1
|
Sharma A, Singh S, Saini G, Sharma S, Singh B, Choudhary D. Quality by design-based development and in vitro evaluation of dual release tablet of etoricoxib and thiocolchicoside: A novel chronotherapeutic approach for arthritis pain management. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:1103-1117. [PMID: 39002854 DOI: 10.1016/j.pharma.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVE The traditional drug delivery system is not much effective when treating chronopathological diseases like arthritis. Consequently, there is a gap in the market for a delivery system that can provide an explicit treatment following the chronopharmacology of this disorder. The present study is based on the objective to develop Eudragit coated dual release bilayer tablet designed by the quality by design (QbD) and based on the chronotherapeutic approach. The dual release tablet contained an immediate release layer of etoricoxib and a sustained release layer of thiocolchicoside. MATERIAL AND METHOD The quality target product profile (QTTP) of the formulation was established along with critical quality attributes (CQA). The optimization of the dual release layer was done using a three-level, three-factor Box-Behnken design. A total of thirteen formulations of etoricoxib (ET1-ET13) and thiocolchicoside (TH1-TH13) were developed based on the design composition of etoricoxib, sodium starch glycolate and sodium bicarbonate for the immediate release (IR) layer and thiocolchicoside, HPMC E5 LV and magnesium stearate for the sustained release (SR) layer respectively. The developed dual release layers were compressed to form a bilayer tablet. The bilayer tablets were further coated with pH-dependent polymer Eudragit S-100 to avoid drug release in upper GIT. The initial characterization and drug-excipient interaction studies were performed initially using infra-red (IR) spectroscopy and X-ray diffraction studies (XRD). Formulations showing good micrometric properties, disintegration and drug release were selected for final compression of bilayer tablets. RESULT Formulation ET13 showed the fastest drug release (88%) at 15minutes and quick disintegration time (21s). The sustained release thiocolchicoside tablet layer (TH1-TH13) had a hardness that varied from 4.01 to 4.45kg/cm2. Formulation TH12 had the highest hardness, whereas TH6 showed the lowest hardness. The sustained release layer showing 97.63% of drug release after 8hours was selected for the compression to bilayer tablet. The developed dual layer tablets were investigated for quality parameters like hardness, percentage friability, weight variation, disintegration and dissolution. CONCLUSION A high level of patient compliance is ensured through the current design as the patient does not need to get out of bed at night to take the medication.
Collapse
Affiliation(s)
| | - Supriya Singh
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India
| | - Geetanjali Saini
- College of Pharmacy, Teerthankar Mahaveer University, Moradabad, Utter Pradesh 244001, India
| | - Sanjay Sharma
- SVKM'S NMIMS, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai 400056, India
| | - Bhupendra Singh
- College of Pharmacy, Teerthankar Mahaveer University, Moradabad, Utter Pradesh 244001, India.
| | - Deepak Choudhary
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, Rajasthan 313001, India.
| |
Collapse
|
2
|
Cederroth CR, Dyhrfjeld-Johnsen J, Canlon B. Pharmacological Approaches to Hearing Loss. Pharmacol Rev 2024; 76:1063-1088. [PMID: 39164117 PMCID: PMC11549935 DOI: 10.1124/pharmrev.124.001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. SIGNIFICANCE STATEMENT: Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| |
Collapse
|
3
|
Abstract
Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in children. The International League of Associations for Rheumatology (ILAR) has defined JIA as "arthritis of unknown etiology persisting for ≥6 wk with an onset at <16 y of age, after excluding other causes of joint inflammation". Synovial inflammation is the result of a complex interplay of aberrant immune systems (both adaptive and innate) in a genetically susceptible individual, with possible external stimuli/triggers. Diagnosis of JIA essentially remains clinical, and laboratory investigations usually help to assess the severity of disease activity. Few investigations like antinuclear antibodies (ANA), human leukocyte antigen (HLA)-B27, and rheumatoid factor (RF) help to categorize or prognosticate a child with JIA. Timely use of effective therapeutic interventions including biological has shown good long-term outcomes of JIA.
Collapse
Affiliation(s)
- Murugan Sudhakar
- Pediatric Rheumatology Division, Department of Pediatrics, Christian Medical College, Vellore, 632004, Tamil Nadu, India
| | - Sathish Kumar
- Pediatric Rheumatology Division, Department of Pediatrics, Christian Medical College, Vellore, 632004, Tamil Nadu, India.
| |
Collapse
|
4
|
Liu Q, Zhang Y. Biological Clock Perspective in Rheumatoid Arthritis. Inflammation 2024:10.1007/s10753-024-02120-4. [PMID: 39126449 DOI: 10.1007/s10753-024-02120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic polyarticular pain, and its main pathological features include inflammatory cell infiltration, synovial fibroblast proliferation, and cartilage erosion. Immune cells, synovial cells and neuroendocrine factors play pivotal roles in the pathophysiological mechanism underlying rheumatoid arthritis. Biological clock genes regulate immune cell functions, which is linked to rhythmic changes in arthritis pathology. Additionally, the interaction between biological clock genes and neuroendocrine factors is also involved in rhythmic changes in rheumatoid arthritis. This review provides an overview of the contributions of circadian rhythm genes to RA pathology, including their interaction with the immune system and their involvement in regulating the secretion and function of neuroendocrine factors. A molecular understanding of the role of the circadian rhythm in RA may offer insights for effective disease management.
Collapse
Affiliation(s)
- Qingxue Liu
- Gengjiu Clinical College of Anhui Medical University; Anhui Zhongke Gengjiu Hospital, Hefei, 230051, China
| | - Yihao Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
5
|
Downton P, Dickson SH, Ray DW, Bechtold DA, Gibbs JE. Fibroblast-like synoviocytes orchestrate daily rhythmic inflammation in arthritis. Open Biol 2024; 14:240089. [PMID: 38981514 DOI: 10.1098/rsob.240089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Rheumatoid arthritis is a chronic inflammatory disease that shows characteristic diurnal variation in symptom severity, where joint resident fibroblast-like synoviocytes (FLS) act as important mediators of arthritis pathology. We investigate the role of FLS circadian clock function in directing rhythmic joint inflammation in a murine model of inflammatory arthritis. We demonstrate FLS time-of-day-dependent gene expression is attenuated in arthritic joints, except for a subset of disease-modifying genes. The deletion of essential clock gene Bmal1 in FLS reduced susceptibility to collagen-induced arthritis but did not impact symptomatic severity in affected mice. Notably, FLS Bmal1 deletion resulted in loss of diurnal expression of disease-modulating genes across the joint, and elevated production of MMP3, a prognostic marker of joint damage in inflammatory arthritis. This work identifies the FLS circadian clock as an influential driver of daily oscillations in joint inflammation, and a potential regulator of destructive pathology in chronic inflammatory arthritis.
Collapse
Affiliation(s)
- Polly Downton
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Suzanna H Dickson
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - David W Ray
- NIHR Oxford Health Biomedical Research Centre and NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, and Oxford Kavli Centre for Nanoscience Discovery, University of Oxford, Oxford OX3 7LE, UK
| | - David A Bechtold
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Julie E Gibbs
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
6
|
Singh R, Jadhav K, Kamboj R, Malhotra H, Ray E, Jhilta A, Dhir V, Verma RK. Self-actuating inflammation responsive hydrogel microsphere formulation for controlled drug release in rheumatoid arthritis (RA): Animal trials and study in human fibroblast like synoviocytes (hFLS) of RA patients. BIOMATERIALS ADVANCES 2024; 160:213853. [PMID: 38636119 DOI: 10.1016/j.bioadv.2024.213853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
Patients with rheumatoid arthritis (RA) often have one or more painfuljoints despite adequate medicine. Local drug delivery to the synovial cavity bids for high drug concentration with minimal systemic adverse effects. However, anti-RA drugs show short half-lives in inflamed joints after intra-articular delivery. To improve the therapeutic efficacy, it is essential to ensure that a drug is only released from the formulation when it is needed. In this work, we developed an intelligent "Self-actuating" drug delivery system where Disease-modifying anti-rheumatic Drug (DMARD) methotrexate is incorporated within a matrix intended to be injected directly into joints. This formulation has the property to sense the need and release medication only when joints are inflamed in response to inflammatory enzyme Matrix metalloproteinases (MMP). These enzymes are important proteases in RA pathology, and several MMP are present in augmented levels in synovial fluid and tissues. A high level of MMP present in synovial tissues of RA patients would facilitate the release of drugs in response and ascertain controlled drug release. The formulation is designed to be stable within the joint environment, but to dis-assemble in response to inflammation. The synthesized enzyme-responsive methotrexate (Mtx) encapsulated micron-sized polymer-lipid hybrid hydrogel microspheres (Mtx-PLHM) was physiochemically characterized and tested in synovial fluid, Human Fibroblast like synoviocytes (h-FLS) (derived from RA patients) and a rat arthritic animal model. Mtx-PLHM can self-actuate and augment the release of Mtx drug upon contact with either exogenously added MMP or endogenous MMP present in the synovial fluid of patients with RA. The drug release from the prepared formulation is significantly amplified to several folds in the presence of MMP-2 and MMP-9 enzymes. In the rat arthritic model, Mtx-PLHM showed promising therapeutic results with the significant alleviation of RA symptoms through decrease in joint inflammation, swelling, bone erosion, and joint damage examined by X-ray analysis, histopathology and immune-histology. This drug delivery system would be nontoxic as it releases more drug only during the period of exacerbation of inflammation. This will simultaneously protect patients from unwanted side effects when the disease is inactive and lower the need for repeated joint injections.
Collapse
Affiliation(s)
- Raghuraj Singh
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Krishna Jadhav
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India
| | - Rohit Kamboj
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana 135001, India
| | - Hitesh Malhotra
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar, Haryana 135001, India
| | - Eupa Ray
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India
| | - Agrim Jhilta
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India
| | - Varun Dhir
- Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Rahul Kumar Verma
- Institute of Nano Science and Technology (INST), Sector 81. Mohali, Punjab 140306, India.
| |
Collapse
|
7
|
Mengi G, Aydoğmuş H, Özyemişçi Taşkıran Ö, Göğüş F, Beyazova M. Is it possible to objectively determine morning stiffness in rheumatoid arthritis? Turk J Phys Med Rehabil 2024; 70:180-187. [PMID: 38948637 PMCID: PMC11209333 DOI: 10.5606/tftrd.2024.12219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/07/2023] [Indexed: 07/02/2024] Open
Abstract
Objectives This study aimed to objectively and quantitatively exhibit morning stiffness by using electrophysiological methods. Patients and methods The prospective, controlled study was conducted with 52 participants between February 2013 and February 2014. Of the participants, 26 were recruited among RA patients (3 males, 23 females; mean age: 55.9±11.2 years; range, 24 to 74 years) followed at the rheumatology clinic, and 26 were healthy subjects (4 males, 22 females; mean age: 54.9±8.3 years; range, 41 to 70 years) for the control group. Duration and severity of morning stiffness were recorded for all participants. Activity of disease and functional status were evaluated by the Disease Activity Score 28 and Health Assessment Questionnaire (HAQ), respectively. Electrophysiological reaction times, severity of pain (Visual Analog Scale), HAQ, and grip strength were measured for each participant twice in 24 h in the morning (08:00-09:00 am) and afternoon (03:00-05:00 pm). Results In the RA group, motor reaction and response times and severity of pain values were significantly lower in the afternoon compared to the morning (p=0.030, p=0.031, and p=0.002, respectively), and hand grip strengths were significantly higher in the afternoon (p=0.007). In the control group, no change was observed between morning and afternoon measurements in the strength and reaction time variables. Conclusion Our hypothesis that stiffness would slow down the movements in the morning in RA was supported by the prolonged motor and response times in the morning compared to the afternoon. However, in the control group (no morning stiffness), there was no difference in reaction time variables between the morning and afternoon, objectively demonstrating the concept of morning stiffness in this study.
Collapse
Affiliation(s)
- Gönen Mengi
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, Türkiye
| | - Hüseyin Aydoğmuş
- Department of Physical Medicine and Rehabilitation, Muğla Sıtkı Koçman University Faculty of Medicine, Muğla, Türkiye
| | - Özden Özyemişçi Taşkıran
- Department of Physical Medicine and Rehabilitation, Koç University, School of Medicine, Istanbul, Türkiye
| | - Feride Göğüş
- Department of Physical Medicine and Rehabilitation, Division of Rheumatology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Mehmet Beyazova
- Department of Physical Medicine and Rehabilitation, Gazi University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
8
|
Maidstone R, Iqbal M, Rutter MK, Ray DW, Young HS. Chronotype, but Not Night-Shift Work, Is Associated with Psoriasis: a Cross-Sectional Study Among UK Biobank Participants. J Invest Dermatol 2024; 144:410-414.e1. [PMID: 37597836 DOI: 10.1016/j.jid.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Robert Maidstone
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom
| | - Mudassar Iqbal
- Division of Informatics, Imaging and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Martin K Rutter
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, The University of Manchester, United Kingdom; Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David W Ray
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, United Kingdom; NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Helen S Young
- Centre for Dermatology Research, Salford Royal Hospital, NIHR Manchester Biomedical Research Centre, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
9
|
Hirose M, Leliavski A, de Assis LVM, Matveeva O, Skrum L, Solbach W, Oster H, Heyde I. Chronic Inflammation Disrupts Circadian Rhythms in Splenic CD4+ and CD8+ T Cells in Mice. Cells 2024; 13:151. [PMID: 38247842 PMCID: PMC10814081 DOI: 10.3390/cells13020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Internal circadian clocks coordinate 24 h rhythms in behavior and physiology. Many immune functions show daily oscillations, and cellular circadian clocks can impact immune functions and disease outcome. Inflammation may disrupt circadian clocks in peripheral tissues and innate immune cells. However, it remains elusive if chronic inflammation impacts adaptive immune cell clock, e.g., in CD4+ and CD8+ T lymphocytes. We studied this in the experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis, as an established experimental paradigm for chronic inflammation. We analyzed splenic T cell circadian clock and immune gene expression rhythms in mice with late-stage EAE, CFA/PTx-treated, and untreated mice. In both treatment groups, clock gene expression rhythms were altered with differential effects for baseline expression and peak phase compared with control mice. Most immune cell marker genes tested in this study did not show circadian oscillations in either of the three groups, but time-of-day- independent alterations were observed in EAE and CFA/PTx compared to control mice. Notably, T cell effects were likely independent of central clock function as circadian behavioral rhythms in EAE mice remained intact. Together, chronic inflammation induced by CFA/PTx treatment and EAE immunization has lasting effects on circadian rhythms in peripheral immune cells.
Collapse
Affiliation(s)
- Misa Hirose
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
- Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | | | - Leonardo Vinícius Monteiro de Assis
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Olga Matveeva
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
| | - Ludmila Skrum
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Werner Solbach
- Institute for Medical Microbiology and Hygiene, University of Lübeck, 23562 Lübeck, Germany;
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| | - Isabel Heyde
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany; (M.H.); (L.S.)
- Center of Brain, Behavior and Metabolism, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
10
|
Kiefer D, Schneider L, Braun J, Kiltz U, Kolle N, Andreica I, Tsiami S, Buehring B, Sewerin P, Herbold S, Baraliakos X. Clinically relevant differences in spinal mobility related to daytime performance in patients with axial spondyloarthritis. RMD Open 2024; 10:e003733. [PMID: 38191214 PMCID: PMC10806495 DOI: 10.1136/rmdopen-2023-003733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/30/2023] [Indexed: 01/10/2024] Open
Abstract
OBJECTIVE Patients with axial spondyloarthritis (axSpA) suffer from clinical symptoms like morning stiffness and back pain. Mobility of patients with axSpA is often impaired. The aim of this study is to compare the performance of patients with axSpA regarding mobility measures including performance-based tests and objective electronic assessments with the Epionics SPINE device (ES) at different times of the day compared with healthy controls (HC). METHODS Observational trial, consecutive inpatients with axSpA (n=100) and 20 HCs were examined in the morning (V1: before 10:00 am) and in the afternoon (V2: after 02:00 pm) by the Bath Ankylosing Spondylitis Metrology Index (BASMI), the AS physical performance index (ASPI), the Short Physical Performance Battery (SPPB) and ES measurements, including range of motion (RoM) and range of kinematics (RoK). RESULTS The assessments of patients with axSpA performed in the morning clearly differed from those in the afternoon, especially regarding performance-based tests. Significant improvements were seen for BASMI (4.0±3.8 to 3.8±1.9; p<0.001), ASPI (36.2±18.3 to 28.8±11.9 s; p<0.001), SPPB (10.1±1.5 to 10.7±1.4 points; p<0.001) and for ES measures of speed (RoK; p<0.018) but not for RoM, except for lateral flexion (13.3±7.4 to 14.7±8.2°; p=0.002). This time of assessment-related variability was not observed in HC. CONCLUSION The spinal mobility of patients with axSpA was worse in the morning but significantly improved in the afternoon. This was captured best by performance-based measures and was not seen in HC. The diurnal variation of mobility has implications for clinical studies, suggesting that the time of assessments needs to be standardised.
Collapse
Affiliation(s)
- David Kiefer
- Rheumatologie, Ruhr-Universitat Bochum, Bochum, Germany
- Rheumatologie, Rheumazentrum Ruhrgebiet, Herne, NRW, Germany
| | - Lucia Schneider
- Ruhr University Bochum, Bochum, Nordrhein-Westfalen, Germany
| | - Jürgen Braun
- Ruhr University Bochum, Bochum, Nordrhein-Westfalen, Germany
| | - Uta Kiltz
- Ruhr University Bochum, Bochum, Nordrhein-Westfalen, Germany
- Rheumazentrum Ruhrgebiet, Herne, Nordrhein-Westfalen, Germany
| | - Niklas Kolle
- Ruhr University Bochum, Bochum, Nordrhein-Westfalen, Germany
| | - Ioana Andreica
- Ruhr University Bochum, Bochum, Nordrhein-Westfalen, Germany
- Rheumazentrum Ruhrgebiet, Herne, Nordrhein-Westfalen, Germany
| | - Styliani Tsiami
- Rheumazentrum Ruhrgebiet, Herne, Nordrhein-Westfalen, Germany
- Rheumazentrum Ruhrgebiet, Ruhr-University Bochum, Herne, Germany
| | | | - Philipp Sewerin
- Ruhr University Bochum, Bochum, Nordrhein-Westfalen, Germany
| | - Susanne Herbold
- Ruhr University Bochum, Bochum, Nordrhein-Westfalen, Germany
| | | |
Collapse
|
11
|
Kaneshiro K, Nakagawa K, Tsukamoto H, Matsuoka G, Okuno S, Tateishi K, Terashima Y, Shibanuma N, Yoshida K, Hashiramoto A. The clock gene Bmal1 controls inflammatory mediators in rheumatoid arthritis fibroblast-like synoviocytes. Biochem Biophys Res Commun 2024; 691:149315. [PMID: 38043198 DOI: 10.1016/j.bbrc.2023.149315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
OBJECT To clarify the involvement of clock genes in the production of inflammatory mediators from RA-FLS, we examined the role of Bmal1, one of the master clock genes. METHODS RA-FLSs were stimulated with IL-1β (0, 20 ng/mL), IL-6 (0, 20 ng/mL), IL-17 (0, 20 ng/mL), TNF-α (0, 20 ng/mL) or IFN-γ (0, 20 ng/mL) to examine the expression of Bmal1, MMP-3, CCL2, IL-6, IL-7 and IL-15 by qPCR and immunofluorescence staining. After silencing Bmal1, RA-FLSs were stimulated with IL-1β (0, 20 ng/mL), TNF-α (0, 20 ng/mL) or IFN-γ (0, 20 ng/mL) to examine the expressions of inflammatory mediators; MMP-3, CCL2, IL-6 and IL-15 by qPCR, ELISA and immunofluorescence staining. RESULTS Bmal1 expressions were increased by IL-1β, TNF-α and IFN-γ stimulations. Under stimulations with TNF-α, IL-1β, and IFN-γ, mRNA and protein expressions of MMP-3, CCL2 and IL-6 were suppressed by siBmal1. CONCLUSION Results indicate that Bmal1 contributes the production of MMP-3, CCL2, and IL-6 from RA-FLS, implying Bmal1 is involved in the pathogenesis of RA by regulating the inflammation.
Collapse
Affiliation(s)
- Kenta Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| | - Kanako Nakagawa
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hikari Tsukamoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Genta Matsuoka
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Seitaro Okuno
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Koji Tateishi
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | | | - Nao Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, Japan
| | - Kohsuke Yoshida
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
12
|
Fu J, Fan Z, He L, Liu Q, Liu H, Li Y, Guan H. Circadian clock disruption in autoimmune thyroiditis. Eur Thyroid J 2023; 12:e230035. [PMID: 37548297 PMCID: PMC10503217 DOI: 10.1530/etj-23-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023] Open
Abstract
Objective A vicious cycle between circadian disruption and escalating immune responses has been described in diverse inflammatory disease. The current study aimed to explore the role of circadian clock disruption in autoimmune thyroiditis (AIT). Methods Thirty AIT patients and 30 controls were enrolled and biopsied for thyroid tissues. Alterations of core clock genes expression in AIT thyroid tissues, and its association with serum and tissue inflammatory biomarkers were assessed. For animal studies, C57BL/6J mice administered with porcine thyroglobulin or PBS (as control) combined with adjuvants were sacrificed at four time points to investigate the circadian characteristic of experimental autoimmune thyroiditis (EAT). Light shift (LS) conditions were used to explore the influence of external circadian disturbance on EAT. Results The expression of clock genes BMAL1 and PER2 was significantly reduced in thyroid tissues from AIT patients and was negatively correlated to levels of thyroid peroxidase antibodies. In mouse models, diurnal fluctuations of proinflammatory cytokines were demonstrated, and further exposing mice to LS led to overproduction of TNF-α, IFN-γ, and anti-thyroglobulin antibodies. Circadian analysis revealed significant oscillations of Bmal1, Clock, Per2, Cry1, Ror, and Rev-erb, which was broadly disturbed in EAT, LS, and EAT + LS groups. Conclusions This study demonstrates that expression pattern of clock genes was disrupted in AIT thyroid, and chronic circadian disruption may aggravate the inflammatory responses in AIT. Whether maintaining a regular circadian rhythm can alleviate autoimmune thyroid diseases warrants further research.
Collapse
Affiliation(s)
- Jinrong Fu
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zihao Fan
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Liang He
- Department of Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qian Liu
- Department of Endocrinology and Metabolism, Jilin Cancer Hospital, Changchun, Jilin, China
| | - He Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yushu Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Butler T, Maidstone JR, Rutter KM, McLaughlin TJ, Ray WD, Gibbs EJ. The Associations of Chronotype and Shift Work With Rheumatoid Arthritis. J Biol Rhythms 2023; 38:510-518. [PMID: 37382359 PMCID: PMC10475206 DOI: 10.1177/07487304231179595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The circadian clock regulates multiple aspects of human physiology including immunity. People have a circadian preference termed chronotype. Those with an evening preference may be better suited to shift work, but also carry higher risk of adverse health. Shift work leads to misalignment of circadian rhythms and is associated with increased risk of inflammatory disease such as asthma and cancer. Here, we investigate the association between chronotype, shift work, and rheumatoid arthritis (RA). The associations between exposures of shift work and chronotype on risk of RA were studied in up to 444,210 U.K. Biobank participants. Multivariable logistic regression models were adjusted for covariates: age, sex, ethnicity, alcohol intake, smoking history, Townsend Deprivation Index (TDI), sleep duration, length of working week, and body mass index (BMI). After adjusting for covariates, individuals with a morning chronotype had lower odds of having rheumatoid arthritis (RA; odds ratio [OR]: 0.93, 95% confidence interval [CI]: 0.88-0.99) when compared to intermediate chronotypes. The association between morning chronotype and RA persisted with a more stringent RA case definition (covariate-adjusted OR: 0.89, 95% CI: 0.81-0.97). When adjusted for age, sex, ethnicity, and TDI, shift workers had higher odds of RA (OR: 1.22, 95% CI: 1.1-1.36) compared to day workers that attenuated to the null after further covariate adjustment (OR: 1.1, 95% CI: 0.98-1.22). Morning chronotypes working permanent night shifts had significantly higher odds of RA compared to day workers (OR: 1.89, 95% CI: 1.19-2.99). These data point to a role for circadian rhythms in RA pathogenesis. Further studies are required to determine the mechanisms underlying this association and understand the potential impact of shift work on chronic inflammatory disease and its mediating factors.
Collapse
Affiliation(s)
- Thomas Butler
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - J Robert Maidstone
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - K Martin Rutter
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - T John McLaughlin
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Department of Gastroenterology, Salford Royal NHS Foundation Trust, Salford, UK
| | - W David Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - E Julie Gibbs
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Balakrishnan B, Luckey D, Wright K, Davis JM, Chen J, Taneja V. Eggerthella lenta augments preclinical autoantibody production and metabolic shift mimicking senescence in arthritis. SCIENCE ADVANCES 2023; 9:eadg1129. [PMID: 37656793 PMCID: PMC10854426 DOI: 10.1126/sciadv.adg1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Abstract
Although the etiology of rheumatoid arthritis (RA) is unknown, a strong genetic predisposition and the presence of preclinical antibodies before the onset of symptoms is documented. An expansion of Eggerthella lenta is associated with severe disease in RA. Here, using a humanized mouse model of collagen-induced arthritis, we determined the impact of E. lenta abundance on RA severity. Naïve mice gavaged with E. lenta produce preclinical rheumatoid factor and, when induced for arthritis, develop severe disease. The augmented antibody response was much higher in female mice, and among patients with RA, women had higher average load of E. lenta. Expansion of E. lenta increased CXCL5 and CD4 T cells, and both interleukin-17- and interferon-γ-producing B cells. Further, E. lenta gavage caused gut dysbiosis and decline in amino acids and nicotinamide adenine dinucleotide with an increase in microbe-dependent bile acids and succinyl carnitine causing systemic senescent-like inflammation.
Collapse
Affiliation(s)
| | - David Luckey
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kerry Wright
- Department of Rheumatology, Mayo Clinic, Rochester, MN 55905, USA
| | - John M. Davis
- Department of Rheumatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Awuah WA, Huang H, Kalmanovich J, Mehta A, Mikhailova T, Ng JC, Abdul-Rahman T, Adebusoye FT, Tan JK, Kamanousa K, Ferreira T, Roy S, Kundu M, Yarlagadda R, Mukerjee N, Alexiou A, Papadakis M. Circadian rhythm in systemic autoimmune conditions: Potential of chrono-immunology in clinical practice: A narrative review. Medicine (Baltimore) 2023; 102:e34614. [PMID: 37565922 PMCID: PMC10419593 DOI: 10.1097/md.0000000000034614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
The circadian rhythm (CR) is a fundamental biological process regulated by the Earth's rotation and solar cycles. It plays a critical role in various bodily functions, and its dysregulation can have systemic effects. These effects impact metabolism, redox homeostasis, cell cycle regulation, gut microbiota, cognition, and immune response. Immune mediators, cycle proteins, and hormones exhibit circadian oscillations, supporting optimal immune function and defence against pathogens. Sleep deprivation and disruptions challenge the regulatory mechanisms, making immune responses vulnerable. Altered CR pathways have been implicated in diseases such as diabetes, neurological conditions, and systemic autoimmune diseases (SADs). SADs involve abnormal immune responses to self-antigens, with genetic and environmental factors disrupting self-tolerance and contributing to conditions like Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Inflammatory Myositis. Dysregulated CR may lead to increased production of pro-inflammatory cytokines, contributing to the systemic responses observed in SADs. Sleep disturbances significantly impact the quality of life of patients with SADs; however, they are often overlooked. The relationship between sleep and autoimmune conditions, whether causal or consequential to CR dysregulation, remains unclear. Chrono-immunology investigates the role of CR in immunity, offering potential for targeted therapies in autoimmune conditions. This paper provides an overview of the connections between sleep and autoimmune conditions, highlighting the importance of recognizing sleep disturbances in SADs and the need for further research into the complex relationship between the CR and autoimmune diseases.
Collapse
Affiliation(s)
| | - Helen Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | | | - Jyi Cheng Ng
- Faculty of Medicine and Health Sciences, University of Putra Malaysia, Serdang, Malaysia
| | | | | | | | | | - Tomas Ferreira
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Sakshi Roy
- School of Medicine, Queen’s University Belfast, Belfast, UK
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | | | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Barasat, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, Wuppertal, Germany
| |
Collapse
|
16
|
Kikyo N. Circadian Regulation of Macrophages and Osteoclasts in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:12307. [PMID: 37569682 PMCID: PMC10418470 DOI: 10.3390/ijms241512307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Rheumatoid arthritis (RA) represents one of the best examples of circadian fluctuations in disease severity. Patients with RA experience stiffness, pain, and swelling in afflicted joints in the early morning, which tends to become milder toward the afternoon. This has been primarily explained by the higher blood levels of pro-inflammatory hormones and cytokines, such as melatonin, TNFα, IL-1, and IL-6, in the early morning than in the afternoon as well as insufficient levels of anti-inflammatory cortisol, which rises later in the morning. Clinical importance of the circadian regulation of RA symptoms has been demonstrated by the effectiveness of time-of-day-dependent delivery of therapeutic agents in chronotherapy. The primary inflammatory site in RA is the synovium, where increased macrophages, T cells, and synovial fibroblasts play central roles by secreting pro-inflammatory cytokines, chemokines, and enzymes to stimulate each other, additional immune cells, and osteoclasts, ultimately leading to cartilage and bone erosion. Among these central players, macrophages have been one of the prime targets for the study of the link between circadian rhythms and inflammatory activities. Gene knockout experiments of various core circadian regulators have established that disruption of any core circadian regulators results in hyper- or hypoactivation of inflammatory responses by macrophages when challenged by lipopolysaccharide and bacteria. Although these stimulations are not directly linked to RA etiology, these findings serve as a foundation for further study by providing proof of principle. On the other hand, circadian regulation of osteoclasts, downstream effectors of macrophages, remain under-explored. Nonetheless, circadian expression of the inducers of osteoclastogenesis, such as TNFα, IL-1, and IL-6, as well as the knockout phenotypes of circadian regulators in osteoclasts suggest the significance of the circadian control of osteoclast activity in the pathogenesis of RA. More detailed mechanistic understanding of the circadian regulation of macrophages and osteoclasts in the afflicted joints could add novel local therapeutic options for RA.
Collapse
Affiliation(s)
- Nobuaki Kikyo
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
McGagh D, McGowan N, Hinds C, Saunders KEA, Coates LC. Actigraphy-derived physical activity levels and circadian rhythm parameters in patients with psoriatic arthritis: relationship with disease activity, mood, age and BMI. Ther Adv Musculoskelet Dis 2023; 15:1759720X231174989. [PMID: 37435529 PMCID: PMC10331082 DOI: 10.1177/1759720x231174989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/24/2023] [Indexed: 07/13/2023] Open
Abstract
Background Psoriatic arthritis (PsA) is associated with sleep disturbance, depression and a lifetime risk of obesity and cardiovascular disease. To date, there have been no studies investigating the relationship between objectively-measured physical activity (PA) levels and circadian rhythm disturbance with disease activity, daily symptoms and mood in patients with PsA. Objective This pilot study aimed to investigate the relationship between disease activity, daily symptoms and mood on PA and circadian rhythm in PsA. Design A prospective cohort study recruiting adults with PsA from rheumatology clinics at a single centre in the UK. Methods Participants wore an actigraph and recorded their symptoms and mood on a daily basis via a smartphone app for 28 days. Time spent in sedentary, light and moderate-to-vigorous physical activity (MVPA) and parameters reflecting the circadian rhythm of the rest-activity pattern were derived. This included the onset time of the least active 5-h (L5) and most active 10-h (M10) daily consecutive periods and the relative amplitude (RA). The relationship factors between baseline clinical status, daily symptoms, PA and circadian measures were examined using linear mixed effect regression models. Results Nineteen participants (8/19 female) were included. Participants with active PsA spent 63.87 min (95% CI: 18.5-109.3, p = 0.008) more in inactivity and 30.78 min (95% CI: 0.4-61.1, p = 0.047) less in MVPA per day compared to those in minimal disease activity (MDA). Age, body mass index and disease duration were also associated with PA duration. Participants with worse functional impairment had an M10 onset time 1.94 h (95% CI: 0.05-3.39, p = 0.011) later than those with no reported functional impairment. No differences were detected for L5 onset time or RA. Higher scores for positive mood components such as feeling energetic, cheerful and elated were associated with less time in inactivity and greater time spent in MVPA overall. Conclusion Our study highlights differences in PA and circadian rest-activity pattern timing based on disease activity, disability and daily mood in PsA. Reduced PA levels in patients with active disease may contribute to the observed increased risk of cardiovascular and metabolic sequelae, with further studies exploring this need.
Collapse
Affiliation(s)
- Dylan McGagh
- Nuffield Department of Orthopaedics,
Rheumatology and Musculoskeletal Sciences, University of Oxford, The Botnar
Research Centre, Old Road, Headington, Oxford, OX3 7LD, UK
| | - Niall McGowan
- Sleep and Circadian Neuroscience Institute,
Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford,
Oxfordshire, UK
- Department of Psychiatry, University of Oxford,
Oxford, UK
| | - Chris Hinds
- Oxford Digital Phenotyping Laboratory, Big Data
Institute, University of Oxford, Oxford, UK
| | - Kate E. A. Saunders
- Department of Psychiatry, University of Oxford,
Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford
Hospital, Oxford, UK
| | - Laura C. Coates
- Nuffield Department of Orthopaedics,
Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford,
UK
| |
Collapse
|
18
|
Kulkarni A, Demory-Beckler M, Kesselman MM. The Role of Clock Genes in Maintaining Circadian Rhythm and Rheumatoid Arthritis Pathophysiology. Cureus 2023; 15:e39104. [PMID: 37378201 PMCID: PMC10292020 DOI: 10.7759/cureus.39104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive autoimmune condition that affects up to 1% of the world population and symmetrically affects the joints leading to joint stiffness and decreased mobility. RA patients present with increased pain and chronic inflammation within their joint spaces, which researchers have linked to poorer sleep patterns, including difficulty falling asleep and non-restorative sleep. As such, identifying mediators of poor sleep quality among RA patients may improve their long-term quality of life. More recently, researchers identified an association between chronic inflammation in RA patients and their circadian rhythm. Altered circadian rhythms negatively impact the hypothalamic-pituitary-adrenal (HPA) axis and lead to altered cortisol release. Cortisol has shown to have a strong anti-inflammatory effect; when dysregulated, it may lead to increased pain experienced in RA patients. This literature review aims to provide insight into how chronic inflammation tied to RA pathophysiology may affect clock genes that are involved in maintaining the circadian rhythm. Specifically, this review focused on four common clock genes found dysregulated in RA patients: circadian locomotor output cycles kaput (CLOCK), brain and muscle ARNT like-1 (BMAL1), period (PER), and cryptochrome (CRY). Of the four clock genes discussed in this review, BMAL1 and PER are the most well-studied of the affected genes. Further knowledge surrounding clock genes and their dysregulated expression in RA may help guide therapy decisions for RA patients. Traditionally, disease-modifying antirheumatic drugs (DMARDs) have been used as first-line therapy for RA patients. Meanwhile, chronotherapy, optimizing drug release in a timed manner, has shown positive results in RA patients as well. Because of the association of altered circadian rhythms with increased symptom severity in RA patients, it seems highly plausible that DMARD therapy with chronotherapy may be an ideal therapeutic regimen for RA.
Collapse
Affiliation(s)
- Arathi Kulkarni
- Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Michelle Demory-Beckler
- Division of Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| | - Marc M Kesselman
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| |
Collapse
|
19
|
Waddell H, Stevenson TJ, Mole DJ. The role of the circadian rhythms in critical illness with a focus on acute pancreatitis. Heliyon 2023; 9:e15335. [PMID: 37089281 PMCID: PMC10119767 DOI: 10.1016/j.heliyon.2023.e15335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/20/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Circadian rhythms are responsible for governing various physiological processes, including hormone secretion, immune responses, metabolism, and the sleep/wake cycle. In critical illnesses such as acute pancreatitis (AP), circadian rhythms can become dysregulated due to disease. Evidence suggests that time of onset of disease, coupled with peripheral inflammation brought about by AP will impact on the circadian rhythms generated in the central pacemaker and peripheral tissues. Cells of the innate and adaptive immune system are governed by circadian rhythms and the diurnal pattern of expression can be disrupted during disease. Peak circadian immune cell release and gene expression can coincide with AP onset, that may increase pancreatic injury, tissue damage and the potential for systemic inflammation and multiple organ failure to develop. Here, we provide an overview of the role of circadian rhythms in AP and the underpinning inflammatory mechanisms to contextualise ongoing research into the chronobiology and chronotherapeutics of AP.
Collapse
Affiliation(s)
- Heather Waddell
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Tyler J. Stevenson
- Institute of Biodiversity and Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Damian J. Mole
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Clinical Surgery, School of Clinical Sciences and Community Health, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| |
Collapse
|
20
|
Rochette E, Saidi O, Merlin É, Duché P. Physical activity as a promising alternative for young people with juvenile idiopathic arthritis: Towards an evidence-based prescription. Front Immunol 2023; 14:1119930. [PMID: 36860845 PMCID: PMC9969142 DOI: 10.3389/fimmu.2023.1119930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease in young people. Although biologics now enable most children and adolescents with JIA to enjoy clinical remission, patients present lower physical activity and spend more time in sedentary behavior than their healthy counterparts. This impairment probably results from a physical deconditioning spiral initiated by joint pain, sustained by apprehension on the part of both the child and the child's parents, and entrenched by lowered physical capacities. This in turn may exacerbate disease activity and lead to unfavorable health outcomes including increased risks of metabolic and mental comorbidities. Over the past few decades, there has been growing interest in the health benefits of increased overall physical activity as well as exercise interventions in young people with JIA. However, we are still far from evidence-based physical activity and / or exercise prescription for this population. In this review, we give an overview of the available data supporting physical activity and / or exercise as a behavioral, non-pharmacological alternative to attenuate inflammation while also improving metabolism, disease symptoms, poor sleep, synchronization of circadian rhythms, mental health, and quality of life in JIA. Finally, we discuss clinical implications, identify gaps in knowledge, and outline a future research agenda.
Collapse
Affiliation(s)
- Emmanuelle Rochette
- Department of Pediatrics, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
- Clermont Auvergne University, INSERM, CIC 1405, CRECHE unit, Clermont-Ferrand, France
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| | - Oussama Saidi
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| | - Étienne Merlin
- Department of Pediatrics, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
- Clermont Auvergne University, INSERM, CIC 1405, CRECHE unit, Clermont-Ferrand, France
| | - Pascale Duché
- Toulon University, Laboratory “Impact of Physical Activity on Health” (IAPS), Toulon, France
| |
Collapse
|
21
|
Roth JR, Varshney S, de Moraes RCM, Melkani GC. Circadian-mediated regulation of cardiometabolic disorders and aging with time-restricted feeding. Obesity (Silver Spring) 2023; 31 Suppl 1:40-49. [PMID: 36623845 PMCID: PMC10089654 DOI: 10.1002/oby.23664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023]
Abstract
Circadian rhythms are present throughout biology, from the molecular level to complex behaviors such as eating and sleeping. They are driven by molecular clocks within cells, and different tissues can have unique rhythms. Circadian disruption can trigger obesity and other common metabolic disorders such as aging, diabetes, and cardiovascular disease, and circadian genes control metabolism. At an organismal level, feeding and fasting rhythms are key drivers of circadian rhythms. This underscores the bidirectional relationship between metabolism and circadian rhythms, and many metabolic disorders have circadian disruption or misalignment. Therefore, studying circadian rhythms may offer new avenues for understanding the etiology and management of obesity. This review describes how circadian rhythm dysregulation is linked with cardiometabolic disorders and how the lifestyle intervention of time-restricted feeding (TRF) regulates them. TRF reinforces feeding-fasting rhythms without reducing caloric intake and ameliorates metabolic disorders such as obesity and associated cardiac dysfunction, along with reducing inflammation. TRF optimizes the expression of genes and pathways related to normal metabolic function, linking metabolism with TRF's benefits and demonstrating the molecular link between metabolic disorders and circadian rhythms. Thus, TRF has tremendous therapeutic potential that could be easily adopted to reduce obesity-linked dysfunction and cardiometabolic disorders.
Collapse
Affiliation(s)
- Jonathan R. Roth
- Department of Pathology, Division of Molecular and Cellular Pathology, School of Medicine, The University of Alabama at Birmingham, AL 35294, USA
| | - Shweta Varshney
- Regulatory Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ruan Carlos Macedo de Moraes
- Department of Pathology, Division of Molecular and Cellular Pathology, School of Medicine, The University of Alabama at Birmingham, AL 35294, USA
| | - Girish C. Melkani
- Department of Pathology, Division of Molecular and Cellular Pathology, School of Medicine, The University of Alabama at Birmingham, AL 35294, USA
| |
Collapse
|
22
|
Butler TD, Mohammed Ali A, Gibbs JE, McLaughlin JT. Chronotype in Patients With Immune-Mediated Inflammatory Disease: A Systematic Review. J Biol Rhythms 2023; 38:34-43. [PMID: 36377205 PMCID: PMC9902971 DOI: 10.1177/07487304221131114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immune-mediated inflammatory diseases (IMIDs) such as rheumatoid arthritis, inflammatory bowel disease, and asthma share common pathophysiological pathways characterized by chronic inflammation and subsequent tissue damage involving multiple body sites. Circadian rhythms are 24-h body cycles that regulate immune activity and control the magnitude of immune response based on time of day. Chronotype is a person's individual circadian phase preference, ranging from morningness to eveningness, which is known to influence the risk of cardiometabolic and mental health disease. We systematically reviewed the literature to assess the association of questionnaire-based chronotype and patients with IMID. A comprehensive search of MEDLINE and Embase identified 12 studies meeting the inclusion criteria, conducted in 7 countries and covering 4 IMIDs to include 15,625 IMID patients and 410,783 healthy controls. Results showed that later chronotype may be a risk factor for worse quality of life and increased symptom burden in patients with IMIDs. In addition, chronotype may be a risk factor for IMID incidence, but the direction and magnitude of this effect were not consistent across individual IMIDs. Chronotype assessment could contribute to risk stratification in patients with IMIDs. Cross-disciplinary collaboration to understand the role of circadian rhythms and chronotype in driving common inflammatory pathways could help to improve outcomes for patients with IMIDs.
Collapse
Affiliation(s)
- Thomas D Butler
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Aala Mohammed Ali
- Division of Diabetes, Endocrinology and Gastroenterology, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Julie E Gibbs
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - John T McLaughlin
- Division of Diabetes, Endocrinology and Gastroenterology, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
23
|
Jain SN, Patil SB. Perspectives of colon-specific drug delivery in the management of morning symptoms of rheumatoid arthritis. Inflammopharmacology 2023; 31:253-264. [PMID: 36544060 DOI: 10.1007/s10787-022-01120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis is a chronic condition that is characterized by joint pain and inflammation. It is an autoimmune disorder in which the body tissues are erroneously attacked by the immune system of the host itself. It has been evident that rheumatoid arthritis symptoms follow a 24 h circadian rhythm and exhibit high thresholds of pain, functional disability, and stiffness predominantly early in the morning. Colon-specific drug delivery systems can be utilized in the formulations to be used in the treatment of rheumatoid arthritis. The colon-specific drug delivery system has shown promising results in the treatment of different diseases at the colonic site like Crohn's disease, ulcerative colitis, colon cancer, etc. The colon-specific drug delivery is capable of delivering the formulation at the predetermined location and predetermined time. The early morning symptoms of rheumatoid arthritis like pain and inflammation can be treated using the various approaches of the colon-specific drug delivery system because it will lead to patient compliance as the patient will not require administering the formulation immediately after waking up in the morning. This review also explains the immunological factors which may trigger rheumatoid arthritis in human beings. It further explores conventional approaches like pH-dependant, microorganisms-driven, pressure-controlled, and time-dependant formulations. By employing two or more conventional approaches given above the various novel approaches have been designed to eliminate the drawbacks of individual techniques.
Collapse
Affiliation(s)
- Swapnil N Jain
- Department of Pharmaceutics, SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, 423101, India
| | - Sanjay B Patil
- Department of Pharmaceutics, SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, 423101, India.
| |
Collapse
|
24
|
Luo X, Yang X, Yang Y, Li H, Cui H, Cao X. The interrelationship between inflammatory cytokines and skeletal muscle decay from the viewpoint of circadian rhythms. Arch Physiol Biochem 2022; 128:1559-1565. [PMID: 32608270 DOI: 10.1080/13813455.2020.1782435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Circadian rhythms affect a variety of physiological processes. Disruption of circadian rhythms causes many diseases, most of which are associated with inflammation. Disruption of circadian rhythms has a detrimental impact on the function of immune system. It is common to find that circulatory LPS are increased. LPS induces immune cells to produce inflammatory cytokines. Inflammatory cytokines play a role in skeletal muscle decay. Rev-erbβ has been identified as a critical regulator of circadian rhythms and a factor in inflammation. Another effect of disruption is a concomitant disturbance of glucose-insulin metabolism, which skeletal muscle likely contributes to considering it is a key metabolic tissue. Disruption of circadian rhythms is also related to obesity. Obesity can cause an increase expression of inflammatory cytokines. Maybe obesity with skeletal muscle decay is one of major characteristics. Future studies are needed to obtain a comprehensive understanding of inflammatory cytokines and skeletal muscle decay from the viewpoint of circadian rhythms.
Collapse
Affiliation(s)
- Xuguang Luo
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, PR China
| | - Xinhua Yang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Yanping Yang
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Hairong Li
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Huilin Cui
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| | - Ximei Cao
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, PR China
| |
Collapse
|
25
|
Ella K, Sűdy ÁR, Búr Z, Koós B, Kisiczki ÁS, Mócsai A, Káldi K. Time restricted feeding modifies leukocyte responsiveness and improves inflammation outcome. Front Immunol 2022; 13:924541. [PMID: 36405720 PMCID: PMC9666763 DOI: 10.3389/fimmu.2022.924541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Time restricted eating, the dietary approach limiting food intake to a maximal 10-hour period of daytime is considered beneficial in metabolic dysfunctions, such as obesity and diabetes. Rhythm of food intake and parallel changes in serum nutrient levels are also important entrainment signals for the circadian clock, particularly in tissues involved in metabolic regulation. As both the metabolic state and the circadian clock have large impact on immune functions, we investigated in mice whether time restricted feeding (TRF) affects systemic inflammatory potential. TRF slackened the symptoms in K/BxN serum-transfer arthritis, an experimental model of human autoimmune joint inflammation. Compared to ad libitum conditions TRF reduced the expression of inflammatory mediators in visceral adipose tissue, an integrator and coordinator of metabolic and inflammatory processes. Furthermore, TRF strengthened the oscillation of peripheral leukocyte counts and alongside decreased the pool of both marginated and tissue leukocytes. Our data suggest that the altered leukocyte distribution in TRF mice is related to the attenuated expression of adhesion molecules on the surface of neutrophils and monocytes. We propose that TRF modifies both rhythm and inflammatory potential of leukocytes which contribute to the milder reactivity of the immune system and therefore time-restricted eating could serve as an effective complementary tool in the therapy of autoinflammatory processes.
Collapse
|
26
|
Luengas-Martinez A, Paus R, Iqbal M, Bailey L, Ray DW, Young HS. Circadian rhythms in psoriasis and the potential of chronotherapy in psoriasis management. Exp Dermatol 2022; 31:1800-1809. [PMID: 35851722 DOI: 10.1111/exd.14649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023]
Abstract
The physiology and pathology of the skin are influenced by daily oscillations driven by a master clock located in the brain, and peripheral clocks in individual cells. The pathogenesis of psoriasis is circadian-rhythmic, with flares of disease and symptoms such as itch typically being worse in the evening/night-time. Patients with psoriasis have changes in circadian oscillations of blood pressure and heart rate, supporting wider circadian disruption. In addition, shift work, a circadian misalignment challenge, is associated with psoriasis. These features may be due to underlying circadian control of key effector elements known to be relevant in psoriasis such as cell cycle, proliferation, apoptosis and inflammation. Indeed, peripheral clock pathology may lead to hyperproliferation of keratinocytes in the basal layers, insufficient apoptosis of differentiating keratinocytes in psoriatic epidermis, dysregulation of skin-resident and migratory immune cells and modulation of angiogenesis through circadian oscillation of vascular endothelial growth factor A (VEGF-A) in epidermal keratinocytes. Chronotherapeutic effects of topical steroids and topical vitamin D analogues have been reported, suggesting that knowledge of circadian phase may improve the efficacy, and therapeutic index of treatments for psoriasis. In this viewpoint essay, we review the current literature on circadian disruption in psoriasis. We explore the hypothesis that psoriasis is circadian-driven. We also suggest that investigation of the circadian components specific to psoriasis and that the in vitro investigation of circadian regulation of psoriasis will contribute to the development of a novel chronotherapeutic treatment strategy for personalised psoriasis management. We also propose that circadian oscillations of VEGF-A offer an opportunity to enhance the efficacy and tolerability of a novel anti-VEGF-A therapeutic approach, through the timed delivery of anti-VEGF-A drugs.
Collapse
Affiliation(s)
- Andrea Luengas-Martinez
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Ralf Paus
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Monasterium Laboratory, Muenster, Germany
- CUTANEON, Hamburg, Germany
| | - Mudassar Iqbal
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Laura Bailey
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - David W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Helen S Young
- Centre for Dermatology Research and Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
27
|
Wen P, Ma T, Zhang B, Hao L, Wang Y, Guo J, Song W, Wang J, Zhang Y. Identifying hub circadian rhythm biomarkers and immune cell infiltration in rheumatoid arthritis. Front Immunol 2022; 13:1004883. [PMID: 36238290 PMCID: PMC9550876 DOI: 10.3389/fimmu.2022.1004883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundRheumatoid arthritis (RA) is a chronic systemic autoimmune disease with symptoms characterized by typical circadian rhythmic changes. This study aimed to identify the hub circadian rhythm genes (CRGs) in RA and explore their association with immune cell infiltration and pathogenesis of RA.MethodsThe differentially expressed CRGs (DECRGs) between RA and normal control samples were screened from Datasets GSE12021 and GSE55235. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Gene Set Enrichment Analysis were used to explore the potential functional mechanisms of DECRGs in RA. Weighted Gene Co-expression Network Analysis and Least Absolute Shrinkage and Selection Operator regression analysis were performed to identify hub CRGs of RA. CIBERSORT was conducted to compare the infiltration level of immune cells in RA and control synovial tissue and their relationship with hub genes. In addition, the diagnostic value of hub biomarkers was evaluated by the area under the receiver operator characteristic curve. Further, a nomogram prediction model was constructed and its significance for clinical decision-making was evaluated.ResultsThe green module was identified as the hub module associated with RA. Four hub CRGs (EGR1, FOSL2, GADD45B, and NFIL3) were identified and showed that they had the highest specificity and sensitivity for RA diagnosis, respectively. The expression levels and diagnostic values of these genes were externally validated in the dataset GSE55457. A nomogram prediction model based on the four hub CRGs was constructed and proved to have a certain clinical decision value. Additionally, the correlation analysis of immune cells with hub genes showed that all hub genes were significantly positively correlated with activated mast cells, resting memory CD4+ T cells, and monocytes. Whereas, all hub genes were negatively correlated with plasma cells, CD8+ T cells, and activated memory CD4+ T cells. Meanwhile, FOSL2 and GADD45B were negatively correlated with Tfh cells.ConclusionFour hub CRGs were identified and showed excellent diagnostic value for RA. These genes may be involved in the pathological process of RA by disrupting the rhythmic oscillations of cytokines through immune-related pathways and could be considered molecular targets for future chronotherapy against RA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jun Wang
- *Correspondence: Yumin Zhang, ; Jun Wang,
| | | |
Collapse
|
28
|
Neves AR, Albuquerque T, Quintela T, Costa D. Circadian rhythm and disease: Relationship, new insights, and future perspectives. J Cell Physiol 2022; 237:3239-3256. [PMID: 35696609 DOI: 10.1002/jcp.30815] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023]
Abstract
The circadian system is responsible for internal functions and regulation of the organism according to environmental cues (zeitgebers). Circadian rhythm dysregulation or chronodisruption has been associated with several diseases, from mental to autoimmune diseases, and with life quality change. Following this, some therapies have been developed to correct circadian misalignments, such as light therapy and chronobiotics. In this manuscript, we describe the circadian-related diseases so far investigated, and studies reporting relevant data on this topic, evidencing this relationship, are included. Despite the actual limitations in published work, there is clear evidence of the correlation between circadian rhythm dysregulation and disease origin/development, and, in this way, clock-related therapies emerge as great progress in the clinical field. Future improvements in such interventions can lead to the development of successful chronotherapy strategies, deeply contributing to enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Ana R Neves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Tânia Albuquerque
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,Unidade de Investigação para o Desenvolvimento do Interior (UDI-IPG), Instituto Politécnico da Guarda, Guarda, Portugal
| | - Diana Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
29
|
Ingegnoli F, Cavalli S, Giudice L, Caporali R. Caffeine and rheumatoid arthritis: A complicated relationship. Clin Exp Rheumatol 2022; 21:103117. [PMID: 35595049 DOI: 10.1016/j.autrev.2022.103117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 11/02/2022]
Abstract
The current ideal goal of rheumatoid arthritis (RA) management is to resolve joint and systemic inflammation by using pharmacological interventions, assuming this will correspondingly lead to overall well-being. Nonetheless, it has emerged that a substantial number of RA patients do not reach optimal disease control. Thus suggesting the holistic management of subjective symptoms might be overlooked. This poses significant medical challenges; hence the proposal of incorporating lifestyle interventions as part of a multidimensional approach. Among these aspects, both patients and physicians perceive the important role of nutrition. This review shall examine how caffeine, one of the most studied bioactive components of the most widely consumed beverages, may potentially interfere with RA management. In particular, the mechanism by which caffeine affects RA pathogenesis, as a trigger for RA onset or flare, including its influence on rheumatic drug metabolism and the most common RA comorbidities and constitutional symptoms are outlined, highlighting important knowledge gaps and unmet research needs.
Collapse
Affiliation(s)
- Francesca Ingegnoli
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy.
| | - Silvia Cavalli
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy
| | - Laura Giudice
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy
| | - Roberto Caporali
- Clinical Rheumatology Unit, ASST Pini-CTO, Dept. of Clinical Sciences & Community Health, Research Center for Adult and Pediatric Rheumatic Diseases, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
30
|
Lättekivi F, Guljavina I, Midekessa G, Viil J, Heath PR, Bæk R, Jørgensen MM, Andronowska A, Kingo K, Fazeli A. Profiling Blood Serum Extracellular Vesicles in Plaque Psoriasis and Psoriatic Arthritis Patients Reveals Potential Disease Biomarkers. Int J Mol Sci 2022; 23:ijms23074005. [PMID: 35409365 PMCID: PMC9000144 DOI: 10.3390/ijms23074005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Psoriasis vulgaris (PsV) and psoriatic arthritis (PsA) are inflammatory diseases with unresolved pathophysiological aspects. Extracellular vesicles (EVs) play an important role in intercellular communication. We compared the miRNA contents and surface proteome of the EVs in the blood serum of PsV and PsA patients to healthy controls. Size-exclusion chromatography was used to isolate EVs from the blood serum of 12 PsV patients, 12 PsA patients and 12 healthy control subjects. EV samples were characterized and RNA sequencing was used to identify differentially enriched EV-bound miRNAs. We found 212 differentially enriched EV-bound miRNAs present in both PsV and PsA groups—a total of 13 miRNAs at FDR ≤ 0.05. The predicted target genes of these miRNAs were significantly related to lesser known but potentially disease-relevant pathways. The EV array revealed that PsV patient EV samples were significantly enriched with CD9 EV-marker compared to controls. Analysis of EV-bound miRNAs suggests that signaling via EVs in the blood serum could play a role in the pathophysiological processes of PsV and PsA. EVs may be able to fill the void in clinically applicable diagnostic and prognostic biomarkers for PsV and PsA.
Collapse
Affiliation(s)
- Freddy Lättekivi
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia; (F.L.); (I.G.); (G.M.)
| | - Irina Guljavina
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia; (F.L.); (I.G.); (G.M.)
| | - Getnet Midekessa
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia; (F.L.); (I.G.); (G.M.)
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
| | - Janeli Viil
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia;
| | - Paul R. Heath
- Sheffield Institute of Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK;
| | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, 9000 Aalborg, Denmark; (R.B.); (M.M.J.)
| | - Malene Møller Jørgensen
- Department of Clinical Immunology, Aalborg University Hospital, Urbansgade 32-36, 9000 Aalborg, Denmark; (R.B.); (M.M.J.)
- Department of Clinical Medicine, Aalborg University, Søndre Skovvej 15, 9220 Aalborg, Denmark
| | - Aneta Andronowska
- Department of Hormonal Action Mechanisms, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima St. 10, 10-748 Olsztyn, Poland;
| | - Kulli Kingo
- Clinic of Dermatology, Institute of Clinical Medicine, University of Tartu, Raja 31, 50417 Tartu, Estonia;
- Clinic of Dermatology, Tartu University Hospital, Raja 31, 50417 Tartu, Estonia
| | - Alireza Fazeli
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 14b, 50411 Tartu, Estonia; (F.L.); (I.G.); (G.M.)
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006 Tartu, Estonia
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield S10 2SF, UK
- Correspondence: ; Tel.: +372-737-4425
| |
Collapse
|
31
|
Gray KJ, Gibbs JE. Adaptive immunity, chronic inflammation and the clock. Semin Immunopathol 2022; 44:209-224. [PMID: 35233691 PMCID: PMC8901482 DOI: 10.1007/s00281-022-00919-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/28/2022] [Indexed: 12/17/2022]
Abstract
The adaptive arm of the immune system facilitates recognition of specific foreign pathogens and, via the action of T and B lymphocytes, induces a fine-tuned response to target the pathogen and develop immunological memory. The functionality of the adaptive immune system exhibits daily 24-h variation both in homeostatic processes (such as lymphocyte trafficking and development of T lymphocyte subsets) and in responses to challenge. Here, we discuss how the circadian clock exerts influence over the function of the adaptive immune system, considering the roles of cell intrinsic clockwork machinery and cell extrinsic rhythmic signals. Inappropriate or misguided actions of the adaptive immune system can lead to development of autoimmune diseases such as rheumatoid arthritis, ulcerative colitis and multiple sclerosis. Growing evidence indicates that disturbance of the circadian clock has negative impact on development and progression of these chronic inflammatory diseases and we examine current understanding of clock-immune interactions in the setting of these inflammatory conditions. A greater appreciation of circadian control of adaptive immunity will facilitate further understanding of mechanisms driving daily variation in disease states and drive improvements in the diagnosis and treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Kathryn J Gray
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Julie E Gibbs
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
32
|
Hunter FK, Butler TD, Gibbs JE. Circadian rhythms in immunity and host-parasite interactions. Parasite Immunol 2022; 44:e12904. [PMID: 34971451 PMCID: PMC9285061 DOI: 10.1111/pim.12904] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/30/2022]
Abstract
The mammalian immune system adheres to a 24 h circadian schedule, exhibiting daily rhythmic patterns in homeostatic immune processes, such as immune cell trafficking, as well as the inflammatory response to infection. These diurnal rhythms are driven by endogenous molecular clocks within immune cells which are hierarchically coordinated by a light-entrained central clock in the suprachiasmatic nucleus of the hypothalamus and responsive to local rhythmic cues including temperature, hormones and feeding time. Circadian control of immunity may enable animals to anticipate daily pathogenic threat from parasites and gate the magnitude of the immune response, potentially enhancing fitness. However, parasites also strive for optimum fitness and some may have co-evolved to benefit from host circadian timing mechanisms, possibly via the parasites' own intrinsic molecular clocks. In this review, we summarize the current knowledge surrounding the influence of the circadian clock on the mammalian immune system and the host-parasitic interaction. We also discuss the potential for chronotherapeutic strategies in the treatment of parasitic diseases.
Collapse
Affiliation(s)
- Felicity K Hunter
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Thomas D Butler
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Julie E Gibbs
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
33
|
Cox SL, O'Siorain JR, Fagan LE, Curtis AM, Carroll RG. Intertwining roles of circadian and metabolic regulation of the innate immune response. Semin Immunopathol 2022; 44:225-237. [PMID: 35022891 DOI: 10.1007/s00281-021-00905-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
It has emerged that an interconnected relationship exists between metabolism, circadian rhythms, and the immune system. The relationship between metabolism and circadian rhythms is not that surprising given the necessity to align rhythms of feeding/fasting with activity/rest. Recently, our understanding of the importance of metabolic pathways in terms of immune function, termed immunometabolism, has grown exponentially. It is now appreciated that the time of day during which the innate immune system is challenged strongly conditions the subsequent response. Recent observations have found that many individual components that make up the circadian clock also control aspects of metabolism in innate immune cells to modulate inflammation. This circadian/metabolic axis may be a key factor driving rhythmicity of immune function and circadian disruption is associated with a range of chronic inflammatory diseases such as atherosclerosis, obesity, and diabetes. The field of "circadian immunometabolism" seeks to reveal undiscovered circadian controlled metabolic pathways that in turn regulate immune responses. The innate immune system has been intricately linked to chronic inflammatory diseases, and within the immune system, individual cell types carry out unique roles in inflammation. Therefore, circadian immunometabolism effects are unique to each innate immune cell.
Collapse
Affiliation(s)
- Shannon L Cox
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. .,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - James R O'Siorain
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Lauren E Fagan
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Annie M Curtis
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Richard G Carroll
- Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland. .,Tissue Engineering Research Group (TERG), RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
34
|
Boeth H, Biesen R, Hollnagel J, Herrmann S, Ehrig RM, Pelli L, Taylor WR, Duda GN, Buttgereit F. Quantification of morning stiffness to assess disease activity and treatment effects in rheumatoid arthritis. Rheumatology (Oxford) 2021; 60:5282-5291. [PMID: 33822899 DOI: 10.1093/rheumatology/keab323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/28/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES The clinical parameter of morning stiffness is widely used to assess the status of RA, but its accurate quantitative assessment in a clinical setting has not yet been successful. This lack of individual quantification limits both personalized medication and efficacy evaluation in the treatment of RA. METHODS We developed a novel technology to assess passive resistance of the MCP III joint (stiffness) and its passive range of motion (PRoM). Within this pilot study, 19 female postmenopausal RA patients and 9 healthy controls were examined in the evening as well as the morning of the following day. To verify the specificity of the biomechanical quantification, 11 patients with RA were assessed both prior to and ∼3 h after glucocorticoid therapy. RESULTS While the healthy controls showed only minor changes between afternoon and morning, in RA patients the mean PRoM decreased significantly by 18% (s.d. 22) and stiffness increased significantly by 20% (s.d. 18) in the morning compared with the previous afternoon. We found a significant positive correlation between RA activity and biomechanical measures. Glucocorticoids significantly increased the mean PRoM by 16% (s.d. 11) and reduced the mean stiffness by 23% (s.d. 22). CONCLUSION This technology allowed mechanical stiffness to be quantified in MCP joints and demonstrated high sensitivity with respect to disease status as well as medication effect in RA patients. Such non-invasive, low-risk and rapid assessment of biomechanical joint stiffness opens a novel avenue for judging therapy efficacy in patients with RA and potentially also in other non-RA inflammatory joint diseases.
Collapse
Affiliation(s)
| | - Robert Biesen
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin
| | | | - Sandra Herrmann
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin
| | - Rainald M Ehrig
- Julius Wolff Institute.,Zuse Institute Berlin, Berlin, Germany
| | | | - William R Taylor
- Eidgenössische Technische Hochschule Zürich, Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | | | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin
| |
Collapse
|
35
|
Poulsen RC, Hearn JI, Dalbeth N. The circadian clock: a central mediator of cartilage maintenance and osteoarthritis development? Rheumatology (Oxford) 2021; 60:3048-3057. [PMID: 33630038 DOI: 10.1093/rheumatology/keab197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/20/2021] [Indexed: 01/03/2023] Open
Abstract
The circadian clock is a specialized cell signalling pathway present in all cells. Loss of clock function leads to tissue degeneration and premature ageing in animal models demonstrating the fundamental importance of clocks for cell, tissue and organism health. There is now considerable evidence that the chondrocyte circadian clock is altered in OA. The purpose of this review is to summarize current knowledge regarding the nature of the change in the chondrocyte clock in OA and the implications of this change for disease development. Expression of the core clock component, BMAL1, has consistently been shown to be lower in OA chondrocytes. This may contribute to changes in chondrocyte differentiation and extracellular matrix turnover in disease. Circadian clocks are highly responsive to environmental factors. Mechanical loading, diet, inflammation and oxidative insult can all influence clock function. These factors may contribute to causing the change in the chondrocyte clock in OA.
Collapse
Affiliation(s)
- Raewyn C Poulsen
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences.,Department of Medicine, School of Medicine
| | - James I Hearn
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
36
|
Mineralocorticoid receptor actions in cardiovascular development and disease. Essays Biochem 2021; 65:901-911. [PMID: 34414409 DOI: 10.1042/ebc20210006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
Mineralocorticoid receptors (MRs) are transcriptional regulators that mediate the diverse physiological and pathophysiological actions of corticosteroid hormones across many tissues. In the kidney aldosterone control of sodium/water resorption via DNA-binding actions of the MR is established. MRs also regulate tissues not involved in electrolyte homeostasis such as the heart, adipose tissue, brain, and inflammatory cells where the MRs can respond to both aldosterone and cortisol. The pathology of inappropriate MR activation in non-epithelial tissues are well-described, and steroidal antagonists of the MR have been clinically beneficial in the management of heart failure and blood pressure for decades. However, the role of cortisol-dependent MR activation in the physiological setting is less well defined. Like other steroid hormone receptors, the MR also regulates non-DNA-binding pathways including MAPK pathways and G protein coupled receptors to provide diversity to MR signaling. Whether nonDNA binding pathways are more relevant for MR activation in non-epithelial, versus epithelial, tissues remain unclear. This review will focus on molecular regulation of ligand-dependent MR activation and the physiology and pathophysiology of MR actions in the heart with a focus on the cardiomyocyte and provide a discussion of relevant genomic and non-genomic MR pathways and potential new transcriptional partners for the MR and their relevance for health and disease. Understanding MR actions in the heart will provide new insights into cell-selective mechanisms that underpin the therapeutic benefits of MRAs, and are a critical step towards developing next-generation tissue selective MR modulators with improved safety profiles.
Collapse
|
37
|
Xiang K, Xu Z, Hu YQ, He YS, Wu GC, Li TY, Wang XR, Ding LH, Zhang Q, Tao SS, Ye DQ, Pan HF, Wang DG. Circadian clock genes as promising therapeutic targets for autoimmune diseases. Autoimmun Rev 2021; 20:102866. [PMID: 34118460 DOI: 10.1016/j.autrev.2021.102866] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 12/31/2022]
Abstract
Circadian rhythm is a natural, endogenous process whose physiological functions are controlled by a set of clock genes. Disturbance of the clock genes have detrimental effects on both innate and adaptive immunity, which significantly enhance pro-inflammatory responses and susceptibility to autoimmune diseases via strictly controlling the individual cellular components of the immune system that initiate and perpetuate the inflammation pathways. Autoimmune diseases, especially rheumatoid arthritis (RA), often exhibit substantial circadian oscillations, and circadian rhythm is involved in the onset and progression of autoimmune diseases. Mounting evidence indicate that the synthetic ligands of circadian clock genes have the property of reducing the susceptibility and clinical severity of subjects. This review supplies an overview of the roles of circadian clock genes in the pathology of autoimmune diseases, including BMAL1, CLOCK, PER, CRY, REV-ERBα, and ROR. Furthermore, summarized some circadian clock genes as candidate genes for autoimmune diseases and current advancement on therapy of autoimmune diseases with synthetic ligands of circadian clock genes. The existing body of knowledge demonstrates that circadian clock genes are inextricably linked to autoimmune diseases. Future research should pay attention to improve the quality of life of patients with autoimmune diseases and reduce the effects of drug preparation on the normal circadian rhythms.
Collapse
Affiliation(s)
- Kun Xiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD, 4006, Brisbane, Australia
| | - Yu-Qian Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Guo-Cui Wu
- School of Nursing, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Tian-Yu Li
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xue-Rong Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Li-Hong Ding
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Sha-Sha Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, 81 Meishan Road, Hefei, Anhui, China.
| | - De-Guang Wang
- Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
38
|
Lin J, Gao L, Lin Y, Wang S, Yang Z, Ren S, Chen M, Wu B. Pharmacokinetics-Based Chronoefficacy of Semen Strychni and Tripterygium Glycoside Tablet Against Rheumatoid Arthritis. Front Pharmacol 2021; 12:673263. [PMID: 34108880 PMCID: PMC8181759 DOI: 10.3389/fphar.2021.673263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Rheumatoid arthritis is a systemic autoimmune disease characterized by synovial inflammation and bone destruction. Identifying drugs with time-varying efficacy and toxicity, and elucidating the mechanisms would help to improve treatment efficacy and reduce adverse effects. Here, we aimed to determine the chronoefficacy of semen strychni (SS) and tripterygium glycoside tablet (TGT) against rheumatoid arthritis in mice, and to investigate a potential role of circadian pharmacokinetics in generating chronoefficacy. SS extract and TGT suspension were prepared with ultrasonication. Effects of SS and TGT on collagen-induced arthritis (CIA) were evaluated by measuring TNF-α and IL-6 levels. SS dosed at ZT18 was more effective in protecting against CIA than drug dosed at ZT6 (i.e., lower levels of key inflammatory factors at ZT18 than at ZT6). This was accompanied by higher systemic exposure levels of strychnine and brucine (two main putative active ingredients of SS) in ZT18-treated than in ZT6-treated CIA mice. TGT dosing at ZT2 showed a better efficacy against CIA as compared to herb doing at ZT14. Consistently, ZT2 dosing generated a higher exposure of triptolide (a main putative active ingredient of TGT) as compared to ZT14 dosing in CIA mice. Moreover, strychnine, brucine, and triptolide significantly inhibited the proliferation of fibroblast-like synoviocytes, and reduced the production of TNF-α and IL-6 and the mRNAs of TNF-α, IL-6, COX-2, and iNOS, suggesting that they possessed an anti-arthritis activity. In conclusion, SS and TGT display chronoefficacy against rheumatoid arthritis in mice, that is attributed to circadian pharmacokinetics of main active ingredients. Our findings have implications for improving treatment outcomes of SS and TGT via timed delivery.
Collapse
Affiliation(s)
- Jingpan Lin
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lu Gao
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuai Wang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zemin Yang
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shujing Ren
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Chen
- College of Pharmacy, Jinan University, Guangzhou, China.,Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
39
|
Bouchaala F, Laatar R, Lahiani M, Vuillerme N, Zouabi A, Borji R, Rebai H, Sahli S. Time-of-day effects on the postural control and symptoms in women with rheumatoid arthritis. Chronobiol Int 2021; 38:1290-1298. [PMID: 34016004 DOI: 10.1080/07420528.2021.1927069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The present study was designed to assess time-of-day effects on postural balance and symptoms of rheumatoid arthritis (RA) patients. A total of 15 American College of Rheumatology functional class I and II RA patients and 15 healthy controls aged between 45 and 55 (mean age: 50 ± 3) years of age voluntarily participated. We conducted a case-control, repeated-measures in design study. Postural balance, axillary temperature, pain intensity, fatigue, and sleepiness were measured during five test sessions at 06:00, 10:00, 14:00, 18:00, and 22:00 h. Participants were randomized to the order of test sessions, and each session was separated by >36 hours to minimize/eliminate learning effects. Center of pressure area (CoParea) (p < .001), pain (p < .01), and sleepiness (p < .05) values were significantly higher at 06:00 and 22:00 h compared to 10:00, 14:00, and 18:00 h in the RA group. Fatigue significantly increased (p < .05) at 22:00 h in comparison to 10:00, 14:00, and 18:00 h in the RA group. Axillary temperature was significantly (p < .001) lower at 06:00 and at 22:00 h compared to 10:00, 14:00, and 18:00 h in the RA group. In the control group, there were no significant time-of-day difference in fatigue, but axillary temperature was significantly lower (p < .01) at 06:00 h compared to 10:00 h, 14:00, 18:00, and 22:00 h, sleepiness values were significantly higher (p < .05) at 06:00 and 22:00 h compared to 10:00, 14:00, and 18:00 h, and revealed CoParea values were significantly (p < .05) higher at 06:00 h compared to 14:00 h. Finally, in the RA group, significant correlations were found between values of CoParea and pain (r = 0.47; p < .001), sleepiness (r = 0.39; p < .01), fatigue (r = -0.46; p < .001), and also axillary temperature (r = -0.35; p < .001). Multiple linear regression analysis further indicated that in the RA group, time-of-day variation in postural balance was predicted collectively by that in pain and fatigue (30.7%) (R2 = 0.307; F = 11.53; p < .001). Our results first suggest that time-of-day significantly affects postural balance, axillary temperature, pain intensity, fatigue, and sleepiness in RA patients and second that the temporal variation observed in pain, fatigue, and somnolence are concomitant with that observed in postural balance.Abbreviations: RA: Rheumatoid arthritis; H&O questionnaire: Horne and Ostberg questionnaire; PSQI: Pittsburgh sleep quality index; HAQ: Health assessment questionnaire; SF-36: the short form-36; WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index; CoP: The Center of foot Pressure; CoParea: The Center of foot Pressure area; VAS: The Visual Analogue Scale; KSS: Karolinska Sleepiness Scale.
Collapse
Affiliation(s)
- Fatma Bouchaala
- Research Laboratory: Education, Motricité, Sport Et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Rabeb Laatar
- Research Laboratory: Education, Motricité, Sport Et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Mariam Lahiani
- Research Laboratory: Education, Motricité, Sport Et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Nicolas Vuillerme
- University of Grenoble Alpes, AGEIS, Grenoble, France.,Institut Universitaire de France, Paris, France
| | - Amira Zouabi
- Research Laboratory: Education, Motricité, Sport Et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Rihab Borji
- Research Laboratory: Education, Motricité, Sport Et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Haithem Rebai
- Research Laboratory: Education, Motricité, Sport Et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Sonia Sahli
- Research Laboratory: Education, Motricité, Sport Et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
40
|
Morris H, Gonçalves CF, Dudek M, Hoyland J, Meng QJ. Tissue physiology revolving around the clock: circadian rhythms as exemplified by the intervertebral disc. Ann Rheum Dis 2021; 80:828-839. [PMID: 33397731 DOI: 10.1136/annrheumdis-2020-219515] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023]
Abstract
Circadian clocks in the brain and peripheral tissues temporally coordinate local physiology to align with the 24 hours rhythmic environment through light/darkness, rest/activity and feeding/fasting cycles. Circadian disruptions (during ageing, shift work and jet-lag) have been proposed as a risk factor for degeneration and disease of tissues, including the musculoskeletal system. The intervertebral disc (IVD) in the spine separates the bony vertebrae and permits movement of the spinal column. IVD degeneration is highly prevalent among the ageing population and is a leading cause of lower back pain. The IVD is known to experience diurnal changes in loading patterns driven by the circadian rhythm in rest/activity cycles. In recent years, emerging evidence indicates the existence of molecular circadian clocks within the IVD, disruption to which accelerates tissue ageing and predispose animals to IVD degeneration. The cell-intrinsic circadian clocks in the IVD control key aspects of physiology and pathophysiology by rhythmically regulating the expression of ~3.5% of the IVD transcriptome, allowing cells to cope with the drastic biomechanical and chemical changes that occur throughout the day. Indeed, epidemiological studies on long-term shift workers have shown an increased incidence of lower back pain. In this review, we summarise recent findings of circadian rhythms in health and disease, with the IVD as an exemplar tissue system. We focus on rhythmic IVD functions and discuss implications of utilising biological timing mechanisms to improve tissue health and mitigate degeneration. These findings may have broader implications in chronic rheumatic conditions, given the recent findings of musculoskeletal circadian clocks.
Collapse
Affiliation(s)
- Honor Morris
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Cátia F Gonçalves
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK .,NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK .,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
41
|
Oh H, Bang S, Im B, Lee S, Seo W. Development and Validity Testing of a Morning Stiffness Assessment Scale for Patients with Rheumatoid Arthritis. Orthop Nurs 2021; 40:23-32. [PMID: 33492907 DOI: 10.1097/nor.0000000000000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Morning stiffness is known to exert a significant impact on functional ability, quality of life, and employment status. There is an increasing need for a valid, reliable tool to comprehensively assess morning stiffness. The purpose of this study was to develop and verify a Morning Stiffness Assessment Scale. Items were developed on the basis of a framework of the conceptual attributes of morning stiffness. Validity and reliability tests were conducted on the devised scale. Eighty-five patients with rheumatoid arthritis were included to verify the devised scale. A 10-item Morning Stiffness Assessment Scale was developed. Its content and construct validities were well supported. The scale was found to have good reliability. The devised scale is simple and brief, but it provides a more comprehensive means of evaluation for morning stiffness. We believe this scale offers a clinically useful means of properly assessing morning stiffness and has potential utility for evaluating the effects of morning stiffness treatments.
Collapse
Affiliation(s)
- HyunSoo Oh
- HyunSoo Oh, PhD, RN, Professor, Department of Nursing, Inha University, Incheon, Republic of Korea
- SuHyang Bang, MSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- BoAe Im, MSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- SiWon Lee, BSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- WhaSook Seo, PhD, RN, Professor, Department of Nursing, Inha University, Incheon, Republic of Korea
| | - SuHyang Bang
- HyunSoo Oh, PhD, RN, Professor, Department of Nursing, Inha University, Incheon, Republic of Korea
- SuHyang Bang, MSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- BoAe Im, MSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- SiWon Lee, BSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- WhaSook Seo, PhD, RN, Professor, Department of Nursing, Inha University, Incheon, Republic of Korea
| | - BoAe Im
- HyunSoo Oh, PhD, RN, Professor, Department of Nursing, Inha University, Incheon, Republic of Korea
- SuHyang Bang, MSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- BoAe Im, MSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- SiWon Lee, BSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- WhaSook Seo, PhD, RN, Professor, Department of Nursing, Inha University, Incheon, Republic of Korea
| | - SiWon Lee
- HyunSoo Oh, PhD, RN, Professor, Department of Nursing, Inha University, Incheon, Republic of Korea
- SuHyang Bang, MSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- BoAe Im, MSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- SiWon Lee, BSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- WhaSook Seo, PhD, RN, Professor, Department of Nursing, Inha University, Incheon, Republic of Korea
| | - WhaSook Seo
- HyunSoo Oh, PhD, RN, Professor, Department of Nursing, Inha University, Incheon, Republic of Korea
- SuHyang Bang, MSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- BoAe Im, MSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- SiWon Lee, BSN, RN, Graduate student, Department of Nursing, Inha University, Incheon, Republic of Korea
- WhaSook Seo, PhD, RN, Professor, Department of Nursing, Inha University, Incheon, Republic of Korea
| |
Collapse
|
42
|
Faghani M, Mohammadghasemi F, Rafat Z, Sasani E. Serum melatonin level in patients with rheumatoid arthritis: A systematic review and meta-analysis. INDIAN JOURNAL OF RHEUMATOLOGY 2021. [DOI: 10.4103/injr.injr_331_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
43
|
Cakan P, Yildiz S. Effects of Half- or Whole-Night Shifts on Physiological and Cognitive Parameters in Women. Am J Med Sci 2020; 360:525-536. [DOI: 10.1016/j.amjms.2019.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022]
|
44
|
Hand LE, Gray KJ, Dickson SH, Simpkins DA, Ray DW, Konkel JE, Hepworth MR, Gibbs JE. Regulatory T cells confer a circadian signature on inflammatory arthritis. Nat Commun 2020; 11:1658. [PMID: 32245954 PMCID: PMC7125185 DOI: 10.1038/s41467-020-15525-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
The circadian clock is an intrinsic oscillator that imparts 24 h rhythms on immunity. This clock drives rhythmic repression of inflammatory arthritis during the night in mice, but mechanisms underlying this effect are not clear. Here we show that the amplitude of intrinsic oscillators within macrophages and neutrophils is limited by the chronic inflammatory environment, suggesting that rhythms in inflammatory mediators might not be a direct consequence of intrinsic clocks. Anti-inflammatory regulatory T (Treg) cells within the joints show diurnal variation, with numbers peaking during the nadir of inflammation. Furthermore, the anti-inflammatory action of Treg cells on innate immune cells contributes to the night-time repression of inflammation. Treg cells do not seem to have intrinsic circadian oscillators, suggesting that rhythmic function might be a consequence of external signals. These data support a model in which non-rhythmic Treg cells are driven to rhythmic activity by systemic signals to confer a circadian signature to chronic arthritis.
Collapse
Affiliation(s)
- L E Hand
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - K J Gray
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - S H Dickson
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - D A Simpkins
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - D W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - J E Konkel
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK
| | - M R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK
| | - J E Gibbs
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
45
|
Bouchaala F, Laatar R, Lahiani M, Zouabi A, Borji R, Rebai H, Sahli S. Time of day effect on balance performance, functional capacities and risk of fall in women with rheumatoid arthritis. Chronobiol Int 2020; 37:227-235. [PMID: 31913721 DOI: 10.1080/07420528.2019.1700997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: This study explored the time of day effect of balance performance, functional capacities and risk of fall in three different times in patients with rheumatoid arthritis (RA) and the association between these variations and those of RA symptoms.Methods: A "discontinual" protocol, composed of three test sessions, carried out at 6 am, 2 pm and 10 pm was set up, in order to investigate the time of day effect of balance performance, functional capacities, risk of fall, stiffness, range of motion, swollen and painful joints in women with RA.Results: Time Up and Go Test (TUGT), Functional Reach Test (FRT) and tinetti test scores were significantly higher (p < .01) at 6 am and at 10 pm compared to 2 pm. Stiffness, range of motion, swollen and painful joints values were significantly higher (p < .01) at 6 am and at 10 pm compared to 2 pm. A significant difference was observed on the stiffness, range of motion and swollen joints values between 6 am and 10 pm that were higher at 6 am (p < .05).Using Pearson's coefficient, correlations were found between RA symptom values; and TUGT, FRT and Tinetti test scores.Conclusion: Results showed a time of day effect of balance performance, functional capacities and risk of falls in women with RA. This variation indicates an alteration of performance at 6 am and 10 pm. Fluctuations of stiffness, limited range of motion, swollen and painful joints noted are concomitant to those of balance performance, functional capacities, and risk of fall.Abbreviations: RA: rheumatoid arthritis; H&O questionnaire: Horne and Ostberg questionnaire; PSQI: Pittsburgh sleep quality index; HAQ: health assessment questionnaire; SF-36: the short form-36; WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index; TUGT: Time Up and Go Test; FRT: Functional Reach Test.
Collapse
Affiliation(s)
- Fatma Bouchaala
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Rabeb Laatar
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Mariam Lahiani
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Amira Zouabi
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Rihab Borji
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Haithem Rebai
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| | - Sonia Sahli
- Research Laboratory: Education, Motricité, Sport et Santé, EM2S, LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
46
|
Kaneshiro K, Yoshida K, Morii K, Oketani Y, Uchida K, Yaekura A, Okumura I, Hashimoto T, Kawasaki Y, Shibanuma N, Sakai Y, Hashiramoto A. Expressions of circadian clock genes represent disease activities of RA patients treated with biological DMARDs. Mod Rheumatol 2019; 30:293-300. [DOI: 10.1080/14397595.2019.1602242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kenta Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kohsuke Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kanta Morii
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuto Oketani
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Koto Uchida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Arisa Yaekura
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ikumi Okumura
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Teppei Hashimoto
- Department of Rheumatology, Hyogo College of Medicine, Nishinomiya, Japan
| | | | - Nao Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
47
|
Agorastos A, Nicolaides NC, Bozikas VP, Chrousos GP, Pervanidou P. Multilevel Interactions of Stress and Circadian System: Implications for Traumatic Stress. Front Psychiatry 2019; 10:1003. [PMID: 32047446 PMCID: PMC6997541 DOI: 10.3389/fpsyt.2019.01003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The dramatic fluctuations in energy demands by the rhythmic succession of night and day on our planet has prompted a geophysical evolutionary need for biological temporal organization across phylogeny. The intrinsic circadian timing system (CS) represents a highly conserved and sophisticated internal "clock," adjusted to the 24-h rotation period of the earth, enabling a nyctohemeral coordination of numerous physiologic processes, from gene expression to behavior. The human CS is tightly and bidirectionally interconnected to the stress system (SS). Both systems are fundamental for survival and regulate each other's activity in order to prepare the organism for the anticipated cyclic challenges. Thereby, the understanding of the temporal relationship between stressors and stress responses is critical for the comprehension of the molecular basis of physiology and pathogenesis of disease. A critical loss of the harmonious timed order at different organizational levels may affect the fundamental properties of neuroendocrine, immune, and autonomic systems, leading to a breakdown of biobehavioral adaptative mechanisms with increased stress sensitivity and vulnerability. In this review, following an overview of the functional components of the SS and CS, we present their multilevel interactions and discuss how traumatic stress can alter the interplay between the two systems. Circadian dysregulation after traumatic stress exposure may represent a core feature of trauma-related disorders mediating enduring neurobiological correlates of trauma through maladaptive stress regulation. Understanding the mechanisms susceptible to circadian dysregulation and their role in stress-related disorders could provide new insights into disease mechanisms, advancing psychochronobiological treatment possibilities and preventive strategies in stress-exposed populations.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,VA Center of Excellence for Stress and Mental Health (CESAMH), VA San Diego Healthcare System, San Diego, CA, United States
| | - Nicolas C Nicolaides
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Vasilios P Bozikas
- Department of Psychiatry, Division of Neurosciences, Faculty of Medical Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George P Chrousos
- First Department of Pediatrics, Division of Endocrinology, Metabolism and Diabetes, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Panagiota Pervanidou
- Unit of Developmental & Behavioral Pediatrics, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
48
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 471] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
49
|
|
50
|
Kringel D, Kaunisto MA, Lippmann C, Kalso E, Lötsch J. Development of an AmpliSeq TM Panel for Next-Generation Sequencing of a Set of Genetic Predictors of Persisting Pain. Front Pharmacol 2018; 9:1008. [PMID: 30283335 PMCID: PMC6156278 DOI: 10.3389/fphar.2018.01008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Many gene variants modulate the individual perception of pain and possibly also its persistence. The limited selection of single functional variants is increasingly being replaced by analyses of the full coding and regulatory sequences of pain-relevant genes accessible by means of next generation sequencing (NGS). Methods: An NGS panel was created for a set of 77 human genes selected following different lines of evidence supporting their role in persisting pain. To address the role of these candidate genes, we established a sequencing assay based on a custom AmpliSeqTM panel to assess the exomic sequences in 72 subjects of Caucasian ethnicity. To identify the systems biology of the genes, the biological functions associated with these genes were assessed by means of a computational over-representation analysis. Results: Sequencing generated a median of 2.85 ⋅ 106 reads per run with a mean depth close to 200 reads, mean read length of 205 called bases and an average chip loading of 71%. A total of 3,185 genetic variants were called. A computational functional genomics analysis indicated that the proposed NGS gene panel covers biological processes identified previously as characterizing the functional genomics of persisting pain. Conclusion: Results of the NGS assay suggested that the produced nucleotide sequences are comparable to those earned with the classical Sanger sequencing technique. The assay is applicable for small to large-scale experimental setups to target the accessing of information about any nucleotide within the addressed genes in a study cohort.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany
| | - Mari A Kaunisto
- Institute for Molecular Medicine Finland, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Catharina Lippmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology, Frankfurt, Germany
| | - Eija Kalso
- Division of Pain Medicine, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Frankfurt, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology - Project Group Translational Medicine and Pharmacology, Frankfurt, Germany
| |
Collapse
|