucleus of the preoptic area (SDN-POA) and the anterioventral periventricular (AVPV) nucleus. Both are sexually differentiated by estradiol and play a role in sex specific reproductive physiology and behavior. Long Evans rats were prenatally exposed to 10, 100, 1000, 10,000μg/kg bw/day BPA through daily, non-invasive oral administration of dosed-cookies to the dams. Offspring were reared to adulthood. Their brains were collected and immunolabeled for tyrosine hydroxylase (TH) in the AVPV and calbindin (CALB) in the SDN-POA. We observed decreased TH-ir cell numbers in the female AVPV across all exposure groups, an effect indicative of masculinization. In males, AVPV TH-ir cell numbers were significantly reduced in only the BPA 10 and BPA 10,000 groups. SDN-POA endpoints were unaltered in females but in males SDN-POA volume was significantly lower in all BPA exposure groups. CALB-ir was significantly lower in all but the BPA 1000 group. These effects are consistent with demasculinization. Collectively these data demonstrate that early life oral exposure to BPA at levels well below the current No Observed Adverse Effect Level (NOAEL) of 50mg/kg/day can alter sex specific hypothalamic morphology in the rat.
Collapse
Affiliation(s)
- Katherine A McCaffrey
- Department of Biology, North Carolina State University, Raleigh, NC 27695, United States
| | | | | | | | | | | |
Collapse
|
46
|
He Z, Ferguson SA, Cui L, Greenfield LJ, Paule MG. Role of neural stem cell activity in postweaning development of the sexually dimorphic nucleus of the preoptic area in rats. PLoS One 2013; 8:e54927. [PMID: 23383001 PMCID: PMC3559780 DOI: 10.1371/journal.pone.0054927] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 12/19/2012] [Indexed: 02/07/2023] Open
Abstract
The sexually dimorphic nucleus of the preoptic area (SDN-POA) has received increased attention due to its apparent sensitivity to estrogen-like compounds found in food and food containers. The mechanisms that regulate SDN-POA volume remain unclear as is the extent of postweaning development of the SDN-POA. Here we demonstrate that the female Sprague-Dawley SDN-POA volume increased from weaning to adulthood, although this increase was not statistically significant as it was in males. The number of cells positive for Ki67, a marker of cell proliferation, in both the SDN-POA and the hypothalamus was significantly higher at weaning than at adulthood in male rats. In contrast, the number of Ki67-positive cells was significantly higher in the hypothalamus but not in the SDN-POA (p>0.05) at weaning than at adulthood in female rats. A subset of the Ki67-positive cells in the SDN-POA displayed the morphology of dividing cells. Nestin-immunoreactivity delineated a potential macroscopic neural stem cell niche in the rostral end of the 3rd ventricle. In conclusion, stem cells may partially account for the sexually dimorphic postweaning development of the SDN-POA.
Collapse
Affiliation(s)
- Zhen He
- Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA.
| | | | | | | | | |
Collapse
|