1
|
Duong LTK, Nguyen TTT, Nguyen LM, Hoang TH, Nguyen DTC, Tran TV. A waste-to-wealth conversion of plastic bottles into effective carbon-based adsorbents for removal of tetracycline antibiotic from water. ENVIRONMENTAL RESEARCH 2024; 255:119144. [PMID: 38751006 DOI: 10.1016/j.envres.2024.119144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Currently, plastic waste and antibiotic wastewater are two of the most critical environmental problems, calling for urgent measures to take. A waste-to-wealth strategy for the conversion of polyethylene terephthalate (PET) plastic bottles into value-added materials such as carbon composite is highly recommended to clean wastewater contaminated by antibiotics. Inspired by this idea, we develop a novel PET-AC-ZFO composite by incorporating PET plastic-derived KOH-activated carbon (AC) with ZnFe2O4 (ZFO) particles for adsorptive removal of tetracycline (TTC). PET-derived carbon (PET-C), KOH-activated PET-derived carbon (PET-AC), and PET-AC-ZFO were characterized using physicochemical analyses. Central composite design (CCD) was used to obtain a quadratic model by TTC concentration (K), adsorbent dosage (L), and pH (M). PET-AC-ZFO possessed micropores (d ≈ 2 nm) and exceptionally high surface area of 1110 m2 g-1. Nearly 90% TTC could be removed by PET-AC-ZFO composite. Bangham kinetic and Langmuir isotherm were two most fitted models. Theoretical maximum TTC adsorption capacity was 45.1 mg g-1. This study suggested the role of hydrogen bonds, pore-filling interactions, and π-π interactions as the main interactions of the adsorption process. Thus, a strategy for conversion of PET bottles into PET-AC-ZFO can contribute to both plastic recycling and antibiotic wastewater mitigation.
Collapse
Affiliation(s)
- Loan Thi Kim Duong
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City 700000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Thu Hien Hoang
- Amazon Corporate Headquarters, 440 Terry Ave North, Seattle, WA 98109-5210, United States
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
2
|
Guirguis H, Youssef N, William M, Abdel-Dayem D, El-Sayed MM. Bioinspired Stevia rebaudiana Green Zinc Oxide Nanoparticles for the Adsorptive Removal of Antibiotics from Water. ACS OMEGA 2024; 9:12881-12895. [PMID: 38524454 PMCID: PMC10955700 DOI: 10.1021/acsomega.3c09044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024]
Abstract
Green zinc oxide nanoparticles (ZnO NPs) synthesized using Stevia rebaudiana as a reducing agent were investigated as ecofriendly adsorbents for the removal of the antibiotics ciprofloxacin (CIP) and tetracycline (TET) from water. Green ZnO NPs were synthesized using a rapid novel approach that did not require annealing or calcination at high temperatures to produce mesoporous NPs with a size range of 37.36-71.33 nm, a specific surface area of 15.28 m2/g, and a negative surface charge of -15 mV at pH 5. The green ZnO NPs exhibited an antioxidant activity of 85.57% at 250 μg/mL and an antibacterial activity with MIC and MBC of 50 and 100 mg/mL, respectively, against both Escherichia coli and Staphylococcus aureus. The best adsorption performance was achieved using a 4 g/L dose and pH 5, yielding, respectively, 86.77 ± 0.82% removal and 27.07 ± 0.26 mg/g adsorption capacity for CIP at 10 mg/L and 67.86 ± 3.41% and 15.88 ± 0.37 mg/g for TET at 25 mg/L. The green ZnO NPs achieved 79.71% ± 0.28 and 61.55% ± 0.53 removal of 10 mg/L CIP and 25 mg/L TET, respectively, in a spiked tap water binary system of the two contaminants. Adsorption of CIP and TET occurred mainly via electrostatic interactions, whereby CIP was bound more strongly than TET by virtue of its charge and size. The synthesis and adsorption processes were evaluated by a stepwise regression statistical model to optimize their parameters. Lastly, the green ZnO NPs were regenerated and reused for 5 cycles, indicating their functionality as simple, reusable, and low-cost adsorbents for the removal of CIP and TET from wastewater, in accordance with SDGs #6 and 12 for the sustainable management of water.
Collapse
Affiliation(s)
- Hania
A. Guirguis
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| | - Noha Youssef
- Mathematics
and Actuarial Science Department, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| | - Mariam William
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| | - Dania Abdel-Dayem
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| | - Mayyada M.H. El-Sayed
- Department
of Chemistry, School of Sciences and Engineering, The American University in Cairo, P.O. Box 74, AUC Avenue, New Cairo 11835, Cairo, Egypt
| |
Collapse
|
3
|
Madhogaria B, Banerjee S, Kundu A, Dhak P. Efficacy of new generation biosorbents for the sustainable treatment of antibiotic residues and antibiotic resistance genes from polluted waste effluent. INFECTIOUS MEDICINE 2024; 3:100092. [PMID: 38586544 PMCID: PMC10998275 DOI: 10.1016/j.imj.2024.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 04/09/2024]
Abstract
Antimicrobials are frequently used in both humans and animals for the treatment of bacterially-generated illnesses. Antibiotic usage has increased for more than 40% from last 15 years globally per day in both human populations and farm animals leading to the large-scale discharge of antibiotic residues into wastewater. Most antibiotics end up in sewer systems, either directly from industry or healthcare systems, or indirectly from humans and animals after being partially metabolized or broken down following consumption. To prevent additional antibiotic compound pollution, which eventually impacts on the spread of antibiotic resistance, it is crucial to remove antibiotic residues from wastewater. Antibiotic accumulation and antibiotic resistance genes cannot be effectively and efficiently eliminated by conventional sewage treatment plants. Because of their high energy requirements and operating costs, many of the available technologies are not feasible. However, the biosorption method, which uses low-cost biomass as the biosorbent, is an alternative technique to potentially address these problems. An extensive literature survey focusing on developments in the field was conducted using English language electronic databases, such as PubMed, Google Scholar, Pubag, Google books, and ResearchGate, to understand the relative value of the available antibiotic removal methods. The predominant techniques for eliminating antibiotic residues from wastewater were categorized and defined by example. The approaches were contrasted, and the benefits and drawbacks were highlighted. Additionally, we included a few antibiotics whose removal from aquatic environments has been the subject of extensive research. Lastly, a few representative publications were identified that provide specific information on the removal rates attained by each technique. This review provides evidence that biosorption of antibiotic residues from biological waste using natural biosorbent materials is an affordable and effective technique for eliminating antibiotic residues from wastewater.
Collapse
Affiliation(s)
- Barkha Madhogaria
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Sangeeta Banerjee
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
- Department of Chemistry, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Prasanta Dhak
- Department of Chemistry, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
4
|
Upoma B, Yasmin S, Ali Shaikh MA, Jahan T, Haque MA, Moniruzzaman M, Kabir MH. A Fast Adsorption of Azithromycin on Waste-Product-Derived Graphene Oxide Induced by H-Bonding and Electrostatic Interactions. ACS OMEGA 2022; 7:29655-29665. [PMID: 36061663 PMCID: PMC9434760 DOI: 10.1021/acsomega.2c01919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/11/2022] [Indexed: 05/12/2023]
Abstract
Graphene oxide (GO) was prepared from the graphite electrode of waste dry cells, and the application of the prepared GO as a potential adsorbent for rapid and effective removal of an antibiotic, azithromycin (AZM), has been investigated. The synthesis process of GO is very simple, cost-effective, and eco-friendly. As-prepared GO is characterized by field-emission scanning electron microscopy, energy-dispersive X-ray, transmission electron microscopy, X-ray diffractometry, Fourier transform infrared spectroscopy, elemental analysis, Brunauer-Emmett-Teller sorptometry, and zeta potential analysis. The obtained GO has been employed for removal of the widely used AZM antibiotic from an aqueous solution. The quantitative analysis of AZM before and after adsorption has been carried out by liquid chromatography tandem mass spectrometry. The adsorption of AZM by GO was performed in a batch of experiments where the effects of adsorbent (GO) dose, solution pH, temperature, and contact time were investigated. Under optimum conditions (pH = 7.0, contact time = 15 min, and adsorbent dose = 0.25 g/L), 98.8% AZM was removed from the aqueous solution. The rapid and effective removal of AZM was significantly controlled by the electrostatic attractions and hydrogen bonding on the surface of GO. Adsorption isotherms of AZM onto GO were fitted well with the Freundlich isotherm model, while the kinetic data were fitted perfectly with the pseudo-second order. Therefore, the simple, cost-effective, and eco-friendly synthesis of GO from waste material could be applicable to fabricate an effective and promising low-cost adsorbent for removal of AZM from aqueous media.
Collapse
Affiliation(s)
- Bushra
Parvin Upoma
- Institute
of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Sabina Yasmin
- Institute
of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md. Aftab Ali Shaikh
- Institute
of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Tajnin Jahan
- Institute
of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md. Anamul Haque
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Md Humayun Kabir
- Institute
of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
- Central
Analytical and Research Facilities (CARF), BCSIR, Dhaka 1205, Bangladesh
| |
Collapse
|
5
|
Adsorptive Removal of Azithromycin Antibiotic from Aqueous Solution by Azolla Filiculoides-Based Activated Porous Carbon. NANOMATERIALS 2021; 11:nano11123281. [PMID: 34947630 PMCID: PMC8709189 DOI: 10.3390/nano11123281] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 12/07/2022]
Abstract
Due to the shortage of freshwater availability, reclaimed water has become an important source of irrigation water. Nevertheless, emergent contaminants such as antibiotics in reclaimed water can cause potential health risks because antibiotics are nonbiodegradable. In this paper, we report the adsorptive removal of azithromycin (AZM) antibiotics using activated porous carbon prepared from Azolla filiculoides (AF) (AFAC). The influence of the adsorption process variables, such as temperature, pH, time, and adsorbent dosage, is investigated and described. The prepared AFAC is very effective in removing AZM with 87% and 98% removal after the treatment of 75 min, at 303 and 333 K, respectively. The Langmuir, Temkin, Freundlich, and Dubinin–Radushkevich isotherm models were used to analyze the adsorption results. The Freundlich isotherm was best to describe the adsorption isotherm. The adsorption process follows second-order pseudo kinetics. The adsorption was endothermic (ΔH°= 32.25 kJ/mol) and spontaneous (ΔS° = 0.128 kJ/mol·K). Increasing the temperature from 273 to 333 K makes the process more spontaneous (ΔG° = −2.38 and −8.72 KJ/mol). The lower mean square energy of 0.07 to 0.845 kJ/mol confirms the process’ physical nature. The results indicate that AFAC can be a potential low-cost adsorbent of AZM from aqueous solutions.
Collapse
|
6
|
Changduang A, Limpiyakorn T, Punyapalakul P, Thayanukul P. Development of reactive iron-coated natural filter media for treating antibiotic residual in swine wastewater: Mechanisms, intermediates and toxicity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113435. [PMID: 34388549 DOI: 10.1016/j.jenvman.2021.113435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Degradation mechanisms, surface phenomena, and the influence of co-existing organic matter on heterogeneous Fenton-like reactions were investigated using low-cost natural materials, to remove three veterinary antibiotics. Zeolite rock, laterite rock, and pumice rock were modified by adding ferric chloride. Fenton-like reactions yielded more than 50 % of antibiotic removal at a neutral pH. The modified zeolite exhibited the highest antibiotic removal efficiency. The heterogeneous Fenton-like reaction could be indicated by the simultaneous detection of Fe(II) and Fe(III) on the surface of the modified zeolite. Leaching iron was also observed to reduce the antibiotics with homogeneous Fenton-like reaction. The co-existing organic matter expressed by the COD below 400 mg/L did not have a considerable adverse impact on antibiotic removal. An H2O2 concentration as low as 20 μM was sufficient to react with the modified zeolite and degraded more than 70 % of the antibiotics at a neutral pH. The modified zeolite could be reused at least three times, with a removal efficiency of at least 80 %. The antibiotic degradation efficiencies in real treated swine wastewater were above 75 %. Moreover, the degradation intermediates and bacterial inhibition after treatment were investigated.
Collapse
Affiliation(s)
- Athitaya Changduang
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellences on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand.
| | - Patiparn Punyapalakul
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellences on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand.
| | - Parinda Thayanukul
- Center of Excellences on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand; Department of Biology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand.
| |
Collapse
|
7
|
Nguyen-Dinh MT, Bui TS, Bansal P, Jourshabani M, Lee BK. Photocatalytic and photo-electrochemical behavior of novel SnO2-modified-g-C3N4 for complete elimination of tetracycline under visible-light irradiation: Slurry and fixed-bed approach. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Kirova G, Velkova Z, Stoytcheva M, Gochev V. Tetracycline removal from model aqueous solutions by pretreated waste Streptomyces fradiae biomass. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1938677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Gergana Kirova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Zdravka Velkova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Margarita Stoytcheva
- Institute of Engineering (Instituto de Ingeniería), Autonomous University of Baja California (Universidad Autónoma de Baja California), Mexicali, Mexico
| | - Velizar Gochev
- Department of Biochemistry and Microbiology, Faculty of Biology, University of Plovdiv “Paisii Hilendarski”, Plovdiv, Bulgaria
| |
Collapse
|
9
|
Pesaran Afsharian Y, Hedayatpour M, Jamshidi S. Amoxicillin separation from aqueous solution by negatively charged silica composite membrane. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:121-131. [PMID: 34150223 PMCID: PMC8172706 DOI: 10.1007/s40201-020-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Silica composite membranes were successfully prepared by acid/ base-catalyzed sol-gel method and characterized by SEM, FTIR, AFM and contact angle Low isoelectric point of the silica layers provided negatively charged composite membranes, resulting electrostatic repulsion forces between membrane surface and amoxicillin molecules at higher pHs. The rejection rate of amoxicillin was studied systematically at different pHs, solute concentrations, transmembrane pressures and temperatures. It was found that acid-catalyzed membrane has higher amoxicillin rejection ratio compared to base-catalyzed membrane. Especially, acid-catalyzed membrane achieved the highest rejection of 90% at the transmembrane pressure of 6 bar, 45 °C, pH = 10, and initial feed concentration of 50 ppm. Long term stability exhibit that the membrane performance in permeation flux was steady for up to 100 h. However, the AMX rejection of 89% was maintained for over 250 h in acid-catalyzed membrane. It was concluded that the use of negatively charged ceramic membranes is promising for removal of amoxicillin from water resources.
Collapse
Affiliation(s)
| | - Mehrab Hedayatpour
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sona Jamshidi
- Department of Chemical Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
10
|
CoFe2O4@methylcellulose synthesized as a new magnetic nanocomposite to tetracycline adsorption: modeling, analysis, and optimization by response surface methodology. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02540-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Effective adsorption of ciprofloxacin antibiotic using powdered activated carbon magnetized by iron(III) oxide magnetic nanoparticles. JOURNAL OF POROUS MATERIALS 2021. [DOI: 10.1007/s10934-021-01039-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
12
|
Balarak D, McKay G. Utilization of MWCNTs/Al 2O 3 as adsorbent for ciprofloxacin removal: equilibrium, kinetics and thermodynamic studies. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:324-333. [PMID: 33499727 DOI: 10.1080/10934529.2021.1873674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
In the present study, the adsorption behavior of ciprofloxacin (CIP) from aqueous solution onto MWCNTs/Al2O3 was studied using batch experiments. Physical characterization of MWCNTs/Al2O3 was determined by SEM, XRD, and BET. The effective parameters investigated included: initial CIP concentration, contact time, MWCNTs/Al2O3 mass, and temperature. Based on experimental results and correlation coefficients, the rate of CIP adsorption followed the pseudo-second-model kinetics. Complete compatibility of the adsorption isotherm process was achieved with the Langmuir model, and the maximum adsorption capacity reached 41.73 mg/g under the optimized conditions (pH = 7, MWCNTs/Al2O3 dose = 1.2 g/L, contact time = 60 min, initial concentration = 10 mg/L, and temperature= 45 °C). The adsorption capacities based on the Langmuir model at different temperatures, 273, 288, 303, and 318 K, were equal to 72.18, 75.92, 79.65, and 83.47 mg/g, respectively. The determined parameters of the thermodynamic studies demonstrated the endothermic and spontaneous nature of the biosorption. The mean free energy was estimated from D-R isotherm model to be 0.316-0.707 KJ/mol, which clearly proved that the adsorption experiment followed a physical process. The data suggest that MWCNTs/Al2O3 could be used as a highly effective adsorbent material with a high capacity for the removal of antibiotics from water and wastewater.
Collapse
Affiliation(s)
- Davoud Balarak
- Department of Environmental Health, Health Promotion Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Doha, Qatar
| |
Collapse
|
13
|
Ranjbari S, Tanhaei B, Ayati A, Khadempir S, Sillanpää M. Efficient tetracycline adsorptive removal using tricaprylmethylammonium chloride conjugated chitosan hydrogel beads: Mechanism, kinetic, isotherms and thermodynamic study. Int J Biol Macromol 2020; 155:421-429. [DOI: 10.1016/j.ijbiomac.2020.03.188] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 01/11/2023]
|
14
|
Srivastava A, Kumari M, Ramanathan A, Selvaraj K, Prasad B, Prasad KS. Removal of fluoride from aqueous solution by mesoporous silica nanoparticles functionalized with chitosan derived from mushroom. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1738896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Anushree Srivastava
- Centre of Environmental Studies, Institute of Interdisciplinary Studies (IIDS), University of Allahabad, Prayag Raj, Uttar Pradesh, India
| | - Madhu Kumari
- Department of Botany, B. R. A Bihar University, Muzaffarpur, India
| | | | - Kaliaperumal Selvaraj
- Nano and Computational Materials Lab, Catalysis Division, National Chemical Laboratory, Council of Scientific and Industrial Research, Pune, India
| | - Bablu Prasad
- Faculty of Science, Centre of environmental studies, MSU, Vadodara, India
| | - Kumar Suranjit Prasad
- Centre of Environmental Studies, Institute of Interdisciplinary Studies (IIDS), University of Allahabad, Prayag Raj, Uttar Pradesh, India
| |
Collapse
|
15
|
Karoui S, Ben Arfi R, Mougin K, Ghorbal A, Assadi AA, Amrane A. Synthesis of novel biocomposite powder for simultaneous removal of hazardous ciprofloxacin and methylene blue: Central composite design, kinetic and isotherm studies using Brouers-Sotolongo family models. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121675. [PMID: 31767503 DOI: 10.1016/j.jhazmat.2019.121675] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/20/2019] [Accepted: 11/11/2019] [Indexed: 05/27/2023]
Abstract
Over the past decades, extensive efforts have been made to use biomass-based-materials for wastewater-treatment. The first purpose of this study was to develop and characterize regenerated-reed/reed-charcoal (RR-ChR), an enhanced biosorbent from Tunisian-reed (Phragmites-australis). The second aim was to assess and optimize the RR-ChR use for the removal of binary ciprofloxacin antibiotic (CIP) and methylene blue dye (MB), using Central Composite Design under Response Surface methodology. The third purpose was to explain the mechanisms involved in the biosorption-process. The study revealed that the highest removal-percentages (76.66 % for the CIP and 100 % for the MB) were obtained under optimum conditions: 1.55 g/L of adsorbent, 35 mg/L of CIP, 75 mg/L of MB, a pH of 10.42 and 115.28 min contact time. It showed that the CIP biosorption mechanism was described by Brouers-Sotolongo-fractal model, with regression-coefficient (R2) of 0.9994 and a Person's Chi-square (X2) of 0.01. The Hill kinetic model better described the MB biosorption (R2 = 1 and X2 = 1.0E-4). The isotherm studies showed that the adsorbent surface was heterogeneous and the best nonlinear-fit was obtained with the Jovanovich (R2 = 0.9711), and Brouers-Sotolongo (R2 = 0.9723) models, for the CIP and MB adsorption, respectively. Finally, the RR-ChR lignocellulosic-biocomposite-powder could be adopted as efficient and cost-effective adsorbent.
Collapse
Affiliation(s)
- Sarra Karoui
- Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Tunisia; National Engineering School of Sfax, University of Sfax, Tunisia; Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Rim Ben Arfi
- Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Tunisia
| | - Karine Mougin
- Institute of Materials Science of Mulhouse, CNRS - UMR 7361, University of Haute-Alsace, France
| | - Achraf Ghorbal
- Research Laboratory LR18ES33, National Engineering School of Gabes, University of Gabes, Tunisia; Higher Institute of Applied Sciences and Technology of Gabes, University of Gabes, Tunisia
| | - Aymen Amine Assadi
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Abdeltif Amrane
- Univ Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| |
Collapse
|
16
|
Removal of Tetracycline in Sewage and Dairy Products with High-Stable MOF. Molecules 2020; 25:molecules25061312. [PMID: 32183050 PMCID: PMC7145290 DOI: 10.3390/molecules25061312] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
Serious environmental and human health problems caused by the abuse of antibiotics have attracted worldwide concern. Recently, metal–organic frameworks (MOFs) with high porosity have drawn wide attention for their effects in the adsorption and removal of pollutants from complex matrices. Herein, a high-stable metal organic framework (MOF), i.e., ((ZnCl2)3(L)2·DMF)n, where L=1,3,5-tris((pyridin-4-ylthio)methyl)benzene), MOF 1, was applied to adsorb and remove tetracycline from sewage and dairy products. The results showed that MOF 1 exhibited a strong performance in the adsorption of tetracycline. The effects of initial pH values, adsorbent dose, contact time and ionic strength of the adsorption performance of MOF 1 were investigated. The adsorption kinetics best fit the pseudo-second order model, and the adsorption isotherms matched the Langmuir adsorption model well. It was indicated that both chemical adsorption and physical adsorption play an important role in the adsorption process, and the adsorption of tetracycline was homogeneous and occurred on a monolayer on the surface of MOF 1. Additionally, the stability of MOF 1 and the details of the adsorption mechanism were also investigated. Thus, this study provides a new candidate for the application of MOFs-based adsorbents in the removal of antibiotics from sewage and dairy products.
Collapse
|
17
|
Construction of magnetic bifunctional β-cyclodextrin nanocomposites for adsorption and degradation of persistent organic pollutants. Carbohydr Polym 2020; 230:115564. [DOI: 10.1016/j.carbpol.2019.115564] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/03/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
|
18
|
Rizzi V, Lacalamita D, Gubitosa J, Fini P, Petrella A, Romita R, Agostiano A, Gabaldón JA, Fortea Gorbe MI, Gómez-Morte T, Cosma P. Removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133620. [PMID: 31635003 DOI: 10.1016/j.scitotenv.2019.133620] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 05/09/2023]
Abstract
This paper focuses on the removal of tetracycline from polluted water by chitosan-olive pomace adsorbing films. More specifically, both raw olive solid wastes (olive pomace) and the olive solid wastes/chitosan composite were compared and used for this purpose. Adsorption capacities values of 16 mg × g-1 and 1.6 mg × g-1 were obtained for the two adsorbents respectively. However, chitosan/olive pomace is proposed as suitable for environmental applications avoiding the dispersion of the pomace blocked inside the chitosan film. To detail the adsorption process, the effect of several experimental parameters such as the pH values, ionic strength, amount of adsorbent and pollutant and temperature values was investigated. The results showed that the adsorption process improved increasing the pH values, with a maximum at pH 8, and it was negatively affected by the presence of salts that retarded the adsorption. Indeed, the desorption of tetracycline was obtained in a MgCl2 2 M solution. So, a low-cost and cleaner approach, fundamental for the pollutant recovery and for an adsorbent safe reuse, for several cycles of adsorption/desorption, transforming a waste in resource is presented. The kinetics, isotherms models of adsorption and the thermodynamic parameters (ΔG°, ΔH° and ΔS°) were also evaluated observing that the physisorption of the pollutant occurred with and an endothermic character (ΔH° > 0) with ΔG° < 0 and ΔS° > 0. The use of Advanced Oxidation Processes was proposed as possible alternative to the tetracycline recovery, obtaining its degradation after the desorption. With the present paper, the alternative reuse of olive pomace is reported avoiding its disposal in the environment claiming its potential in the removal/recover of emerging contaminants from water.
Collapse
Affiliation(s)
- Vito Rizzi
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4- 70126 Bari, Italy
| | - Dario Lacalamita
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4- 70126 Bari, Italy
| | - Jennifer Gubitosa
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4-70126 Bari, Italy
| | - Paola Fini
- Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4-70126 Bari, Italy
| | - Andrea Petrella
- Dipartimento di Ingegneria Civile, Ambientale, Edile, del Territorio e di Chimica, Politecnico di Bari, Orabona, 4, 70125, Bari, Italy
| | - Roberto Romita
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4- 70126 Bari, Italy
| | - Angela Agostiano
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4- 70126 Bari, Italy; Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4-70126 Bari, Italy
| | - José Antonio Gabaldón
- Departamento Ciencia y Tecnología de Alimentos, Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain
| | - María Isabel Fortea Gorbe
- Departamento Ciencia y Tecnología de Alimentos, Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain
| | - Teresa Gómez-Morte
- Departamento Ciencia y Tecnología de Alimentos, Universidad Católica San Antonio de Murcia, Guadalupe, Murcia, Spain
| | - Pinalysa Cosma
- Università degli Studi "Aldo Moro" di Bari, Dip. Chimica, Via Orabona, 4- 70126 Bari, Italy; Consiglio Nazionale delle Ricerche CNR-IPCF, UOS Bari, Via Orabona, 4-70126 Bari, Italy.
| |
Collapse
|
19
|
Morris S, Garcia-Cabellos G, Ryan D, Enright D, Enright AM. Low-cost physicochemical treatment for removal of ammonia, phosphate and nitrate contaminants from landfill leachate. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:1233-1244. [PMID: 31328626 DOI: 10.1080/10934529.2019.1633855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Four low-cost materials, oyster shells, pumice stone, sand and zeolite were employed as adsorbents in an adsorption batch assays investigating the removal of ammonia, phosphate and nitrate from an aqueous solution. These compounds were chosen as they represent typical compounds found in landfill leachate (LFL). Assay performance was evaluated by the Langmuir and Freundlich adsorption isotherms. The top two materials, oyster shells and pumice stone, were employed as adsorbents in a fixed-bed column trial examining the effect of bed height and flow rate on the treatment of a synthetic LFL. The trial concluded that the highest rates of adsorption were achieved using bed heights of 20 cm with a flow rate of 5 mL min-1. After optimization, the system was employed for the treatment of LFL from Powerstown landfill, Carlow, Ireland. Ammonia and nitrate were effectively removed by both adsorption materials resulting in a reduction of influent ammonia and nitrate concentrations to below the national discharge limits set for these compounds of ≤4 mg L-1 and ≤50 mg L-1, respectively. In contrast, although similar high removal efficiencies were observed for phosphate, these rates were not maintained during the test period with overall results indicating reduced phosphate adsorption in comparison to the other compounds tested.
Collapse
Affiliation(s)
- Sinead Morris
- EnviroCore, Institute of Technology Carlow , Carlow , Ireland
| | | | - David Ryan
- EnviroCore, Institute of Technology Carlow , Carlow , Ireland
| | - Deirdre Enright
- Institute of Technology Tralee, Clash, Tralee , Co. Kerry, Ireland
| | | |
Collapse
|
20
|
Evaluation of the Sorption Potential of Mineral Materials Using Tetracycline as a Model Pollutant. MINERALS 2019. [DOI: 10.3390/min9070453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tetracycline (TC) is among the most used antibiotics in animal feedstock in the EU. Antibiotics’ persistence as emerging pollutants in the environment is evidenced by their long half-life in residual organic-mineral sediments and waters. The risk associated with this persistence favours antibiotic-resistant microbiota, affecting human health and ecosystems. The purpose of the present work is to assess the adsorption of TC into natural clay minerals, synthetic iron hydroxides and calcined sewage sludge. TC adsorption isotherms were performed in three replicated batch tests at three different pH values (4, 6, 8) and TC concentrations (33–1176 mg·L−1). X-Ray diffraction (XRD) mineralogy, cation exchange capacity (CEC), Brunauer, Emmett and Teller specific surface area (BET-SSA) and point of zero charge salt effect (PZSE) were determined for the characterization of materials. Sorption was analysed by means of fitting Langmuir and Freundlich adsorption models, which showed good fitting parameters for the studied materials. Low-charge montmorillonite (LC Mnt) is displays the best sorption capacity for TC at maximum TC concentration (350–300 mgTC·g−1) in the whole range of pH (4–8). Sepiolite and smectites adsorbed 200–250 mgTC·g−1, while illite, calcined sludge or iron hydroxides present the lowest adsorption capacity (<100 mgTC·g−1). Nevertheless, illite, sepiolite and ferrihydrite display high adsorption intensities at low to medium TC concentrations (<300 mg·L−1), even at pH 8, as is expected in wastewater environmental conditions.
Collapse
|
21
|
Nguyen VT, Nguyen TB, Chen CW, Hung CM, Vo TDH, Chang JH, Dong CD. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground. BIORESOURCE TECHNOLOGY 2019; 284:197-203. [PMID: 30939381 DOI: 10.1016/j.biortech.2019.03.096] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 05/16/2023]
Abstract
The main objective of this study was to evaluate the effect of different pyrolysis temperatures on the formation of polycyclicaromatichydrocarbons (PAHs) in biochar originated spent coffee ground (SCG) and the tetracycline (TC) adsorption behavior of biochar in water. The results showed that biochar synthesized at 500 °C (SCG 500) contained low PAHs (600 µg kg-1) and the highest TC adsorption efficiency. In addition, the characteristics, influencing factors on TC adsorption, and the related mechanisms of SCG 500 were comprehensively investigated. The results showed that the highest efficiency was observed at pH of 7 and the presence of ions in salinity solution reduced the adsorption capacity of SCG 500. The electrostatic interaction, hydrogen bonding, and π-EDA were the major adsorption mechanisms. Safety PAHs level, low-cost, widely material sources and high TC removal capacity suggested that SCG 500 was a promising environmentally friendly effective absorbent.
Collapse
Affiliation(s)
- Van-Truc Nguyen
- Institute of Marine Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Thanh-Binh Nguyen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| | - Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Thi-Dieu-Hien Vo
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Viet Nam
| | - Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 41349, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan.
| |
Collapse
|
22
|
Treatment of Organic Matter and Tetracycline in Water by Using Constructed Wetlands and Photocatalysis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
In this study, the ability of a bench-scale simulated constructed wetland (CW) to remove organic matter (OM) and tetracycline (TC) from water was examined. The performance of CW was evaluated by varying the initial concentrations of the target compounds and the hydraulic retention times (HRTs). Findings showed that OM removal efficiencies were 55.2–80.8%, 28.1–71.9% and 72.1–79.7% for ultraviolet absorbance at 254 nm (UV-254), dissolved organic carbon (DOC) and soluble chemical oxygen demand (sCOD) respectively, under 1 day-HRT, whereas higher initial DOC concentration achieved better removal efficiencies. Changing from 1 day-HRT to 2 day-HRT, the removal efficiency of OMs remained practically unchanged, while that of NH3-N increased considerably, from 61.7% to 73.0%, implying that the removal of ammonia in CW needs a longer time for complete treatment. CW also showed an excellent performance in removing TC, especially in the first two hours of operation through the absorption process. In addition, the findings from this research revealed an improvement in effluent water quality when photocatalysis (TiO2/α-Al2O3, with ultraviolet A (UVA) irradiation) was used as the post-treatment following CW, presented by the increase in removal efficiency of OMs of the combined system compared to that of CW alone. This study points to the possible and promising application of the low-cost water treatment system for dealing with OMs and TC in water.
Collapse
|
23
|
Tran TV, Nguyen DTC, Le HTN, Bach LG, Vo DVN, Lim KT, Nong LX, Nguyen TD. Combined Minimum-Run Resolution IV and Central Composite Design for Optimized Removal of the Tetracycline Drug Over Metal⁻Organic Framework-Templated Porous Carbon. Molecules 2019; 24:E1887. [PMID: 31100932 PMCID: PMC6571721 DOI: 10.3390/molecules24101887] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/25/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
In this study, a minimum-run resolution IV and central composite design have been developed to optimize tetracycline removal efficiency over mesoporous carbon derived from the metal-organic framework MIL-53 (Fe) as a self-sacrificial template. Firstly, minimum-run resolution IV, powered by the Design-Expert program, was used as an efficient and reliable screening study for investigating a set of seven factors, these were: tetracycline concentration (A: 5-15 mg/g), dose of mesoporous carbons (MPC) (B: 0.05-0.15 g/L), initial pH level (C: 2-10), contact time (D: 1-3 h), temperature (E: 20-40 °C), shaking speed (F: 150-250 rpm), and Na+ ionic strength (G: 10-90 mM) at both low (-1) and high (+1) levels, for investigation of the data ranges. The 20-trial model was analyzed and assessed by Analysis of Variance (ANOVA) data, and diagnostic plots (e.g., the Pareto chart, and half-normal and normal probability plots). Based on minimum-run resolution IV, three factors, including tetracycline concentration (A), dose of MPC (B), and initial pH (C), were selected to carry out the optimization study using a central composite design. The proposed quadratic model was found to be statistically significant at the 95% confidence level due to a low P-value (<0.05), high R2 (0.9078), and the AP ratio (11.4), along with an abundance of diagnostic plots (3D response surfaces, Cook's distance, Box-Cox, DFFITS, Leverage versus run, residuals versus runs, and actual versus predicted). Under response surface methodology-optimized conditions (e.g., tetracycline concentration of 1.9 mg/g, MPC dose of 0.15 g/L, and pH level of 3.9), the highest tetracycline removal efficiency via confirmation tests reached up to 98.0%-99.7%. Also, kinetic intraparticle diffusion and isotherm models were systematically studied to interpret how tetracycline molecules were absorbed on an MPC structure. In particular, the adsorption mechanisms including "electrostatic attraction" and "π-π interaction" were proposed.
Collapse
Affiliation(s)
- Thuan Van Tran
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| | - Duyen Thi Cam Nguyen
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
- Department of Pharmacy, Nguyen Tat Thanh University, 298⁻300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City 700000, Vietnam.
| | - Hanh T N Le
- Institute of Hygiene and Public Health, 159 Hung Phu, Ward 8, District 8, Ho Chi Minh City 700000, Vietnam.
| | - Long Giang Bach
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
- Center of Excellence for Functional Polymers and Nano-Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
- Faculty of Chemical & Natural Resources Engineering, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Nam-Gu, Busan 608-737, Korea.
| | - Linh Xuan Nong
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| | - Trinh Duy Nguyen
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
24
|
Zhang X, Lin X, He Y, Chen Y, Luo X, Shang R. Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment. Int J Biol Macromol 2019; 124:418-428. [DOI: 10.1016/j.ijbiomac.2018.11.218] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 01/22/2023]
|
25
|
Au-nanoparticle/nanopillars TiO2 meso-porous thin films in the degradation of tetracycline using UV-A light. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
26
|
Zhu H, Chen T, Liu J, Li D. Adsorption of tetracycline antibiotics from an aqueous solution onto graphene oxide/calcium alginate composite fibers. RSC Adv 2018; 8:2616-2621. [PMID: 35541451 PMCID: PMC9077392 DOI: 10.1039/c7ra11964j] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/18/2017] [Indexed: 11/21/2022] Open
Abstract
In this study, we report the preparation of a novel environmentally friendly and highly efficient adsorbent, graphene oxide/calcium alginate (GO/CA) composite fibers, via a freeze-drying method using calcium chloride as a cross-linking reagent between graphene oxide and sodium alginate. The maximum tetracycline adsorption capacity of the GO/CA composite fibers predicted by the Langmuir model reached 131.6 mg g-1. The adsorption properties of tetracycline onto the fibers were investigated through several parameters including the solution pH, the adsorbent dose, the initial concentration of tetracycline, and the agitation time. The Langmuir and Freundlich adsorption isotherms were used to investigate the adsorption equilibrium. The kinetics of the adsorption process was predicted using the pseudo-first-order and pseudo-second-order kinetic equations. Furthermore, the mechanism of adsorption was investigated, and it was found that the hydrogen bonding and π-π interaction should serve as predominant contributions to the significantly enhanced adsorption capability.
Collapse
Affiliation(s)
- Haotian Zhu
- Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University Qingdao 266071 PR China
| | - Tao Chen
- Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University Qingdao 266071 PR China
- School of Materials Science and Engineering, Qingdao University Qingdao 266071 PR China
| | - Jingquan Liu
- Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University Qingdao 266071 PR China
- School of Materials Science and Engineering, Qingdao University Qingdao 266071 PR China
| | - Da Li
- Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University Qingdao 266071 PR China
- School of Mechanical and Electronical Engineering, Qingdao University Qingdao 266071 PR China
| |
Collapse
|
27
|
Adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride from aqueous solutions using 3D hierarchical mesoporous BiOI: Synthesis and characterization, process optimization, adsorption and degradation modeling. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2017.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Bernardo MMS, Madeira CAC, Dos Santos Nunes NCL, Dias DACM, Godinho DMB, de Jesus Pinto MF, do Nascimento Matos IAM, Carvalho APB, de Figueiredo Ligeiro Fonseca IM. Study of the removal mechanism of aquatic emergent pollutants by new bio-based chars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22698-22708. [PMID: 28815412 DOI: 10.1007/s11356-017-9938-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/09/2017] [Indexed: 06/07/2023]
Abstract
This work is dedicated to study the potential application of char byproducts obtained in the gasification of rice husk (RG char) and rice husk blended with corn cob (RCG char) as removal agents of two emergent aquatic contaminants: tetracycline and caffeine. The chars presented high ash contents (59.5-81.5%), being their mineral content mainly composed of silicon (as silica) and potassium. The samples presented a strong basic character, which was related to its higher mineral oxides content. RCG char presented better textural properties with a higher apparent surface area (144 m2 g-1) and higher micropore content (V micro = 0.05 cm3 g-1). The alkaline character of both chars promoted high ecotoxicity levels on their aqueous eluates; however, the ecotoxic behaviour was eliminated after pH correction. Adsorption experiments showed that RG char presented higher uptake capacity for both tetracycline (12.9 mg g-1) and caffeine (8.0 mg g-1), indicating that textural properties did not play a major role in the adsorption process. For tetracycline, the underlying adsorption mechanism was complexation or ion exchange reactions with the mineral elements of chars. The higher affinity of RG char to caffeine was associated with the higher alkaline character presented by this char.
Collapse
Affiliation(s)
- Maria Manuel Serrano Bernardo
- LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | | | - Nuno Carlos Lapa Dos Santos Nunes
- LAQV/REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Diogo André Costa Messias Dias
- LAQV/REQUIMTE, Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Delfina Maria Barbosa Godinho
- LAQV/REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Maria Filomena de Jesus Pinto
- Unidade de Bioenergia, Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, Ed. J, 1649-038, Lisbon, Portugal
| | | | - Ana Paula Batista Carvalho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | | |
Collapse
|
29
|
Nasseri S, Mahvi AH, Seyedsalehi M, Yaghmaeian K, Nabizadeh R, Alimohammadi M, Safari GH. Degradation kinetics of tetracycline in aqueous solutions using peroxydisulfate activated by ultrasound irradiation: Effect of radical scavenger and water matrix. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.137] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
30
|
Priya SS, Radha KV. A Review on the Adsorption Studies of Tetracycline onto Various Types of Adsorbents. CHEM ENG COMMUN 2017. [DOI: 10.1080/00986445.2015.1065820] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S. Swapna Priya
- Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, Tamilnadu, India
| | - K. V. Radha
- Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, Tamilnadu, India
| |
Collapse
|
31
|
Mutavdžić Pavlović D, Ćurković L, Grčić I, Šimić I, Župan J. Isotherm, kinetic, and thermodynamic study of ciprofloxacin sorption on sediments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:10091-10106. [PMID: 28160175 DOI: 10.1007/s11356-017-8461-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
In this study, equilibrium isotherms, kinetics and thermodynamics of ciprofloxacin on seven sediments in a batch sorption process were examined. The effects of contact time, initial ciprofloxacin concentration, temperature and ionic strength on the sorption process were studied. The K d parameter from linear sorption model was determined by linear regression analysis, while the Freundlich and Dubinin-Radushkevich (D-R) sorption models were applied to describe the equilibrium isotherms by linear and nonlinear methods. The estimated K d values varied from 171 to 37,347 mL/g. The obtained values of E (free energy estimated from D-R isotherm model) were between 3.51 and 8.64 kJ/mol, which indicated a physical nature of ciprofloxacin sorption on studied sediments. According to obtained n values as measure of intensity of sorption estimate from Freundlich isotherm model (from 0.69 to 1.442), ciprofloxacin sorption on sediments can be categorized from poor to moderately difficult sorption characteristics. Kinetics data were best fitted by the pseudo-second-order model (R 2 > 0.999). Thermodynamic parameters including the Gibbs free energy (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were calculated to estimate the nature of ciprofloxacin sorption. Results suggested that sorption on sediments was a spontaneous exothermic process.
Collapse
Affiliation(s)
- Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia.
| | - Lidija Ćurković
- Department of Materials, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 1, 10000, Zagreb, Croatia
| | - Ivana Grčić
- Department of Polymer Engineering and Organic Chemical Technology, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| | - Iva Šimić
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| | - Josip Župan
- Department of Materials, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 1, 10000, Zagreb, Croatia
| |
Collapse
|
32
|
JONASI V, MATINA K, GUYO U. Removal of Pb(II) and Cd(II) from aqueous solution using alkaline-modified pumice stone powder (PSP): equilibrium, kinetic, and thermodynamic studies. Turk J Chem 2017. [DOI: 10.3906/kim-1701-40] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
33
|
Malakootian M, Bahraini S, Malakootian M, Zarrabi M. Removal of Tetracycline Antibiotic From Aqueous Solutions Using Modified Pumice With Magnesium Chloride. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/jjhr-37583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Saruchi, Kumar V, Kaith BS, Jindal R. Synthesis of Hybrid Ion Exchanger for Rhodamine B Dye Removal: Equilibrium, Kinetic and Thermodynamic Studies. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b01690] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saruchi
- Biochemical
Conversion Division SSS National Institute of Bio-Energy, Kapurthala, Punjab India
- Department
of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab India
| | | | - B. S. Kaith
- Department
of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab India
| | - Rajeev Jindal
- Department
of Chemistry, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab India
| |
Collapse
|
35
|
Oladipo AA, Abureesh MA, Gazi M. Bifunctional composite from spent “Cyprus coffee” for tetracycline removal and phenol degradation: Solar-Fenton process and artificial neural network. Int J Biol Macromol 2016; 90:89-99. [DOI: 10.1016/j.ijbiomac.2015.08.054] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/24/2015] [Indexed: 11/24/2022]
|
36
|
Evaluation of natural and cationic surfactant modified pumice for congo red removal in batch mode: Kinetic, equilibrium, and thermodynamic studies. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.05.053] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Rashidi Nodeh H, Sereshti H. Synthesis of magnetic graphene oxide doped with strontium titanium trioxide nanoparticles as a nanocomposite for the removal of antibiotics from aqueous media. RSC Adv 2016. [DOI: 10.1039/c6ra18341g] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, strontium titanium trioxide (SrTiO3) nanoparticles were synthesized and doped onto graphene oxide (GO) based magnetic nanoparticles (MNPs) simply via ultrasound.
Collapse
Affiliation(s)
| | - Hassan Sereshti
- Department of Chemistry
- Faculty of Science
- University of Tehran
- Tehran
- Iran
| |
Collapse
|
38
|
Safari GH, Nasseri S, Mahvi AH, Yaghmaeian K, Nabizadeh R, Alimohammadi M. Optimization of sonochemical degradation of tetracycline in aqueous solution using sono-activated persulfate process. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING 2015; 13:76. [PMID: 26539297 PMCID: PMC4632479 DOI: 10.1186/s40201-015-0234-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/19/2015] [Indexed: 12/07/2022]
Abstract
BACKGROUND In this study, a central composite design (CCD) was used for modeling and optimizing the operation parameters such as pH, initial tetracycline and persulfate concentration and reaction time on the tetracycline degradation using sono-activated persulfate process. The effect of temperature, degradation kinetics and mineralization, were also investigated. RESULTS The results from CCD indicated that a quadratic model was appropriate to fit the experimental data (p < 0.0001) and maximum degradation of 95.01 % was predicted at pH = 10, persulfate concentration = 4 mM, initial tetracycline concentration = 30.05 mg/L, and reaction time = 119.99 min. Analysis of response surface plots revealed a significant positive effect of pH, persulfate concentration and reaction time, a negative effect of tetracycline concentration. The degradation process followed the pseudo-first-order kinetic. The activation energy value of 32.01 kJ/mol was obtained for US/S2O8 (2-) process. Under the optimum condition, the removal efficiency of COD and TOC reached to 72.8 % and 59.7 %, respectively. The changes of UV-Vis spectra during the process was investigated. The possible degradation pathway of tetracycline based on loses of N-methyl, hydroxyl, and amino groups was proposed. CONCLUSIONS This study indicated that sono-activated persulfate process was found to be a promising method for the degradation of tetracycline.
Collapse
Affiliation(s)
- Gholam Hossein Safari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ; Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ; Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ; Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran ; Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|