1
|
Henson MW, Thrash JC. Microbial ecology of northern Gulf of Mexico estuarine waters. mSystems 2024; 9:e0131823. [PMID: 38980056 PMCID: PMC11334486 DOI: 10.1128/msystems.01318-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Estuarine and coastal ecosystems are of high economic and ecological importance, owing to their diverse communities and the disproportionate role they play in carbon cycling, particularly in carbon sequestration. Organisms inhabiting these environments must overcome strong natural fluctuations in salinity, nutrients, and turbidity, as well as numerous climate change-induced disturbances such as land loss, sea level rise, and, in some locations, increasingly severe tropical cyclones that threaten to disrupt future ecosystem health. The northern Gulf of Mexico (nGoM) along the Louisiana coast contains dozens of estuaries, including the Mississippi-Atchafalaya River outflow, which dramatically influence the region due to their vast upstream watershed. Nevertheless, the microbiology of these estuaries and surrounding coastal environments has received little attention. To improve our understanding of microbial ecology in the understudied coastal nGoM, we conducted a 16S rRNA gene amplicon survey at eight sites and multiple time points along the Louisiana coast and one inland swamp spanning freshwater to high brackish salinities, totaling 47 duplicated Sterivex (0.2-2.7 µm) and prefilter (>2.7 µm) samples. We cataloged over 13,000 Amplicon Sequence ariants (ASVs) from common freshwater and marine clades such as SAR11 (Alphaproteobacteria), Synechococcus (Cyanobacteria), and acI and Candidatus Actinomarina (Actinobacteria). We observed correlations with freshwater or marine habitats in many organisms and characterized a group of taxa with specialized distributions across brackish water sites, supporting the hypothesis of an endogenous brackish-water community. Additionally, we observed brackish-water associations for several aquatic clades typically considered marine or freshwater taxa, such as SAR11 subclade II, SAR324, and the acI Actinobacteria. The data presented here expand the geographic coverage of microbial ecology in estuarine communities, help delineate the native and transitory members of these environments, and provide critical aquatic microbiological baseline data for coastal and estuarine sites in the nGoM.IMPORTANCEEstuarine and coastal waters are diverse ecosystems influenced by tidal fluxes, interconnected wetlands, and river outflows, which are of high economic and ecological importance. Microorganisms play a pivotal role in estuaries as "first responders" and ecosystem architects, yet despite their ecological importance, they remain underrepresented in microbial studies compared to open ocean environments. This leads to substantial knowledge gaps that are important for understanding global biogeochemical cycling and making decisions about conservation and management strategies in these environments. Our study makes key contributions to the microbial ecology of estuarine and coastal habitats in the northern Gulf of Mexico. Our microbial community data support the concept of a globally distributed, core brackish microbiome and emphasize previously underrecognized brackish-water taxa. Given the projected worsening of land loss, oil spills, and natural disasters in this region, our results will serve as important baseline data for researchers investigating the microbial communities found across estuaries.
Collapse
Affiliation(s)
- Michael W. Henson
- Department of Biological Sciences, Northern University, DeKalb, Illinois, USA
| | - J. Cameron Thrash
- Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Fan L, Xu B, Chen S, Liu Y, Li F, Xie W, Prabhu A, Zou D, Wan R, Li H, Liu H, Liu Y, Kao SJ, Chen J, Zhu Y, Rinke C, Li M, Zhu M, Zhang C. Gene inversion led to the emergence of brackish archaeal heterotrophs in the aftermath of the Cryogenian Snowball Earth. PNAS NEXUS 2024; 3:pgae057. [PMID: 38380056 PMCID: PMC10877094 DOI: 10.1093/pnasnexus/pgae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Land-ocean interactions greatly impact the evolution of coastal life on earth. However, the ancient geological forces and genetic mechanisms that shaped evolutionary adaptations and allowed microorganisms to inhabit coastal brackish waters remain largely unexplored. In this study, we infer the evolutionary trajectory of the ubiquitous heterotrophic archaea Poseidoniales (Marine Group II archaea) presently occurring across global aquatic habitats. Our results show that their brackish subgroups had a single origination, dated to over 600 million years ago, through the inversion of the magnesium transport gene corA that conferred osmotic-stress tolerance. The subsequent loss and gain of corA were followed by genome-wide adjustment, characterized by a general two-step mode of selection in microbial speciation. The coastal family of Poseidoniales showed a rapid increase in the evolutionary rate during and in the aftermath of the Cryogenian Snowball Earth (∼700 million years ago), possibly in response to the enhanced phosphorus supply and the rise of algae. Our study highlights the close interplay between genetic changes and ecosystem evolution that boosted microbial diversification in the Neoproterozoic continental margins, where the Cambrian explosion of animals soon followed.
Collapse
Affiliation(s)
- Lu Fan
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Bu Xu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Songze Chen
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Fuyan Li
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI 96822, USA
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Apoorva Prabhu
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dayu Zou
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ru Wan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310012, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| | - Hongliang Li
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310012, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| | - Haodong Liu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yuhang Liu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Shuh-Ji Kao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan 570228, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jianfang Chen
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang 310012, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai Earthquake Agency, Shanghai 200062, China
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Maoyan Zhu
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
- Center for Excellence in Life and Paleoenvironment, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
- State Key Laboratory of Satellite Ocean Environment Dynamics, Hangzhou, Zhejiang 310012, China
| |
Collapse
|
3
|
Sylvain FÉ, Bouslama S, Holland A, Leroux N, Mercier PL, Val AL, Derome N. Bacterioplankton Communities in Dissolved Organic Carbon-Rich Amazonian Black Water. Microbiol Spectr 2023; 11:e0479322. [PMID: 37199657 PMCID: PMC10269884 DOI: 10.1128/spectrum.04793-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/04/2023] [Indexed: 05/19/2023] Open
Abstract
The Amazon River basin sustains dramatic hydrochemical gradients defined by three water types: white, clear, and black waters. In black water, important loads of allochthonous humic dissolved organic matter (DOM) result from the bacterioplankton degradation of plant lignin. However, the bacterial taxa involved in this process remain unknown, since Amazonian bacterioplankton has been poorly studied. Its characterization could lead to a better understanding of the carbon cycle in one of the Earth's most productive hydrological systems. Our study characterized the taxonomic structure and functions of Amazonian bacterioplankton to better understand the interplay between this community and humic DOM. We conducted a field sampling campaign comprising 15 sites distributed across the three main Amazonian water types (representing a gradient of humic DOM), and a 16S rRNA metabarcoding analysis based on bacterioplankton DNA and RNA extracts. Bacterioplankton functions were inferred using 16S rRNA data in combination with a tailored functional database from 90 Amazonian basin shotgun metagenomes from the literature. We discovered that the relative abundances of fluorescent DOM fractions (humic-, fulvic-, and protein-like) were major drivers of bacterioplankton structure. We identified 36 genera for which the relative abundance was significantly correlated with humic DOM. The strongest correlations were found in the Polynucleobacter, Methylobacterium, and Acinetobacter genera, three low abundant but omnipresent taxa that possessed several genes involved in the main steps of the β-aryl ether enzymatic degradation pathway of diaryl humic DOM residues. Overall, this study identified key taxa with DOM degradation genomic potential, the involvement of which in allochthonous Amazonian carbon transformation and sequestration merits further investigation. IMPORTANCE The Amazon basin discharge carries an important load of terrestrially derived dissolved organic matter (DOM) to the ocean. The bacterioplankton from this basin potentially plays important roles in transforming this allochthonous carbon, which has consequences on marine primary productivity and global carbon sequestration. However, the structure and function of Amazonian bacterioplanktonic communities remain poorly studied, and their interactions with DOM are unresolved. In this study, we (i) sampled bacterioplankton in all the main Amazon tributaries, (ii) combined information from the taxonomic structure and functional repertory of Amazonian bacterioplankton communities to understand their dynamics, (iii) identified the main physicochemical parameters shaping bacterioplanktonic communities among a set of >30 measured environmental parameters, and (iv) characterized how bacterioplankton structure varies according to the relative abundance of humic compounds, a by-product from the bacterial degradation process of allochthonous DOM.
Collapse
Affiliation(s)
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Aleicia Holland
- La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, Albury/Wodonga Campus, Victoria, Australia
| | - Nicolas Leroux
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Pierre-Luc Mercier
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| | - Adalberto Luis Val
- Instituto Nacional de Pesquisas da Amazônia, Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Brazil
| | - Nicolas Derome
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
4
|
Schackart KE, Graham JB, Ponsero AJ, Hurwitz BL. Evaluation of computational phage detection tools for metagenomic datasets. Front Microbiol 2023; 14:1078760. [PMID: 36760501 PMCID: PMC9902911 DOI: 10.3389/fmicb.2023.1078760] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Introduction As new computational tools for detecting phage in metagenomes are being rapidly developed, a critical need has emerged to develop systematic benchmarks. Methods In this study, we surveyed 19 metagenomic phage detection tools, 9 of which could be installed and run at scale. Those 9 tools were assessed on several benchmark challenges. Fragmented reference genomes are used to assess the effects of fragment length, low viral content, phage taxonomy, robustness to eukaryotic contamination, and computational resource usage. Simulated metagenomes are used to assess the effects of sequencing and assembly quality on the tool performances. Finally, real human gut metagenomes and viromes are used to assess the differences and similarities in the phage communities predicted by the tools. Results We find that the various tools yield strikingly different results. Generally, tools that use a homology approach (VirSorter, MARVEL, viralVerify, VIBRANT, and VirSorter2) demonstrate low false positive rates and robustness to eukaryotic contamination. Conversely, tools that use a sequence composition approach (VirFinder, DeepVirFinder, Seeker), and MetaPhinder, have higher sensitivity, including to phages with less representation in reference databases. These differences led to widely differing predicted phage communities in human gut metagenomes, with nearly 80% of contigs being marked as phage by at least one tool and a maximum overlap of 38.8% between any two tools. While the results were more consistent among the tools on viromes, the differences in results were still significant, with a maximum overlap of 60.65%. Discussion: Importantly, the benchmark datasets developed in this study are publicly available and reusable to enable the future comparability of new tools developed.
Collapse
Affiliation(s)
- Kenneth E. Schackart
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, United States
| | - Jessica B. Graham
- BIO5 Institute, The University of Arizona, Tucson, AZ, United States
| | - Alise J. Ponsero
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, United States
- BIO5 Institute, The University of Arizona, Tucson, AZ, United States
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Bonnie L. Hurwitz
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ, United States
- BIO5 Institute, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Sylvain FÉ, Leroux N, Normandeau É, Holland A, Bouslama S, Mercier PL, Luis Val A, Derome N. Genomic and Environmental Factors Shape the Active Gill Bacterial Community of an Amazonian Teleost Holobiont. Microbiol Spectr 2022; 10:e0206422. [PMID: 36445161 PMCID: PMC9769777 DOI: 10.1128/spectrum.02064-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Fish bacterial communities provide functions critical for their host's survival in contrasting environments. These communities are sensitive to environmental-specific factors (i.e., physicochemical parameters, bacterioplankton), and host-specific factors (i.e., host genetic background). The relative contribution of these factors shaping Amazonian fish bacterial communities is largely unknown. Here, we investigated this topic by analyzing the gill bacterial communities of 240 wild flag cichlids (Mesonauta festivus) from 4 different populations (genetic clusters) distributed across 12 sites in 2 contrasting water types (ion-poor/acidic black water and ion-rich/circumneutral white water). Transcriptionally active gill bacterial communities were characterized by a 16S rRNA metabarcoding approach carried on RNA extractions. They were analyzed using comprehensive data sets from the hosts genetic background (Genotyping-By-Sequencing), the bacterioplankton (16S rRNA) and a set of 34 environmental parameters. Results show that the taxonomic structure of 16S rRNA gene transcripts libraries were significantly different between the 4 genetic clusters and also between the 2 water types. However, results suggest that the contribution of the host's genetic background was relatively weak in comparison to the environment-related factors in structuring the relative abundance of different active gill bacteria species. This finding was also confirmed by a mixed-effects modeling analysis, which indicated that the dissimilarity between the taxonomic structure of bacterioplanktonic communities possessed the best explicative power regarding the dissimilarity between gill bacterial communities' structure, while pairwise fixation indexes (FST) from the hosts' genetic data only had a weak explicative power. We discuss these results in terms of bacterial community assembly processes and flag cichlid fish ecology. IMPORTANCE Host-associated microbial communities respond to factors specific to the host physiology, genetic backgrounds, and life history. However, these communities also show different degrees of sensitivity to environment-dependent factors, such as abiotic physico-chemical parameters and ecological interactions. The relative importance of host- versus environment-associated factors in shaping teleost bacterial communities is still understudied and is paramount for their conservation and aquaculture. Here, we studied the relative importance of host- and environment-associated factors structuring teleost bacterial communities using gill samples from a wild Amazonian teleost model (Mesonauta festivus) sampled in contrasting habitats along a 1500 km section of the Amazonian basin, thus ensuring high genetic diversity. Results showed that the contribution of the host's genetic background was weak compared to environment-related bacterioplanktonic communities in shaping gill bacterial assemblages, thereby suggesting that our understanding of teleost microbiome assembly could benefit from further studies focused on the ecological interplay between host-associated and free-living communities.
Collapse
Affiliation(s)
| | - Nicolas Leroux
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Éric Normandeau
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Aleicia Holland
- La Trobe University, School of Life Science, Department of Ecology, Environment and Evolution, Centre for Freshwater Ecosystems, Wodonga, Victoria, Australia
| | - Sidki Bouslama
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Pierre-Luc Mercier
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Québec, Canada
| | - Adalberto Luis Val
- Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Amazonas, Brazil
| | - Nicolas Derome
- Instituto Nacional de Pesquisas da Amazônia (INPA), Laboratório de Ecofisiologia e Evolução Molecular, Manaus, Amazonas, Brazil
| |
Collapse
|
6
|
Shen J, McFarland AG, Blaustein RA, Rose LJ, Perry-Dow KA, Moghadam AA, Hayden MK, Young VB, Hartmann EM. An improved workflow for accurate and robust healthcare environmental surveillance using metagenomics. MICROBIOME 2022; 10:206. [PMID: 36457108 PMCID: PMC9716758 DOI: 10.1186/s40168-022-01412-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Effective surveillance of microbial communities in the healthcare environment is increasingly important in infection prevention. Metagenomics-based techniques are promising due to their untargeted nature but are currently challenged by several limitations: (1) they are not powerful enough to extract valid signals out of the background noise for low-biomass samples, (2) they do not distinguish between viable and nonviable organisms, and (3) they do not reveal the microbial load quantitatively. An additional practical challenge towards a robust pipeline is the inability to efficiently allocate sequencing resources a priori. Assessment of sequencing depth is generally practiced post hoc, if at all, for most microbiome studies, regardless of the sample type. This practice is inefficient at best, and at worst, poor sequencing depth jeopardizes the interpretation of study results. To address these challenges, we present a workflow for metagenomics-based environmental surveillance that is appropriate for low-biomass samples, distinguishes viability, is quantitative, and estimates sequencing resources. RESULTS The workflow was developed using a representative microbiome sample, which was created by aggregating 120 surface swabs collected from a medical intensive care unit. Upon evaluating and optimizing techniques as well as developing new modules, we recommend best practices and introduce a well-structured workflow. We recommend adopting liquid-liquid extraction to improve DNA yield and only incorporating whole-cell filtration when the nonbacterial proportion is large. We suggest including propidium monoazide treatment coupled with internal standards and absolute abundance profiling for viability assessment and involving cultivation when demanding comprehensive profiling. We further recommend integrating internal standards for quantification and additionally qPCR when we expect poor taxonomic classification. We also introduce a machine learning-based model to predict required sequencing effort from accessible sample features. The model helps make full use of sequencing resources and achieve desired outcomes. Video Abstract CONCLUSIONS: This workflow will contribute to more accurate and robust environmental surveillance and infection prevention. Lessons gained from this study will also benefit the continuing development of methods in relevant fields.
Collapse
Affiliation(s)
- Jiaxian Shen
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208-3109, USA.
| | - Alexander G McFarland
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208-3109, USA
| | - Ryan A Blaustein
- Department of Nutrition and Food Science, University of Maryland, College Park, USA
| | - Laura J Rose
- Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Anahid A Moghadam
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208-3109, USA
| | - Mary K Hayden
- Division of Infectious Diseases, Department of Internal Medicine, Rush Medical College, Chicago, USA
| | - Vincent B Young
- Department of Internal Medicine/Division of Infectious Diseases, The University of Michigan Medical School, Ann Arbor, USA
| | - Erica M Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208-3109, USA
| |
Collapse
|
7
|
Mallawaarachchi V, Lin Y. Accurate Binning of Metagenomic Contigs Using Composition, Coverage, and Assembly Graphs. J Comput Biol 2022; 29:1357-1376. [DOI: 10.1089/cmb.2022.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Vijini Mallawaarachchi
- School of Computing, College of Engineering and Computer Science, Australian National University, Canberra, Australia
| | - Yu Lin
- School of Computing, College of Engineering and Computer Science, Australian National University, Canberra, Australia
| |
Collapse
|
8
|
Two Metatranscriptomic Profiles through Low-Dissolved-Oxygen Waters (DO, 0 to 33 µM) in the Eastern Tropical North Pacific Ocean. Microbiol Resour Announc 2022; 11:e0120121. [PMID: 35142554 PMCID: PMC8830328 DOI: 10.1128/mra.01201-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present 16 seawater metatranscriptomes collected from a marine oxygen-deficient zone (ODZ) in the eastern tropical North Pacific (ETNP). This data set will be useful for identifying shifts in microbial community structure and function through oxic/anoxic transition zones, where overlapping aerobic and anaerobic microbial processes impact marine biogeochemical cycling.
Collapse
|
9
|
Santos-Júnior CD, Logares R, Henrique-Silva F. Microbial population genomes from the Amazon River reveal possible modulation of the organic matter degradation process in tropical freshwaters. Mol Ecol 2021; 31:206-219. [PMID: 34637571 DOI: 10.1111/mec.16222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/26/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
Rivers connect the carbon cycle in land with that in aquatic ecosystems by transporting and transforming terrestrial organic matter (TeOM). The Amazon River receives huge loads of TeOM from the surrounding rainforest, promoting a substantial microbial heterotrophic activity and consequently, CO2 outgassing. In the Amazon River, microbes degrade up to 55% of the lignin present in the TeOM. Yet, the main microbial genomes involved in TeOM degradation were unknown. Here, we characterize 51 population genomes (PGs) representing some of the most abundant microbes in the Amazon River deriving from 106 metagenomes. The 51 reconstructed PGs are among the most abundant microbes in the Amazon River, and 53% of them are not able to degrade TeOM. Among the PGs capable of degrading TeOM, 20% were exclusively cellulolytic, while the others could also oxidize lignin. The transport and consumption of lignin oxidation byproducts seemed to be decoupled from the oxidation process, being apparently performed by different groups of microorganisms. By connecting the genomic features of abundant microbes in the Amazon River with the degradation machinery of TeOM, we suggest that a complex microbial consortium could explain the quick turnover of TeOM previously observed in this ecosystem.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Molecular Biology Laboratory, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Big Data Biology Research Group, Institute of Science and Technology for Brain-Inspired Intelligence - ISTBI, Fudan University, Shanghai, China
| | - Ramiro Logares
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalonia, Spain
| | - Flávio Henrique-Silva
- Molecular Biology Laboratory, Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
10
|
Bass D, Rueckert S, Stern R, Cleary AC, Taylor JD, Ward GM, Huys R. Parasites, pathogens, and other symbionts of copepods. Trends Parasitol 2021; 37:875-889. [PMID: 34158247 DOI: 10.1016/j.pt.2021.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
There is a large diversity of eukaryotic symbionts of copepods, dominated by epizootic protists such as ciliates, and metazoan parasites. Eukaryotic endoparasites, copepod-associated bacteria, and viruses are less well known, partly due to technical limitations. However, new molecular techniques, combined with a range of other approaches, provide a complementary toolkit for understanding the complete symbiome of copepods and how the symbiome relates to their ecological roles, relationships with other biota, and responses to environmental change. In this review we provide the most complete overview of the copepod symbiome to date, including microeukaryotes, metazoan parasites, bacteria, and viruses, and provide extensive literature databases to inform future studies.
Collapse
Affiliation(s)
- David Bass
- International Centre of Excellence in Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Sonja Rueckert
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh EH11 4BN, UK
| | - Rowena Stern
- Marine Biological Association, Citadel Hill, Plymouth, PL1 2PB, UK
| | - Alison C Cleary
- Department of Natural Sciences, University of Agder, Universitetsveien 25, Kristiansand, 4630, Norway
| | - Joe D Taylor
- School of Chemistry and Bioscience, University of Bradford, Richmond Rd, Bradford BD7 1DP, UK
| | - Georgia M Ward
- International Centre of Excellence in Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Rony Huys
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
11
|
Bunse C, Koch H, Breider S, Simon M, Wietz M. Sweet spheres: succession and CAZyme expression of marine bacterial communities colonizing a mix of alginate and pectin particles. Environ Microbiol 2021; 23:3130-3148. [PMID: 33876546 DOI: 10.1111/1462-2920.15536] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022]
Abstract
Polysaccharide particles are important substrates and microhabitats for marine bacteria. However, substrate-specific bacterial dynamics in mixtures of particle types with different polysaccharide composition, as likely occurring in natural habitats, are undescribed. Here, we studied the composition, functional diversity and gene expression of marine bacterial communities colonizing a mix of alginate and pectin particles. Amplicon, metagenome and metatranscriptome sequencing revealed that communities on alginate and pectin particles significantly differed from their free-living counterparts. Unexpectedly, microbial dynamics on alginate and pectin particles were similar, with predominance of amplicon sequence variants (ASVs) from Tenacibaculum, Colwellia, Psychrobium and Psychromonas. Corresponding metagenome-assembled genomes (MAGs) expressed diverse alginate lyases, several colocalized in polysaccharide utilization loci. Only a single, low-abundant MAG showed elevated transcript abundances of pectin-degrading enzymes. One specific Glaciecola ASV dominated the free-living fraction, possibly persisting on particle-derived oligomers through different glycoside hydrolases. Elevated ammonium uptake and metabolism signified nitrogen as an important factor for degrading carbon-rich particles, whereas elevated methylcitrate and glyoxylate cycles suggested nutrient limitation in surrounding waters. The bacterial preference for alginate, whereas pectin primarily served as colonization scaffold, illuminates substrate-driven dynamics within mixed polysaccharide pools. These insights expand our understanding of bacterial niche specialization and the biological carbon pump in macroalgae-rich habitats.
Collapse
Affiliation(s)
- Carina Bunse
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.,Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sven Breider
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg, Oldenburg, Germany.,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
12
|
Kumar N, Gupta AK, Sudan SK, Pal D, Randhawa V, Sahni G, Mayilraj S, Kumar M. Abundance and Diversity of Phages, Microbial Taxa, and Antibiotic Resistance Genes in the Sediments of the River Ganges Through Metagenomic Approach. Microb Drug Resist 2021; 27:1336-1354. [PMID: 33913739 DOI: 10.1089/mdr.2020.0431] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this study, we have analyzed the metagenomic DNA from the pooled sediment sample of the river Ganges to explore the abundance and diversity of phages, microbial community, and antibiotic resistance genes (ARGs). Utilizing data from Illumina platform, 4,174 (∼0.0013%) reads were classified for the 285 different DNA viruses largely dominated by the group of 260 distinctive phages (3,602 reads, ∼86.3%). Among all, Microcystis (782 hits), Haemophilus (403), Synechococcus (386), Pseudomonas (279), Enterococcus (232), Bacillus (196), Rhodococcus (166), Caulobacter (163), Salmonella (146), Enterobacteria (143), Mycobacterium and (128) phages show the highest abundance and account for ∼90% of the total identified phages. In addition, we have also identified corresponding host pertaining to these phages. Mainly, Proteobacteria (∼69.3%) dominates the microbial population structure. Primarily, orders such as Caulobacterales (∼28%), Burkholderiales (∼13.9%), Actinomycetales (∼13.7%), and Pseudomonadales (∼7.5%) signify the core section. Furthermore, 21,869 (∼0.00695%) reads were classified in 20 ARG types (classes) and 240 ARGs (subtypes), among which 4 ARG types, namely multidrug resistance (12,041 reads, ∼55%), bacitracin (3,202 reads, ∼15%), macrolide-lincosamide-streptogramin (1,744 reads, ∼7.98%), and fosmidomycin (990 reads, ∼4.53%), have the highest abundance. Simultaneously, six resistance mechanisms were also recognized with the dominance of antibiotic efflux (72.8%, 15,919 reads). The results unveil the distribution of (pro)-phages; microbial community; and various ARGs in the Ganges river sediments.
Collapse
Affiliation(s)
- Narender Kumar
- Division of Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Amit Kumar Gupta
- Virology Unit and Bioinformatics Centre, and Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Sarabjeet Kour Sudan
- Division of Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Deepika Pal
- MTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Vinay Randhawa
- Virology Unit and Bioinformatics Centre, and Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Girish Sahni
- Division of Protein Science and Engineering, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Shanmugam Mayilraj
- MTCC-Microbial Type Culture Collection and Gene Bank, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, and Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| |
Collapse
|
13
|
Shen J, McFarland AG, Young VB, Hayden MK, Hartmann EM. Toward Accurate and Robust Environmental Surveillance Using Metagenomics. Front Genet 2021; 12:600111. [PMID: 33747038 PMCID: PMC7973286 DOI: 10.3389/fgene.2021.600111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/21/2021] [Indexed: 01/23/2023] Open
Abstract
Environmental surveillance is a critical tool for combatting public health threats represented by the global COVID-19 pandemic and the continuous increase of antibiotic resistance in pathogens. With its power to detect entire microbial communities, metagenomics-based methods stand out in addressing the need. However, several hurdles remain to be overcome in order to generate actionable interpretations from metagenomic sequencing data for infection prevention. Conceptually and technically, we focus on viability assessment, taxonomic resolution, and quantitative metagenomics, and discuss their current advancements, necessary precautions and directions to further development. We highlight the importance of building solid conceptual frameworks and identifying rational limits to facilitate the application of techniques. We also propose the usage of internal standards as a promising approach to overcome analytical bottlenecks introduced by low biomass samples and the inherent lack of quantitation in metagenomics. Taken together, we hope this perspective will contribute to bringing accurate and consistent metagenomics-based environmental surveillance to the ground.
Collapse
Affiliation(s)
- Jiaxian Shen
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Alexander G. McFarland
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| | - Vincent B. Young
- Division of Infectious Diseases, Department of Internal Medicine, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mary K. Hayden
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, United States
| |
Collapse
|
14
|
Ponsero AJ, Bomhoff M, Blumberg K, Youens-Clark K, Herz NM, Wood-Charlson EM, Delong EF, Hurwitz BL. Planet Microbe: a platform for marine microbiology to discover and analyze interconnected 'omics and environmental data. Nucleic Acids Res 2021; 49:D792-D802. [PMID: 32735679 PMCID: PMC7778950 DOI: 10.1093/nar/gkaa637] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/23/2020] [Accepted: 07/20/2020] [Indexed: 12/27/2022] Open
Abstract
In recent years, large-scale oceanic sequencing efforts have provided a deeper understanding of marine microbial communities and their dynamics. These research endeavors require the acquisition of complex and varied datasets through large, interdisciplinary and collaborative efforts. However, no unifying framework currently exists for the marine science community to integrate sequencing data with physical, geological, and geochemical datasets. Planet Microbe is a web-based platform that enables data discovery from curated historical and on-going oceanographic sequencing efforts. In Planet Microbe, each ‘omics sample is linked with other biological and physiochemical measurements collected for the same water samples or during the same sample collection event, to provide a broader environmental context. This work highlights the need for curated aggregation efforts that can enable new insights into high-quality metagenomic datasets. Planet Microbe is freely accessible from https://www.planetmicrobe.org/.
Collapse
Affiliation(s)
- Alise J Ponsero
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Matthew Bomhoff
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Kai Blumberg
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Ken Youens-Clark
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nina M Herz
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA
| | - Elisha M Wood-Charlson
- Environmental Genomics and Systems Biology Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Edward F Delong
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawaii, Manoa, Honolulu, HI 96822, USA
| | - Bonnie L Hurwitz
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, USA.,BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
15
|
Santos-Júnior CD, Sarmento H, de Miranda FP, Henrique-Silva F, Logares R. Uncovering the genomic potential of the Amazon River microbiome to degrade rainforest organic matter. MICROBIOME 2020; 8:151. [PMID: 33126925 PMCID: PMC7597016 DOI: 10.1186/s40168-020-00930-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The Amazon River is one of the largest in the world and receives huge amounts of terrestrial organic matter (TeOM) from the surrounding rainforest. Despite this TeOM is typically recalcitrant (i.e. resistant to degradation), only a small fraction of it reaches the ocean, pointing to a substantial TeOM degradation by the river microbiome. Yet, microbial genes involved in TeOM degradation in the Amazon River were barely known. Here, we examined the Amazon River microbiome by analysing 106 metagenomes from 30 sampling points distributed along the river. RESULTS We constructed the Amazon River basin Microbial non-redundant Gene Catalogue (AMnrGC) that includes ~ 3.7 million non-redundant genes, affiliating mostly to bacteria. We found that the Amazon River microbiome contains a substantial gene-novelty compared to other relevant known environments (rivers and rainforest soil). Genes encoding for proteins potentially involved in lignin degradation pathways were correlated to tripartite tricarboxylates transporters and hemicellulose degradation machinery, pointing to a possible priming effect. Based on this, we propose a model on how the degradation of recalcitrant TeOM could be modulated by labile compounds in the Amazon River waters. Our results also suggest changes of the microbial community and its genomic potential along the river course. CONCLUSIONS Our work contributes to expand significantly our comprehension of the world's largest river microbiome and its potential metabolism related to TeOM degradation. Furthermore, the produced gene catalogue (AMnrGC) represents an important resource for future research in tropical rivers. Video abstract.
Collapse
Affiliation(s)
- Célio Dias Santos-Júnior
- Molecular Biology Laboratory, Department of Genetics and Evolution – DGE, Universidade Federal de São Carlos – UFSCar, Rod. Washington Luis KM 235 - Monjolinho, São Carlos, SP 13565-905 Brazil
- Institute of Science and Technology for Brain-Inspired Intelligence – ISTBI, Fudan University, Handan Rd 220, Wu Jiao Chang, Yangpu, Shanghai, 200433 China
| | - Hugo Sarmento
- Laboratory of Microbial Processes & Biodiversity, Department of Hydrobiology – DHB, Universidade Federal de São Carlos – UFSCar, Via Washington Luis KM 235 - Monjolinho, São Carlos, SP 13565-905 Brazil
| | - Fernando Pellon de Miranda
- Centro de Pesquisas e Desenvolvimento Leopoldo Américo Miguez de Mello, Petróleo Brasileiro S.A. (Petrobras), Av. Horácio Macedo 950, Rio de Janeiro, RJ 21941-915 Brazil
| | - Flávio Henrique-Silva
- Molecular Biology Laboratory, Department of Genetics and Evolution – DGE, Universidade Federal de São Carlos – UFSCar, Rod. Washington Luis KM 235 - Monjolinho, São Carlos, SP 13565-905 Brazil
| | - Ramiro Logares
- Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta 37-49, ES08003, Barcelona, Catalonia Spain
| |
Collapse
|
16
|
Mattes TE, Ingalls AE, Burke S, Morris RM. Metabolic flexibility of SUP05 under low DO growth conditions. Environ Microbiol 2020; 23:2823-2833. [PMID: 32893469 DOI: 10.1111/1462-2920.15226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/02/2020] [Indexed: 11/30/2022]
Abstract
Chemoautotrophic bacteria from the SUP05 clade often dominate anoxic waters within marine oxygen minimum zones (OMZs) where they use energy gained from the oxidation of reduced sulfur to fuel carbon fixation. Some of these SUP05 bacteria are facultative aerobes that can use either nitrate or oxygen as a terminal electron acceptor making them ideally suited to thrive at the boundaries of OMZs where they experience fluctuations in dissolved oxygen (DO). SUP05 metabolism in these regions, and therefore the biogeochemical function of SUP05, depends largely on their sensitivity to oxygen. We evaluated growth and quantified differences in gene expression in Ca. T. autotrophicus strain EF1 from the SUP05 clade under high DO (22 μM), anoxic, and low DO (3.8 μM) concentrations. We show that strain EF1 cells respire oxygen and nitrate and that cells have higher growth rates, express more genes, and fix more carbon when oxygen becomes available for aerobic respiration. Evidence that facultatively aerobic SUP05 are more active and respire nitrate when oxygen becomes available at low concentrations suggests that they are an important source of nitrite across marine OMZ boundary layers.
Collapse
Affiliation(s)
- Timothy E Mattes
- Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Anitra E Ingalls
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Susan Burke
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Robert M Morris
- School of Oceanography, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Yu G, Jiang Y, Wang J, Zhang H, Luo H. BMC3C: binning metagenomic contigs using codon usage, sequence composition and read coverage. Bioinformatics 2019; 34:4172-4179. [PMID: 29947757 DOI: 10.1093/bioinformatics/bty519] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 06/26/2018] [Indexed: 11/12/2022] Open
Abstract
Motivation Metagenomics investigates the DNA sequences directly recovered from environmental samples. It often starts with reads assembly, which leads to contigs rather than more complete genomes. Therefore, contig binning methods are subsequently used to bin contigs into genome bins. While some clustering-based binning methods have been developed, they generally suffer from problems related to stability and robustness. Results We introduce BMC3C, an ensemble clustering-based method, to accurately and robustly bin contigs by making use of DNA sequence Composition, Coverage across multiple samples and Codon usage. BMC3C begins by searching the proper number of clusters and repeatedly applying the k-means clustering with different initializations to cluster contigs. Next, a weight graph with each node representing a contig is derived from these clusters. If two contigs are frequently grouped into the same cluster, the weight between them is high, and otherwise low. BMC3C finally employs a graph partitioning technique to partition the weight graph into subgraphs, each corresponding to a genome bin. We conduct experiments on both simulated and real-world datasets to evaluate BMC3C, and compare it with the state-of-the-art binning tools. We show that BMC3C has an improved performance compared to these tools. To our knowledge, this is the first time that the codon usage features and ensemble clustering are used in metagenomic contig binning. Availability and implementation The codes of BMC3C are available at http://mlda.swu.edu.cn/codes.php?name=BMC3C. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Guoxian Yu
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Yuan Jiang
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Jun Wang
- College of Computer and Information Science, Southwest University, Chongqing, China
| | - Hao Zhang
- School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Haiwei Luo
- School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
18
|
Gupta S, Arango-Argoty G, Zhang L, Pruden A, Vikesland P. Identification of discriminatory antibiotic resistance genes among environmental resistomes using extremely randomized tree algorithm. MICROBIOME 2019; 7:123. [PMID: 31466530 PMCID: PMC6716844 DOI: 10.1186/s40168-019-0735-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/14/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The interconnectivities of built and natural environments can serve as conduits for the proliferation and dissemination of antibiotic resistance genes (ARGs). Several studies have compared the broad spectrum of ARGs (i.e., "resistomes") in various environmental compartments, but there is a need to identify unique ARG occurrence patterns (i.e., "discriminatory ARGs"), characteristic of each environment. Such an approach will help to identify factors influencing ARG proliferation, facilitate development of relative comparisons of the ARGs distinguishing various environments, and help pave the way towards ranking environments based on their likelihood of contributing to the spread of clinically relevant antibiotic resistance. Here we formulate and demonstrate an approach using an extremely randomized tree (ERT) algorithm combined with a Bayesian optimization technique to capture ARG variability in environmental samples and identify the discriminatory ARGs. The potential of ERT for identifying discriminatory ARGs was first evaluated using in silico metagenomic datasets (simulated metagenomic Illumina sequencing data) with known variability. The application of ERT was then demonstrated through analyses using publicly available and in-house metagenomic datasets associated with (1) different aquatic habitats (e.g., river, wastewater influent, hospital effluent, and dairy farm effluent) to compare resistomes between distinct environments and (2) different river samples (i.e., Amazon, Kalamas, and Cam Rivers) to compare resistome characteristics of similar environments. RESULTS The approach was found to readily identify discriminatory ARGs in the in silico datasets. Also, it was not found to be biased towards ARGs with high relative abundance, which is a common limitation of feature projection methods, and instead only captured those ARGs that elicited significant profiles. Analyses of publicly available metagenomic datasets further demonstrated that the ERT approach can effectively differentiate real-world environmental samples and identify discriminatory ARGs based on pre-defined categorizing schemes. CONCLUSIONS Here a new methodology was formulated to characterize and compare variances in ARG profiles between metagenomic data sets derived from similar/dissimilar environments. Specifically, identification of discriminatory ARGs among samples representing various environments can be identified based on factors of interest. The methodology could prove to be a particularly useful tool for ARG surveillance and the assessment of the effectiveness of strategies for mitigating the spread of antibiotic resistance. The python package is hosted in the Git repository: https://github.com/gaarangoa/ExtrARG.
Collapse
Affiliation(s)
- Suraj Gupta
- The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061 USA
| | | | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061 USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| | - Peter Vikesland
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 USA
| |
Collapse
|
19
|
Cabello-Yeves PJ, Rodriguez-Valera F. Marine-freshwater prokaryotic transitions require extensive changes in the predicted proteome. MICROBIOME 2019; 7:117. [PMID: 31439042 PMCID: PMC6706942 DOI: 10.1186/s40168-019-0731-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/13/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND The adaptation of a marine prokaryote to live in freshwater environments or vice versa is generally believed to be an unusual and evolutionary demanding process. However, the reasons are not obvious given the similarity of both kinds of habitats. RESULTS We have found major differences at the level of the predicted metaproteomes of marine and freshwater habitats with more acidic values of the isoelectric points (pI) in marine microbes. Furthermore, by comparing genomes of marine-freshwater phylogenetic relatives, we have found higher pI values (basic shift) in the freshwater ones. This difference was sharper in secreted > cytoplasmic > membrane proteins. The changes are concentrated on the surface of soluble proteins. It is also detectable at the level of total amino acid composition and involves similarly core and flexible genome- encoded proteins. CONCLUSIONS The marked changes at the level of protein amino acid composition and pI provide a tool to predict the preferred habitat of a culture or a metagenome-assembled genome (MAG). The exact physiological explanation for such variations in the pIs and electrostatic surface potentials is not known yet. However, these changes might reflect differences in membrane bioenergetics derived from the absence of significant Na+ concentrations in most freshwater habitats. In any case, the changes in amino acid composition in most proteins imply that a long evolutionary time is required to adapt from one type of habitat to the other.
Collapse
Affiliation(s)
- Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, 03550, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, 03550, Alicante, Spain.
- Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
| |
Collapse
|
20
|
Klemetsen T, Raknes IA, Fu J, Agafonov A, Balasundaram SV, Tartari G, Robertsen E, Willassen NP. The MAR databases: development and implementation of databases specific for marine metagenomics. Nucleic Acids Res 2019; 46:D692-D699. [PMID: 29106641 PMCID: PMC5753341 DOI: 10.1093/nar/gkx1036] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/18/2017] [Indexed: 12/03/2022] Open
Abstract
We introduce the marine databases; MarRef, MarDB and MarCat (https://mmp.sfb.uit.no/databases/), which are publicly available resources that promote marine research and innovation. These data resources, which have been implemented in the Marine Metagenomics Portal (MMP) (https://mmp.sfb.uit.no/), are collections of richly annotated and manually curated contextual (metadata) and sequence databases representing three tiers of accuracy. While MarRef is a database for completely sequenced marine prokaryotic genomes, which represent a marine prokaryote reference genome database, MarDB includes all incomplete sequenced prokaryotic genomes regardless level of completeness. The last database, MarCat, represents a gene (protein) catalog of uncultivable (and cultivable) marine genes and proteins derived from marine metagenomics samples. The first versions of MarRef and MarDB contain 612 and 3726 records, respectively. Each record is built up of 106 metadata fields including attributes for sampling, sequencing, assembly and annotation in addition to the organism and taxonomic information. Currently, MarCat contains 1227 records with 55 metadata fields. Ontologies and controlled vocabularies are used in the contextual databases to enhance consistency. The user-friendly web interface lets the visitors browse, filter and search in the contextual databases and perform BLAST searches against the corresponding sequence databases. All contextual and sequence databases are freely accessible and downloadable from https://s1.sfb.uit.no/public/mar/.
Collapse
Affiliation(s)
- Terje Klemetsen
- Centre for Bioinformatics, Faculty of science and technology, UiT The Arctic University of Norway, PO Box 6050 Langnes, TromsøN-9037, Norway
| | - Inge A Raknes
- Centre for Bioinformatics, Faculty of science and technology, UiT The Arctic University of Norway, PO Box 6050 Langnes, TromsøN-9037, Norway
| | - Juan Fu
- Centre for Bioinformatics, Faculty of science and technology, UiT The Arctic University of Norway, PO Box 6050 Langnes, TromsøN-9037, Norway
| | - Alexander Agafonov
- Centre for Bioinformatics, Faculty of science and technology, UiT The Arctic University of Norway, PO Box 6050 Langnes, TromsøN-9037, Norway
| | - Sudhagar V Balasundaram
- Centre for Bioinformatics, Faculty of science and technology, UiT The Arctic University of Norway, PO Box 6050 Langnes, TromsøN-9037, Norway
| | - Giacomo Tartari
- Centre for Bioinformatics, Faculty of science and technology, UiT The Arctic University of Norway, PO Box 6050 Langnes, TromsøN-9037, Norway.,Department of Information Technology, UiT The Arctic University of Norway, PO Box 6050 Langnes, TromsøN-9037, Norway
| | - Espen Robertsen
- Centre for Bioinformatics, Faculty of science and technology, UiT The Arctic University of Norway, PO Box 6050 Langnes, TromsøN-9037, Norway
| | - Nils P Willassen
- Centre for Bioinformatics, Faculty of science and technology, UiT The Arctic University of Norway, PO Box 6050 Langnes, TromsøN-9037, Norway
| |
Collapse
|
21
|
Amato P, Besaury L, Joly M, Penaud B, Deguillaume L, Delort AM. Metatranscriptomic exploration of microbial functioning in clouds. Sci Rep 2019; 9:4383. [PMID: 30867542 PMCID: PMC6416334 DOI: 10.1038/s41598-019-41032-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/27/2019] [Indexed: 01/19/2023] Open
Abstract
Clouds constitute the uppermost layer of the biosphere. They host diverse communities whose functioning remains obscure, although biological activity potentially participates to atmospheric chemical and physical processes. In order to gain information on the metabolic functioning of microbial communities in clouds, we conducted coordinated metagenomics/metatranscriptomics profiling of cloud water microbial communities. Samples were collected from a high altitude atmospheric station in France and examined for biological content after untargeted amplification of nucleic acids. Living microorganisms, essentially bacteria, maintained transcriptional and translational activities and expressed many known complementary physiological responses intended to fight oxidants, osmotic variations and cold. These included activities of oxidant detoxification and regulation, synthesis of osmoprotectants/cryoprotectants, modifications of membranes, iron uptake. Consistently these energy-demanding processes were fueled by central metabolic routes involved in oxidative stress response and redox homeostasis management, such as pentose phosphate and glyoxylate pathways. Elevated binding and transmembrane ion transports demonstrated important interactions between cells and their cloud droplet chemical environments. In addition, polysaccharides, potentially beneficial for survival like exopolysaccharides, biosurfactants and adhesins, were synthesized. Our results support a biological influence on cloud physical and chemical processes, acting notably on the oxidant capacity, iron speciation and availability, amino-acids distribution and carbon and nitrogen fates.
Collapse
Affiliation(s)
- Pierre Amato
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000, Clermont-Ferrand, France.
| | - Ludovic Besaury
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000, Clermont-Ferrand, France
| | - Muriel Joly
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000, Clermont-Ferrand, France
| | - Benjamin Penaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000, Clermont-Ferrand, France
| | | | - Anne-Marie Delort
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000, Clermont-Ferrand, France
| |
Collapse
|
22
|
Nóbrega RLB, Guzha AC, Lamparter G, Amorim RSS, Couto EG, Hughes HJ, Jungkunst HF, Gerold G. Impacts of land-use and land-cover change on stream hydrochemistry in the Cerrado and Amazon biomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:259-274. [PMID: 29665544 DOI: 10.1016/j.scitotenv.2018.03.356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Studies on the impacts of land-use and land-cover change on stream hydrochemistry in active deforestation zones of the Amazon agricultural frontier are limited and have often used low-temporal-resolution datasets. Moreover, these impacts are not concurrently assessed in well-established agricultural areas and new deforestations hotspots. We aimed to identify these impacts using an experimental setup to collect high-temporal-resolution hydrological and hydrochemical data in two pairs of low-order streams in catchments under contrasting land use and land cover (native vegetation vs. pasture) in the Amazon and Cerrado biomes. Our results indicate that the conversion of natural landscapes to pastures increases carbon and nutrient fluxes via streamflow in both biomes. These changes were the greatest in total inorganic carbon in the Amazon and in potassium in the Cerrado, representing a 5.0- and 5.5-fold increase in the fluxes of each biome, respectively. We found that stormflow, which is often neglected in studies on stream hydrochemistry in the tropics, plays a substantial role in the carbon and nutrient fluxes, especially in the Amazon biome, as its contributions to hydrochemical fluxes are mostly greater than the volumetric contribution to the total streamflow. These findings demonstrate that assessments of the impacts of deforestation in the Amazon and Cerrado biomes should also take into account rapid hydrological pathways; however, this can only be achieved through collection of high-temporal-resolution data.
Collapse
Affiliation(s)
- Rodolfo L B Nóbrega
- University of Goettingen, Faculty of Geoscience and Geography, Goettingen, Germany.
| | - Alphonce C Guzha
- U.S.D.A. Forest Service, International Programs, c/o CIFOR, World Agroforestry Center, Nairobi, Kenya
| | - Gabriele Lamparter
- University of Goettingen, Faculty of Geoscience and Geography, Goettingen, Germany
| | - Ricardo S S Amorim
- Federal University of Mato Grosso, Department of Soil and Agricultural Engineering, Cuiabá, Brazil
| | - Eduardo G Couto
- Federal University of Mato Grosso, Department of Soil and Agricultural Engineering, Cuiabá, Brazil
| | - Harold J Hughes
- University of Goettingen, Faculty of Geoscience and Geography, Goettingen, Germany
| | - Hermann F Jungkunst
- University of Koblenz-Landau, Institute for Environmental Sciences, Geoecology & Physical Geography, Landau, Germany
| | - Gerhard Gerold
- University of Goettingen, Faculty of Geoscience and Geography, Goettingen, Germany
| |
Collapse
|
23
|
Virioplankton Assemblage Structure in the Lower River and Ocean Continuum of the Amazon. mSphere 2017; 2:mSphere00366-17. [PMID: 28989970 PMCID: PMC5628290 DOI: 10.1128/msphere.00366-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/20/2022] Open
Abstract
The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazonia are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume. The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river’s lower reach (n = 5) and plume (n = 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms (Prochlorococcus, Synechococcus) and heterotrophic bacteria (Pelagibacter). The viral families Microviridae and Myoviridae were the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCE The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume.
Collapse
|
24
|
1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol 2017; 35:676-683. [DOI: 10.1038/nbt.3886] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/21/2017] [Indexed: 12/16/2022]
Abstract
Abstract
We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster with potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.
Collapse
|
25
|
Marine Bacterioplankton Seasonal Succession Dynamics. Trends Microbiol 2017; 25:494-505. [DOI: 10.1016/j.tim.2016.12.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 12/21/2016] [Indexed: 01/08/2023]
|
26
|
Doherty M, Yager PL, Moran MA, Coles VJ, Fortunato CS, Krusche AV, Medeiros PM, Payet JP, Richey JE, Satinsky BM, Sawakuchi HO, Ward ND, Crump BC. Bacterial Biogeography across the Amazon River-Ocean Continuum. Front Microbiol 2017; 8:882. [PMID: 28588561 PMCID: PMC5440517 DOI: 10.3389/fmicb.2017.00882] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/02/2017] [Indexed: 12/26/2022] Open
Abstract
Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.
Collapse
Affiliation(s)
- Mary Doherty
- Horn Point Laboratory, University of Maryland Center for Environmental Science, CambridgeMD, United States
| | - Patricia L Yager
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Victoria J Coles
- Horn Point Laboratory, University of Maryland Center for Environmental Science, CambridgeMD, United States
| | - Caroline S Fortunato
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods HoleMA, United States
| | - Alex V Krusche
- Center of Nuclear Energy in Agriculture, University of São PauloPiracicaba, Brazil
| | - Patricia M Medeiros
- Department of Marine Sciences, University of Georgia, AthensGA, United States
| | - Jérôme P Payet
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, CorvallisOR, United States
| | - Jeffrey E Richey
- School of Oceanography, University of Washington, SeattleWA, United States
| | | | - Henrique O Sawakuchi
- Center of Nuclear Energy in Agriculture, University of São PauloPiracicaba, Brazil
| | - Nicholas D Ward
- Marine Sciences Laboratory, Pacific Northwest National Laboratory, SequimWA, United States
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, CorvallisOR, United States
| |
Collapse
|
27
|
Satinsky BM, Smith CB, Sharma S, Landa M, Medeiros PM, Coles VJ, Yager PL, Crump BC, Moran MA. Expression patterns of elemental cycling genes in the Amazon River Plume. ISME JOURNAL 2017; 11:1852-1864. [PMID: 28387773 DOI: 10.1038/ismej.2017.46] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/16/2017] [Indexed: 11/10/2022]
Abstract
Metatranscriptomics and metagenomics data sets benchmarked with internal standards were used to characterize the expression patterns for biogeochemically relevant bacterial and archaeal genes mediating carbon, nitrogen, phosphorus and sulfur uptake and metabolism through the salinity gradient of the Amazon River Plume. The genes were identified in 48 metatranscriptomic and metagenomic data sets summing to >500 million quality-controlled reads from six locations in the plume ecosystem. The ratio of transcripts per gene copy (a direct measure of expression made possible by internal standard additions) showed that the free-living bacteria and archaea exhibited only small changes in the expression levels of biogeochemically relevant genes through the salinity and nutrient zones of the plume. In contrast, the expression levels of genes in particle-associated cells varied over orders of magnitude among the stations, with the largest differences measured for genes mediating aspects of nitrogen cycling (nifH, amtB and amoA) and phosphorus acquisition (pstC, phoX and phoU). Taxa varied in their baseline gene expression levels and extent of regulation, and most of the spatial variation in the expression level could be attributed to changes in gene regulation after removing the effect of shifting taxonomic composition. We hypothesize that changes in microbial element cycling along the Amazon River Plume are largely driven by shifting activities of particle-associated cells, with most activities peaking in the mesohaline regions where N2 fixation rates are elevated.
Collapse
Affiliation(s)
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Shalabh Sharma
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Marine Landa
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | | | - Victoria J Coles
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, USA
| | - Patricia L Yager
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| |
Collapse
|
28
|
Modelling plankton ecosystems in the meta-omics era. Are we ready? Mar Genomics 2017; 32:1-17. [DOI: 10.1016/j.margen.2017.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/30/2022]
|
29
|
Thiele S, Richter M, Balestra C, Glöckner FO, Casotti R. Taxonomic and functional diversity of a coastal planktonic bacterial community in a river-influenced marine area. Mar Genomics 2017; 32:61-69. [DOI: 10.1016/j.margen.2016.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Accepted: 12/28/2016] [Indexed: 01/19/2023]
|
30
|
Zielinski BL, Allen AE, Carpenter EJ, Coles VJ, Crump BC, Doherty M, Foster RA, Goes JI, Gomes HR, Hood RR, McCrow JP, Montoya JP, Moustafa A, Satinsky BM, Sharma S, Smith CB, Yager PL, Paul JH. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume. PLoS One 2016; 11:e0160929. [PMID: 27598790 PMCID: PMC5012681 DOI: 10.1371/journal.pone.0160929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 07/27/2016] [Indexed: 11/24/2022] Open
Abstract
The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences) that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts) blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon transporters as silicon became limiting. Expression of these genes, including carbonic anhydrase and transporters for nitrate and phosphate, were found to reflect the physiological status and biogeochemistry of river plume environments. These relatively stable patterns of eukaryotic transcript abundance occurred over modest spatiotemporal scales, with similarity observed in sample duplicates collected up to 2.45 km in space and 120 minutes in time. These results confirm the use of metatranscriptomics as a valuable tool to understand and predict microbial community function.
Collapse
Affiliation(s)
- Brian L. Zielinski
- University of South Florida College of Marine Science, St. Petersburg, FL, United States of America
| | - Andrew E. Allen
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, San Diego, CA, United States of America
| | - Edward J. Carpenter
- Romberg Tiburon Center, San Francisco State University, Tiburon, California, United States of America
| | - Victoria J. Coles
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| | - Byron C. Crump
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Mary Doherty
- Rhodes College, Memphis, TN, United States of America
| | - Rachel A. Foster
- Ocean Sciences, University of California, Santa Cruz, CA, United States of America
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Joaquim I. Goes
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, United States of America
| | - Helga R. Gomes
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY, United States of America
| | - Raleigh R. Hood
- Horn Point Laboratory, University of Maryland Center for Environmental Science, Cambridge, MD, United States of America
| | - John P. McCrow
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, San Diego, CA, United States of America
| | - Joseph P. Montoya
- School of Biology, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Ahmed Moustafa
- Department of Biology and Biotechnology Graduate Program, American University in Cairo, New Cairo, Egypt
| | - Brandon M. Satinsky
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Shalabh Sharma
- Department of Marine Sciences, University of Georgia, Athens, GA, United States of America
| | - Christa B. Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, United States of America
| | - Patricia L. Yager
- Department of Marine Sciences, University of Georgia, Athens, GA, United States of America
| | - John H. Paul
- University of South Florida College of Marine Science, St. Petersburg, FL, United States of America
- * E-mail:
| |
Collapse
|
31
|
Moura RL, Amado-Filho GM, Moraes FC, Brasileiro PS, Salomon PS, Mahiques MM, Bastos AC, Almeida MG, Silva JM, Araujo BF, Brito FP, Rangel TP, Oliveira BCV, Bahia RG, Paranhos RP, Dias RJS, Siegle E, Figueiredo AG, Pereira RC, Leal CV, Hajdu E, Asp NE, Gregoracci GB, Neumann-Leitão S, Yager PL, Francini-Filho RB, Fróes A, Campeão M, Silva BS, Moreira APB, Oliveira L, Soares AC, Araujo L, Oliveira NL, Teixeira JB, Valle RAB, Thompson CC, Rezende CE, Thompson FL. An extensive reef system at the Amazon River mouth. SCIENCE ADVANCES 2016; 2:e1501252. [PMID: 27152336 PMCID: PMC4846441 DOI: 10.1126/sciadv.1501252] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 03/25/2016] [Indexed: 05/15/2023]
Abstract
Large rivers create major gaps in reef distribution along tropical shelves. The Amazon River represents 20% of the global riverine discharge to the ocean, generating up to a 1.3 × 10(6)-km(2) plume, and extensive muddy bottoms in the equatorial margin of South America. As a result, a wide area of the tropical North Atlantic is heavily affected in terms of salinity, pH, light penetration, and sedimentation. Such unfavorable conditions were thought to imprint a major gap in Western Atlantic reefs. We present an extensive carbonate system off the Amazon mouth, underneath the river plume. Significant carbonate sedimentation occurred during lowstand sea level, and still occurs in the outer shelf, resulting in complex hard-bottom topography. A permanent near-bottom wedge of ocean water, together with the seasonal nature of the plume's eastward retroflection, conditions the existence of this extensive (~9500 km(2)) hard-bottom mosaic. The Amazon reefs transition from accretive to erosional structures and encompass extensive rhodolith beds. Carbonate structures function as a connectivity corridor for wide depth-ranging reef-associated species, being heavily colonized by large sponges and other structure-forming filter feeders that dwell under low light and high levels of particulates. The oxycline between the plume and subplume is associated with chemoautotrophic and anaerobic microbial metabolisms. The system described here provides several insights about the responses of tropical reefs to suboptimal and marginal reef-building conditions, which are accelerating worldwide due to global changes.
Collapse
Affiliation(s)
- Rodrigo L. Moura
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
- Laboratório de Sistemas Avançados de Gestão da Produção, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, COPPE, UFRJ, Rio de Janeiro RJ CEP 21941-972, Brazil
| | - Gilberto M. Amado-Filho
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro RJ CEP 22460-030, Brazil
| | - Fernando C. Moraes
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro RJ CEP 22460-030, Brazil
- Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 20940-040, Brazil
| | - Poliana S. Brasileiro
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro RJ CEP 22460-030, Brazil
| | - Paulo S. Salomon
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
- Laboratório de Sistemas Avançados de Gestão da Produção, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, COPPE, UFRJ, Rio de Janeiro RJ CEP 21941-972, Brazil
| | - Michel M. Mahiques
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo SP CEP 05508-120, Brazil
| | - Alex C. Bastos
- Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória ES CEP 29199-970, Brazil
| | - Marcelo G. Almeida
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes RJ CEP 28013-602, Brazil
| | - Jomar M. Silva
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes RJ CEP 28013-602, Brazil
| | - Beatriz F. Araujo
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes RJ CEP 28013-602, Brazil
| | - Frederico P. Brito
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes RJ CEP 28013-602, Brazil
| | - Thiago P. Rangel
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes RJ CEP 28013-602, Brazil
| | - Braulio C. V. Oliveira
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes RJ CEP 28013-602, Brazil
| | - Ricardo G. Bahia
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro RJ CEP 22460-030, Brazil
| | - Rodolfo P. Paranhos
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
| | - Rodolfo J. S. Dias
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo SP CEP 05508-120, Brazil
| | - Eduardo Siegle
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo SP CEP 05508-120, Brazil
| | - Alberto G. Figueiredo
- Instituto de Geociências, Universidade Federal Fluminense, Niterói RJ CEP 24210-346, Brazil
| | - Renato C. Pereira
- Instituto de Biologia, Universidade Federal Fluminense, Niterói RJ CEP 24210-130, Brazil
| | - Camille V. Leal
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
- Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 20940-040, Brazil
| | - Eduardo Hajdu
- Museu Nacional, Universidade Federal do Rio de Janeiro, Rio de Janeiro RJ 20940-040, Brazil
| | - Nils E. Asp
- Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança PA CEP 68600-000, Brazil
| | - Gustavo B. Gregoracci
- Departmento de Ciências do Mar, Universidade Federal de São Paulo, Santos SP CEP 11070-100, Brazil
| | - Sigrid Neumann-Leitão
- Departamento de Oceanografia, Universidade Federal de Pernambuco, Recife PE CEP 50670-901, Brazil
| | - Patricia L. Yager
- Department of Marine Sciences, University of Georgia, Athens, GA 30602–2626, USA
| | | | - Adriana Fróes
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
| | - Mariana Campeão
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
| | - Bruno S. Silva
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
| | - Ana P. B. Moreira
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
| | - Louisi Oliveira
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
| | - Ana C. Soares
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
| | - Lais Araujo
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
| | - Nara L. Oliveira
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA CEP 45650-000, Brazil
| | - João B. Teixeira
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA CEP 45650-000, Brazil
| | - Rogerio A. B. Valle
- Laboratório de Sistemas Avançados de Gestão da Produção, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, COPPE, UFRJ, Rio de Janeiro RJ CEP 21941-972, Brazil
| | - Cristiane C. Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
| | - Carlos E. Rezende
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes RJ CEP 28013-602, Brazil
- Corresponding author: E-mail: (F.L.T.); (C.E.R.)
| | - Fabiano L. Thompson
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro RJ CEP 21941-599, Brazil
- Laboratório de Sistemas Avançados de Gestão da Produção, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, COPPE, UFRJ, Rio de Janeiro RJ CEP 21941-972, Brazil
- Corresponding author: E-mail: (F.L.T.); (C.E.R.)
| |
Collapse
|
32
|
|
33
|
Tan B, Ng C, Nshimyimana JP, Loh LL, Gin KYH, Thompson JR. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities. Front Microbiol 2015; 6:1027. [PMID: 26441948 PMCID: PMC4585245 DOI: 10.3389/fmicb.2015.01027] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/10/2015] [Indexed: 12/20/2022] Open
Abstract
Water quality is an emergent property of a complex system comprised of interacting microbial populations and introduced microbial and chemical contaminants. Studies leveraging next-generation sequencing (NGS) technologies are providing new insights into the ecology of microbially mediated processes that influence fresh water quality such as algal blooms, contaminant biodegradation, and pathogen dissemination. In addition, sequencing methods targeting small subunit (SSU) rRNA hypervariable regions have allowed identification of signature microbial species that serve as bioindicators for sewage contamination in these environments. Beyond amplicon sequencing, metagenomic and metatranscriptomic analyses of microbial communities in fresh water environments reveal the genetic capabilities and interplay of waterborne microorganisms, shedding light on the mechanisms for production and biodegradation of toxins and other contaminants. This review discusses the challenges and benefits of applying NGS-based methods to water quality research and assessment. We will consider the suitability and biases inherent in the application of NGS as a screening tool for assessment of biological risks and discuss the potential and limitations for direct quantitative interpretation of NGS data. Secondly, we will examine case studies from recent literature where NGS based methods have been applied to topics in water quality assessment, including development of bioindicators for sewage pollution and microbial source tracking, characterizing the distribution of toxin and antibiotic resistance genes in water samples, and investigating mechanisms of biodegradation of harmful pollutants that threaten water quality. Finally, we provide a short review of emerging NGS platforms and their potential applications to the next generation of water quality assessment tools.
Collapse
Affiliation(s)
- BoonFei Tan
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
| | - Charmaine Ng
- Department of Civil and Environmental Engineering, National University of SingaporeSingapore, Singapore
| | - Jean Pierre Nshimyimana
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological UniversitySingapore, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological UniversitySingapore, Singapore
| | - Lay Leng Loh
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
- Department of Civil and Environmental Engineering, National University of SingaporeSingapore, Singapore
| | - Karina Y.-H. Gin
- Department of Civil and Environmental Engineering, National University of SingaporeSingapore, Singapore
| | - Janelle R. Thompson
- Center for Environmental Sensing and Modelling, Singapore-MIT Alliance for Research and Technology CentreSingapore, Singapore
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, CambridgeMA, USA
| |
Collapse
|
34
|
Satinsky BM, Fortunato CS, Doherty M, Smith CB, Sharma S, Ward ND, Krusche AV, Yager PL, Richey JE, Moran MA, Crump BC. Metagenomic and metatranscriptomic inventories of the lower Amazon River, May 2011. MICROBIOME 2015; 3:39. [PMID: 26353777 PMCID: PMC4564970 DOI: 10.1186/s40168-015-0099-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/12/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND The Amazon River runs nearly 6500 km across the South American continent before emptying into the western tropical North Atlantic Ocean. In terms of both volume and watershed area, it is the world's largest riverine system, affecting elemental cycling on a global scale. RESULTS A quantitative inventory of genes and transcripts benchmarked with internal standards was obtained at five stations in the lower Amazon River during May 2011. At each station, metagenomes and metatranscriptomes were obtained in duplicate for two microbial size fractions (free-living, 0.2 to 2.0 μm; particle-associated, 2.0 to 297 μm) using 150 × 150 paired-end Illumina sequencing. Forty eight sample datasets were obtained, averaging 15 × 10(6) potential protein-encoding reads each (730 × 10(6) total). Prokaryotic metagenomes and metatranscriptomes were dominated by members of the phyla Actinobacteria, Planctomycetes, Betaproteobacteria, Verrucomicrobia, Nitrospirae, and Acidobacteria. The actinobacterium SCGC AAA027-L06 reference genome recruited the greatest number of reads overall, with this single bin contributing an average of 50 billion genes and 500 million transcripts per liter of river water. Several dominant taxa were unevenly distributed between the free-living and particle-associated size fractions, such as a particle-associated bias for reads binning to planctomycete Schlesneria paludicola and a free-living bias for actinobacterium SCGC AAA027-L06. Gene expression ratios (transcripts to gene copy ratio) increased downstream from Óbidos to Macapá and Belém, indicating higher per cell activity of Amazon River bacteria and archaea as river water approached the ocean. CONCLUSION This inventory of riverine microbial genes and transcripts, benchmarked with internal standards for full quantitation, provides an unparalleled window into microbial taxa and functions in the globally important Amazon River ecosystem.
Collapse
Affiliation(s)
- Brandon M Satinsky
- Department of Microbiology, University of Georgia, Athens, GA, 30602, USA.
| | - Caroline S Fortunato
- Horn Point, Laboratory University of Maryland Center for Environmental Science, Cambridge, MD, 21612, USA.
| | - Mary Doherty
- Horn Point, Laboratory University of Maryland Center for Environmental Science, Cambridge, MD, 21612, USA.
| | - Christa B Smith
- Department of Marine Sciences, University of Georgia, Athens, GA, 30605-3636, USA.
| | - Shalabh Sharma
- Department of Marine Sciences, University of Georgia, Athens, GA, 30605-3636, USA.
| | - Nicholas D Ward
- School of Oceanography, University of Washington, Seattle, WA, 98112, USA.
| | - Alex V Krusche
- CENA-USP, Avenida Centenário 303, 13416-000, Piracicaba, São Paulo, Brazil.
| | - Patricia L Yager
- Department of Marine Sciences, University of Georgia, Athens, GA, 30605-3636, USA
| | - Jeffrey E Richey
- School of Oceanography, University of Washington, Seattle, WA, 98112, USA.
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, 30605-3636, USA.
| | - Byron C Crump
- College of Earth, Ocean, and Atmospheric Science, Oregon State University, CEOAS Admin Bldg, Corvallis, OR, 97331-5503, USA.
| |
Collapse
|
35
|
Martin-Cuadrado AB, Garcia-Heredia I, Moltó AG, López-Úbeda R, Kimes N, López-García P, Moreira D, Rodriguez-Valera F. A new class of marine Euryarchaeota group II from the Mediterranean deep chlorophyll maximum. ISME JOURNAL 2014; 9:1619-34. [PMID: 25535935 DOI: 10.1038/ismej.2014.249] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/14/2014] [Accepted: 11/19/2014] [Indexed: 11/09/2022]
Abstract
We have analyzed metagenomic fosmid clones from the deep chlorophyll maximum (DCM), which, by genomic parameters, correspond to the 16S ribosomal RNA (rRNA)-defined marine Euryarchaeota group IIB (MGIIB). The fosmid collections associated with this group add up to 4 Mb and correspond to at least two species within this group. From the proposed essential genes contained in the collections, we infer that large sections of the conserved regions of the genomes of these microbes have been recovered. The genomes indicate a photoheterotrophic lifestyle, similar to that of the available genome of MGIIA (assembled from an estuarine metagenome in Puget Sound, Washington Pacific coast), with a proton-pumping rhodopsin of the same kind. Several genomic features support an aerobic metabolism with diversified substrate degradation capabilities that include xenobiotics and agar. On the other hand, these MGIIB representatives are non-motile and possess similar genome size to the MGIIA-assembled genome, but with a lower GC content. The large phylogenomic gap with other known archaea indicates that this is a new class of marine Euryarchaeota for which we suggest the name Thalassoarchaea. The analysis of recruitment from available metagenomes indicates that the representatives of group IIB described here are largely found at the DCM (ca. 50 m deep), in which they are abundant (up to 0.5% of the reads), and at the surface mostly during the winter mixing, which explains formerly described 16S rRNA distribution patterns. Their uneven representation in environmental samples that are close in space and time might indicate sporadic blooms.
Collapse
Affiliation(s)
- Ana-Belen Martin-Cuadrado
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Inmaculada Garcia-Heredia
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Aitor Gonzaga Moltó
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Rebeca López-Úbeda
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Nikole Kimes
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, UMR CNRS 8079, Université Paris-Sud, Orsay Cedex, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, UMR CNRS 8079, Université Paris-Sud, Orsay Cedex, France
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| |
Collapse
|