1
|
Pranty AL, Szepanowski LP, Wruck W, Karikari AA, Adjaye J. Hemozoin induces malaria via activation of DNA damage, p38 MAPK and neurodegenerative pathways in a human iPSC-derived neuronal model of cerebral malaria. Sci Rep 2024; 14:24959. [PMID: 39438620 PMCID: PMC11496667 DOI: 10.1038/s41598-024-76259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Malaria caused by Plasmodium falciparum infection results in severe complications including cerebral malaria (CM), in which approximately 30% of patients end up with neurological sequelae. Sparse in vitro cell culture-based experimental models which recapitulate the molecular basis of CM in humans has impeded progress in our understanding of its etiology. This study employed healthy human induced pluripotent stem cells (iPSCs)-derived neuronal cultures stimulated with hemozoin (HMZ) - the malarial toxin as a model for CM. Secretome, qRT-PCR, Metascape, and KEGG pathway analyses were conducted to assess elevated proteins, genes, and pathways. Neuronal cultures treated with HMZ showed enhanced secretion of interferon-gamma (IFN-γ), interleukin (IL)1-beta (IL-1β), IL-8 and IL-16. Enrichment analysis revealed malaria, positive regulation of cytokine production and positive regulation of mitogen-activated protein kinase (MAPK) cascade which confirm inflammatory response to HMZ exposure. KEGG assessment revealed up-regulation of malaria, MAPK and neurodegenerative diseases-associated pathways which corroborates findings from previous studies. Additionally, HMZ induced DNA damage in neurons. This study has unveiled that exposure of neuronal cultures to HMZ, activates molecules and pathways similar to those observed in CM and neurodegenerative diseases. Furthermore, our model is an alternative to rodent experimental models of CM.
Collapse
Affiliation(s)
- Abida Lslam Pranty
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Leon-Phillip Szepanowski
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany
| | - Akua Afriyie Karikari
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225, Düsseldorf, Germany.
- Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London - EGA Institute for Women's Health, 20 Guilford Street, WC1N 1DZ, London, United Kingdom.
| |
Collapse
|
2
|
Mohammadi B, Neyazi A, Qader AQ, Razaqi N, Afzali H, Neyazi M. Arachnoid cyst in the quadrigeminal cistern: A case from Afghanistan. Radiol Case Rep 2024; 19:2067-2071. [PMID: 38523695 PMCID: PMC10958130 DOI: 10.1016/j.radcr.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024] Open
Abstract
Arachnoid cysts, fluid-filled lesions within the central nervous system, pose diagnostic challenges. This study examines a unique case of a quadrigeminal arachnoid cyst in a 13-year-old girl, emphasizing accurate identification and treatment. The patient's symptoms of blurred vision and headaches led to the discovery of papilledema and imaging revealing a sizable cyst causing obstructive hydrocephalus. Urgent surgical intervention involved suboccipital craniectomy and infratentorial-supracerebellar cyst drainage, resulting in favorable postoperative outcomes. Further analysis of anatomical variations, age-related factors, and etiological debates deepens understanding. Diagnostic advancements, notably MRI, are crucial for noninvasive characterization. This case offers nuanced insights into managing arachnoid cysts, highlighting the success of tailored surgical strategies. Recognizing clinical subtleties, utilizing diagnostic innovations, and customizing surgical techniques are essential for navigating complexities. This study underscores the importance of a comprehensive approach in addressing the challenges of arachnoid cysts within the central nervous system.
Collapse
Affiliation(s)
- Barakatullah Mohammadi
- Department of Neuro & Spine Surgery, Herat Regional Hospital, Herat, Afghanistan
- Scientific Affairs Department, Herat Regional Hospital, Herat, Afghanistan
| | - Ahmad Neyazi
- Afghanistan Center for Epidemiological Studies, Herat, Afghanistan
| | - Abdul Qadir Qader
- Scientific Affairs Department, Herat Regional Hospital, Herat, Afghanistan
| | - Nosaibah Razaqi
- Afghanistan Center for Epidemiological Studies, Herat, Afghanistan
| | - Habibah Afzali
- Afghanistan Center for Epidemiological Studies, Herat, Afghanistan
| | - Mehrab Neyazi
- Afghanistan Center for Epidemiological Studies, Herat, Afghanistan
| |
Collapse
|
3
|
Rafe MR. Drug delivery for neurodegenerative diseases is a problem, but lipid nanocarriers could provide the answer. Nanotheranostics 2024; 8:90-99. [PMID: 38164504 PMCID: PMC10750117 DOI: 10.7150/ntno.88849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/05/2023] [Indexed: 01/03/2024] Open
Abstract
Neurodegenerative disorders encompass diseases that involve the degeneration of neurons, particularly those within the central nervous system. These are the most commonly observed disorders among the geriatric population. The treatment or management of this condition presents additional challenges due to therapeutics that may not be as effective as desired. The primary obstacle that often hinders the efficacy of therapy is the existence of a blood-brain barrier (BBB). The BBB serves as a vital safeguard for the brain, effectively obstructing the passage of drugs into the brain cells. Hence, the management of damaging neurodegenerative conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Cerebrovascular diseases (CVDs), Huntington's disease (HD), and Multiple sclerosis (MS) is currently the primary area of research interest. The innovative utilization of nanoparticles as drug carriers provides renewed optimism in addressing many complicated medical conditions. In this article, I have aimed to gather published information regarding various lipid nanoparticles that can efficiently transport medication to the brain to address neurodegenerative disorders. According to the published literature, liposomes, solid-lipid nanoparticles, nanostructured nanoparticles, microemulsions, and nanoemulsions are potential nanocarriers that can treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Md. Rajdoula Rafe
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Pharmacy, Jagannath University, Dhaka-1100, Bangladesh
| |
Collapse
|
4
|
Solorzano A, Brady M, Bhatt N, Johnson A, Burgess B, Leyva H, Puangmalai N, Jerez C, Wood R, Kayed R, Deane R. Central and peripheral tau retention modulated by an anti-tau antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553682. [PMID: 37645819 PMCID: PMC10462070 DOI: 10.1101/2023.08.17.553682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tau protein blood levels dependent on its distribution to peripheral organs and possible elimination from the body. Thus, the peripheral distribution of CSF-derived tau protein was explored, especially since there is a transition to blood-based biomarkers and the emerging idea that tau pathology may spread beyond brain. Near infrared fluorescence (NIRF) was mainly used to analyze tau (tau-NIRF) distribution after its intracisternal or intravenous injection. There was a striking uptake of blood- or CSF-derived tau-NIRF protein by the skeletal structures, liver, small intestine (duodenum), gall bladder, kidneys, urinary bladder, lymph nodes, heart, and spleen. In aging and in older APP/PS1 mice, tau uptake in regions, such as the brain, liver, and skeleton, was increased. In bone (femur) injected tau protein was associated with integrin-binding sialoprotein (IBSP), a major non-collagenous glycoprotein that is associated with mineralization. Tau-NIRF was cleared slowly from CSF via mainly across the cribriform plate, and cervical lymph nodes. In brain, some of the CSF injected tau protein was associated with NeuN-positive and PDGFRý-positive cells, which may explain its retention. The presence of tau in the bladders suggested excretion routes of tau. CSF anti-tau antibody increased CSF tau clearance, while blood anti-tau antibody decreased tau accumulation in the femur but not in liver, kidney, and spleen. Thus, the data show a body-wide distribution and retention of CSF-derived tau protein, which increased with aging and in older APP/PS1 mice. Further work is needed to elucidate the relevance of tau accumulation in each organ to tauopathy.
Collapse
|
5
|
Kim D, Gan Y, Nedergaard M, Kelley DH, Tithof J. Image Analysis Techniques for In Vivo Quantification of Cerebrospinal Fluid Flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549937. [PMID: 37546970 PMCID: PMC10401935 DOI: 10.1101/2023.07.20.549937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Over the last decade, there has been a tremendously increased interest in understanding the neurophysiology of cerebrospinal fluid (CSF) flow, which plays a crucial role in clearing metabolic waste from the brain. This growing interest was largely initiated by two significant discoveries: the glymphatic system (a pathway for solute exchange between interstitial fluid deep within the brain and the CSF surrounding the brain) and meningeal lymphatic vessels (lymphatic vessels in the layer of tissue surrounding the brain that drain CSF). These two CSF systems work in unison, and their disruption has been implicated in several neurological disorders including Alzheimer's disease, stoke, and traumatic brain injury. Here, we present experimental techniques for in vivo quantification of CSF flow via direct imaging of fluorescent microspheres injected into the CSF. We discuss detailed image processing methods, including registration and masking of stagnant particles, to improve the quality of measurements. We provide guidance for quantifying CSF flow through particle tracking and offer tips for optimizing the process. Additionally, we describe techniques for measuring changes in arterial diameter, which is an hypothesized CSF pumping mechanism. Finally, we outline how these same techniques can be applied to cervical lymphatic vessels, which collect fluid downstream from meningeal lymphatic vessels. We anticipate that these fluid mechanical techniques will prove valuable for future quantitative studies aimed at understanding mechanisms of CSF transport and disruption, as well as for other complex biophysical systems.
Collapse
Affiliation(s)
- Daehyun Kim
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, United States
| | - Yiming Gan
- Department of Mechanical Engineering, University of Rochester, Hopeman Engineering Bldg, Rochester, NY, 14627, United States
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, United States
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Hopeman Engineering Bldg, Rochester, NY, 14627, United States
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, 111 Church St SE, Minneapolis, MN, 55455, United States
| |
Collapse
|
6
|
Silva-Pedrosa R, Campos J, Fernandes AM, Silva M, Calçada C, Marote A, Martinho O, Veiga MI, Rodrigues LR, Salgado AJ, Ferreira PE. Cerebral Malaria Model Applying Human Brain Organoids. Cells 2023; 12:cells12070984. [PMID: 37048057 PMCID: PMC10093648 DOI: 10.3390/cells12070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Neural injuries in cerebral malaria patients are a significant cause of morbidity and mortality. Nevertheless, a comprehensive research approach to study this issue is lacking, so herein we propose an in vitro system to study human cerebral malaria using cellular approaches. Our first goal was to establish a cellular system to identify the molecular alterations in human brain vasculature cells that resemble the blood-brain barrier (BBB) in cerebral malaria (CM). Through transcriptomic analysis, we characterized specific gene expression profiles in human brain microvascular endothelial cells (HBMEC) activated by the Plasmodium falciparum parasites. We also suggest potential new genes related to parasitic activation. Then, we studied its impact at brain level after Plasmodium falciparum endothelial activation to gain a deeper understanding of the physiological mechanisms underlying CM. For that, the impact of HBMEC-P. falciparum-activated secretomes was evaluated in human brain organoids. Our results support the reliability of in vitro cellular models developed to mimic CM in several aspects. These systems can be of extreme importance to investigate the factors (parasitological and host) influencing CM, contributing to a molecular understanding of pathogenesis, brain injury, and dysfunction.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Aline Marie Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Miguel Silva
- Department of Experimental Biology, Section of Microbiology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Carla Calçada
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS-Associate Laboratory, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Pais TF, Penha-Gonçalves C. In vitro model of brain endothelial cell barrier reveals alterations induced by Plasmodium blood stage factors. Parasitol Res 2023; 122:729-737. [PMID: 36694092 PMCID: PMC9988999 DOI: 10.1007/s00436-023-07782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 01/26/2023]
Abstract
Cerebral malaria (CM) is a severe neurological condition caused by Plasmodium falciparum. Disruption of the brain-blood barrier (BBB) is a key pathological event leading to brain edema and vascular leakage in both humans and in the mouse model of CM. Interactions of brain endothelial cells with infected red blood cells (iRBCs) and with circulating inflammatory mediators and immune cells contribute to BBB dysfunction in CM. Adjunctive therapies for CM aim at preserving the BBB to prevent neurologic deficits. Experimental animal and cellular models are essential to develop new therapeutic strategies. However, in mice, the disease develops rapidly, which offers a very narrow time window for testing the therapeutic potential of drugs acting in the BBB. Here, we establish a brain endothelial cell barrier whose disturbance can be monitored by several parameters. Using this system, we found that incubation with iRBCs and with extracellular particles (EPs) released by iRBCs changes endothelial cell morphology, decreases the tight junction protein zonula occludens-1 (ZO-1), increases the gene expression of the intercellular adhesion molecule 1 (ICAM-1), and induces a significant reduction in transendothelial electrical resistance (TEER) with increased permeability. We propose this in vitro experimental setup as a straightforward tool to investigate molecular interactions and pathways causing endothelial barrier dysfunction and to test compounds that may target BBB and be effective against CM. A pre-selection of the effective compounds that strengthen the resistance of the brain endothelial cell barrier to Plasmodium-induced blood factors in vitro may increase the likelihood of their efficacy in preclinical disease mouse models of CM and in subsequent clinical trials with patients.
Collapse
Affiliation(s)
- Teresa F Pais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal.
| | | |
Collapse
|
8
|
Li JX, Liao WZ, Huang ZM, Yin X, Ouyang S, Gu B, Guo XG. Identifying effective diagnostic biomarkers for childhood cerebral malaria in Africa integrating coexpression analysis with machine learning algorithm. Eur J Med Res 2023; 28:76. [PMID: 36782344 PMCID: PMC9926768 DOI: 10.1186/s40001-022-00980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/30/2022] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a manifestation of malaria caused by plasmodium infection. It has a high mortality rate and severe neurological sequelae, existing a significant research gap and requiring further study at the molecular level. METHODS We downloaded the GSE117613 dataset from the Gene Expression Omnibus (GEO) database to determine the differentially expressed genes (DEGs) between the CM group and the control group. Weighted gene coexpression network analysis (WGCNA) was applied to select the module and hub genes most relevant to CM. The common genes of the key module and DEGs were selected to perform further analysis. The least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine recursive feature elimination (SVM-RFE) were applied to screen and verify the diagnostic markers of CM. Eventually, the hub genes were validated in the external dataset. Gene set enrichment analysis (GSEA) was applied to investigate the possible roles of the hub genes. RESULTS The GO and KEGG results showed that DEGs were enriched in some neutrophil-mediated pathways and associated with some lumen structures. Combining LASSO and the SVM-RFE algorithms, LEF1 and IRAK3 were identified as potential hub genes in CM. Through the GSEA enrichment results, we found that LEF1 and IRAK3 participated in maintaining the integrity of the blood-brain barrier (BBB), which contributed to improving the prognosis of CM. CONCLUSIONS This study may help illustrate the pathophysiology of CM at the molecular level. LEF1 and IRAK3 can be used as diagnostic biomarkers, providing new insight into the diagnosis and prognosis prediction in pediatric CM.
Collapse
Affiliation(s)
- Jia-Xin Li
- grid.417009.b0000 0004 1758 4591Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 China ,grid.410737.60000 0000 8653 1072Department of Clinical Medicine, The First Clinical School of Guangzhou Medical University, Guangzhou, 511436 China
| | - Wan-Zhe Liao
- grid.417009.b0000 0004 1758 4591Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 China ,grid.410737.60000 0000 8653 1072Department of Clinical Medicine, The Nanshan College of Guangzhou Medical University, Guangzhou, 511436 China
| | - Ze-Min Huang
- grid.417009.b0000 0004 1758 4591Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 China ,grid.410737.60000 0000 8653 1072Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, 511436 China
| | - Xin Yin
- grid.417009.b0000 0004 1758 4591Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 China ,grid.410737.60000 0000 8653 1072Department of Pediatrics, The Pediatrics School of Guangzhou Medical University, Guangzhou, 511436 China
| | - Shi Ouyang
- grid.410737.60000 0000 8653 1072Department of Infectious Disease, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150 China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China.
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China. .,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202944. [PMID: 36300890 PMCID: PMC9798991 DOI: 10.1002/advs.202202944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.
Collapse
Affiliation(s)
- Oscar Bate Akide Ndunge
- Department of Internal MedicineSection of Infectious DiseasesYale University School of Medicine300 Cedar StreetNew HavenCT06510USA
| | - Nicole Kilian
- Centre for Infectious Diseases, ParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Mootaz M. Salman
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
10
|
Hasanzadeh A, Rafiei A, Kazemi M, Beiromvand M, Bahreini A, Khanahmad H. The Role of Tissue Inhibitor of Metalloproteinase-1 and 2 in Echinococcus granulosus senso lato-Induced Human Hepatic Fibrosis. Acta Parasitol 2022; 67:851-857. [PMID: 35294975 DOI: 10.1007/s11686-022-00534-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/01/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The main mechanism underlying hepatic fibrosis is the imbalance between tissue Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs). This study aimed to investigate the potential role of TIMP-1 and TIMP-2 in the process of hepatic fibrosis caused by Echinococcus granulosus senso lato (E. granulosus s.l.). METHODS The expressions levels of TIMP-1 and TIMP-2 mRNAs were evaluated in fibrotic and normal hepatic tissues of 30 patients with Cystic Echinococcus (CE) using qRT-PCR. Moreover, their serum levels of TIMP-1 were assessed before CE cyst removal and 6 months after surgery using ELISA. RESULTS The qRT-PCR results showed that the expression levels of TIMP-1 and TIMP-2 mRNAs were significantly higher in the fibrotic hepatic tissue compared to the normal liver tissue, in a way that the TIMP-1 and TIMP-2 mRNA expression levels were 19.07 and 6.58 folds higher in the fibrotic tissue compared to the normal liver tissue. Among these TIMPs, TIMP-1 exhibited the higher area under the curve (AUC) value for predicting liver fibrosis. However, we could not find a significant difference in the serum levels of TIMP-1 before and after the cyst removal procedure (p = 0.48). CONCLUSIONS For the first time, our study showed that the significant overexpression of both TIMP mRNAs in the fibrotic liver tissue of the CE patients may be due to the increased expression of MMPs in the peri-cystic tissue. However, we could not find a significant difference in the pre- and post-operative TIMP-1 levels, which may be due to recurrence or heterogeneity in the cyst type. Therefore, performing further studies with a larger sample size of the CE patients is recommended.
Collapse
Affiliation(s)
- Azadeh Hasanzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdollah Rafiei
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Molouk Beiromvand
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Parasitology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Amin Bahreini
- Department of Surgery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
11
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:800-811. [DOI: 10.1093/jpp/rgac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022]
|
12
|
Skripka A, Mendez-Gonzalez D, Marin R, Ximendes E, Del Rosal B, Jaque D, Rodríguez-Sevilla P. Near infrared bioimaging and biosensing with semiconductor and rare-earth nanoparticles: recent developments in multifunctional nanomaterials. NANOSCALE ADVANCES 2021; 3:6310-6329. [PMID: 36133487 PMCID: PMC9417871 DOI: 10.1039/d1na00502b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/03/2021] [Indexed: 05/17/2023]
Abstract
Research in novel materials has been extremely active over the past few decades, wherein a major area of interest has been nanoparticles with special optical properties. These structures can overcome some of the intrinsic limitations of contrast agents routinely used in medical practice, while offering additional functionalities. Materials that absorb or scatter near infrared light, to which biological tissues are partially transparent, have attracted significant attention and demonstrated their potential in preclinical research. In this review, we provide an at-a-glance overview of the most recent developments in near infrared nanoparticles that could have far-reaching applications in the life sciences. We focus on materials that offer additional functionalities besides diagnosis based on optical contrast: multiple imaging modalities (multimodal imaging), sensing of physical and chemical cues (multivariate diagnosis), or therapeutic activity (theranostics). Besides presenting relevant case studies for each class of optically active materials, we discuss their design and safety considerations, detailing the potential hurdles that may complicate their clinical translation. While multifunctional nanomaterials have shown promise in preclinical research, the field is still in its infancy; there is plenty of room to maximize its impact in preclinical studies as well as to deliver it to the clinics.
Collapse
Affiliation(s)
- Artiom Skripka
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Diego Mendez-Gonzalez
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Riccardo Marin
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
| | - Erving Ximendes
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Blanca Del Rosal
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University 124 La Trobe St Melbourne VIC 3000 Australia
| | - Daniel Jaque
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Ctra. Colmenar km. 9.100 Madrid 28034 Spain
| | - Paloma Rodríguez-Sevilla
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid Madrid 28049 Spain
| |
Collapse
|
13
|
Karikari AA, Wruck W, Adjaye J. Transcriptome-based analysis of blood samples reveals elevation of DNA damage response, neutrophil degranulation, cancer and neurodegenerative pathways in Plasmodium falciparum patients. Malar J 2021; 20:383. [PMID: 34565410 PMCID: PMC8474955 DOI: 10.1186/s12936-021-03918-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum results in severe complications including cerebral malaria (CM) especially in children. While the majority of falciparum malaria survivors make a full recovery, there are reports of some patients ending up with neurological sequelae or cognitive deficit. METHODS An analysis of pooled transcriptome data of whole blood samples derived from two studies involving various P. falciparum infections, comprising mild malaria (MM), non-cerebral severe malaria (NCM) and CM was performed. Pathways and gene ontologies (GOs) elevated in the distinct P. falciparum infections were determined. RESULTS In all, 2876 genes were expressed in common between the 3 forms of falciparum malaria, with CM having the least number of expressed genes. In contrast to other research findings, the analysis from this study showed MM share similar biological processes with cancer and neurodegenerative diseases, NCM is associated with drug resistance and glutathione metabolism and CM is correlated with endocannabinoid signalling and non-alcoholic fatty liver disease (NAFLD). GO revealed the terms biogenesis, DNA damage response and IL-10 production in MM, down-regulation of cytoskeletal organization and amyloid-beta clearance in NCM and aberrant signalling, neutrophil degranulation and gene repression in CM. Differential gene expression analysis between CM and NCM showed the up-regulation of neutrophil activation and response to herbicides, while regulation of axon diameter was down-regulated in CM. CONCLUSIONS Results from this study reveal that P. falciparum-mediated inflammatory and cellular stress mechanisms may impair brain function in MM, NCM and CM. However, the neurological deficits predominantly reported in CM cases could be attributed to the down-regulation of various genes involved in cellular function through transcriptional repression, axonal dysfunction, dysregulation of signalling pathways and neurodegeneration. It is anticipated that the data from this study, might form the basis for future hypothesis-driven malaria research.
Collapse
Affiliation(s)
- Akua A. Karikari
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Georgiadou A, Naidu P, Walsh S, Kamiza S, Barrera V, Harding SP, Moxon CA, Cunnington AJ. Localised release of matrix metallopeptidase 8 in fatal cerebral malaria. Clin Transl Immunology 2021; 10:e1263. [PMID: 33968402 PMCID: PMC8082700 DOI: 10.1002/cti2.1263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE Cerebral malaria (CM) is a complication of Plasmodium falciparum malaria, in which progressive brain swelling is associated with sequestration of parasites and impaired barrier function of the cerebral microvascular endothelium. To test the hypothesis that localised release of matrix metallopeptidase 8 (MMP8) within the retina is implicated in microvascular leak in CM, we examined its expression and association with extravascular fibrinogen leak in a case-control study of post-mortem retinal samples from 13 Malawian children who met the clinical case definition of CM during life. Cases were seven children who were found on post-mortem examination to have 'true-CM' (parasite sequestration in brain blood vessels), whilst controls were six children who had alternative causes of death ('faux-CM', no parasite sequestration in blood vessels). METHODS We used immunofluorescence microscopy and independent scoring, by two assessors blinded to the CM status, to assess MMP8 expression, extravascular fibrinogen as an indicator of vascular leak and their co-localisation in the retinal microvasculature. RESULTS In 'true-CM' subjects, MMP8 staining was invariably associated with sequestered parasites and a median of 88% (IQR = 74-91%) of capillaries showed MMP8 staining, compared with 14% (IQR = 3.8-24%) in 'faux-CM' (P-value = 0.001). 41% (IQR = 28-49%) of capillaries in 'true-CM' subjects showed co-localisation of extravascular fibrinogen leak and MMP8 staining, compared with 1.8% of capillaries in 'faux-CM' (IQR = 0-3.9%, P-value = 0.01). Vascular leak was rare in the absence of MMP8 staining. CONCLUSION Matrix metallopeptidase 8 was extensively expressed in retinal capillaries of Malawian children with malarial retinopathy and strongly associated with vascular leak. Our findings implicate MMP8 as a cause of the vascular endothelial barrier disruption in CM, which may precipitate fatal brain swelling.
Collapse
Affiliation(s)
- Athina Georgiadou
- Department of Infectious DiseaseSection of Paediatric Infectious DiseaseImperial College LondonLondonUK
- Centre for Paediatrics and Child HealthImperial College LondonLondonUK
| | - Praveena Naidu
- Department of Infectious DiseaseSection of Paediatric Infectious DiseaseImperial College LondonLondonUK
| | - Sophie Walsh
- Department of Infectious DiseaseSection of Paediatric Infectious DiseaseImperial College LondonLondonUK
| | - Steve Kamiza
- Department of PathologyCollege of MedicineUniversity of MalawiBlantyreMalawi
| | - Valentina Barrera
- Department of Eye and Vision ScienceInstitute of Life Course and Medical SciencesLiverpool University Hospitals Foundation TrustMembers of Liverpool Health PartnersUniversity of LiverpoolLiverpoolUK
| | - Simon P Harding
- Department of Eye and Vision ScienceInstitute of Life Course and Medical SciencesLiverpool University Hospitals Foundation TrustMembers of Liverpool Health PartnersUniversity of LiverpoolLiverpoolUK
| | - Christopher A Moxon
- Wellcome Centre for Integrative ParasitologyInstitute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
- Department of PaediatricsCollege of MedicineUniversity of MalawiBlantyreMalawi
- Malawi‐Liverpool Wellcome Clinical Research ProgrammeCollege of MedicineUniversity of MalawiBlantyreMalawi
| | - Aubrey J Cunnington
- Department of Infectious DiseaseSection of Paediatric Infectious DiseaseImperial College LondonLondonUK
- Centre for Paediatrics and Child HealthImperial College LondonLondonUK
| |
Collapse
|
15
|
Song Z, Yang L, Hu W, Yi J, Feng F, Zhu L. Effects of histone H4 hyperacetylation on inhibiting MMP2 and MMP9 in human amniotic epithelial cells and in premature rupture of fetal membranes. Exp Ther Med 2021; 21:515. [PMID: 33815588 PMCID: PMC8014974 DOI: 10.3892/etm.2021.9946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Histone modification is closely associated with several diseases. The aim of the current study was to investigate the associations among histone acetylation, matrix metalloproteinases (MMPs) and premature rupture of membranes (PROM) during pregnancy. A total of 180 puerperants were divided into three groups: i) Preterm-PROM (PPROM), ii) term-PROM (TPROM) and iii) full-term labor (FTL). Enzyme-linked immunosorbent assay (ELISA) kits and western blotting were used to determine the protein concentrations of MMP2, MMP9, histone deacetylase (HDAC)1, HDAC2 and HDAC6, and the protein levels of histone H4 lysine (H4K)5 and H4K8 acetylation, respectively, in three types of fetal membranes. Additionally, human amniotic epithelial cells were used to determine the effects of the HDAC inhibitors droxinostat and chidamide on cell viability, histone acetylation and the levels of MMP2, MMP9, HDAC1, HDAC2 and HDAC6 in vitro, using the Cell Counting Kit-8 assay, western blotting and ELISA, respectively. Furthermore, the effects of droxinostat and chidamide on the invasion and migration abilities of human amniotic epithelial cells were investigated using transwell assays. In fetal membranes, the activities of MMP2 and MMP9 increased in PPROM, but decreased in TPROM. Further, the expression of HDAC1 was decreased and histone hyperacetylation was increased in both PPROM and TRPOM. In vitro experiments revealed that 5 µM droxinostat and 0.5 µM chidamide selectively decreased the level of HDAC and induced acetylation of H4K5 and H4K8. Additionally, the aforementioned HDAC inhibitors reduced human amniotic epithelial cell viability, invasion and migration, and decreased the expression levels of MMP2 and MMP9. The current study revealed a high expression level of MMP2 and MMP9 in PPROM compared with TPROM and FL tissue, which was in accordance with previously published studies. Furthermore, the in vitro tests performed in the current study revealed the effect of histone H4 hyperacetylation on inhibiting MMP2 and MMP9 levels in vitro was similar to that observed in TPROM. The results obtained in the current study may be used as a theoretical guide for clinical treatment of premature rupture of membranes.
Collapse
Affiliation(s)
- Zhihui Song
- Department of Obstetrics, Maternal and Child Health Hospital of Tangshan, Tangshan, Hebei 063021, P.R. China
| | - Lili Yang
- Department of Obstetrics, Maternal and Child Health Hospital of Tangshan, Tangshan, Hebei 063021, P.R. China
| | - Wei Hu
- Department of Obstetrics, Maternal and Child Health Hospital of Luannan, Luannan, Hebei 063210, P.R. China
| | - Jianping Yi
- Department of Obstetrics, Maternal and Child Health Hospital of Tangshan, Tangshan, Hebei 063021, P.R. China
| | - Fumin Feng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063021, P.R. China
| | - Lingyan Zhu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063021, P.R. China
| |
Collapse
|
16
|
Lang SS, Paden W, Steenhoff AP, Hines K, Storm PB, Huh J. Intracranial Pressure and Brain Tissue Oxygen Neuromonitoring in Pediatric Cerebral Malaria. World Neurosurg 2020; 141:115-118. [PMID: 32526359 DOI: 10.1016/j.wneu.2020.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pediatric cerebral malaria (CM) is a severe complication of Plasmodium falciparum that often leaves survivors with severe neurologic impairment. Increased intracranial pressure (ICP) as a result of cerebral edema has been identified as a major predictor of morbidity and mortality in CM. Past studies have demonstrated that survivors are more likely to have resolution of elevated ICP and that efficient management of ICP crises may lead to better outcomes. However, data on invasive brain tissue oxygen monitoring are unknown. CASE DESCRIPTION We report a case of a pediatric patient with cerebral malaria who developed encephalopathy and cerebral edema and describe the pathophysiology of this disease process with invasive ICP and brain tissue oxygen multimodality neuromonitoring. The utilization of both ICP and brain tissue oxygen monitoring allowed prompt diagnosis and successful treatment of severe intracranial hypertension and low brain tissue oxygenation crisis. The patient was discharged to home in good neurologic condition. CONCLUSIONS Multimodality neuromonitoring may be considered in pediatric patients who have cerebral edema and encephalopathy from CM.
Collapse
Affiliation(s)
- Shih-Shan Lang
- Division of Neurosurgery, Department of Neurosurgery, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA.
| | - William Paden
- Drexel University, College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew P Steenhoff
- Division of Infectious Diseases, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kevin Hines
- Department of Neurosurgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania, USA
| | - Phillip B Storm
- Division of Neurosurgery, Department of Neurosurgery, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jimmy Huh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Abah SE, Burté F, Howell SA, Lagunju I, Shokunbi WA, Wahlgren M, Sodeinde O, Brown BJ, Holder AA, Fernandez-Reyes D. Depleted circulatory complement-lysis inhibitor (CLI) in childhood cerebral malaria returns to normal with convalescence. Malar J 2020; 19:167. [PMID: 32336276 PMCID: PMC7184698 DOI: 10.1186/s12936-020-03241-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/17/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Cerebral malaria (CM), is a life-threatening childhood malaria syndrome with high mortality. CM is associated with impaired consciousness and neurological damage. It is not fully understood, as yet, why some children develop CM. Presented here is an observation from longitudinal studies on CM in a paediatric cohort of children from a large, densely-populated and malaria holoendemic, sub-Saharan, West African metropolis. METHODS Plasma samples were collected from a cohort of children with CM, severe malarial anaemia (SMA), uncomplicated malaria (UM), non-malaria positive healthy community controls (CC), and coma and anemic patients without malaria, as disease controls (DC). Proteomic two-dimensional difference gel electrophoresis (2D-DIGE) and mass spectrometry were used in a discovery cohort to identify plasma proteins that might be discriminatory among these clinical groups. The circulatory levels of identified proteins of interest were quantified by ELISA in a prospective validation cohort. RESULTS The proteome analysis revealed differential abundance of circulatory complement-lysis inhibitor (CLI), also known as Clusterin (CLU). CLI circulatory level was low at hospital admission in all children presenting with CM and recovered to normal level during convalescence (p < 0.0001). At acute onset, circulatory level of CLI in the CM group significantly discriminates CM from the UM, SMA, DC and CC groups. CONCLUSIONS The CLI circulatory level is low in all patients in the CM group at admission, but recovers through convalescence. The level of CLI at acute onset may be a specific discriminatory marker of CM. This work suggests that CLI may play a role in the pathophysiology of CM and may be useful in the diagnosis and follow-up of children presenting with CM.
Collapse
Affiliation(s)
| | - Florence Burté
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Steven A Howell
- Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ikeoluwa Lagunju
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Wuraola A Shokunbi
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Olugbemiro Sodeinde
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Computer Science, Faculty of Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Biobele J Brown
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | | | - Delmiro Fernandez-Reyes
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.
- Childhood Malaria Research Group, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria.
- Department of Computer Science, Faculty of Engineering, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
18
|
Vanka R, Nakka VP, Kumar SP, Baruah UK, Babu PP. Molecular targets in cerebral malaria for developing novel therapeutic strategies. Brain Res Bull 2020; 157:100-107. [PMID: 32006570 DOI: 10.1016/j.brainresbull.2020.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Cerebral malaria (CM) is the severe neurological complication associated with Plasmodium falciparum infection. In clinical settings CM is predominantly characterized by fever, epileptic seizures, and asexual forms of parasite on blood smears, coma and even death. Cognitive impairment in the children and adults even after survival is one of the striking consequences of CM. Poor diagnosis often leads to inappropriate malaria therapy which in turn progress into a severe form of disease. Activation of multiple cell death pathways such as Inflammation, oxidative stress, apoptosis and disruption of blood brain barrier (BBB) plays critical role in the pathogenesis of CM and secondary brain damage. Thus, understanding such mechanisms of neuronal cell death might help to identify potential molecular targets for CM. Mitigation strategies for mortality rate and long-term cognitive deficits caused by existing anti-malarial drugs still remains a valid research question to ask. In this review, we discuss in detail about critical neuronal cell death mechanisms and the overall significance of adjunctive therapy with recent trends, which provides better insight towards establishing newer therapeutic strategies for CM.
Collapse
Affiliation(s)
- Ravisankar Vanka
- Department of Pharmaceutics, Aditya Pharmacy College, Suramaplem, Gandepalli Mandal, East Godavari, Andhra Pradesh, 533437, India
| | - Venkata Prasuja Nakka
- Department of Biochemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Simhadri Praveen Kumar
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Tamil Nadu 643001, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
19
|
Whittaker E, López-Varela E, Broderick C, Seddon JA. Examining the Complex Relationship Between Tuberculosis and Other Infectious Diseases in Children. Front Pediatr 2019; 7:233. [PMID: 31294001 PMCID: PMC6603259 DOI: 10.3389/fped.2019.00233] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Millions of children are exposed to tuberculosis (TB) each year, many of which become infected with Mycobacterium tuberculosis. Most children can immunologically contain or eradicate the organism without pathology developing. However, in a minority, the organism overcomes the immunological constraints, proliferates and causes TB disease. Each year a million children develop TB disease, with a quarter dying. While it is known that young children and those with immunodeficiencies are at increased risk of progression from TB infection to TB disease, our understanding of risk factors for this transition is limited. The most immunologically disruptive process that can happen during childhood is infection with another pathogen and yet the impact of co-infections on TB risk is poorly investigated. Many diseases have overlapping geographical distributions to TB and affect similar patient populations. It is therefore likely that infection with viruses, bacteria, fungi and protozoa may impact on the risk of developing TB disease following exposure and infection, although disentangling correlation and causation is challenging. As vaccinations also disrupt immunological pathways, these may also impact on TB risk. In this article we describe the pediatric immune response to M. tuberculosis and then review the existing evidence of the impact of co-infection with other pathogens, as well as vaccination, on the host response to M. tuberculosis. We focus on the impact of other organisms on the risk of TB disease in children, in particularly evaluating if co-infections drive host immune responses in an age-dependent way. We finally propose priorities for future research in this field. An improved understanding of the impact of co-infections on TB could assist in TB control strategies, vaccine development (for TB vaccines or vaccines for other organisms), TB treatment approaches and TB diagnostics.
Collapse
Affiliation(s)
- Elizabeth Whittaker
- Department of Paediatrics, Imperial College London, London, United Kingdom
- Department of Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, St. Mary's Campus, London, United Kingdom
| | - Elisa López-Varela
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Claire Broderick
- Department of Paediatrics, Imperial College London, London, United Kingdom
| | - James A. Seddon
- Department of Paediatrics, Imperial College London, London, United Kingdom
- Department of Paediatric Infectious Diseases, Imperial College Healthcare NHS Trust, St. Mary's Campus, London, United Kingdom
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
20
|
Clark RL. Genesis of placental sequestration in malaria and possible targets for drugs for placental malaria. Birth Defects Res 2019; 111:569-583. [PMID: 30919596 PMCID: PMC7432169 DOI: 10.1002/bdr2.1496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/11/2023]
Abstract
Malaria during pregnancy results in intrauterine growth restriction, fetal anemia, and infant mortality. Women are more susceptible to malaria during pregnancy due to malaria‐induced inflammation and the sequestration of infected red blood cells in the placenta, which bind to the chondroitin sulfate portion of syndecan‐1 on the syncytiotrophoblast and in the intervillous space. Syndecan‐1 is a dimeric proteoglycan with an extracellular ectodomain that is cleaved from the transmembrane domain (referred to as “shedding”) by matrix metalloproteinases (MMPs), likely the secreted MMP‐9. The ectodomain includes four binding sites for chondroitin sulfate, which are proximal to the transmembrane domain, and six distal binding sites primarily for heparan sulfate. This “shedding” of syndecan‐1 is inhibited by the presence of the heparan sulfate chains, which can be removed by heparanase. The intervillous space contains fibrin strands and syndecan‐1 ectodomains free of heparan sulfate. The following is proposed as the sequence of events that leads to and is primarily responsible for sequestration in the intervillous space of the placenta. Inflammation associated with malaria triggers increased heparanase activity that degrades the heparan sulfate on the membrane‐bound syndecan‐1. Inflammation also upregulates MMP‐9 and the removal of heparan sulfate gives MMP‐9 access to cleave syndecan‐1, thereby releasing dimeric syndecan‐1 ectodomains with at least four chondroitin sulfate chains attached. These multivalent ectodomains bind infected RBCs together leading to their aggregation and entrapment in intervillous fibrin. This mechanism suggests possible new targets for anti‐placental malaria drugs such as the inhibition of MMP‐9. Doxycycline is an antimalarial drug which inhibits MMP‐9.
Collapse
|
21
|
González-Miguel J, Valero MA, Reguera-Gomez M, Mas-Bargues C, Bargues MD, Simón F, Mas-Coma S. Numerous Fasciola plasminogen-binding proteins may underlie blood-brain barrier leakage and explain neurological disorder complexity and heterogeneity in the acute and chronic phases of human fascioliasis. Parasitology 2019; 146:284-298. [PMID: 30246668 PMCID: PMC6402360 DOI: 10.1017/s0031182018001464] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 12/17/2022]
Abstract
Human fascioliasis is a worldwide, pathogenic food-borne trematodiasis. Impressive clinical pictures comprising puzzling polymorphisms, manifestation multifocality, disease evolution changes, sequelae and mortality, have been reported in patients presenting with neurological, meningeal, neuropsychic and ocular disorders caused at distance by flukes infecting the liver. Proteomic and mass spectrometry analyses of the Fasciola hepatica excretome/secretome identified numerous, several new, plasminogen-binding proteins enhancing plasmin generation. This may underlie blood-brain barrier leakage whether by many simultaneously migrating, small-sized juvenile flukes in the acute phase, or by breakage of encapsulating formations triggered by single worm tracks in the chronic phase. Blood-brain barrier leakages may subsequently occur due to a fibrinolytic system-dependent mechanism involving plasmin-dependent generation of the proinflammatory peptide bradykinin and activation of bradykinin B2 receptors, after different plasminogen-binding protein agglomeration waves. Interactions between diverse parasitic situations and non-imbalancing fibrinolysis system alterations are for the first time proposed that explain the complexity, heterogeneity and timely variations of neurological disorders. Additionally, inflammation and dilation of blood vessels may be due to contact system-dependent generation bradykinin. This baseline allows for search of indicators to detect neurological risk in fascioliasis patients and experimental work on antifibrinolytic treatments or B2 receptor antagonists for preventing blood-brain barrier leakage.
Collapse
Affiliation(s)
- J. González-Miguel
- Laboratorio de Parasitología, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), Cordel de Merinas 40-52, 37008 Salamanca, Spain
| | - M. A. Valero
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - M. Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - C. Mas-Bargues
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Av. Blasco Ibáñez No. 15, 46010 Valencia, Spain
| | - M. D. Bargues
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| | - F. Simón
- Área de Parasitología, Facultad de Farmacia, Universidad de Salamanca, Av. Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain
| | - S. Mas-Coma
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
22
|
Gomes PS, Tanghe S, Gallego-Delgado J, Conde L, Freire-de-Lima L, Lima AC, Freire-de-Lima CG, Lima Junior JDC, Moreira O, Totino P, Rodriguez A, Todeschini AR, Morrot A. Targeting the Hexosamine Biosynthetic Pathway Prevents Plasmodium Developmental Cycle and Disease Pathology in Vertebrate Host. Front Microbiol 2019; 10:305. [PMID: 30873136 PMCID: PMC6403127 DOI: 10.3389/fmicb.2019.00305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 02/05/2019] [Indexed: 11/13/2022] Open
Abstract
Cerebral malaria (CM) is a clinical syndrome involving irreversible and lethal signs of brain injury associated to infection by parasites of the genus Plasmodium. The pathogenesis of CM derives from infection-induced proinflammatory cytokines associated with cytoadherence of parasitized red blood cells to brain microvasculature. Glycoconjugates are very abundant in the surface of Plasmodium spp., and are critical mediators of parasite virulence in host–pathogen interactions. Herein, we show that 6-Diazo-5-oxo-L-norleucine (DON) therapeutically used for blocking hexosamine biosynthetic pathway leads to recovery in experimental murine cerebral malaria. DON-induced protection was associated with decreased parasitism, which severely reduced Plasmodium transmission to mosquitoes. These findings point to a potential use of DON in combination therapies against malaria.
Collapse
Affiliation(s)
- Pollyanna Stephanie Gomes
- Centro de Pesquisas em Tuberculose, Instituto de Microbiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Scott Tanghe
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York City, NY, United States
| | - Julio Gallego-Delgado
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York City, NY, United States
| | - Luciana Conde
- Centro de Pesquisas em Tuberculose, Instituto de Microbiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Célio Geraldo Freire-de-Lima
- Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Paulo Totino
- Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Ana Rodriguez
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York City, NY, United States
| | - Adriane Regina Todeschini
- Laboratório de Glicobiologia Estrutural e Funcional, Instituto de Biofísica Carlos Chagas Filho IBCCF, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre Morrot
- Centro de Pesquisas em Tuberculose, Instituto de Microbiologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Luzolo AL, Ngoyi DM. Cerebral malaria. Brain Res Bull 2019; 145:53-58. [DOI: 10.1016/j.brainresbull.2019.01.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 01/17/2023]
|
24
|
Noumbissi ME, Galasso B, Stins MF. Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models. Fluids Barriers CNS 2018; 15:12. [PMID: 29688865 PMCID: PMC5911972 DOI: 10.1186/s12987-018-0097-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
The vertebrate blood–brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.
Collapse
Affiliation(s)
- Midrelle E Noumbissi
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Bianca Galasso
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Monique F Stins
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA.
| |
Collapse
|
25
|
Liu M, Solomon W, Cespedes JC, Wilson NO, Ford B, Stiles JK. Neuregulin-1 attenuates experimental cerebral malaria (ECM) pathogenesis by regulating ErbB4/AKT/STAT3 signaling. J Neuroinflammation 2018; 15:104. [PMID: 29636063 PMCID: PMC5894207 DOI: 10.1186/s12974-018-1147-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 12/30/2022] Open
Abstract
Background Human cerebral malaria (HCM) is a severe form of malaria characterized by sequestration of infected erythrocytes (IRBCs) in brain microvessels, increased levels of circulating free heme and pro-inflammatory cytokines and chemokines, brain swelling, vascular dysfunction, coma, and increased mortality. Neuregulin-1β (NRG-1) encoded by the gene NRG1, is a member of a family of polypeptide growth factors required for normal development of the nervous system and the heart. Utilizing an experimental cerebral malaria (ECM) model (Plasmodium berghei ANKA in C57BL/6), we reported that NRG-1 played a cytoprotective role in ECM and that circulating levels were inversely correlated with ECM severity. Intravenous infusion of NRG-1 reduced ECM mortality in mice by promoting a robust anti-inflammatory response coupled with reduction in accumulation of IRBCs in microvessels and reduced tissue damage. Methods In the current study, we examined how NRG-1 treatment attenuates pathogenesis and mortality associated with ECM. We examined whether NRG-1 protects against CXCL10- and heme-induced apoptosis using human brain microvascular endothelial (hCMEC/D3) cells and M059K neuroglial cells. hCMEC/D3 cells grown in a monolayer and a co-culture system with 30 μM heme and NRG-1 (100 ng/ml) were used to examine the role of NRG-1 on blood brain barrier (BBB) integrity. Using the in vivo ECM model, we examined whether the reduction of mortality was associated with the activation of ErbB4 and AKT and inactivation of STAT3 signaling pathways. For data analysis, unpaired t test or one-way ANOVA with Dunnett’s or Bonferroni’s post test was applied. Results We determined that NRG-1 protects against cell death/apoptosis of human brain microvascular endothelial cells and neroglial cells, the two major components of BBB. NRG-1 treatment improved heme-induced disruption of the in vitro BBB model consisting of hCMEC/D3 and human M059K cells. In the ECM murine model, NRG-1 treatment stimulated ErbB4 phosphorylation (pErbB4) followed by activation of AKT and inactivation of STAT3, which attenuated ECM mortality. Conclusions Our results indicate a potential pathway by which NRG-1 treatment maintains BBB integrity in vitro, attenuates ECM-induced tissue injury, and reduces mortality. Furthermore, we postulate that augmenting NRG-1 during ECM therapy may be an effective adjunctive therapy to reduce CNS tissue injury and potentially increase the effectiveness of current anti-malaria therapy against human cerebral malaria (HCM).
Collapse
Affiliation(s)
- Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
| | - Wesley Solomon
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Juan Carlos Cespedes
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Nana O Wilson
- Fogarty Global Health Fellow (UJMT), Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA
| | - Byron Ford
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, 900 University Ave, Riverside, CA, 92521, USA
| | - Jonathan K Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Drive SW, Atlanta, GA, 30310, USA.
| |
Collapse
|
26
|
Vanka R, Kuppusamy G, Praveen Kumar S, Baruah UK, Karri VVSR, Pandey V, Babu PP. Ameliorating the in vivo antimalarial efficacy of artemether using nanostructured lipid carriers. J Microencapsul 2018; 35:121-136. [PMID: 29448884 DOI: 10.1080/02652048.2018.1441915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cerebral malaria (CM) is a fatal neurological complication of Plasmodium falciparum infection that affects children (below five years old) in sub-Saharan Africa and adults in South-East Asia each year having the fatality rate of 10-25%. The survivors of CM also have high risk of long term neurological or cognitive deficits. The objective of the present investigation was to develop optimised nanostructured lipid carriers (NLCs) of artemether (ARM) for enhanced anti-malarial efficacy of ARM. NLCs of ARM were prepared by a combination of high speed homogenisation (HSH) and probe sonication techniques. Preliminary solubility studies for ARM showed highest solubility in trimyristin (solid lipid), capmul MCM NF (liquid lipid) and polysorbate 80 (surfactant). Trimyristin and capmul showed superior miscibility at a ratio of 70:30.The optimised NLC formulation has the particle size (PS) of: 48.59 ± 3.67 nm, zeta potential (ZP) of: -32 ± 1.63 mV and entrapment efficiency (EE) of: 91 ± 3.62%. In vitro cell line (human embryonic kidney fibroblast cell line (HEK 293 T)) cytotoxicity studies showed that prepared formulation was non-toxic. The results of in vivo studies in CM induced mice prevented the recrudescence of parasite after administration of NLCs of ARM. Additionally, NLCs of ARM showed better parasite clearance, higher survival (60%) in comparison to ARM solution (40%). Also it was observed that lesser entrapment of Evans blue stain (prepared in PBS as solution) in the NLCs of ARM treated brains of C57BL/6 mice than ARM solution treated mice. Hence NLCs of ARM may be a better alternative for improving therapeutic efficacy than ARM solution.
Collapse
Affiliation(s)
- Ravisankar Vanka
- a Department of Pharmaceutics, JSS College of Pharmacy, Ooty , Jagadguru Sri Shivarathreeswara University , Mysuru , India
| | - Gowthamarajan Kuppusamy
- a Department of Pharmaceutics, JSS College of Pharmacy, Ooty , Jagadguru Sri Shivarathreeswara University , Mysuru , India
| | - Simhadri Praveen Kumar
- b Department of Biotechnology and Bioinformatics, School of Life Sciences , University of Hyderabad , Hyderabad , Telangana , India
| | - Uday Krishna Baruah
- a Department of Pharmaceutics, JSS College of Pharmacy, Ooty , Jagadguru Sri Shivarathreeswara University , Mysuru , India
| | | | - Vimal Pandey
- b Department of Biotechnology and Bioinformatics, School of Life Sciences , University of Hyderabad , Hyderabad , Telangana , India
| | - Phanithi Prakash Babu
- b Department of Biotechnology and Bioinformatics, School of Life Sciences , University of Hyderabad , Hyderabad , Telangana , India
| |
Collapse
|
27
|
Cerebral Malaria Causes Enduring Behavioral and Molecular Changes in Mice Brain Without Causing Gross Histopathological Damage. Neuroscience 2017; 369:66-75. [PMID: 29113928 DOI: 10.1016/j.neuroscience.2017.10.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/11/2017] [Accepted: 10/30/2017] [Indexed: 01/13/2023]
Abstract
Malaria, parasitic disease considered a major health public problem, is caused by Plasmodium protozoan genus and transmitted by the bite of infected female Anopheles mosquito genus. Cerebral malaria (CM) is the most severe presentation of malaria, caused by P. falciparum and responsible for high mortality and enduring development of cognitive deficits which may persist even after cure and cessation of therapy. In the present study we evaluated selected behavioral, neurochemical and neuropathologic parameters after rescue from experimental cerebral malaria caused by P. berghei ANKA in C57BL/6 mice. Behavioral tests showed impaired nest building activity as well as increased marble burying, indicating that natural behavior of mice remains altered even after cure of infection. Regarding the neurochemical data, we found decreased α2/α3 Na+,K+-ATPase activity and increased immunoreactivity of phosphorylated Na+,K+-ATPase at Ser943 in cerebral cortex after CM. In addition, [3H]-Flunitrazepam binding assays revealed a decrease of benzodiazepine/GABAA receptor binding sites in infected animals. Moreover, in hippocampus, dot blot analysis revealed increased levels of protein carbonyls, suggesting occurrence of oxidative damage to proteins. Interestingly, no changes in the neuropathological markers Fluoro-Jade C, Timm staining or IBA-1 were detected. Altogether, present data indicate that behavioral and neurochemical alterations persist even after parasitemia clearance and CM recovery, which agrees with available clinical findings. Some of the molecular mechanisms reported in the present study may underlie the behavioral changes and increased seizure susceptibility that persist after recovery from CM and may help in the future development of therapeutic strategies for CM sequelae.
Collapse
|
28
|
Njunge JM, Oyaro IN, Kibinge NK, Rono MK, Kariuki SM, Newton CR, Berkley JA, Gitau EN. Cerebrospinal fluid markers to distinguish bacterial meningitis from cerebral malaria in children. Wellcome Open Res 2017; 2:47. [PMID: 29181450 PMCID: PMC5686508 DOI: 10.12688/wellcomeopenres.11958.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2017] [Indexed: 12/23/2022] Open
Abstract
Background. Few hospitals in high malaria endemic countries in Africa have the diagnostic capacity for clinically distinguishing acute bacterial meningitis (ABM) from cerebral malaria (CM). As a result, empirical use of antibiotics is necessary. A biochemical marker of ABM would facilitate precise clinical diagnosis and management of these infections and enable rational use of antibiotics. Methods. We used label-free protein quantification by mass spectrometry to identify cerebrospinal fluid (CSF) markers that distinguish ABM (n=37) from CM (n=22) in Kenyan children. Fold change (FC) and false discovery rates (FDR) were used to identify differentially expressed proteins. Subsequently, potential biomarkers were assessed for their ability to discriminate between ABM and CM using receiver operating characteristic (ROC) curves. Results. The host CSF proteome response to ABM ( Haemophilusinfluenza and Streptococcuspneumoniae) is significantly different to CM. Fifty two proteins were differentially expressed (FDR<0.01, Log FC≥2), of which 83% (43/52) were upregulated in ABM compared to CM. Myeloperoxidase and lactotransferrin were present in 37 (100%) and 36 (97%) of ABM cases, respectively, but absent in CM (n=22). Area under the ROC curve (AUC), sensitivity, and specificity were assessed for myeloperoxidase (1, 1, and 1; 95% CI, 1-1) and lactotransferrin (0.98, 0.97, and 1; 95% CI, 0.96-1). Conclusion. Myeloperoxidase and lactotransferrin have a high potential to distinguish ABM from CM and thereby improve clinical management. Their validation requires a larger cohort of samples that includes other bacterial aetiologies of ABM.
Collapse
Affiliation(s)
- James M Njunge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Ian N Oyaro
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,University of Nairobi, Nairobi, Kenya
| | - Nelson K Kibinge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Martin K Rono
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,Pwani University Health and Research Institute, Pwani University, Kilifi, Kenya
| | - Symon M Kariuki
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Charles R Newton
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,Department of Psychiatry, Medical Sciences Division, University of Oxford, Oxford, OX3 7JX, UK
| | - James A Berkley
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, OX3 7FZ, UK
| | - Evelyn N Gitau
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research Coast, Kilifi, Kenya.,Alliance for Accelerating Excellence in Science in Africa (AESA), Nairobi, Kenya
| |
Collapse
|
29
|
Basilico N, Corbett Y, D' Alessandro S, Parapini S, Prato M, Girelli D, Misiano P, Olliaro P, Taramelli D. Malaria pigment stimulates chemokine production by human microvascular endothelium. Acta Trop 2017; 172:125-131. [PMID: 28476599 DOI: 10.1016/j.actatropica.2017.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 01/07/2023]
Abstract
Severe falciparum malaria is characterized by the sequestration of infected erythrocytes and leukocyte recruitment in the microvasculature, resulting in impaired blood flow and metabolic disturbances. Which parasite products cause chemokine production, thus contributing to the strong host inflammatory response and cellular recruitment are not well characterized. Here, we studied haemozoin (Hz), the end-product of haem, a ferriprotoporphyrin-IX crystal bound to host and parasite lipids, DNA, and proteins. We found that natural Hz isolated from Plasmodium falciparum cultures induces CXCL8 and CCL5 production in human dermal microvascular endothelial cells (HMEC-1) in a time-dependent manner. This up-regulation is not caused by haem but rather by Hz-generated lipoperoxidation products (15-HETE) and fibrinogen associated to Hz, and is, at least in part, triggered by the activation of NF-κB, as it was significantly inhibited by artemisinin and other NF-κB pathway inhibitors.
Collapse
Affiliation(s)
- Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy.
| | - Yolanda Corbett
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy
| | - Sarah D' Alessandro
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy; Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy
| | - Mauro Prato
- Dipartimento di Neuroscienze Università di Torino, Corso Raffaello 30-10125, Torino, Italy
| | - Daniela Girelli
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy
| | - Paola Misiano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy
| | - Piero Olliaro
- UNICEF/UNDP/World Bank/WHO Special Programme on Research & Training in Tropical Diseases (TDR) World Health Organization, Geneva, Switzerland; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, via Pascal 36-20133, Milano, Italy
| |
Collapse
|
30
|
Zhu X, Liu J, Feng Y, Pang W, Qi Z, Jiang Y, Shang H, Cao Y. Phenylhydrazine administration accelerates the development of experimental cerebral malaria. Exp Parasitol 2015; 156:1-11. [PMID: 26005191 DOI: 10.1016/j.exppara.2015.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 05/12/2015] [Accepted: 05/18/2015] [Indexed: 01/13/2023]
Abstract
Phenylhydrazine (PHZ) treatment is generally used to enhance parasitemia in infected mice models. Transient reticulocytosis is commonly observed in iron-deficient anemic hosts after treatment with iron supplementation, and is also associated with short-term hemolysis caused by PHZ treatment. In this study, we investigated the relationship between reticulocytosis and cerebral malaria (CM) in a murine model induced by PHZ administration before Plasmodium berghei ANKA (PbA) infection. Mortality and parasitemia were checked daily. Pro-inflammatory cytokines and IL-10 were quantified by ELISA. The expression of CXCL9, CXCL10, CCL5, and CXCR3 mRNAs was determined by real-time PCR. Brain sequestration of CD4(+) and CD8(+) T cells and populations of splenic Th1 CD4(+) T cells, dendritic cells (DCs), CD11b(+) Gr1(+) cells, and regulatory T cells (Tregs) were assessed by FACS. PHZ administration dramatically increased parasitemia from day 3 to day 5 post infection (p.i.) compared with the untreated control infected mice group; also, CM developed at day 5 p.i., compared with day 7 p.i. in untreated control infected mice, as well as significantly decreased blood-brain barrier function (P < 0.001). PHZ administration during PbA infection significantly increased the expression of CXCL9 (P <0.05) and VCAM-1 (P <0.001) in the brain, increased the expression of CXCL10, CCL5 and CXCR3, and significantly increased the recruitment of CD4(+) and CD8(+) T cells (P <0.001 and P <0.01, respectively) as well as CD11b(+) Gr1(+) cells to the brain. In addition, PHZ administration significantly increased the numbers of IL-12-secreting DCs at days 3 and 5 p.i. compared to those of untreated control infected mice (P <0.001 and P <0.01, respectively). Consequently, the activation of CD4(+) T cells, especially the expansion of the Th1 subset (P <0.05), was significantly and dramatically enhanced and was accompanied by marked increases in the production of protein and/or mRNA of the Th1-type pro-inflammatory mediators, IFN-γ and TNF-α (P <0.01 for both for protein; P <0.05 for TNF-α mRNA). Our results suggest that, compared to healthy individuals, people suffering from reticulocytosis may be more susceptible to severe malaria infection in malaria endemic areas. This has implications for the most appropriate selection of treatment, which may also cause reticulocytosis in patients living in such areas.
Collapse
Affiliation(s)
- Xiaotong Zhu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Jun Liu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Yonghui Feng
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Wei Pang
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Zanmei Qi
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Yongjun Jiang
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of AIDS Immunology of Ministry of Health, the First Hospitol of China Medical University, Shenyang, Liaoning, China
| | - Hong Shang
- Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, Liaoning, China; The Key Laboratory of AIDS Immunology of Ministry of Health, the First Hospitol of China Medical University, Shenyang, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, 110001, China.
| |
Collapse
|
31
|
Berg A, Otterdal K, Patel S, Gonca M, David C, Dalen I, Nymo S, Nilsson M, Nordling S, Magnusson PU, Ueland T, Prato M, Giribaldi G, Mollnes TE, Aukrust P, Langeland N, Nilsson PH. Complement Activation Correlates With Disease Severity and Contributes to Cytokine Responses in Plasmodium falciparum Malaria. J Infect Dis 2015; 212:1835-40. [PMID: 25980034 DOI: 10.1093/infdis/jiv283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022] Open
Abstract
The impact of complement activation and its possible relation to cytokine responses during malaria pathology was investigated in plasma samples from patients with confirmed Plasmodium falciparum malaria and in human whole-blood specimens stimulated with malaria-relevant agents ex vivo. Complement was significantly activated in the malaria cohort, compared with healthy controls, and was positively correlated with disease severity and with certain cytokines, in particular interleukin 8 (IL-8)/CXCL8. This was confirmed in ex vivo-stimulated blood specimens, in which complement inhibition significantly reduced IL-8/CXCL8 release. P. falciparum malaria is associated with systemic complement activation and complement-dependent release of inflammatory cytokines, of which IL-8/CXCL8 is particularly prominent.
Collapse
Affiliation(s)
- Aase Berg
- Department of Medicine, Stavanger University Hospital Department of Clinical Science, University of Bergen Department of Medicine, Central Hospital of Maputo, Mozambique
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet
| | - Sam Patel
- Department of Medicine, Central Hospital of Maputo, Mozambique
| | - Miguel Gonca
- Department of Medicine, Central Hospital of Maputo, Mozambique
| | - Catarina David
- Department of Medicine, Central Hospital of Maputo, Mozambique
| | - Ingvild Dalen
- Department of Research, Stavanger University Hospital
| | - Stig Nymo
- Department of Immunology, Oslo University Hospital Rikshospitalet Research Laboratory Nordland Hospital, Bodø Faculty of Health Sciences, University of Tromsø, Norway
| | | | - Sofia Nordling
- Department of Immunology, Genetics, and Pathology, the Rudbeck Laboratory, Uppsala University, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics, and Pathology, the Rudbeck Laboratory, Uppsala University, Sweden
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet K. G. Jebsen Inflammatory Research Center, University of Oslo Faculty of Medicine, University of Oslo K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Norway
| | - Mauro Prato
- Department of Neuroscience, University of Torino, Italy Department of Public Health and Pediatric Sciences, University of Torino, Italy
| | | | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital Rikshospitalet K. G. Jebsen Inflammatory Research Center, University of Oslo Faculty of Medicine, University of Oslo Research Laboratory Nordland Hospital, Bodø Faculty of Health Sciences, University of Tromsø, Norway
| | - Pål Aukrust
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet K. G. Jebsen Inflammatory Research Center, University of Oslo Faculty of Medicine, University of Oslo
| | - Nina Langeland
- Department of Clinical Science, University of Bergen Department of Medicine, Haukeland University Hospital, Bergen
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital Rikshospitalet
| |
Collapse
|
32
|
Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, Lötvall J, Nakagama H, Ochiya T. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 2015; 6:6716. [PMID: 25828099 PMCID: PMC4396394 DOI: 10.1038/ncomms7716] [Citation(s) in RCA: 520] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/20/2015] [Indexed: 12/28/2022] Open
Abstract
Brain metastasis is an important cause of mortality in breast cancer patients. A key event during brain metastasis is the migration of cancer cells through blood–brain barrier (BBB). However, the molecular mechanism behind the passage through this natural barrier remains unclear. Here we show that cancer-derived extracellular vesicles (EVs), mediators of cell–cell communication via delivery of proteins and microRNAs (miRNAs), trigger the breakdown of BBB. Importantly, miR-181c promotes the destruction of BBB through the abnormal localization of actin via the downregulation of its target gene, PDPK1. PDPK1 degradation by miR-181c leads to the downregulation of phosphorylated cofilin and the resultant activated cofilin-induced modulation of actin dynamics. Furthermore, we demonstrate that systemic injection of brain metastatic cancer cell-derived EVs promoted brain metastasis of breast cancer cell lines and are preferentially incorporated into the brain in vivo. Taken together, these results indicate a novel mechanism of brain metastasis mediated by EVs that triggers the destruction of BBB. A key event during metastasis to the brain is the migration of cancer cells through the blood–brain barrier (BBB). Here the authors show that cancer-cell-derived extracellular vesicles promote metastasis by promoting BBB breaching.
Collapse
Affiliation(s)
- Naoomi Tominaga
- 1] Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan [2] Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo 113-0033, Japan [3] Research Fellow of the Japan Society for the Promotion of Science (JSPS), Chiyoda-Ku, Tokyo 102-0083, Japan
| | - Nobuyoshi Kosaka
- 1] Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan [2] Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, United Kingdom [3] The Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellow for Research Abroad, Chiyoda-Ku, Tokyo 102-0083, Japan
| | - Makiko Ono
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Kenji Tamura
- Division of Breast and Medical Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Jan Lötvall
- Department of Internal Medicine and Department of Respiratory Medicine and Allergology, The Sahlgrenska Academy, University of Göteborg, Box 424, SE-405 30 Gothenburg, Sweden
| | - Hitoshi Nakagama
- 1] Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyou-ku, Tokyo 113-0033, Japan [2] Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
33
|
Schrimpe-Rutledge AC, Fong KY, Wright DW. Impact of 4-hydroxynonenal on matrix metalloproteinase-9 regulation in lipopolysaccharide-stimulated RAW 264.7 cells. Cell Biochem Funct 2015; 33:59-66. [PMID: 25663587 DOI: 10.1002/cbf.3087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/15/2014] [Accepted: 12/08/2014] [Indexed: 01/12/2023]
Abstract
Tissue degradation and leukocyte extravasation suggest proteolytic destruction of the extracellular matrix (ECM) during severe malaria. Matrix metalloproteinases (MMPs) play an established role in ECM turnover, and increased MMP-9 protein abundance is correlated with malarial infection. The malaria pigment hemozoin (Hz) is a heme detoxification biomineral that is produced during infection and associated with biologically active lipid peroxidation products such as 4-hydroxynonenal (HNE) adsorbed to its surface. Hz has innate immunomodulatory activity, and many of its effects can be reproduced by exogenously added HNE. Hz phagocytosis enhances MMP-9 expression in monocytes; thus, this study was designed to examine the ability of HNE to alter MMP-9 regulation in activated cells of macrophage lineage. Data show that treatment of lipopolysaccharide-stimulated RAW 264.7 cells with HNE increased MMP-9 secretion and activity. HNE treatment abolished the cognate tissue inhibitor of metalloproteinase-1 protein levels, further decreasing MMP-9 regulation. Phosphorylation of both p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase was induced by HNE, but only p38 MAPK inhibition lessened MMP-9 secretion. These results demonstrate the in vitro ability of HNE to cause MMP-9 dysregulation in an activated cell model. The findings may extend to myriad pathologies associated with lipid peroxidation and elevated MMP-9 levels leading to tissue damage.
Collapse
|
34
|
Etiopathogenesis and Pathophysiology of Malaria. HUMAN AND MOSQUITO LYSOZYMES 2015. [PMCID: PMC7123976 DOI: 10.1007/978-3-319-09432-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malaria is a parasitic disease caused by Plasmodium protozoan parasites and transmitted by Anopheles mosquitoes. The disease is diffused in tropical areas, where it is associated with high morbidity and mortality. P. falciparum is the most dangerous species, mainly affecting young children. The parasite cycle occurs both in humans (asexual stages) and in mosquitoes (sexual stages). In humans, Plasmodium grows and multiplies within red blood cells using hemoglobin as essential source of nutrients and energy. However, this process generates toxic heme that the parasite aggregates into an insoluble inert biocrystal called hemozoin. This molecule sequesters in various organs (liver, spleen, and brain), potentially contributing to the development of malaria immunopathogenesis. Uncomplicated falciparum malaria clinical frame ranges from asymptomatic infection to classic symptoms such as fever, chills, sweating, headache, and muscle aches. However, malaria can also evolve into severe life-threatening complications, including cerebral malaria, severe anemia, respiratory distress, and acute renal failure.
Collapse
|
35
|
Magenta D, Sangiovanni E, Basilico N, Haynes RK, Parapini S, Colombo E, Bosisio E, Taramelli D, Dell’Agli M. Inhibition of metalloproteinase-9 secretion and gene expression by artemisinin derivatives. Acta Trop 2014; 140:77-83. [PMID: 25149353 DOI: 10.1016/j.actatropica.2014.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/23/2014] [Accepted: 08/07/2014] [Indexed: 01/08/2023]
Abstract
Malaria remains one of the world's most common infectious diseases, being responsible for more deaths than any other communicable disease except tuberculosis. There is strong evidence that tumour necrosis factor α and interleukin-1β are important contributors to the systemic disease caused by the infection with Plasmodium falciparum. Circulating levels of TNFα are increased after infection, as a consequence of stimulation of monocyte-macrophages by infected red blood cells or parasite products, as shown in vitro for the malaria pigment haemozoin. TNFα in turn enhances the synthesis of metalloproteinase-9 in monocytes and macrophages. Metalloproteinase-9 acts on the extracellular matrix but also on non-traditional substrates, including precursors of inflammatory cytokines, which are proteolytically activated and contribute to the amplification of the inflammatory response. The aim of the present work was to establish whether artemisinin and its derivatives artemisone, artesunate and dihydroartemisinin possess immuno-modulatory properties. In particular, it is necessary to evaluate their effects on mRNA levels and secretion of MMP-9 by the human monocytic cell line (THP-1 cells) stimulated by hemozoin or TNFα. 5μM of each derivative, although not artemisinin itself, induced significantly inhibited TNFα production. Artesunate, artemisone and DHA antagonized haemozoin-induced MMP-9 secretion by 25%, 24% and 50%, respectively. mRNA levels were also depressed by 14%, 20% and 27%, respectively, thus reflecting in part the effect observed on protein production. The derivatives significantly inhibited both TNFα-induced MMP-9 secretion and mRNA levels to a greater extent than haemozoin itself. Both haemozoin and TNFα increased NF-κB driven transcription by 11 and 7.7 fold, respectively. Artesunate, artemisone and DHA inhibited haemozoin-induced NF-κB driven transcription by 28%, 34%, and 49%, respectively. Similarly the derivatives, but not artemisinin, prevented TNFα-induced NF-κB driven transcription by 47-51%. The study indicates that artemisinins may attenuate the inflammatory potential of monocytes in vivo. Thus, in addition to direct anti-parasitic activities, the beneficial clinical effects of artemisinins for the treatment of malaria include the apparent ability to attenuate the inflammatory response, thus limiting the risk of progression to the more severe form of the disease, including the onset of cerebral malaria.
Collapse
|
36
|
Storm J, Craig AG. Pathogenesis of cerebral malaria--inflammation and cytoadherence. Front Cell Infect Microbiol 2014; 4:100. [PMID: 25120958 PMCID: PMC4114466 DOI: 10.3389/fcimb.2014.00100] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/07/2014] [Indexed: 01/08/2023] Open
Abstract
Despite decades of research on cerebral malaria (CM) there is still a paucity of knowledge about what actual causes CM and why certain people develop it. Although sequestration of P. falciparum infected red blood cells has been linked to pathology, it is still not clear if this is directly or solely responsible for this clinical syndrome. Recent data have suggested that a combination of parasite variant types, mainly defined by the variant surface antigen, P. falciparum erythrocyte membrane protein 1 (PfEMP1), its receptors, coagulation and host endothelial cell activation (or inflammation) are equally important. This makes CM a multi-factorial disease and a challenge to unravel its causes to decrease its detrimental impact.
Collapse
Affiliation(s)
- Janet Storm
- Department of Parasitology, Liverpool School of Tropical Medicine Liverpool, UK ; Malawi Liverpool Wellcome Trust Clinical Research Programme (MLW), University of Malawi College of Medicine Blantyre, Malawi
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine Liverpool, UK
| |
Collapse
|
37
|
Reduction of experimental cerebral malaria and its related proinflammatory responses by the novel liposome-based β-methasone nanodrug. BIOMED RESEARCH INTERNATIONAL 2014; 2014:292471. [PMID: 25126550 PMCID: PMC4121993 DOI: 10.1155/2014/292471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 01/11/2023]
Abstract
Cerebral malaria (CM) is a severe complication of and a leading cause of death due to Plasmodium falciparum infection. CM is likely the result of interrelated events, including mechanical obstruction due to parasite sequestration in the microvasculature, and upregulation of Th1 immune responses. In parallel, blood-brain-barrier (BBB) breakdown and damage or death of microglia, astrocytes, and neurons occurs. We found that a novel formulation of a liposome-encapsulated glucocorticosteroid, β-methasone hemisuccinate (nSSL-BMS), prevents experimental cerebral malaria (ECM) in a murine model and creates a survival time-window, enabling administration of an antiplasmodial drug before severe anemia develops. nSSL-BMS treatment leads to lower levels of cerebral inflammation, expressed by altered levels of corresponding cytokines and chemokines. The results indicate the role of integrated immune responses in ECM induction and show that the new steroidal nanodrug nSSL-BMS reverses the balance between the Th1 and Th2 responses in malaria-infected mice so that the proinflammatory processes leading to ECM are prevented. Overall, because of the immunopathological nature of CM, combined immunomodulator/antiplasmodial treatment should be considered for prevention/treatment of human CM and long-term cognitive damage.
Collapse
|
38
|
Drewes LR, Jones HC, Keep RF. News from the editors of Fluids and Barriers of the CNS. Fluids Barriers CNS 2014; 11:13. [PMID: 24940481 PMCID: PMC4060582 DOI: 10.1186/2045-8118-11-13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 11/10/2022] Open
Abstract
This editorial announces a new affiliation between Fluids and Barriers of the CNS (FBCNS) and the International Brain Barriers Society (IBBS) with mutual benefits to the journal and to society members. This is a natural progression from the appointment of two new Co-Editors in Chief: Professor Lester Drewes and Professor Richard Keep in 2013. FBCNS provides a unique and specialist platform for the publication of research in the expanding fields of brain barriers and brain fluid systems in both health and disease.
Collapse
Affiliation(s)
- Lester R Drewes
- Department of Biochemistry and Molecular Biology, University of Minnesota Duluth Medical School, Duluth, MN 55812, USA
| | - Hazel C Jones
- Gagle Brook House, Chesterton, Bicester OX26 1UF, UK
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|