1
|
Prabha S, Sajad M, Hasan GM, Islam A, Imtaiyaz Hassan M, Thakur SC. Recent advancement in understanding of Alzheimer's disease: Risk factors, subtypes, and drug targets and potential therapeutics. Ageing Res Rev 2024; 101:102476. [PMID: 39222668 DOI: 10.1016/j.arr.2024.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a significant neocortical degenerative disorder characterized by the progressive loss of neurons and secondary alterations in white matter tracts. Understanding the risk factors and mechanisms underlying AD is crucial for developing effective treatments. The risk factors associated with AD encompass a wide range of variables, including gender differences, family history, and genetic predispositions. Additionally, environmental factors such as air pollution and lifestyle-related conditions like cardiovascular disease, gut pathogens, and liver pathology contribute substantially to the development and progression of AD and its subtypes. This review provides current update and deeper insights into the role of diverse risk factors, categorizing AD into its distinct subtypes and elucidating their specific pathophysiological mechanisms. Unlike previous studies that often focus on isolated aspects of AD, our review integrates these factors to offer a comprehensive understanding of the disease. Furthermore, the review explores a variety of drug targets linked to the neuropathology of different AD subtypes, highlighting the potential for targeted therapeutic interventions. We further discussed the novel therapeutic options and categorized them according to their targets. The roles of different drug targets were comprehensively studied, and the mechanism of action of their inhibitors was discussed in detail. By comprehensively covering the interplay of risk factors, subtype differentiation, and drug targets, this review provides a deeper understanding of AD and suggests directions for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Sneh Prabha
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Sajad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Sonu Chand Thakur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
2
|
Leclerc H, Lee AKW, Kunicki ZJ, Alber J. Added value of inflammatory plasma biomarkers to pathologic biomarkers in predicting preclinical Alzheimer's disease. J Alzheimers Dis 2024; 102:89-98. [PMID: 39497301 PMCID: PMC11540337 DOI: 10.1177/13872877241283692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
BACKGROUND Plasma biomarkers have recently emerged for the diagnosis, assessment, and disease monitoring of Alzheimer's disease (AD), but have yet to be fully validated in preclinical AD. In addition to AD pathologic plasma biomarkers (amyloid-β (Aβ) and phosphorylated tau (p-tau) species), a proteomic panel can discriminate between symptomatic AD and cognitively unimpaired older adults in a dementia clinic population. OBJECTIVE Examine the added value of a plasma proteomic panel, validated in symptomatic AD, over standard AD pathologic plasma biomarkers and demographic and genetic (apolipoprotein (APOE) ɛ4 status) risk factors in detecting preclinical AD. METHODS 125 cognitively unimpaired older adults (mean age = 66 years) who completed Aβ PET and plasma draw were analyzed using multiple regression with Aβ PET status (positive versus negative) as the outcome to determine the best fit for predicting preclinical AD. Model 1 included age, education, and gender. Model 2 and 3 added predictors APOE ɛ4 status (carrier versus non-carrier) and AD pathologic blood biomarkers (Aβ42/40 ratio, p-tau181), respectively. Random forest modeling established the 5 proteomic markers from the proteomic panel that best predicted Aβ PET status, and these markers were added in Model 4. RESULTS The best model for predicting Aβ PET status included age, years of education, APOE ɛ4 status, Aβ42/40 ratio, and p-tau181. Adding the top 5 proteomic markers did not significantly improve the model. CONCLUSIONS Proteomic markers in plasma did not add predictive value to standard AD pathologic plasma biomarkers in predicting preclinical AD in this sample.
Collapse
Affiliation(s)
- Haley Leclerc
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Athene KW Lee
- Butler Hospital Memory & Aging Program, Providence, RI, USA
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Zachary J Kunicki
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
| | - Jessica Alber
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
- Butler Hospital Memory & Aging Program, Providence, RI, USA
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
3
|
Sasaki K, Becker J, Ong J, Ciaghi S, Guldin LS, Savastano S, Fukumitsu S, Kuwata H, Szele FG, Isoda H. Rosemary extract activates oligodendrogenesis genes in mouse brain and improves learning and memory ability. Biomed Pharmacother 2024; 179:117350. [PMID: 39197189 DOI: 10.1016/j.biopha.2024.117350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Rosemary (Rosmarinus officinalis L.) is a rich source of dietary bioactive compounds such as rosmarinic acid and carnosol with a large repertoire of pharmacological properties, including anti-inflammatory and neuroprotective activities. In the present study, we investigated rosemary as a potential new therapeutic agent for cognitive function and other symptoms of aging. In this present study, we have aimed to investigate the effects of oral administration of rosemary extract (RME) on learning and memory in the context of other biomarkers-related cognitive function and neurotransmitter levels in senescent accelerated prone 8 (SAMP8) mouse, a model of accelerating aging and Alzheimer's disease. The Morris water maze (MWM) test showed improved spatial learning and memory behavior in RME treated SAMP8 mouse. Moreover, RME decreased Aβ42 and inflammatory cytokine levels and increased BDNF, Sirt1, and neurotransmitter levels in SAMP8 mouse. Whole-genome microarray analysis revealed that RME significantly increased gene expression related to oligodendrocyte differentiation, myelination, and ATP production in the hippocampus and decreased gene expression related to stress, neuroinflammation, and apoptosis. Also, in the SAMP8 hippocampus, RME significantly increased Olig1 and Olig2 expression. Altogether, our study is the first to report improvement of spatial learning and memory of RME, modulation of genes important for oligodendrogenesis, and Anti-neuroinflammatory effect by suppressing Aβ42 levels in mouse brain and thus highlights the prospects of RME in the treatment of cognitive dysfunction and aging.
Collapse
Affiliation(s)
- Kazunori Sasaki
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan; AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, Tsukuba, Japan
| | - Jemima Becker
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Jun Ong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sabina Ciaghi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lynn S Guldin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Sofia Savastano
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Satoshi Fukumitsu
- Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Japan
| | - Hidetoshi Kuwata
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Japan; AIST-University of Tsukuba Open Innovation Laboratory for Food and Medicinal Resource Engineering (FoodMed-OIL), AIST, Tsukuba, Japan; Tsukuba Life Science Innovation Program (T-LSI), University of Tsukuba, Tsukuba, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
4
|
Al-Ezzi A, Arechavala RJ, Butler R, Nolty A, Kang JJ, Shimojo S, Wu DA, Fonteh AN, Kleinman MT, Kloner RA, Arakaki X. Disrupted brain functional connectivity as early signature in cognitively healthy individuals with pathological CSF amyloid/tau. Commun Biol 2024; 7:1037. [PMID: 39179782 PMCID: PMC11344156 DOI: 10.1038/s42003-024-06673-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/01/2024] [Indexed: 08/26/2024] Open
Abstract
Alterations in functional connectivity (FC) have been observed in individuals with Alzheimer's disease (AD) with elevated amyloid (Aβ) and tau. However, it is not yet known whether directed FC is already influenced by Aβ and tau load in cognitively healthy (CH) individuals. A 21-channel electroencephalogram (EEG) was used from 46 CHs classified based on cerebrospinal fluid (CSF) Aβ tau ratio: pathological (CH-PAT) or normal (CH-NAT). Directed FC was estimated with Partial Directed Coherence in frontal, temporal, parietal, central, and occipital regions. We also examined the correlations between directed FC and various functional metrics, including neuropsychology, cognitive reserve, MRI volumetrics, and heart rate variability between both groups. Compared to CH-NATs, the CH-PATs showed decreased FC from the temporal regions, indicating a loss of relative functional importance of the temporal regions. In addition, frontal regions showed enhanced FC in the CH-PATs compared to CH-NATs, suggesting neural compensation for the damage caused by the pathology. Moreover, CH-PATs showed greater FC in the frontal and occipital regions than CH-NATs. Our findings provide a useful and non-invasive method for EEG-based analysis to identify alterations in brain connectivity in CHs with a pathological versus normal CSF Aβ/tau.
Collapse
Affiliation(s)
- Abdulhakim Al-Ezzi
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.
| | - Rebecca J Arechavala
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Ryan Butler
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Anne Nolty
- Fuller Theological Seminary, Pasadena, CA, USA
| | | | - Shinsuke Shimojo
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Daw-An Wu
- The Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alfred N Fonteh
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, Center for Occupational and Environmental Health (COEH), University of California, Irvine, CA, USA
| | - Robert A Kloner
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA
- Department of Cardiovascular Research, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Xianghong Arakaki
- Department of Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, USA.
| |
Collapse
|
5
|
Pyka P, Garbo S, Fioravanti R, Jacob C, Hittinger M, Handzlik J, Zwergel C, Battistelli C. Selenium-containing compounds: a new hope for innovative treatments in Alzheimer's disease and Parkinson's disease. Drug Discov Today 2024; 29:104062. [PMID: 38871111 DOI: 10.1016/j.drudis.2024.104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Neurodegenerative diseases are challenging to cure. To date, no cure has been found for Alzheimer's disease or Parkinson's disease, and current treatments are able only to slow the progression of the diseases and manage their symptoms. After an introduction to the complex biology of these diseases, we discuss the beneficial effect of selenium-containing agents, which show neuroprotective effects in vitro or in vivo. Indeed, selenium is an essential trace element that is being incorporated into innovative organoselenium compounds, which can improve outcomes in rodent or even primate models with neurological deficits. Herein, we critically discuss recent findings in the field of selenium-based applications in neurological disorders.
Collapse
Affiliation(s)
- Patryk Pyka
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland; Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 15, 31-530 Krakow, Poland; Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Sabrina Garbo
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany
| | - Marius Hittinger
- Pharmbiotec gGmbH, Department of Drug Discovery, Nußkopf 39, 66578 Schiffweiler, Germany
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B 2.1, D-66123 Saarbrücken, Germany; Pharmbiotec gGmbH, Department of Drug Discovery, Nußkopf 39, 66578 Schiffweiler, Germany.
| | - Cecilia Battistelli
- Istituto Pasteur Italia, Fondazione Cenci-Bolognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.
| |
Collapse
|
6
|
Chen YH, Ren CY, Yu C. Causal relationship between Alzheimer's disease and unstable angina: a bidirectional Mendelian randomization analysis. Front Psychiatry 2024; 15:1435394. [PMID: 39045549 PMCID: PMC11263098 DOI: 10.3389/fpsyt.2024.1435394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Background Research from observational studies has demonstrated a link between Alzheimer's disease (AD) and a higher risk of cardiovascular disease (CVD). Uncertainty surrounds the exact genetic cause of AD and coronary heart disease, particularly unstable angina (UA). Mendelian randomization (MR) analysis was used to examine the causal genetic link between AD and UA to evaluate the impact of AD on UA. Methods The purpose of the bidirectional MR analysis was to investigate the link between exposure and illness causation. Genetic instrumental variables for AD were obtained from European populations using genome-wide association studies (GWAS). The primary causal conclusions were obtained using the inverse variance weighted approach (IVW), and other sensitivity analysis techniques were employed. Sensitivity analyses were carried out to evaluate heterogeneity and horizontal pleiotropy to guarantee accurate MR results. Results An elevated risk of UA was linked to genetically predicted AD (IVW: OR=3.439, 95% CI: 1.565-7.555, P=0.002). A substantial genetic relationship between UA and the risk of AD was not supported by any evidence in the reverse study (IVW: OR=0.998, 95% CI: 0.995-1.001, P=0.190). Various MR techniques produced consistent results. Sensitivity analysis revealed no discernible heterogeneity or horizontal pleiotropy. Conclusions One risk factor for UA that we found in our bidirectional Mendelian randomization trial was AD. This highlights the necessity of researching the underlying molecular mechanisms linked to AD and UA as well as the possibility of creating individualized treatment plans based on genetic data.
Collapse
Affiliation(s)
- Yu-hang Chen
- Department of Operations Management, Chongqing Mental Health Center, Chongqing, China
| | - Cong-ying Ren
- Department of Hospital Infection Control, Chongqing Mental Health Center, Chongqing, China
| | - Cao Yu
- Department of Cardiothoracic Surgery, Chongqing University Jiangjin Hospital, Chongqing, China
| |
Collapse
|
7
|
Llamas Rodríguez J, van der Kouwe AJW, Oltmer J, Rosenblum E, Mercaldo N, Fischl B, Marshall M, Frosch MP, Augustinack JC. Entorhinal vessel density correlates with phosphorylated tau and TDP-43 pathology. Alzheimers Dement 2024; 20:4649-4662. [PMID: 38877668 PMCID: PMC11247684 DOI: 10.1002/alz.13896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION The entorhinal cortex (EC) and perirhinal cortex (PC) are vulnerable to Alzheimer's disease. A triggering factor may be the interaction of vascular dysfunction and tau pathology. METHODS We imaged post mortem human tissue at 100 μm3 with 7 T magnetic resonance imaging and manually labeled individual blood vessels (mean = 270 slices/case). Vessel density was quantified and compared per EC subfield, between EC and PC, and in relation to tau and TAR DNA-binding protein 43 (TDP-43) semiquantitative scores. RESULTS PC was more vascularized than EC and vessel densities were higher in posterior EC subfields. Tau and TDP-43 strongly correlated with vasculature density and subregions with severe tau at the preclinical stage had significantly greater vessel density than those with low tau burden. DISCUSSION These data impact cerebrovascular maps, quantification of subfield vasculature, and correlation of vasculature and pathology at early stages. The ordered association of vessel density, and tau or TDP-43 pathology, may be exploited in a predictive context. HIGHLIGHTS Vessel density correlates with phosphorylated tau (p-tau) burden in entorhinal and perirhinal cortices. Perirhinal area 35 and posterior entorhinal cortex showed greatest p-tau burden but also the highest vessel density in the preclinical phase of Alzheimer's disease. We combined an ex vivo magnetic resonance imaging model and histopathology to demonstrate the 3D reconstruction of intracortical vessels and its spatial relationship to the pathology.
Collapse
Affiliation(s)
- Josué Llamas Rodríguez
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - André J W van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Jan Oltmer
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Digital Health & Innovation, Vivantes Netzwerk für Gesundheit GmbH, Berlin, Germany
| | - Emma Rosenblum
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Nathaniel Mercaldo
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- MGH Institute for Technology Assessment, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bruce Fischl
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael Marshall
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jean C Augustinack
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
8
|
Zhou Y, Yang Y, Qi T, Hou Z, Ge Q, Lu Z. Transcriptome Study of rd1Mouse Brain and Association with Parkinson's Disease. ACS OMEGA 2024; 9:25756-25765. [PMID: 38911794 PMCID: PMC11191077 DOI: 10.1021/acsomega.3c09938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Degeneration of the retina is intrinsically associated with the pathogenesis and progression of neurodegenerative diseases. However, the cellular and molecular mechanisms underlying the association between neurodegeneration and retinal degeneration are still under exploration due to the complexity of the connectivity network of the nervous system. In this study, RNA-seq data from the brains of model retinitis pigmentosa (RP) mice and previously studied Parkinson's disease (PD) mice were analyzed to explore the commonalities between retinal degenerative and neurodegenerative diseases. Differentially expressed genes in RP were compared with neurodegenerative disease-related genes and intersecting genes were identified, including Cnr1 and Septin14. These genes were verified by quantitative real-time reverse transcription PCR and Western blotting experiments. The key proteins CNR1 and SEPTIN14 were found to be potential cotherapeutic targets for retinal degeneration and neurodegenerative disease. In conclusion, understanding the commonalities between retinal degenerative diseases and neurodegenerative processes in the brain will not only facilitate the interpretation of the underlying pathomechanisms but also contribute to early diagnosis and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Digital
Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuwei Yang
- State Key Laboratory of Digital
Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ting Qi
- State Key Laboratory of Digital
Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhuoran Hou
- State Key Laboratory of Digital
Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Digital
Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zuhong Lu
- State Key Laboratory of Digital
Medical Engineering, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
9
|
Krothapalli M, Buddendorff L, Yadav H, Schilaty ND, Jain S. From Gut Microbiota to Brain Waves: The Potential of the Microbiome and EEG as Biomarkers for Cognitive Impairment. Int J Mol Sci 2024; 25:6678. [PMID: 38928383 PMCID: PMC11203453 DOI: 10.3390/ijms25126678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder and a leading cause of dementia. Aging is a significant risk factor for AD, emphasizing the importance of early detection since symptoms cannot be reversed once the advanced stage is reached. Currently, there is no established method for early AD diagnosis. However, emerging evidence suggests that the microbiome has an impact on cognitive function. The gut microbiome and the brain communicate bidirectionally through the gut-brain axis, with systemic inflammation identified as a key connection that may contribute to AD. Gut dysbiosis is more prevalent in individuals with AD compared to their cognitively healthy counterparts, leading to increased gut permeability and subsequent systemic inflammation, potentially causing neuroinflammation. Detecting brain activity traditionally involves invasive and expensive methods, but electroencephalography (EEG) poses as a non-invasive alternative. EEG measures brain activity and multiple studies indicate distinct patterns in individuals with AD. Furthermore, EEG patterns in individuals with mild cognitive impairment differ from those in the advanced stage of AD, suggesting its potential as a method for early indication of AD. This review aims to consolidate existing knowledge on the microbiome and EEG as potential biomarkers for early-stage AD, highlighting the current state of research and suggesting avenues for further investigation.
Collapse
Affiliation(s)
- Mahathi Krothapalli
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL 33612, USA; (M.K.); (L.B.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
| | - Lauren Buddendorff
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL 33612, USA; (M.K.); (L.B.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL 33612, USA; (M.K.); (L.B.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
| | - Nathan D. Schilaty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
- Center for Neuromusculoskeletal Research, University of South Florida, Tampa, FL 33612, USA
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL 33612, USA; (M.K.); (L.B.); (H.Y.)
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
10
|
Giri PM, Banerjee A, Ghosal A, Layek B. Neuroinflammation in Neurodegenerative Disorders: Current Knowledge and Therapeutic Implications. Int J Mol Sci 2024; 25:3995. [PMID: 38612804 PMCID: PMC11011898 DOI: 10.3390/ijms25073995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Neurodegenerative disorders (NDs) have become increasingly common during the past three decades. Approximately 15% of the total population of the world is affected by some form of NDs, resulting in physical and cognitive disability. The most common NDs include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Although NDs are caused by a complex interaction of genetic, environmental, and lifestyle variables, neuroinflammation is known to be associated with all NDs, often leading to permanent damage to neurons of the central nervous system. Furthermore, numerous emerging pieces of evidence have demonstrated that inflammation not only supports the progression of NDs but can also serve as an initiator. Hence, various medicines capable of preventing or reducing neuroinflammation have been investigated as ND treatments. While anti-inflammatory medicine has shown promising benefits in several preclinical models, clinical outcomes are often questionable. In this review, we discuss various NDs with their current treatment strategies, the role of neuroinflammation in the pathophysiology of NDs, and the use of anti-inflammatory agents as a potential therapeutic option.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Anurag Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Arpita Ghosal
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
11
|
Hashim N, Babiker R, Mohammed R, Chaitanya NC, Rahman MM, Gismalla B. Highlighting the Effect of Pro-inflammatory Mediators in the Pathogenesis of Periodontal Diseases and Alzheimer's Disease. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S1120-S1128. [PMID: 38882732 PMCID: PMC11174192 DOI: 10.4103/jpbs.jpbs_1120_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 06/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurological condition that is much more common as people get older. It may start out early or late. Increased levels of pro-inflammatory cytokines and microglial activation, both of which contribute to the central nervous system's inflammatory state, are characteristics of AD. As opposed to this, periodontitis is a widespread oral infection brought on by Gram-negative anaerobic bacteria. By releasing pro-inflammatory cytokines into the systemic circulation, periodontitis can be classified as a "low-grade systemic disease." Periodontitis and AD are linked by inflammation, which is recognized to play a crucial part in both the disease processes. The current review sought to highlight the effects of pro-inflammatory cytokines, which are released during periodontal and Alzheimer's diseases in the pathophysiology of both conditions. It also addresses the puzzling relationship between AD and periodontitis, highlighting the etiology and potential ramifications.
Collapse
Affiliation(s)
- Nada Hashim
- Periodontology, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras al-Khaimah, UAE
| | - Rasha Babiker
- Physiology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras al-Khaimah, UAE
| | - Riham Mohammed
- Oral and Maxillofacial Surgery, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras al-Khaimah, UAE
| | - Nallan Csk Chaitanya
- Oral Medicine and Radiology, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras al-Khaimah, UAE
| | - Muhammed M Rahman
- Periodontology, RAK College of Dental Sciences, RAK Medical and Health Sciences University, Ras al-Khaimah, UAE
| | - Bakri Gismalla
- Periodontology, Faculty of Dentistry, University of Khartoum, Khartoum, Sudan
| |
Collapse
|
12
|
Rippee-Brooks MD, Wu W, Dong J, Pappolla M, Fang X, Bao X. Viral Infections, Are They a Trigger and Risk Factor of Alzheimer's Disease? Pathogens 2024; 13:240. [PMID: 38535583 PMCID: PMC10974111 DOI: 10.3390/pathogens13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Alzheimer's Disease (AD), a progressive and debilitating condition, is reported to be the most common type of dementia, with at least 55 million people believed to be currently affected. Many causation hypotheses of AD exist, yet the intriguing link between viral infection and its possible contribution to the known etiology of AD has become an attractive focal point of research for the field and a challenging study task. In this review, we will explore the historical perspective and milestones that led the field to investigate the viral connection to AD. Specifically, several viruses such as Herpes Simplex Virus 1 (HSV-1), Zika virus (ZIKV), and severe cute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with several others mentioned, include the various viruses presently considered within the field. We delve into the strong evidence implicating these viruses in the development of AD such as the lytic replication and axonal transport of HSV-1, the various mechanisms of ZIKV neurotropism through the human protein Musashi-1 (MSI1), and the spread of SARS-CoV-2 through the transfer of the virus through the BBB endothelial cells to glial cells and then to neurons via transsynaptic transfer. We will also explore beyond these mere associations by carefully analyzing the potential mechanisms by which these viruses may contribute to AD pathology. This includes but is not limited to direct neuronal infections, the dysregulation of immune responses, and the impact on protein processing (Aβ42 and hyperphosphorylated tau). Controversies and challenges of the virus-AD relationship emerge as we tease out these potential mechanisms. Looking forward, we emphasize future directions, such as distinct questions and proposed experimentations to explore, that the field should take to tackle the remaining unanswered questions and the glaring research gaps that persist. Overall, this review aims to provide a comprehensive survey of the past, present, and future of the potential link between viral infections and their association with AD development while encouraging further discussion.
Collapse
Affiliation(s)
- Meagan D. Rippee-Brooks
- Microbiology and Immunology Graduate Program, Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Wenzhe Wu
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Jianli Dong
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Miguel Pappolla
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Xiang Fang
- Department of Neurology and Mitchell Center for Neurodegenerative Diseases, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | - Xiaoyong Bao
- Microbiology and Immunology Graduate Program, Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77550, USA
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77550, USA
- The Institute of Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77550, USA
- The Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77550, USA
| |
Collapse
|
13
|
Grewal A, Sheokand D, Chauhan R, Saini V, Kumar A. Insights into amyloid precursor protein target through PPI network analysis. Bioinformation 2024; 20:140-145. [PMID: 38497073 PMCID: PMC10941771 DOI: 10.6026/973206300200140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide with therapeutic lacunae till date. The beta-amyloid (Aβ) accumulation triggers AD pathogenesis, though clinical trials lowering Aβ have not altered disease outcomes suggesting other interacting factors to be identified for drug design of AD. Therefore, it is of interest to identify potential hub proteins interlinked with disease-driving pathways using a network-based approach for AD therapeutic designing. Literature mining was done to identify proteins implicated in AD etiology. Protein-protein interactions (PPIs) were retrieved from the STRING database and merged into a single network using Cytoscape 3.10.1. The hub proteins involved in AD etiology were predicted based on the topological algorithms of CytoHubba. Six major proteins, with STRING database identifiers - APP, BACE1, PSEN1, MAPT, APOE4 and TREM2, were identified to be involved in AD pathogenesis. The merged network of PPIs of these proteins contained 51 nodes and 211 edges, as predicted by Analyzer module of Cytoscape. The Amyloid precursor protein (APP) emerged as the highest-scoring hub protein across multiple centrality measures and topological algorithms. Thus, current data provides evidence to support the ongoing investigation of APP's multifaceted functions and therapeutic potential for AD.
Collapse
Affiliation(s)
- Annu Grewal
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, Haryana, India, 124001
| | - Deepak Sheokand
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, Haryana, India, 124001
| | - Raveena Chauhan
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, Haryana, India, 124001
| | - Vandana Saini
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, Haryana, India, 124001
| | - Ajit Kumar
- Toxicology and Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, Haryana, India, 124001
| |
Collapse
|
14
|
Nasb M, Tao W, Chen N. Alzheimer's Disease Puzzle: Delving into Pathogenesis Hypotheses. Aging Dis 2024; 15:43-73. [PMID: 37450931 PMCID: PMC10796101 DOI: 10.14336/ad.2023.0608] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disease characterized by both amnestic and non-amnestic clinical manifestations. It accounts for approximately 60-70% of all dementia cases worldwide. With the increasing number of AD patients, elucidating underlying mechanisms and developing corresponding interventional strategies are necessary. Hypotheses about AD such as amyloid cascade, Tau hyper-phosphorylation, neuroinflammation, oxidative stress, mitochondrial dysfunction, cholinergic, and vascular hypotheses are not mutually exclusive, and all of them play a certain role in the development of AD. The amyloid cascade hypothesis is currently the most widely studied; however, other hypotheses are also gaining support. This article summarizes the recent evidence regarding major pathological hypotheses of AD and their potential interplay, as well as the strengths and weaknesses of each hypothesis and their implications for the development of effective treatments. This could stimulate further studies and promote the development of more effective therapeutic strategies for AD.
Collapse
Affiliation(s)
| | | | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| |
Collapse
|
15
|
Lee MY, Kim M. Effects of Red ginseng on neuroinflammation in neurodegenerative diseases. J Ginseng Res 2024; 48:20-30. [PMID: 38223824 PMCID: PMC10785270 DOI: 10.1016/j.jgr.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 01/16/2024] Open
Abstract
Red ginseng (RG) is widely used as a herbal medicine. As the human lifespan has increased, numerous diseases have developed, and RG has also been used to treat various diseases. Neurodegenerative diseases are major problems that modern people face through their lives. Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are featured by progressive nerve system damage. Recently, neuroinflammation has emerged as a degenerative factor and is an immune response in which cytokines with nerve cells that constitute the nervous system. RG, a natural herbal medicine with fewer side effects than chemically synthesized drugs, is currently in the spotlight. Therefore, we reviewed studies reporting the roles of RG in treating neuroinflammation and neurodegenerative diseases and found that RG might help alleviate neurodegenerative diseases by regulating neuroinflammation.
Collapse
Affiliation(s)
- Min Yeong Lee
- Department of Chemistry & Life Science, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
| |
Collapse
|
16
|
Sheremeta CL, Yarlagadda S, Smythe ML, Noakes PG. Prostaglandins in the Inflamed Central Nervous System: Potential Therapeutic Targets. Curr Drug Targets 2024; 25:885-908. [PMID: 39177131 DOI: 10.2174/0113894501323980240815113851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024]
Abstract
The global burden of neurological disorders is evident, yet there remains limited efficacious therapeutics for their treatment. There is a growing recognition of the role of inflammation in diseases of the central nervous system (CNS); among the numerous inflammatory mediators involved, prostaglandins play a crucial role. Prostaglandins are small lipid mediators derived from arachidonic acid via multi-enzymatic pathways. The actions of prostaglandins are varied, with each prostaglandin having a specific role in maintaining homeostasis. In the CNS, prostaglandins can have neuroprotective or neurotoxic properties depending on their specific G-protein receptor. These G-protein receptors have varying subfamilies, tissue distribution, and signal transduction cascades. Further studies into the impact of prostaglandins in CNS-based diseases may contribute to the clarification of their actions, hopefully leading to the development of efficacious therapeutic strategies. This review focuses on the roles played by prostaglandins in neural degeneration, with a focus on Alzheimer's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis in both preclinical and clinical settings. We further discuss current prostaglandin-related agonists and antagonists concerning suggestions for their use as future therapeutics.
Collapse
Affiliation(s)
- Chynna-Loren Sheremeta
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Sai Yarlagadda
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mark L Smythe
- Institute for Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
17
|
Khan T, Waseem R, Shahid M, Ansari J, Ahanger IA, Hassan I, Islam A. Recent advancement in therapeutic strategies for Alzheimer's disease: Insights from clinical trials. Ageing Res Rev 2023; 92:102113. [PMID: 37918760 DOI: 10.1016/j.arr.2023.102113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by the presence of plaques of amyloid beta and Tau proteins. There is currently no permanent cure for AD; the only medications approved by the FDA for mild to moderate AD are cholinesterase inhibitors, NMDA receptor antagonists, and immunotherapies against core pathophysiology, that provide temporary relief only. Researchers worldwide have made significant attempts to find new targets and develop innovative therapeutic molecules to treat AD. The FDA-approved drugs are palliative and couldn't restore the damaged neuron cells of AD. Stem cells have self-differentiation properties, making them prospective therapeutics to treat AD. The promising results in pre-clinical studies of stem cell therapy for AD seek attention worldwide. Various stem cells, mainly mesenchymal stem cells, are currently in different phases of clinical trials and need more advancements to take this therapy to the translational level. Here, we review research from the past decade that has identified several hypotheses related to AD pathology. Moreover, this article also focuses on the recent advancement in therapeutic strategies for AD treatment including immunotherapy and stem cell therapy detailing the clinical trials that are currently undergoing development.
Collapse
Affiliation(s)
- Tanzeel Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashid Waseem
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Jaoud Ansari
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Clinical Biochemistry, University of Kashmir,190006, India
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
18
|
Tian J, Zhang M, Zhao Y, Zhang C, Ying X. Two new ester alkaloids from Portulaca oleracea L. and their bioactivities. Nat Prod Res 2023; 37:3915-3922. [PMID: 36577017 DOI: 10.1080/14786419.2022.2161542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Two new ester alkaloids were isolated from Portulaca oleracea L., identified as (5-aminofuran-2-yl) methyl acetate (1) named oleracone N and 4(S)-ethyl 3-acetamido-3-(dihydroxyamino) propanoate (2) named oleracone O. The structures were elucidated via spectroscopic methods, including 1 D and 2 D NMR, UHPLC-ESI-QTOF/MS and CD spectrometry technique. It was suggested that both oleracone N and oleracone O could significantly inhibit inflammatory factors IL-1β and TNF-α in RAW 264.7 cells induced by LPS.
Collapse
Affiliation(s)
- Jiayin Tian
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Mingbo Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Yingdai Zhao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| | - Chaoshen Zhang
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, P.R. China
| | - Xixiang Ying
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, P.R. China
| |
Collapse
|
19
|
Hu Z, Zhou S, Li J, Li X, Zhou Y, Zhu Z, Xu J, Liu J. Design, synthesis and biological evaluation of novel indanones derivatives as potent acetylcholinesterase/monoamine oxidase B inhibitors. Future Med Chem 2023; 15:1823-1841. [PMID: 37902028 DOI: 10.4155/fmc-2023-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Aim: Based on a multitarget design strategy, a series of novel indanone-1-benzyl-1,2,3,6-tetrahydropyridin hybrids were identified for the potential treatment of Alzheimer's disease (AD). Results: These compounds exhibited significant inhibitory activities against acetylcholinesterase (AChE) and moderate inhibitory activities toward monoamine oxidase B (MAO-B). The optimal compound A1 possessed excellent dual AChE/MAO-B inhibition both in terms of potency (AChE: IC50 = 0.054 ± 0.004 μM; MAO-B: IC50 = 3.25 ± 0.20 μM), moderate inhibitory effects on self-mediated amyloid-β (Aβ) aggregation and antioxidant activity. In addition, compound A1 exhibited low neurotoxicity. More importantly, compound A1 showed significant cognitive and spatial memory improvements in the scopolamine-induced AD mouse model. Conclusion: All results suggest that compound A1 may become a promising lead of anti-AD drug for further development.
Collapse
Affiliation(s)
- Zhaoxin Hu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Shengnan Zhou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Junda Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Xinnan Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Yang Zhou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zheying Zhu
- School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham, NG7 2RD, UK
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jie Liu
- Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| |
Collapse
|
20
|
Thong EHE, Quek EJW, Loo JH, Yun CY, Teo YN, Teo YH, Leow AST, Li TYW, Sharma VK, Tan BYQ, Yeo LLL, Chong YF, Chan MY, Sia CH. Acute Myocardial Infarction and Risk of Cognitive Impairment and Dementia: A Review. BIOLOGY 2023; 12:1154. [PMID: 37627038 PMCID: PMC10452707 DOI: 10.3390/biology12081154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Cognitive impairment (CI) shares common cardiovascular risk factors with acute myocardial infarction (AMI), and is increasingly prevalent in our ageing population. Whilst AMI is associated with increased rates of CI, CI remains underreported and infrequently identified in patients with AMI. In this review, we discuss the evidence surrounding AMI and its links to dementia and CI, including pathophysiology, risk factors, management and interventions. Vascular dysregulation plays a major role in CI, with atherosclerosis, platelet activation, microinfarcts and perivascular inflammation resulting in neurovascular unit dysfunction, disordered homeostasis and a dysfunctional neurohormonal response. This subsequently affects perfusion pressure, resulting in enlarged periventricular spaces and hippocampal sclerosis. The increased platelet activation seen in coronary artery disease (CAD) can also result in inflammation and amyloid-β protein deposition which is associated with Alzheimer's Dementia. Post-AMI, reduced blood pressure and reduced left ventricular ejection fraction can cause chronic cerebral hypoperfusion, cerebral infarction and failure of normal circulatory autoregulatory mechanisms. Patients who undergo coronary revascularization (percutaneous coronary intervention or bypass surgery) are at increased risk for post-procedure cognitive impairment, though whether this is related to the intervention itself or underlying cardiovascular risk factors is debated. Mortality rates are higher in dementia patients with AMI, and post-AMI CI is more prevalent in the elderly and in patients with post-AMI heart failure. Medical management (antiplatelet, statin, renin-angiotensin system inhibitors, cardiac rehabilitation) can reduce the risk of post-AMI CI; however, beta-blockers may be associated with functional decline in patients with existing CI. The early identification of those with dementia or CI who present with AMI is important, as subsequent tailoring of management strategies can potentially improve outcomes as well as guide prognosis.
Collapse
Affiliation(s)
- Elizabeth Hui En Thong
- Internal Medicine Residency, National University Health System, Singapore 119074, Singapore; (E.H.E.T.); (Y.H.T.); (A.S.T.L.)
| | - Ethan J. W. Quek
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (E.J.W.Q.); (J.H.L.); (Y.N.T.); (V.K.S.); (B.Y.Q.T.); (L.L.L.Y.); (M.Y.C.)
| | - Jing Hong Loo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (E.J.W.Q.); (J.H.L.); (Y.N.T.); (V.K.S.); (B.Y.Q.T.); (L.L.L.Y.); (M.Y.C.)
| | - Choi-Ying Yun
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (C.-Y.Y.); (T.Y.W.L.)
| | - Yao Neng Teo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (E.J.W.Q.); (J.H.L.); (Y.N.T.); (V.K.S.); (B.Y.Q.T.); (L.L.L.Y.); (M.Y.C.)
| | - Yao Hao Teo
- Internal Medicine Residency, National University Health System, Singapore 119074, Singapore; (E.H.E.T.); (Y.H.T.); (A.S.T.L.)
| | - Aloysius S. T. Leow
- Internal Medicine Residency, National University Health System, Singapore 119074, Singapore; (E.H.E.T.); (Y.H.T.); (A.S.T.L.)
| | - Tony Y. W. Li
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (C.-Y.Y.); (T.Y.W.L.)
| | - Vijay K. Sharma
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (E.J.W.Q.); (J.H.L.); (Y.N.T.); (V.K.S.); (B.Y.Q.T.); (L.L.L.Y.); (M.Y.C.)
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Benjamin Y. Q. Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (E.J.W.Q.); (J.H.L.); (Y.N.T.); (V.K.S.); (B.Y.Q.T.); (L.L.L.Y.); (M.Y.C.)
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Leonard L. L. Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (E.J.W.Q.); (J.H.L.); (Y.N.T.); (V.K.S.); (B.Y.Q.T.); (L.L.L.Y.); (M.Y.C.)
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Yao Feng Chong
- Division of Neurology, Department of Medicine, National University Hospital, Singapore 119074, Singapore;
| | - Mark Y. Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (E.J.W.Q.); (J.H.L.); (Y.N.T.); (V.K.S.); (B.Y.Q.T.); (L.L.L.Y.); (M.Y.C.)
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (C.-Y.Y.); (T.Y.W.L.)
| | - Ching-Hui Sia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; (E.J.W.Q.); (J.H.L.); (Y.N.T.); (V.K.S.); (B.Y.Q.T.); (L.L.L.Y.); (M.Y.C.)
- Department of Cardiology, National University Heart Centre Singapore, Singapore 119074, Singapore; (C.-Y.Y.); (T.Y.W.L.)
| |
Collapse
|
21
|
Wang E, Wang M, Guo L, Fullard JF, Micallef C, Bendl J, Song WM, Ming C, Huang Y, Li Y, Yu K, Peng J, Bennett DA, De Jager PL, Roussos P, Haroutunian V, Zhang B. Genome-wide methylomic regulation of multiscale gene networks in Alzheimer's disease. Alzheimers Dement 2023; 19:3472-3495. [PMID: 36811307 PMCID: PMC10440222 DOI: 10.1002/alz.12969] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Recent studies revealed the association of abnormal methylomic changes with Alzheimer's disease (AD) but there is a lack of systematic study of the impact of methylomic alterations over the molecular networks underlying AD. METHODS We profiled genome-wide methylomic variations in the parahippocampal gyrus from 201 post mortem control, mild cognitive impaired, and AD brains. RESULTS We identified 270 distinct differentially methylated regions (DMRs) associated with AD. We quantified the impact of these DMRs on each gene and each protein as well as gene and protein co-expression networks. DNA methylation had a profound impact on both AD-associated gene/protein modules and their key regulators. We further integrated the matched multi-omics data to show the impact of DNA methylation on chromatin accessibility, which further modulates gene and protein expression. DISCUSSION The quantified impact of DNA methylation on gene and protein networks underlying AD identified potential upstream epigenetic regulators of AD. HIGHLIGHTS A cohort of DNA methylation data in the parahippocampal gyrus was developed from 201 post mortem control, mild cognitive impaired, and Alzheimer's disease (AD) brains. Two hundred seventy distinct differentially methylated regions (DMRs) were found to be associated with AD compared to normal control. A metric was developed to quantify methylation impact on each gene and each protein. DNA methylation was found to have a profound impact on not only the AD-associated gene modules but also key regulators of the gene and protein networks. Key findings were validated in an independent multi-omics cohort in AD. The impact of DNA methylation on chromatin accessibility was also investigated by integrating the matched methylomic, epigenomic, transcriptomic, and proteomic data.
Collapse
Affiliation(s)
- Erming Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - John F Fullard
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Courtney Micallef
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jaroslav Bendl
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute of Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Chen Ming
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yong Huang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yuxin Li
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Kaiwen Yu
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and the Taub Institute, Columbia University Medical Center, New York, New York, USA
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute of Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center (MIRECC), James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
- The Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Icahn Institute of Genomics, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| |
Collapse
|
22
|
Park C, Jung W, Suk HI. Deep joint learning of pathological region localization and Alzheimer's disease diagnosis. Sci Rep 2023; 13:11664. [PMID: 37468538 DOI: 10.1038/s41598-023-38240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
The identification of Alzheimer's disease (AD) using structural magnetic resonance imaging (sMRI) has been studied based on the subtle morphological changes in the brain. One of the typical approaches is a deep learning-based patch-level feature representation. For this approach, however, the predetermined patches before learning the diagnostic model can limit classification performance. To mitigate this problem, we propose the BrainBagNet with a position-based gate (PG), which applies position information of brain images represented through the 3D coordinates. Our proposed method represents the patch-level class evidence based on both MR scan and position information for image-level prediction. To validate the effectiveness of our proposed framework, we conducted comprehensive experiments comparing it with state-of-the-art methods, utilizing two publicly available datasets: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the Australian Imaging, Biomarkers and Lifestyle (AIBL) dataset. Furthermore, our experimental results demonstrate that our proposed method outperforms the existing competing methods in terms of classification performance for both AD diagnosis and mild cognitive impairment conversion prediction tasks. In addition, we performed various analyses of the results from diverse perspectives to obtain further insights into the underlying mechanisms and strengths of our proposed framework. Based on the results of our experiments, we demonstrate that our proposed framework has the potential to advance deep-learning-based patch-level feature representation studies for AD diagnosis and MCI conversion prediction. In addition, our method provides valuable insights, such as interpretability, and the ability to capture subtle changes, into the underlying pathological processes of AD and MCI, benefiting both researchers and clinicians.
Collapse
Affiliation(s)
- Changhyun Park
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Wonsik Jung
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Heung-Il Suk
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
- Department of Artificial Intelligence, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
23
|
Thakral S, Yadav A, Singh V, Kumar M, Kumar P, Narang R, Sudhakar K, Verma A, Khalilullah H, Jaremko M, Emwas AH. Alzheimer's disease: Molecular aspects and treatment opportunities using herbal drugs. Ageing Res Rev 2023; 88:101960. [PMID: 37224884 DOI: 10.1016/j.arr.2023.101960] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD), also called senile dementia, is the most common neurological disorder. Around 50 million people, mostly of advanced age, are suffering from dementia worldwide and this is expected to reach 100-130 million between 2040 and 2050. AD is characterized by impaired glutamatergic and cholinergic neurotransmission, which is associated with clinical and pathological symptoms. AD is characterized clinically by loss of cognition and memory impairment and pathologically by senile plaques formed by Amyloid β deposits or neurofibrillary tangles (NFT) consisting of aggregated tau proteins. Amyloid β deposits are responsible for glutamatergic dysfunction that develops NMDA dependent Ca2+ influx into postsynaptic neurons generating slow excitotoxicity process leading to oxidative stress and finally impaired cognition and neuronal loss. Amyloid decreases acetylcholine release, synthesis and neuronal transport. The decreased levels of neurotransmitter acetylcholine, neuronal loss, tau aggregation, amyloid β plaques, increased oxidative stress, neuroinflammation, bio-metal dyshomeostasis, autophagy, cell cycle dysregulation, mitochondrial dysfunction, and endoplasmic reticulum dysfunction are the factors responsible for the pathogenesis of AD. Acetylcholinesterase, NMDA, Glutamate, BACE1, 5HT6, and RAGE (Receptors for Advanced Glycation End products) are receptors targeted in treatment of AD. The FDA approved acetylcholinesterase inhibitors Donepezil, Galantamine and Rivastigmine and N-methyl-D-aspartate antagonist Memantine provide symptomatic relief. Different therapies such as amyloid β therapies, tau-based therapies, neurotransmitter-based therapies, autophagy-based therapies, multi-target therapeutic strategies, and gene therapy modify the natural course of the disease. Herbal and food intake is also important as preventive strategy and recently focus has also been placed on herbal drugs for treatment. This review focuses on the molecular aspects, pathogenesis and recent studies that signifies the potential of medicinal plants and their extracts or chemical constituents for the treatment of degenerative symptoms related to AD.
Collapse
Affiliation(s)
- Samridhi Thakral
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Alka Yadav
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| | - Manoj Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
24
|
Han X, Gao H, Lai H, Zhu W, Wang Y. Anti-Aβ42 Aggregative Polyketides from the Antarctic Psychrophilic Fungus Pseudogymnoascus sp. OUCMDZ-3578. JOURNAL OF NATURAL PRODUCTS 2023; 86:882-890. [PMID: 36861650 DOI: 10.1021/acs.jnatprod.2c01101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Seven new polyketides, diphenyl ketone (1), diphenyl ketone glycosides (2-4), diphenyl ketone-diphenyl ether dimer (6), and anthraquinone-diphenyl ketone dimers (7 and 8), together with compound 5, were isolated from the psychrophilic fungus Pseudogymnoascus sp. OUCMDZ-3578 fermented at 16 °C and identified by spectroscopic analysis. The absolute configurations of 2-4 were determined by acid hydrolysis and 1-phenyl-3-methyl-5-pyrazolone precolumn derivatization. The configuration of 5 was first determined by X-ray diffraction analysis. Compounds 6 and 8 showed the highest activity against amyloid beta (Aβ42) aggregation with half-maximal inhibitory concentrations (IC50) of 0.10 and 0.18 μM, respectively. They also showed strong abilities to chelate with metal ions, especially iron, were sensitive to Aβ42 aggregation induced by metal ions, and displayed depolymerizing activity. Compounds 6 and 8 show potential as leads for the treatment of Alzheimer's disease to prevent Aβ42 aggregation.
Collapse
Affiliation(s)
- Xiaoling Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hai Gao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Huanyan Lai
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Weiming Zhu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Key Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Yi Wang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Key Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
25
|
Comparison of Oleocanthal-Low EVOO and Oleocanthal against Amyloid-β and Related Pathology in a Mouse Model of Alzheimer's Disease. Molecules 2023; 28:molecules28031249. [PMID: 36770920 PMCID: PMC9921117 DOI: 10.3390/molecules28031249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by several pathological hallmarks, including the deposition of amyloid-β (Aβ) plaques, neurofibrillary tangles, blood-brain barrier (BBB) dysfunction, and neuroinflammation. Growing evidence support the neuroprotective effects of extra-virgin olive oil (EVOO) and oleocanthal (OC). In this work, we aimed to evaluate and compare the beneficial effects of equivalent doses of OC-low EVOO (0.5 mg total phenolic content/kg) and OC (0.5 mg OC/kg) on Aβ and related pathology and to assess their effect on neuroinflammation in a 5xFAD mouse model with advanced pathology. Homozygous 5xFAD mice were fed with refined olive oil (ROO), OC-low EVOO, or OC for 3 months starting at the age of 3 months. Our findings demonstrated that a low dose of 0.5 mg/kg EVOO-phenols and OC reduced brain Aβ levels and neuroinflammation by suppressing the nuclear factor-κB (NF-κB) pathway and reducing the activation of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. On the other hand, only OC suppressed the receptor for advanced glycation endproducts/high-mobility group box 1 (RAGE/HMGB1) pathway. In conclusion, our results indicated that while OC-low EVOO demonstrated a beneficial effect against Aβ-related pathology in 5xFAD mice, EVOO rich with OC could provide a higher anti-inflammatory effect by targeting multiple mechanisms. Collectively, diet supplementation with EVOO or OC could prevent, halt progression, and treat AD.
Collapse
|
26
|
Debnath S, Sharma D, Chaudhari SY, Sharma R, Shaikh AA, Buchade RS, Kesari KK, Abdel-Fattah AFM, Algahtani M, Mheidat M, Alsaidalani R, Paul T, Sayed AA, Abdel-Daim MM. Wheat ergot fungus-derived and modified drug for inhibition of intracranial aneurysm rupture due to dysfunction of TLR-4 receptor in Alzheimer's disease. PLoS One 2023; 18:e0279616. [PMID: 36656815 PMCID: PMC9851541 DOI: 10.1371/journal.pone.0279616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a form of dementia that strikes elderly people more frequently than it does younger people. The cognitive skills and memory of Alzheimer's sufferers continue to deteriorate over time. Recent studies have shown that patients with AD have greater amounts of inflammatory markers in their bodies, which suggests that inflammation occurs early on in the progression of the disease. There is a possibility that Aß oligomers and fibrils can be recognised by TLRs, in addition to the microglial receptors CD14, CD36, and CD47. When Aß binds to either CD36 or TLR4, it sets off a chain reaction of inflammatory chemokines and cytokines that ultimately results in neurodegeneration. Diabetes and Alzheimer's disease have both been recently related to TLR4. The activation of TLR4 has been connected to a variety of clinical difficulties that are associated with diabetes, in addition to the internal environment of the body and the microenvironment of the brain. TLR4 inhibitors have been shown in clinical investigations to not only lessen the likelihood of getting sick but also to increase the average longevity. RESULT In this work we used molecular docking and molecular dynamics modelling to investigate the effectiveness of FDA-approved antidiabetic plant derived drugs in combating the TLR4 receptor. Molecular docking experiments were used to make a prediction regarding the most important interactions involving 2-Bromoergocryptine Mesylate. With a binding affinity of -8.26 kcal/mol, it stood out from the other candidates as the one with the greatest potential. To verify the interaction pattern that takes place between 2-Bromoergocryptine Mesylate and the TLR4 receptor, a molecular dynamic simulation was run at a time scale of 150 nanoseconds. Because of this, 2-Bromoergocryptine Mesylate was able to make substantial contact with the active site, which led to increased structural stability during the process of the complex's dynamic development. CONCLUSION As a result of this, the results of our research may be relevant for future research into the efficacy of 2-bromoergocryptine mesylate as a potential lead treatment for TLR4 receptors in intracranial aneurysm rupture in AD.
Collapse
Affiliation(s)
- Sandip Debnath
- Department of Genetics and Plant Breeding, Institute of Agriculture, Visva-Bharati University, Sriniketan, West Bengal, India
| | - Devesh Sharma
- Department of Biochemistry, ICMR - National JALMA Institute for Leprosy & Other Mycobacterial Diseases, Agra, Uttar Pradesh, India
| | - Somdatta Yashwant Chaudhari
- Department of Pharmaceutical Chemistry, Progressive Education Society’s Modern College of Pharmacy, Nigdi, Pune, India
| | - Ritika Sharma
- Department University Institute of Pharma Sciences, Chandigarh University, Chandigarh, India
| | - Amir Afzal Shaikh
- Department of Pharmaceutics, SCES’s Indira College of Pharmacy "Niramay", Tathwade, Pune, Maharashtra, India
| | - Rahul Subhash Buchade
- Department of Pharmaceutics, SCES’s Indira College of Pharmacy "Niramay", Tathwade, Pune, Maharashtra, India
| | | | | | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Meca, Saudi Arabia
| | - Mayyadah Mheidat
- Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Rawidh Alsaidalani
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Tapas Paul
- Department of Genetics and Plant Breeding, Institute of Agriculture, Visva-Bharati University, Sriniketan, West Bengal, India
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Zhou Z, Shi B, Xu Y, Zhang J, liu X, Zhou X, Feng B, Ma J, Cui H. Neural stem/progenitor cell therapy for Alzheimer disease in preclinical rodent models: a systematic review and meta-analysis. Stem Cell Res Ther 2023; 14:3. [PMID: 36600321 PMCID: PMC9814315 DOI: 10.1186/s13287-022-03231-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a common progressive neurodegenerative disease characterized by memory impairments, and there is no effective therapy. Neural stem/progenitor cell (NSPC) has emerged as potential novel therapy for AD, and we aim to explore whether neural stem/progenitor cell therapy was effective for rodent models of AD. METHODS We searched PubMed, Embase, Cochrane Library and Web of Science up to December 6, 2022. The outcomes included cognitive function, pathological features and BDNF. The GetData Graph Digitizer software (version 2.26) was applied to extract numerical values, and RevMan 5.3 and Stata 16 were used to analyze data. The SYRCLE risk of bias tool was used to assess study quality. RESULTS We evaluated 22 mice studies and 8 rat studies. Compared to control groups, cognitive function of NSPC groups of both mice studies (SMD = - 1.96, 95% CI - 2.47 to - 1.45, I2 = 75%, P < 0.00001) and rat studies (SMD = - 1.35, 95% CI - 2.11 to - 0.59, I2 = 77%, P = 0.0005) was apparently improved. In mice studies, NSPC group has lower Aβ deposition (SMD = - 0.96, 95% CI - 1.40 to - 0.52, P < 0.0001) and p-tau level (SMD = - 4.94, 95% CI - 7.29 to - 2.95, P < 0.0001), higher synaptic density (SMD = 2.02, 95% CI 0.50-3.55, P = 0.009) and BDNF (SMD = 1.69, 95% CI 0.61-2.77, P = 0.002). Combined with nanoformulation (SMD = - 1.29, 95% CI - 2.26 to - 0.32, I2 = 65%, P = 0.009) and genetically modified (SMD = - 1.29, 95% CI - 1.92 to - 0.66, I2 = 60%, P < 0.0001) could improve the effect of NSPC. In addition, both xenogeneic and allogeneic transplant of NSPC could reverse the cognitive impairment of AD animal models. CONCLUSIONS Our results suggested that NSPC therapy could improve the cognitive function and slow down the progression of AD. Due to the limitations of models, more animal trials and clinical trials are needed.
Collapse
Affiliation(s)
- Zijing Zhou
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Ben Shi
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Yaxing Xu
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Jinyu Zhang
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Xin liu
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Xinghong Zhou
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Baofeng Feng
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| | - Jun Ma
- Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China. .,Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China. .,Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
| | - Huixian Cui
- grid.256883.20000 0004 1760 8442Hebei Medical University-National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Hebei Research Center for Stem Cell Medical Translational Engineering, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China ,grid.256883.20000 0004 1760 8442Human Anatomy Department, Hebei Medical University, Shijiazhuang, 050017 Hebei Province China
| |
Collapse
|
28
|
The Role of Dietary Lipids in Cognitive Health: Implications for Neurodegenerative Disease. Biomedicines 2022; 10:biomedicines10123250. [PMID: 36552006 PMCID: PMC9775642 DOI: 10.3390/biomedicines10123250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative diseases are a group of disorders characterised by progressive loss of brain function. The most common of these is Alzheimer's disease, a form of dementia. Intake of macro- and micro-nutrients impacts brain function, including memory, learning, mood, and behaviour. Lipids, particularly phospholipids and sphingolipids, are crucial structural components of neural tissues and significantly affect cognitive function. The importance of functional foods in preventing cardiovascular disease is well-documented in the current literature. However, the significance of such foods for central nervous system health and neurodegenerative diseases is less recognized. Gut microbiome composition affects cognitive health and function, and dietary lipids are known to influence gut health. Thus, this review will discuss different sources of dietary lipids and their effect on cognitive functioning and their interaction with the gut microbiome in the context of neurodegenerative disease.
Collapse
|
29
|
Immunosenescence and Aging: Neuroinflammation Is a Prominent Feature of Alzheimer's Disease and Is a Likely Contributor to Neurodegenerative Disease Pathogenesis. J Pers Med 2022; 12:jpm12111817. [PMID: 36579548 PMCID: PMC9698256 DOI: 10.3390/jpm12111817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is a chronic multifactorial and complex neuro-degenerative disorder characterized by memory impairment and the loss of cognitive ability, which is a problem affecting the elderly. The pathological intracellular accumulation of abnormally phosphorylated Tau proteins, forming neurofibrillary tangles, and extracellular amyloid-beta (Aβ) deposition, forming senile plaques, as well as neural disconnection, neural death and synaptic dysfunction in the brain, are hallmark pathologies that characterize AD. The prevalence of the disease continues to increase globally due to the increase in longevity, quality of life, and medical treatment for chronic diseases that decreases the mortality and enhance the survival of elderly. Medical awareness and the accurate diagnosis of the disease also contribute to the high prevalence observed globally. Unfortunately, no definitive treatment exists that can be used to modify the course of AD, and no available treatment is capable of mitigating the cognitive decline or reversing the pathology of the disease as of yet. A plethora of hypotheses, ranging from the cholinergic theory and dominant Aβ cascade hypothesis to the abnormally excessive phosphorylated Tau protein hypothesis, have been reported. Various explanations for the pathogenesis of AD, such as the abnormal excitation of the glutamate system and mitochondrial dysfunction, have also been suggested. Despite the continuous efforts to deliver significant benefits and an effective treatment for this distressing, globally attested aging illness, multipronged approaches and strategies for ameliorating the disease course based on knowledge of the underpinnings of the pathogenesis of AD are urgently needed. Immunosenescence is an immune deficit process that appears with age (inflammaging process) and encompasses the remodeling of the lymphoid organs, leading to alterations in the immune function and neuroinflammation during advanced aging, which is closely linked to the outgrowth of infections, autoimmune diseases, and malignant cancers. It is well known that long-standing inflammation negatively influences the brain over the course of a lifetime due to the senescence of the immune system. Herein, we aim to trace the role of the immune system in the pathogenesis of AD. Thus, we explore alternative avenues, such as neuroimmune involvement in the pathogenesis of AD. We determine the initial triggers of neuroinflammation, which is an early episode in the pre-symptomatic stages of AD and contributes to the advancement of the disease, and the underlying key mechanisms of brain damage that might aid in the development of therapeutic strategies that can be used to combat this devastating disease. In addition, we aim to outline the ways in which different aspects of the immune system, both in the brain and peripherally, behave and thus to contribute to AD.
Collapse
|
30
|
Hase Y, Ameen‐Ali KE, Waller R, Simpson JE, Stafford C, Mahesh A, Ryan L, Pickering L, Bodman C, Hase M, Boche D, Horsburgh K, Wharton SB, Kalaria RN. Differential perivascular microglial activation in the deep white matter in vascular dementia developed post-stroke. Brain Pathol 2022; 32:e13101. [PMID: 35748290 PMCID: PMC9616090 DOI: 10.1111/bpa.13101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022] Open
Abstract
With the hypothesis that perivascular microglia are involved as neuroinflammatory components of the gliovascular unit contributing to white matter hyperintensities on MRI and pathophysiology, we assessed their status in stroke survivors who develop dementia. Immunohistochemical and immunofluorescent methods were used to assess the distribution and quantification of total and perivascular microglial cell densities in 68 brains focusing on the frontal lobe WM and overlying neocortex in post-stroke dementia (PSD), post-stroke non-dementia (PSND) and similar age control subjects. We primarily used CD68 as a marker of phagocytic microglia, as well as other markers of microglia including Iba-1 and TMEM119, and the myeloid cell marker TREM2 to assess dementia-specific changes. We first noted greater total densities of CD68+ and TREM2+ cells per mm2 in the frontal WM compared to the overlying cortex across the stroke cases and controls (p = 0.001). PSD subjects showed increased percentage of activated perivascular CD68+ cells distinct from ramified or primed microglia in the WM (p < 0.05). However, there was no apparent change in perivascular TREM2+ cells. Total densities of TREM2+ cells were only ~10% of CD68+ cells but there was high degree of overlap (>70%) between them in both the WM and the cortex. CD68 and Iba-1 or CD68 and TMEM119 markers were colocalised by ~55%. Within the deep WM, ~30% of CD68+ cells were co-localised with fragments of degraded myelin basic protein. Among fragmented CD68+ cells in adjacent WM of PSD subjects, >80% of the cells expressed cleaved caspase-3. Our observations suggest although the overall repertoire of perivascular microglial cells is not changed in the parenchyma, PSD subjects accrue more perivascular-activated CD68+ microglia rather than TREM2+ cells. This implies there is a subset of CD68+ cells, which are responsible for the differential response in perivascular inflammation within the gliovascular unit of the deep WM.
Collapse
Affiliation(s)
- Yoshiki Hase
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Kamar E. Ameen‐Ali
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
- Institute of Neuroscience and PsychologyUniversity of Glasgow, Queen Elizabeth University HospitalGlasgowUK
| | - Rachel Waller
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Julie E. Simpson
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Charlotte Stafford
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Ayushi Mahesh
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Lucy Ryan
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Lucy Pickering
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Caroline Bodman
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Mai Hase
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Delphine Boche
- Clinical and Experimental Sciences, Faculty of MedicineUniversity of Southampton, Southampton General HospitalSouthamptonUK
| | - Karen Horsburgh
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Stephen B. Wharton
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Raj N. Kalaria
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
31
|
Zhang DD, Ou YN, Yang L, Ma YH, Tan L, Feng JF, Cheng W, Yu JT. Investigating the association between cancer and dementia risk: a longitudinal cohort study. Alzheimers Res Ther 2022; 14:146. [PMID: 36199128 PMCID: PMC9533604 DOI: 10.1186/s13195-022-01090-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/16/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Previous studies found that cancer survivors had a reduced risk of dementia compared with the general population. However, these findings were uncertain because of survivor bias and a lack of stratification by cancer types. This current cohort study used data from the UK Biobank to explore these associations. METHODS Multivariable Cox regression analyses were used to examine the association of cancer status and the risk of dementia with its subtypes after adjusting for age and sex. Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated as a measure of relative risk by comparing observed dementia incidence among cancer patients. RESULTS We included 263,151 participants in the observational analysis. During a median follow-up of 9.18 years, dementia was diagnosed in 472 individuals with cancer and 3685 individuals without cancer, respectively. Cancer patients had lower risks of dementia (hazard ratio: 0.89, confidence interval: 0.81-0.98) and its subtypes (Alzheimer's disease [AD]: 0.85 [0.74-0.98]; vascular dementia [VD]: 0.81 [0.66-0.99]) in the Cox regression adjusted for age and sex. Individuals with cancers in the male genital system had substantially reduced risks of dementia (0.66 [0.46-0.93]) and AD (0.53 [0.29-0.97]) than those with cancers in other systems. Moreover, non-melanoma skin cancer and prostate cancer were associated with a reduced risk of dementia (0.79 [0.62-0.99]; 0.69 [0.49-0.97]), but not with AD or VD (P>0.05). CONCLUSIONS The current study supported a negative association between cancer and dementia risk, and encourages further exploration of the mechanistic basis of this inverse relationship to improve understanding.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Liu Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12th WulumuqiZhong Road, Shanghai, 200040, China
| | - Ya-Hui Ma
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12th WulumuqiZhong Road, Shanghai, 200040, China.
| |
Collapse
|
32
|
Mehkri Y, McDonald B, Sriram S, Reddy R, Kounelis-Wuillaume S, Roberts JA, Lucke-Wold B. Recent Treatment Strategies in Alzheimer's Disease and Chronic Traumatic Encephalopathy. BIOMEDICAL RESEARCH AND CLINICAL REVIEWS 2022; 7:128. [PMID: 36743825 PMCID: PMC9897211 DOI: 10.31579/2692-9406/128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Neurotrauma has been well linked to the progression of neurodegenerative disease. Much work has been done characterizing chronic traumatic encephalopathy, but less has been done regarding the contribution to Alzheimer's Disease. This review focuses on AD and its association with neurotrauma. Emerging clinical trials are discussed as well as novel mechanisms. We then address how some of these mechanisms are shared with CTE and emerging pre-clinical studies. This paper is a user-friendly resource that summarizes the emerging findings and proposes further investigation into key areas of interest. It is intended to serve as a catalyst for both research teams and clinicians in the quest to improve effective treatment and diagnostic options.
Collapse
Affiliation(s)
- Yusuf Mehkri
- Department of Neurosurgery, University of Florida, Gainesville
| | | | - Sai Sriram
- Department of Neurosurgery, University of Florida, Gainesville
| | - Ramya Reddy
- Department of Neurosurgery, University of Florida, Gainesville
| | | | | | | |
Collapse
|
33
|
Španić E, Langer Horvat L, Ilić K, Hof PR, Šimić G. NLRP1 Inflammasome Activation in the Hippocampal Formation in Alzheimer's Disease: Correlation with Neuropathological Changes and Unbiasedly Estimated Neuronal Loss. Cells 2022; 11:2223. [PMID: 35883667 PMCID: PMC9324749 DOI: 10.3390/cells11142223] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroinflammation is one of the core pathological features of Alzheimer's disease (AD) as both amyloid β (Aβ) and tau monomers and oligomers can trigger the long-term pro-inflammatory phenotype of microglial cells with consequent overactivation of the inflammasomes. To investigate the NLRP1 inflammasome activation in AD, we analyzed the expression of NLRP1, ASC, cleaved gasdermin (cGSDMD), and active caspase-6 (CASP-6) proteins in each hippocampal subdivision (hilar part of CA3, CA2/3, CA1, subiculum) of postmortem tissue of 9 cognitively healthy controls (HC) and 11 AD patients whose disease duration varied from 3 to 7 years after the clinical diagnosis. The total number of neurons, along with the total number of neurofibrillary tangles (NFTs), were estimated in Nissl- and adjacent modified Bielschowsky-stained sections, respectively, using the optical disector method. The same 9 HC and 11 AD cases were additionally semiquantitatively analyzed for expression of IBA1, HLA-DR, and CD68 microglial markers. Our results show that the expression of NLRP1, ASC, and CASP-6 is present in a significantly greater number of hippocampal formation neurons in AD brains compared to controls, suggesting that the NLRP1 inflammasome is more active in the AD brain. None of the investigated inflammasome and microglial markers were found to correlate with the age of the subjects or the duration of AD. However, besides positive correlations with microglial IBA1 expression in the subiculum and with microglial CD68 expression in the CA1 field and subiculum in the AD group, the overall NLRP1 expression in the hippocampal formation was positively correlated with the number of NFTs, thus providing a causal link between neuroinflammation and neurofibrillary degeneration. The accumulation of AT8-immunoreactive phosphorylated tau proteins that we observed at nuclear pores of large pyramidal neurons of the Ammon's horn further supports their role in the extent of neuronal dysfunction and degeneration in AD. This is important because unlike fibrillar amyloid-β deposits that are not related to dementia severity, total NFTs and neuron numbers in the hippocampal formation, especially in the CA1 field, are the best correlates of cognitive deterioration in both human brain aging and AD. Our findings also support the notion that the CA2 field vulnerability is strongly linked to specific susceptibilities to different tauopathies, including primary age-related tauopathy. Altogether, these findings contrast with reports of nonsignificant microglial activation in aged nonhuman primates and indicate that susceptibility to inflammasome activation may render the human brain comparatively more vulnerable to neurodegenerative changes and AD. In conclusion, our results confirm a key role of NLRP1 inflammasome in AD pathogenesis and suggest NLRP1 as a potential diagnostic marker and therapeutic target to slow or prevent AD progression.
Collapse
Affiliation(s)
- Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia; (E.Š.); (L.L.H.); (K.I.)
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia; (E.Š.); (L.L.H.); (K.I.)
| | - Katarina Ilić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia; (E.Š.); (L.L.H.); (K.I.)
- BRAIN Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London WC2R 2LS, UK
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Šalata 12, 10000 Zagreb, Croatia; (E.Š.); (L.L.H.); (K.I.)
| |
Collapse
|
34
|
Rauf A, Badoni H, Abu-Izneid T, Olatunde A, Rahman MM, Painuli S, Semwal P, Wilairatana P, Mubarak MS. Neuroinflammatory Markers: Key Indicators in the Pathology of Neurodegenerative Diseases. Molecules 2022; 27:molecules27103194. [PMID: 35630670 PMCID: PMC9146652 DOI: 10.3390/molecules27103194] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, a protective response of the central nervous system (CNS), is associated with the pathogenesis of neurodegenerative diseases. The CNS is composed of neurons and glial cells consisting of microglia, oligodendrocytes, and astrocytes. Entry of any foreign pathogen activates the glial cells (astrocytes and microglia) and overactivation of these cells triggers the release of various neuroinflammatory markers (NMs), such as the tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-1β (IL-10), nitric oxide (NO), and cyclooxygenase-2 (COX-2), among others. Various studies have shown the role of neuroinflammatory markers in the occurrence, diagnosis, and treatment of neurodegenerative diseases. These markers also trigger the formation of various other factors responsible for causing several neuronal diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), multiple sclerosis (MS), ischemia, and several others. This comprehensive review aims to reveal the mechanism of neuroinflammatory markers (NMs), which could cause different neurodegenerative disorders. Important NMs may represent pathophysiologic processes leading to the generation of neurodegenerative diseases. In addition, various molecular alterations related to neurodegenerative diseases are discussed. Identifying these NMs may assist in the early diagnosis and detection of therapeutic targets for treating various neurodegenerative diseases.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
- Correspondence: (A.R.); (P.W.); (M.S.M.)
| | - Himani Badoni
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Premnagar, Dehradun 248006, India;
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Department, College of Pharmacy, Al Ain University for Science and Technology, Al Ain 64141, United Arab Emirates;
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi 740272, Nigeria;
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh;
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology (UCB), Premnagar, Dehradun 248007, India;
| | - Prabhakar Semwal
- Department of Life Sciences, Graphic Era (Deemed To Be University), Dehradun 248002, India;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (A.R.); (P.W.); (M.S.M.)
| | - Mohammad S. Mubarak
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
- Correspondence: (A.R.); (P.W.); (M.S.M.)
| |
Collapse
|
35
|
Islam J, Cho JA, Kim JY, Park KS, Koh YJ, Chung CY, Lee EJ, Nam SJ, Lee K, Kim SH, Park SH, Lee DY, Kim BC, Lee KH, Seong SY. GPCR19 Regulates P2X7R-Mediated NLRP3 Inflammasomal Activation of Microglia by Amyloid β in a Mouse Model of Alzheimer's Disease. Front Immunol 2022; 13:766919. [PMID: 35464490 PMCID: PMC9019633 DOI: 10.3389/fimmu.2022.766919] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Amyloid β (Aβ) and/or ATP activate the NLRP3 inflammasome (N3I) via P2X7R in microglia, which is crucial in neuroinflammation in Alzheimer’s disease (AD). Due to polymorphisms, subtypes, and ubiquitous expression of P2X7R, inhibition of P2X7R has not been effective for AD. We first report that taurodeoxycholate (TDCA), a GPCR19 ligand, inhibited the priming phase of N3I activation, suppressed P2X7R expression and P2X7R-mediated Ca++ mobilization and N3I oligomerization, which is essential for production of IL-1β/IL-18 by microglia. Furthermore, TDCA enhanced phagocytosis of Aβ and decreased the number of Aβ plaques in the brains of 5x Familial Alzheimer’s disease (5xFAD) mice. TDCA also reduced microgliosis, prevented neuronal loss, and improved memory function in 5xFAD mice. The pleiotropic roles of GPCR19 in P2X7R-mediated N3I activation suggest that targeting GPCR19 might resolve neuroinflammation in AD patients.
Collapse
Affiliation(s)
- Jahirul Islam
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jung-Ah Cho
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ju-Yong Kim
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung-Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young-Jae Koh
- Department of Inflammation, Shaperon Inc. Ltd, Seoul, South Korea
| | - Chu Young Chung
- Department of Inflammation, Shaperon Inc. Ltd, Seoul, South Korea
| | - Eun-Jae Lee
- Department of Neurology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, Seoul, South Korea
| | - Kyoungyul Lee
- Department of Pathology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Seoung-Heon Kim
- Department of Neurology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, South Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, South Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital and Medical School, Gwangju, South Korea
| | - Seung-Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Inflammation, Shaperon Inc. Ltd, Seoul, South Korea.,Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
36
|
Yan L, Vaghari-Tabari M, Malakoti F, Moein S, Qujeq D, Yousefi B, Asemi Z. Quercetin: an effective polyphenol in alleviating diabetes and diabetic complications. Crit Rev Food Sci Nutr 2022; 63:9163-9186. [PMID: 35468007 DOI: 10.1080/10408398.2022.2067825] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Various studies, especially in recent years, have shown that quercetin has beneficial therapeutic effects in various human diseases, including diabetes. Quercetin has significant anti-diabetic effects and may be helpful in lowering blood sugar and increasing insulin sensitivity. Quercetin appears to affect many factors and signaling pathways involved in insulin resistance and the pathogenesis of type 2 of diabetes. TNFα, NFKB, AMPK, AKT, and NRF2 are among the factors that are affected by quercetin. In addition, quercetin can be effective in preventing and ameliorating the diabetic complications, including diabetic nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy, and affects the key mechanisms involved in the pathogenesis of these complications. These positive effects of quercetin may be related to its anti-inflammatory and anti-oxidant properties. In this article, after a brief review of the pathogenesis of insulin resistance and type 2 diabetes, we will review the latest findings on the anti-diabetic effects of quercetin with a molecular perspective. Then we will review the effects of quercetin on the key mechanisms of pathogenesis of diabetes complications including nephropathy, cardiovascular complications, neuropathy, delayed wound healing, and retinopathy. Finally, clinical trials investigating the effect of quercetin on diabetes and diabetes complications will be reviewed.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, China
- Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Mostafa Vaghari-Tabari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Malakoti
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
37
|
Bogdanovic B, Eftimov T, Simjanoska M. In-depth insights into Alzheimer's disease by using explainable machine learning approach. Sci Rep 2022; 12:6508. [PMID: 35444165 PMCID: PMC9021280 DOI: 10.1038/s41598-022-10202-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Alzheimer's disease is still a field of research with lots of open questions. The complexity of the disease prevents the early diagnosis before visible symptoms regarding the individual's cognitive capabilities occur. This research presents an in-depth analysis of a huge data set encompassing medical, cognitive and lifestyle's measurements from more than 12,000 individuals. Several hypothesis were established whose validity has been questioned considering the obtained results. The importance of appropriate experimental design is highly stressed in the research. Thus, a sequence of methods for handling missing data, redundancy, data imbalance, and correlation analysis have been applied for appropriate preprocessing of the data set, and consequently XGBoost model has been trained and evaluated with special attention to the hyperparameters tuning. The model was explained by using the Shapley values produced by the SHAP method. XGBoost produced a f1-score of 0.84 and as such is considered to be highly competitive among those published in the literature. This achievement, however, was not the main contribution of this paper. This research's goal was to perform global and local interpretability of the intelligent model and derive valuable conclusions over the established hypothesis. Those methods led to a single scheme which presents either positive, or, negative influence of the values of each of the features whose importance has been confirmed by means of Shapley values. This scheme might be considered as additional source of knowledge for the physicians and other experts whose concern is the exact diagnosis of early stage of Alzheimer's disease. The conclusions derived from the intelligent model's data-driven interpretability confronted all the established hypotheses. This research clearly showed the importance of explainable Machine learning approach that opens the black box and clearly unveils the relationships among the features and the diagnoses.
Collapse
Affiliation(s)
- Bojan Bogdanovic
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia.
| | - Tome Eftimov
- Computer Systems Department, Jozef Stefan Institute, Ljubljana, 1000, Slovenia
| | - Monika Simjanoska
- Faculty of Computer Science and Engineering, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
- iReason, LLC, Skopje, 1000, North Macedonia
| |
Collapse
|
38
|
Guo P, Benito Ballesteros A, Yeung SP, Liu R, Saha A, Curtis L, Kaser M, Haggard MP, Cheke LG. COVCOG 2: Cognitive and Memory Deficits in Long COVID: A Second Publication From the COVID and Cognition Study. Front Aging Neurosci 2022; 14:804937. [PMID: 35370620 PMCID: PMC8967943 DOI: 10.3389/fnagi.2022.804937] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been often characterized as a respiratory disease. However, it is increasingly being understood as an infection that impacts multiple systems, and many patients report neurological symptoms. Indeed, there is accumulating evidence for neural damage in some individuals, with recent studies suggesting loss of gray matter in multiple regions, particularly in the left hemisphere. There are several mechanisms by which the COVID-19 infection may lead to neurological symptoms and structural and functional changes in the brain, and cognitive problems are one of the most commonly reported symptoms in those experiencing Long COVID - the chronic illness following the COVID-19 infection that affects between 10 and 25% of patients. However, there is yet little research testing cognition in Long COVID. The COVID and Cognition Study is a cross-sectional/longitudinal study aiming to understand cognitive problems in Long COVID. The first paper from the study explored the characteristics of our sample of 181 individuals who had experienced the COVID-19 infection, and 185 who had not, and the factors that predicted ongoing symptoms and self-reported cognitive deficits. In this second paper from the study, we assess this sample on tests of memory, language, and executive function. We hypothesize that performance on "objective" cognitive tests will reflect self-reported cognitive symptoms. We further hypothesize that some symptom profiles may be more predictive of cognitive performance than others, perhaps giving some information about the mechanism. We found a consistent pattern of memory deficits in those that had experienced the COVID-19 infection, with deficits increasing with the severity of self-reported ongoing symptoms. Fatigue/Mixed symptoms during the initial illness and ongoing neurological symptoms were predictive of cognitive performance.
Collapse
Affiliation(s)
- Panyuan Guo
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | | | - Sabine P. Yeung
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Ruby Liu
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Arka Saha
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Lyn Curtis
- School of Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Muzaffer Kaser
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Mark P. Haggard
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Lucy G. Cheke
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Guo P, Benito Ballesteros A, Yeung SP, Liu R, Saha A, Curtis L, Kaser M, Haggard MP, Cheke LG. COVCOG 1: Factors Predicting Physical, Neurological and Cognitive Symptoms in Long COVID in a Community Sample. A First Publication From the COVID and Cognition Study. Front Aging Neurosci 2022; 14:804922. [PMID: 35370617 PMCID: PMC8968323 DOI: 10.3389/fnagi.2022.804922] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 12/24/2022] Open
Abstract
Since its first emergence in December 2019, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has evolved into a global pandemic. Whilst often considered a respiratory disease, a large proportion of COVID-19 patients report neurological symptoms, and there is accumulating evidence for neural damage in some individuals, with recent studies suggesting loss of gray matter in multiple regions, particularly in the left hemisphere. There are a number of mechanisms by which COVID-19 infection may lead to neurological symptoms and structural and functional changes in the brain, and it is reasonable to expect that many of these may translate into cognitive problems. Indeed, cognitive problems are one of the most commonly reported symptoms in those experiencing "Long COVID"-the chronic illness following COVID-19 infection that affects between 10 and 25% of patients. The COVID and Cognition Study is a part cross-sectional, part longitudinal, study documenting and aiming to understand the cognitive problems in Long COVID. In this first paper from the study, we document the characteristics of our sample of 181 individuals who had experienced COVID-19 infection, and 185 who had not. We explore which factors may be predictive of ongoing symptoms and their severity, as well as conducting an in-depth analysis of symptom profiles. Finally, we explore which factors predict the presence and severity of cognitive symptoms, both throughout the ongoing illness and at the time of testing. The main finding from this first analysis is that that severity of initial illness is a significant predictor of the presence and severity of ongoing symptoms, and that some symptoms during the initial illness-particularly limb weakness-may be more common in those that have more severe ongoing symptoms. Symptom profiles can be well described in terms of 5 or 6 factors, reflecting the variety of this highly heterogenous condition experienced by the individual. Specifically, we found that neurological/psychiatric and fatigue/mixed symptoms during the initial illness, and that neurological, gastrointestinal, and cardiopulmonary/fatigue symptoms during the ongoing illness, predicted experience of cognitive symptoms.
Collapse
Affiliation(s)
- Panyuan Guo
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | | | - Sabine P. Yeung
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Ruby Liu
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Arka Saha
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Lyn Curtis
- School of Psychology, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Muzaffer Kaser
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Mark P. Haggard
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Lucy G. Cheke
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
40
|
Caradonna A, Patel T, Toleska M, Alabed S, Chang SL. Meta-Analysis of APP Expression Modulated by SARS-CoV-2 Infection via the ACE2 Receptor. Int J Mol Sci 2022; 23:ijms23031182. [PMID: 35163117 PMCID: PMC8835589 DOI: 10.3390/ijms23031182] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition of amyloid-beta (Aβ) plaques from improper amyloid-beta precursor protein (APP) cleavage. Following studies of inflammation caused by coronavirus-2019 (COVID-19) infection, this study investigated the impact of COVID-19 on APP expression. A meta-analysis was conducted utilizing QIAGEN Ingenuity Pathway Analysis (IPA) to examine the link between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and the modulation of APP expression upon virus binding the Angiotensin-converting enzyme-2 (ACE2) receptor. A Core Analysis was run on the infection by severe acute respiratory syndrome (SARS) coronavirus node, which included molecules affected by SARS-CoV-2, revealing its upstream regulators. Intermediary molecules were found between the upstream regulators and ACE2 and between ACE2 and APP. Activation of the upstream regulators downregulated the expression of ACE2 with a Z-score of -1.719 (p-value = 0.086) and upregulated APP with a Z-score of 1.898 (p-value = 0.058), showing a less than 10% chance of the results occurring by chance and pointing to an inverse relationship between ACE2 and APP expression. The neuroinflammation signaling pathway was the fifth top canonical pathway involved in APP upregulation. The study results suggest that ACE2 could be downregulated by SARS-CoV-2, resulting in APP upregulation, and potentially exacerbating the onset and progression of AD.
Collapse
Affiliation(s)
- Alyssa Caradonna
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
| | - Tanvi Patel
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
| | - Matea Toleska
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
| | - Sedra Alabed
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Correspondence: (S.A.); (S.L.C.)
| | - Sulie L. Chang
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA; (A.C.); (T.P.); (M.T.)
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Correspondence: (S.A.); (S.L.C.)
| |
Collapse
|
41
|
Kara SP, Altunan B, Unal A. Investigation of the peripheral inflammation (neutrophil-lymphocyte ratio) in two neurodegenerative diseases of the central nervous system. Neurol Sci 2022; 43:1799-1807. [PMID: 34331157 PMCID: PMC8324446 DOI: 10.1007/s10072-021-05507-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD), and idiopathic Parkinson's disease (IPD) are the neurodegenerative diseases of the central nervous system (CNS). Cognitive impairment is on the forefront in AD. However, IPD is a movement disorder. Inflammation was suggested to have an effect in the pathophysiology of these two diseases. Neutrophil-lymphocyte ratio (NLR) was shown to be a possible marker showing the peripheral inflammation. We aimed to investigate the NLR of patiens with the diagnosis of AD, and IPD, and individuals with no neurodegenerative disease. MATERIALS AND METHODS A total of 100 patients with the diagnosis of IPD, and 94 with diagnosis of AD, and 61 healthy controls were included into the study. All the demographic, clinical, and laboratory data were retrospectively obtained from the hospital automated database system. RESULTS The NLR in the IPD group was found statistically significantly higher compared with the control group and the AD group (p < 0.001, p = 0.04, respectively). The age-adjusted values were statistically analyzed because of age difference. No statistically significant difference was detected between AD and control groups in terms of NLR (p = 0.6). The age-adjusted NLR value in the Parkinson's group was found significantly higher compared to the control group (p = 0.02) and Alzheimer's group (p = 0.03). DISCUSSION Chronic inflammation has an important role in the emergence and progression of the chronic neurodegenerative diseases of the CNS. Our results show that the inflammation in the peripheral blood in IPD was more significant compared with the inflammation in AD.
Collapse
Affiliation(s)
- Sonat Pınar Kara
- Faculty of Medicine, Department of Internal Medicine, Tekirdag Namık Kemal University, Tekirdag, Turkey
| | - Bengü Altunan
- Faculty of Medicine, Department of Neurology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Aysun Unal
- Faculty of Medicine, Department of Neurology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
42
|
Lin PY, Cheng C, Satyanarayanan SK, Chiu LT, Chien YC, Chuu CP, Lan TH, Su KP. Omega-3 fatty acids and blood-based biomarkers in Alzheimer's disease and mild cognitive impairment: A randomized placebo-controlled trial. Brain Behav Immun 2022; 99:289-298. [PMID: 34755655 DOI: 10.1016/j.bbi.2021.10.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Increased serum levels of pro-inflammatory biomarkers are consistently associated with cognitive decline. The omega-3 unsaturated fatty acids (n-3 PUFAs) had been linked to slowing cognitive decline due to their potential anti-inflammatory effects. To our knowledge, the different regiments of pure DHA, pure EPA, and their combination on various associated symptoms of dementia, including a mild form of cognitive impairment (MCI) and Alzheimer's disease (AD), have never been studied. METHODS This multisite, randomized, double-blind, placebo-controlled trial was conducted at two veteran's retirement centers and one medical center in central Taiwan between 2013 and 2015. 163 MCI or AD patients were randomly assigned to placebo (n = 40), docosahexaenoic acid (DHA, 0.7 g/day, n = 41), eicosapentaenoic acid (EPA, 1.6 g/day, n = 40), or EPA (0.8 g/day) + DHA (0.35 g/day) (n = 42) group for 24 months. The results were measured as the cognitive and functional abilities, biochemical, and inflammatory cytokines profiles. Chi-square tests, two-sample t-test, ANOVA, and linear mixedeffects models were conducted with p < 0.05. RESULTS 131 (80%) participants had completed the trial with all cognitive, functional, and mood status assessments. The statistically significant difference between the placebo and treatment groups was not determined, concerning the changes in cognitive, functional, and mood status scores, the biochemical profiles, and inflammatory cytokines levels. However, EPA was found to reduce the C-C motif ligands 4 (CCL4) level (p < 0.001). Additionally, EPA could reduce the constructional praxis (p < 0.05) and spoken language ability scores (p < 0.01), and DHA also reduced the spoken language ability score (p < 0.05). CONCLUSION Overall, n-3 PUFAs supplements did not reduce cognitive, functional, and depressive symptom outcomes, but spoken language ability and constructional praxis subitems of ADAS-cog. These findings show that attention to clinical heterogeneity in dementia is crucial when studying nutrients interventions, such as n-3 PUFAs. In addition, with small effect size CCL4 is a better indicator than other inflammatory cytokines for EPA treatment response.
Collapse
Affiliation(s)
- Pan-Yen Lin
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; Department of Psychiatry, Wei Gong Memorial Hospital, Miaoli, Taiwan
| | - Chin Cheng
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Good Day Psychiatric Clinic, Taichung, Taiwan
| | - Senthil Kumaran Satyanarayanan
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lu-Ting Chiu
- College of Medicine, China Medical University, Taichung, Taiwan; Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chuan Chien
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Pin Chuu
- College of Medicine, China Medical University, Taichung, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Tsuo-Hung Lan
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou, Taiwan; Department of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institue of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan.
| | - Kuan-Pin Su
- Department of Psychiatry & Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
43
|
Yoong SQ, Lu J, Xing H, Gyanwali B, Tan YQ, Wu XV. The prognostic utility of CSF neurogranin in predicting future cognitive decline in the Alzheimer's disease continuum: A systematic review and meta-analysis with narrative synthesis. Ageing Res Rev 2021; 72:101491. [PMID: 34688925 DOI: 10.1016/j.arr.2021.101491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/13/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023]
Abstract
Core cerebrospinal fluid (CSF) biomarkers (Aβ42, T-tau, P-tau) were included as supporting diagnostic criteria for Alzheimer's Disease (AD), but they lack the power to predict AD progression. On the other hand, a new biomarker CSF Neurogranin (Ng) has been shown to predict cognitive decline. This systematic review aims to synthesise the prognostic utility of CSF Ng in predicting cognitive decline in the AD continuum. Seven databases were searched systematically from inception to 30 September 2020. Participants were 55 years or older, who had baseline and at least one follow-up cognitive assessments. Risk of bias was assessed using the Quality in Prognosis Studies tool. Meta-analysis was conducted by pooling standardised beta coefficients and adjusted hazard ratios. Thirteen studies were included and high-quality evidence suggests that CSF Ng predicts Mini-Mental State Examination (MMSE) decline in Aβ+ mild cognitive impairment (MCI). Moderate quality evidence showed that CSF Ng could predict the decline of memory and executive function in MCI. Narrative synthesis found that CSF Ng/Aβ42 was also likely to predict cognitive decline. More studies are required to validate the use of CSF Ng as an AD prognostic marker and its application in future development of drug treatment and diagnosis.
Collapse
|
44
|
Islam M, Al-Majid AM, Azam M, Verma VP, Barakat A, Haukka M, Elgazar AA, Mira A, Badria FA. Construction of Spirooxindole Analogues Engrafted with Indole and Pyrazole Scaffolds as Acetylcholinesterase Inhibitors. ACS OMEGA 2021; 6:31539-31556. [PMID: 34869980 PMCID: PMC8637602 DOI: 10.1021/acsomega.1c03978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/01/2021] [Indexed: 05/12/2023]
Abstract
Twenty-five new hits of spirooxindole analogs 8a-y engrafted with indole and pyrazole scaffolds were designed and constructed via a [3+2]cycloaddition (32CA) reaction starting from three components: new chalcone-based indole and pyrazole scaffolds 5a-d, substituted isatins 6a-c, and secondary amines 7a-d. The potency of the compounds were assessed in modulating cholinesterase (AChE) activity using Ellman's method. Compounds 8i and 8y showed the strongest acetylcholine esterase inhibition (AChEI) with IC50 values of 24.1 and 27.8 μM, respectively. Molecular docking was used to study their interaction with the active site of hAChE.
Collapse
Affiliation(s)
- Mohammad
Shahidul Islam
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Abdullah Mohammed Al-Majid
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Azam
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ved Prakash Verma
- Department
of Chemistry, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Assem Barakat
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Alexandria
University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt
| | - Matti Haukka
- Department
of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Abdullah A. Elgazar
- Department
of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh
University, Kafrelsheikh 33516, Egypt
| | - Amira Mira
- Department
of Pharmacognosy, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| | - Farid A. Badria
- Department
of Pharmacognosy, Faculty of Pharmacy, Mansoura
University, Mansoura 35516, Egypt
| |
Collapse
|
45
|
Garcia-Romeu A, Darcy S, Jackson H, White T, Rosenberg P. Psychedelics as Novel Therapeutics in Alzheimer's Disease: Rationale and Potential Mechanisms. Curr Top Behav Neurosci 2021; 56:287-317. [PMID: 34734390 DOI: 10.1007/7854_2021_267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Serotonin 2A receptor (5-HT2AR) agonist "classic psychedelics" are drawing increasing interest as potential mental health treatments. Recent work suggests psychedelics can exert persisting anxiolytic and antidepressant effects lasting up to several months after a single administration. Data indicate acute subjective drug effects as important psychological factors involved in observed therapeutic benefits. Additionally, animal models have shown an important role for 5-HT2AR agonists in modulating learning and memory function with relevance for Alzheimer's Disease (AD) and related dementias. A number of biological mechanisms of action are under investigation to elucidate 5-HT2AR agonists' therapeutic potential, including enhanced neuroplasticity, anti-inflammatory effects, and alterations in brain functional connectivity. These diverse lines of research are reviewed here along with a discussion of AD pathophysiology and neuropsychiatric symptoms to highlight classic psychedelics as potential novel pharmacotherapies for patients with AD. Human clinical research suggests a possible role for high-dose psychedelic administration in symptomatic treatment of depressed mood and anxiety in early-stage AD. Preclinical data indicate a potential for low- or high-dose psychedelic treatment regimens to slow or reverse brain atrophy, enhance cognitive function, and slow progression of AD. In conclusion, rationale and potential approaches for preliminary research with psychedelics in patients with AD are presented, and ramifications of this line of investigation for development of novel AD treatments are discussed.
Collapse
Affiliation(s)
- Albert Garcia-Romeu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sean Darcy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hillary Jackson
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Psychedelic and Consciousness Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Toni White
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Memory and Alzheimer's Treatment Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Memory and Alzheimer's Treatment Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
46
|
Siddiqui A, Shah Z, Jahan RN, Othman I, Kumari Y. Mechanistic role of boswellic acids in Alzheimer's disease: Emphasis on anti-inflammatory properties. Biomed Pharmacother 2021; 144:112250. [PMID: 34607104 DOI: 10.1016/j.biopha.2021.112250] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
The resin/gum of Boswellia species belonging to the family of Burseraceae is a naturally occurring mixture of bioactive compounds, which was traditionally used as a folk medicine to treat conditions like chronic inflammation. Several research studies have also explored its' therapeutic potential against multiple neurodegenerative diseases such as Alzheimer's disease (AD). The main chemical constituents of this gum include boswellic acids (BAs) like 3-O-acetyl-11-keto-β boswellic acid (AKBA) that possess potent anti-inflammatory and neuroprotective properties in AD. It is also involved in inhibiting the acetylcholinesterase (AChE) activity in the cholinergic pathway and improve choline levels as well as its binding with nicotinic receptors to produce anti-inflammatory effects. Multiple shreds of evidence have demonstrated that BAs modulate key molecular targets and signalling pathways like 5-lipoxygenase/cyclooxygenase, Nrf2, NF-kB, cholinergic, amyloid-beta (Aβ), and neurofibrillary tangles formation (NFTs) that are involved in AD progression. The present review focuses on the possible mechanistic therapeutic role of BAs in modulating the 5-LOX/COX pathway in arachidonic acid metabolism, activating Nrf2 through binding of ARE, inhibiting NF-kB and AChE activity. In addition, an inhibition of amyloid plaques (Aβ) and neurofibrillary tangles (NFTs) induced neurotoxicity and neuroinflammation in AD by BAs is also discussed in this review. We have also highlighted that BAs possess beneficial effects in AD by targeting multiple molecular pathways and makes it an emerging drug candidate for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Aisha Siddiqui
- Neurological disorder and aging research group (NDA), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Zahoor Shah
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Avenue, Toledo 43614, OH, USA
| | - Rao Nargis Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi 110062, India
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Yatinesh Kumari
- Neurological disorder and aging research group (NDA), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| |
Collapse
|
47
|
Soares NL, Vieira HLA. Microglia at the Centre of Brain Research: Accomplishments and Challenges for the Future. Neurochem Res 2021; 47:218-233. [PMID: 34586585 DOI: 10.1007/s11064-021-03456-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Microglia are the immune guardians of the central nervous system (CNS), with critical functions in development, maintenance of homeostatic tissue balance, injury and repair. For a long time considered a forgotten 'third element' with basic phagocytic functions, a recent surge in interest, accompanied by technological progress, has demonstrated that these distinct myeloid cells have a wide-ranging importance for brain function. This review reports microglial origins, development, and function in the healthy brain. Moreover, it also targets microglia dysfunction and how it contributes to the progression of several neurological disorders, focusing on particular molecular mechanisms and whether these may present themselves as opportunities for novel, microglia-targeted therapeutic approaches, an ever-enticing prospect. Finally, as it has been recently celebrated 100 years of microglia research, the review highlights key landmarks from the past century and looked into the future. Many challenging problems have arisen, thus it points out some of the most pressing questions and experimental challenges for the ensuing century.
Collapse
Affiliation(s)
- Nuno L Soares
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| | - Helena L A Vieira
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.,Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, Universidade Nova de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Lisboa, Portugal
| |
Collapse
|
48
|
Martinez NW, Gómez FE, Matus S. The Potential Role of Protein Kinase R as a Regulator of Age-Related Neurodegeneration. Front Aging Neurosci 2021; 13:638208. [PMID: 33994991 PMCID: PMC8113420 DOI: 10.3389/fnagi.2021.638208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
Collapse
Affiliation(s)
- Nicolás W Martinez
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
49
|
Uddin MS, Kabir MT, Al Mamun A, Behl T, Mansouri RA, Aloqbi AA, Perveen A, Hafeez A, Ashraf GM. Exploring Potential of Alkaloidal Phytochemicals Targeting Neuroinflammatory Signaling of Alzheimer's Disease. Curr Pharm Des 2021; 27:357-366. [PMID: 32473620 DOI: 10.2174/1381612826666200531151004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/27/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that is marked by cognitive dysfunctions and the existence of neuropathological hallmarks such as amyloid plaques, and neurofibrillary tangles. It has been observed that a persistent immune response in the brain has appeared as another neuropathological hallmark in AD. The sustained activation of the microglia, the brain's resident macrophages, and other immune cells has been shown to aggravate both tau and amyloid pathology and may consider as a connection in the AD pathogenesis. However, the basic mechanisms that link immune responses in the pathogenesis of AD are unclear until now since the process of neuroinflammation can have either a harmful or favorable effect on AD, according to the phase of the disease. Numerous researches recommend that nutritional fruits, as well as vegetables, possess neurodefensive properties against the detrimental effects of neuroinflammation and aging. Moreover, these effects are controlled by diverse phytochemical compounds that are found in plants and demonstrate anti-inflammatory, neuroprotective, as well as other beneficial actions. In this review, we focus on the link of neuroinflammation in AD as well as highlight the probable mechanisms of alkaloidal phytochemicals to combat the neuroinflammatory aspect of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rasha A Mansouri
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Extracellular Vesicles from Mesenchymal Stromal Cells for the Treatment of Inflammation-Related Conditions. Int J Mol Sci 2021; 22:ijms22063023. [PMID: 33809632 PMCID: PMC8002312 DOI: 10.3390/ijms22063023] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/06/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022] Open
Abstract
Over the past two decades, mesenchymal stromal cells (MSCs) have demonstrated great potential in the treatment of inflammation-related conditions. Numerous early stage clinical trials have suggested that this treatment strategy has potential to lead to significant improvements in clinical outcomes. While promising, there remain substantial regulatory hurdles, safety concerns, and logistical issues that need to be addressed before cell-based treatments can have widespread clinical impact. These drawbacks, along with research aimed at elucidating the mechanisms by which MSCs exert their therapeutic effects, have inspired the development of extracellular vesicles (EVs) as anti-inflammatory therapeutic agents. The use of MSC-derived EVs for treating inflammation-related conditions has shown therapeutic potential in both in vitro and small animal studies. This review will explore the current research landscape pertaining to the use of MSC-derived EVs as anti-inflammatory and pro-regenerative agents in a range of inflammation-related conditions: osteoarthritis, rheumatoid arthritis, Alzheimer's disease, cardiovascular disease, and preeclampsia. Along with this, the mechanisms by which MSC-derived EVs exert their beneficial effects on the damaged or degenerative tissues will be reviewed, giving insight into their therapeutic potential. Challenges and future perspectives on the use of MSC-derived EVs for the treatment of inflammation-related conditions will be discussed.
Collapse
|