1
|
Lanier LL. Five decades of natural killer cell discovery. J Exp Med 2024; 221:e20231222. [PMID: 38842526 PMCID: PMC11157086 DOI: 10.1084/jem.20231222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/12/2024] [Accepted: 04/17/2024] [Indexed: 06/07/2024] Open
Abstract
The first descriptions of "non-specific" killing of tumor cells by lymphocytes were reported in 1973, and subsequently, the mediators of the activity were named "natural killer" (NK) cells by Rolf Kiessling and colleagues at the Karolinska Institute in 1975. The activity was detected in mice, rats, and humans that had no prior exposure to the tumors, major histocompatibility complex (MHC) antigen matching of the effectors and tumor cells was not required, and the cells responsible were distinct from MHC-restricted, antigen-specific T cells. In the ensuing five decades, research by many labs has extended knowledge of NK cells beyond an in vitro curiosity to demonstrate their in vivo relevance in host defense against tumors and microbial pathogens and their role in regulation of the immune system. This brief Perspective highlights a timeline of a few selected advancements in NK cell biology from a personal perspective of being involved in this quest.
Collapse
Affiliation(s)
- Lewis L. Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Rodriguez-Mogeda C, van Ansenwoude CMJ, van der Molen L, Strijbis EMM, Mebius RE, de Vries HE. The role of CD56 bright NK cells in neurodegenerative disorders. J Neuroinflammation 2024; 21:48. [PMID: 38350967 PMCID: PMC10865604 DOI: 10.1186/s12974-024-03040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
Emerging evidence suggests a potential role for natural killer (NK) cells in neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. However, the precise function of NK cells in these diseases remains ambiguous. The existence of two NK cell subsets, CD56bright and CD56dim NK cells, complicates the understanding of the contribution of NK cells in neurodegeneration as their functions within the context of neurodegenerative diseases may differ significantly. CD56bright NK cells are potent cytokine secretors and are considered more immunoregulatory and less terminally differentiated than their mostly cytotoxic CD56dim counterparts. Hence, this review focusses on NK cells, specifically on CD56bright NK cells, and their role in neurodegenerative diseases. Moreover, it explores the mechanisms underlying their ability to enter the central nervous system. By consolidating current knowledge, we aim to provide a comprehensive overview on the role of CD56bright NK cells in neurodegenerative diseases. Elucidating their impact on neurodegeneration may have implications for future therapeutic interventions, potentially ameliorating disease pathogenesis.
Collapse
Affiliation(s)
- Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Chaja M J van Ansenwoude
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Lennart van der Molen
- IQ Health Science Department, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva M M Strijbis
- Amsterdam Neuroscience, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
French AR, Cron RQ, Cooper MA. Immunology of Cytokine Storm Syndromes: Natural Killer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:145-159. [PMID: 39117813 DOI: 10.1007/978-3-031-59815-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Natural killer (NK) cells are innate immune lymphocytes that rapidly produce cytokines upon activation and kill target cells. NK cells have been of particular interest in primary hemophagocytic lymphohistiocytosis (pHLH) since all of the genetic defects associated with this disorder cause diminished cytotoxic capacity of NK cells and T lymphocytes, and assays of NK cell killing are used clinically for the diagnosis of HLH. Herein, we review human NK cell biology and the significance of alterations in NK cell function in the diagnosis and pathogenesis of HLH.
Collapse
Affiliation(s)
- Anthony R French
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randy Q Cron
- Department of Pediatrics, Division of Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Baysac K, Sun G, Nakano H, Schmitz EG, Cruz AC, Fisher C, Bailey AC, Mace E, Milner JD, Ombrello MJ. PLCG2-associated immune dysregulation (PLAID) comprises broad and distinct clinical presentations related to functional classes of genetic variants. J Allergy Clin Immunol 2024; 153:230-242. [PMID: 37769878 PMCID: PMC11337301 DOI: 10.1016/j.jaci.2023.08.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Pathogenic variants of phospholipase C gamma 2 (PLCG2) cause 2 related forms of autosomal-dominant immune dysregulation (ID), PLCγ2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammatory PLAID (APLAID). Since describing these conditions, many PLCG2 variants of uncertain significance have been identified by clinical sequencing of patients with diverse features of ID. OBJECTIVE We sought to functionally classify PLCG2 variants and explore known and novel genotype-function-phenotype relationships. METHODS Clinical data from patients with PLCG2 variants were obtained via standardized questionnaire. PLCG2 variants were generated by mutagenesis of enhanced green fluorescent protein (EGFP)-PLCG2 plasmid, which was overexpressed in Plcg2-deficient DT-40 B cells. B-cell receptor-induced calcium flux and extracellular signal-regulated kinase phosphorylation were assayed by flow cytometry. In some cases, stimulation-induced calcium flux was also measured in primary patient cells. RESULTS Three-fourths of PLCG2 variants produced functional alteration of B-cell activation, in vitro. Thirteen variants led to gain of function (GOF); however, most functional variants defined a new class of PLCG2 mutation, monoallelic loss of function (LOF). Susceptibility to infection and autoinflammation were common with both GOF and LOF variants, whereas a new phenotypic cluster consisting of humoral immune deficiency, autoinflammation, susceptibility to herpesvirus infection, and natural killer cell dysfunction was observed in association with multiple heterozygous LOF variants detected in both familial and sporadic cases. In some cases, PLCG2 variants produced greater effects in natural killer cells than in B cells. CONCLUSIONS This work expands the genotypic and phenotypic associations with functional variation in PLCG2, including a novel form of ID in carriers of heterozygous loss of PLCG2 function. It also demonstrates the need for more diverse assays for assessing the impact of PLCG2 variants on human disease.
Collapse
Affiliation(s)
- Kathleen Baysac
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Guangping Sun
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hiroto Nakano
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Elizabeth G Schmitz
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Anthony C Cruz
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Charles Fisher
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Alexis C Bailey
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Emily Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Joshua D Milner
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Michael J Ombrello
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
5
|
Alinger JB, Mace EM, Porter JR, Mah-Som AY, Daugherty AL, Li S, Throm AA, Pingel JT, Saucier N, Yao A, Chinn IK, Lupski JR, Ehlayel M, Keller M, Bowman GR, Cooper MA, Orange JS, French AR. Human PLCG2 haploinsufficiency results in a novel natural killer cell immunodeficiency. J Allergy Clin Immunol 2024; 153:216-229. [PMID: 37714437 PMCID: PMC11389843 DOI: 10.1016/j.jaci.2023.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
BACKGROUND Although most individuals effectively control herpesvirus infections, some suffer from severe and/or recurrent infections. A subset of these patients possess defects in natural killer (NK) cells, lymphocytes that recognize and lyse herpesvirus-infected cells; however, the genetic etiology is rarely diagnosed. PLCG2 encodes a signaling protein in NK-cell and B-cell signaling. Dominant-negative or gain-of-function variants in PLCG2 cause cold urticaria, antibody deficiency, and autoinflammation. However, loss-of-function variants and haploinsufficiency have not been reported to date. OBJECTIVES The investigators aimed to identify the genetic cause of NK-cell immunodeficiency in 2 families and herein describe the functional consequences of 2 novel loss-of-function variants in PLCG2. METHODS The investigators employed whole-exome sequencing in conjunction with mass cytometry, microscopy, functional assays, and a mouse model of PLCG2 haploinsufficiency to investigate 2 families with NK-cell immunodeficiency. RESULTS The investigators identified novel heterozygous variants in PLCG2 in 2 families with severe and/or recurrent herpesvirus infections. In vitro studies demonstrated that these variants were loss of function due to haploinsufficiency with impaired NK-cell calcium flux and cytotoxicity. In contrast to previous PLCG2 variants, B-cell function remained intact. Plcg2+/- mice also displayed impaired NK-cell function with preserved B-cell function, phenocopying human disease. CONCLUSIONS PLCG2 haploinsufficiency represents a distinct syndrome from previous variants characterized by NK-cell immunodeficiency with herpesvirus susceptibility, expanding the spectrum of PLCG2-related disease.
Collapse
Affiliation(s)
- Joshua B Alinger
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Emily M Mace
- Departments of Pediatrics, Baylor College of Medicine, Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Justin R Porter
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Mo
| | - Annelise Y Mah-Som
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Allyssa L Daugherty
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Stephanie Li
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Allison A Throm
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Jeanette T Pingel
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Nermina Saucier
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Albert Yao
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Ivan K Chinn
- Departments of Pediatrics, Baylor College of Medicine, Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - James R Lupski
- Departments of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex
| | | | | | - Greg R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Mo
| | - Megan A Cooper
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo
| | - Jordan S Orange
- Departments of Pediatrics, Baylor College of Medicine, Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Anthony R French
- Division of Rheumatology, Department of Pediatrics, St Louis Children's Hospital, Washington University School of Medicine, St Louis, Mo.
| |
Collapse
|
6
|
Hu D, Guan JL. The roles of immune cells in Behçet's disease. Adv Rheumatol 2023; 63:49. [PMID: 37814339 DOI: 10.1186/s42358-023-00328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
Behçet's disease (BD) is a systemic vasculitis that can affect multiple systems, including the skin, mucous membranes, joints, eyes, gastrointestinal and nervous. However, the pathogenesis of BD remains unclear, and it is believed that immune-inflammatory reactions play a crucial role in its development. Immune cells are a critical component of this process and contribute to the onset and progression of BD. By regulating the function of these immune cells, effective control over the occurrence and development of BD can be achieved, particularly with regards to monocyte activation and aggregation, macrophage differentiation and polarization, as well as T cell subset differentiation. This review provides a brief overview of immune cells and their role in regulating BD progression, which may serve as a theoretical foundation for preventing and treating this disease.
Collapse
Affiliation(s)
- Dan Hu
- Department of Rheumatology and Immunology, Huadong Hospital affiliated with Fudan University, #221 Yan'an West Road, Shanghai, 200040, P.R. China
| | - Jian-Long Guan
- Department of Rheumatology and Immunology, Huadong Hospital affiliated with Fudan University, #221 Yan'an West Road, Shanghai, 200040, P.R. China.
| |
Collapse
|
7
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Yao H, Cheng L, Chen D, Zhang Q, Qiu L, Ren SH, Dou BT, Wang H, Huang J, Fan FY. Role of the bone marrow microenvironment in multiple myeloma treatment using CAR-T therapy. Expert Rev Anticancer Ther 2023; 23:807-815. [PMID: 37343305 DOI: 10.1080/14737140.2023.2229029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Multiple myeloma (MM) is a malignant tumor caused by abnormal proliferation of bone marrow (BM) plasma cells and is the second most common hematologic malignancy. A variety of CAR-T cells targeting multiple myeloma-specific markers have shown good efficacy in clinical trials. However, CAR-T therapy still limits the insufficient duration of efficacy and recurrence of the disease. AREAS COVERED This article reviews the cell populations in the bone marrow of MM, and discusses the potential way to improve the efficiency of CAR-T cells in the treatment of MM by targeting the bone marrow microenvironment. EXPERT OPINION The limits of CAR-T therapy in MM may related to the impairment of T cell activity in the bone marrow microenvironment. This article reviews the cell populations of the immune microenvironment and nonimmune microenvironment in the bone marrow of multiple myeloma, and discusses the potential way to improve the efficiency of CAR-T cells in the treatment of MM by targeting the bone marrow. This may provides a new idea for the CAR-T therapy of multiple myeloma.
Collapse
Affiliation(s)
- Hao Yao
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Lei Cheng
- Department of Pharmacy, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Dan Chen
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Qian Zhang
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Ling Qiu
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Shi-Hui Ren
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Bai-Tao Dou
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| | - Huan Wang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, SiChuan, China
- University of Electronic Science and Technology of China, Chengdu, SiChuan, China
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, SiChuan, China
| | - Fang-Yi Fan
- Department of Hematology and Hematopoietic Stem Cell Transplantation Center, General Hospital of the Chinese People's Liberation Army Western Theatre, Chengdu, SiChuan, China
| |
Collapse
|
9
|
Hilliard KA, Throm AA, Pingel JT, Saucier N, Zaher HS, French AR. Expansion of a novel population of NK cells with low ribosome expression in juvenile dermatomyositis. Front Immunol 2022; 13:1007022. [PMID: 36389718 PMCID: PMC9660249 DOI: 10.3389/fimmu.2022.1007022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/10/2022] [Indexed: 02/06/2023] Open
Abstract
Juvenile dermatomyositis (JDM) is a pediatric autoimmune disease associated with characteristic rash and proximal muscle weakness. To gain insight into differential lymphocyte gene expression in JDM, peripheral blood mononuclear cells from 4 new-onset JDM patients and 4 healthy controls were sorted into highly enriched lymphocyte populations for RNAseq analysis. NK cells from JDM patients had substantially greater differentially expressed genes (273) than T (57) and B (33) cells. Upregulated genes were associated with the innate immune response and cell cycle, while downregulated genes were associated with decreased ribosomal RNA. Suppressed ribosomal RNA in JDM NK cells was validated by measuring transcription and phosphorylation levels. We confirmed a population of low ribosome expressing NK cells in healthy adults and children. This population of low ribosome NK cells was substantially expanded in 6 treatment-naïve JDM patients and was associated with decreased NK cell degranulation. The enrichment of this NK low ribosome population was completely abrogated in JDM patients with quiescent disease. Together, these data suggest NK cells are highly activated in new-onset JDM patients with an increased population of low ribosome expressing NK cells, which correlates with decreased NK cell function and resolved with control of active disease.
Collapse
Affiliation(s)
- Kinsey A. Hilliard
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Allison A. Throm
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| | - Jeanette T. Pingel
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Nermina Saucier
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Hani S. Zaher
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Anthony R. French
- Division of Pediatric Rheumatology/Immunology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University, St. Louis, MO, United States
| |
Collapse
|
10
|
The phenotype of CD3-CD56 bright and CD3-CD56 dim natural killer cells in systemic lupus erythematosus patients and its relation to disease activity. Reumatologia 2022; 60:258-265. [PMID: 36186836 PMCID: PMC9494790 DOI: 10.5114/reum.2022.119042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) patients have decreased natural killer (NK) cell counts. The decrease in the number of NK cells has implications for a decrease in the function of NK cells which can affect the progression of SLE disease. The study aim was to determine profiles of CD3-CD56bright and CD3-CD56dim NK cells in SLE patients and their relation to disease activity. Material and methods This study included 36 patients of SLE who fulfilled the ACR 1997/SLICC 2012 criteria, women aged 18-49 years. Disease activity was assessed by the Mex-SLEDAI. Peripheral blood samples from SLE patients were analyzed by flow cytometry to evaluate NK cell subsets, according to differential expression of the main subset of NK cells, which is CD3-CD56bright and CD3-CD56dim. Results The mean percentage of regulatory NK cell count (CD3-CD56bright) in active SLE patients was significantly lower (p = 0.000) than in inactive SLE patients. The mean percentage of cytotoxic NK cell count (CD3-CD56dim) in active SLE patients was significantly (p = 0.000) higher than in inactive SLE patients. A correlation was observed between two subsets of NK cells with disease activity (p = 0.00). The percentage of CD3-CD56bright NK cells was negatively correlated with disease activity (r = -0.766), whereas the percentage of CD3-CD56dim NK cells positively correlated with disease activity (r = 0.761). Conclusions There is a difference in the mean percentage of the number of NK cells (CD3-CD56+) in both a subset of regulatory NK cells (CD3-CD56bright) and cytotoxic NK cells (CD3-CD56dim) in active and inactive SLE patients and it is closely related to SLE disease activity.
Collapse
|
11
|
Feng Y, Li Z, Xie C, Lu F. Correlation between peripheral blood lymphocyte subpopulations and primary systemic lupus erythematosus. Open Life Sci 2022; 17:839-845. [PMID: 36045722 PMCID: PMC9372708 DOI: 10.1515/biol-2022-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/15/2022] Open
Abstract
This study explored the correlation between peripheral blood CD3+, CD3+/CD4+, CD3+/CD8+, CD4+/CD8+, CD3-/CD16+ CD56+, and CD3-CD19+ and disease activity of different subtypes of systemic lupus erythematosus (SLE). The percentages of CD3+, CD3+/CD4+, CD3+/CD8+, CD4+/CD8+, CD3-/CD16+ CD56+, and CD3-CD19+ in the peripheral blood of patients (n = 80) classified into lupus nephritis, blood involvement, and joint involvement and SLE in different active stages were detected by flow cytometry. Their correlations with baseline clinical experimental indicators of SLE patients' SLE disease activity index score (SLEDAI) and complement C3 were analyzed. The results showed that CD3+, CD3+/CD4+, and CD3+/CD8+ at baseline level were negatively correlated with SLEDAI scores. These were positively correlated with C3. In conclusion, T-lymphocyte subpopulations are closely related to SLE activity and can be used as reference indicators to evaluate the SLE activity.
Collapse
Affiliation(s)
- Yan Feng
- Rheumatology Department, First Affiliated Hospital of Anhui University of Science and Technology, Huai Nan, China
| | - Zhijun Li
- Rheumatology Department, First Affiliated Hospital of Bengbu Medical College, Bangbu, China
| | - Changhao Xie
- Rheumatology Department, First Affiliated Hospital of Bengbu Medical College, Bangbu, China
| | - Fanglin Lu
- Rheumatology Department, First Affiliated Hospital of Anhui University of Science and Technology, Huai Nan, China
| |
Collapse
|
12
|
Chen Y, Lin J, Xiao L, Zhang X, Zhao L, Wang M, Li L. Gut microbiota in systemic lupus erythematosus: A fuse and a solution. J Autoimmun 2022; 132:102867. [PMID: 35932662 DOI: 10.1016/j.jaut.2022.102867] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
Gut commensals help shape and mold host immune system and deeply influence human health. The disease spectrum of mankind that gut microbiome may associate with is ever-growing, but the mechanisms are still enigmas. Characterized by loss of self-tolerance and sustained self-attack, systemic lupus erythematosus (SLE) is labeled with chronic inflammation, production of autoantibodies and multisystem injury, which so far are mostly incurable. Gut microbiota and their metabolites, now known as important environmental triggers of local/systemic immune responses, have been proposed to be involved in SLE development and progression probably through the following mechanisms: translocation beyond their niches; molecular mimicry to cross-activate immune response targeting self-antigens; epitope spreading to expand autoantibodies spectrum; and bystander activation to promote systemic inflammation. Gut microbiota which varies between individuals may also influence the metabolism and bio-transformation of disease-modifying anti-rheumatic drugs, thus associated with the efficacy and toxicity of these drugs, adding another explanation for heterogenic therapeutic responses. Modulation of gut microbiota via diet, probiotics/prebiotics, antibiotics/phages, fecal microbiota transplantation, or helminth to restore immune tolerance and homeostasis is expected to be a promising neoadjuvant therapy for SLE. We reviewed the advances in this territory and discussed the application prospect of modulating gut microbiota in controlling SLE.
Collapse
Affiliation(s)
- Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Jin Lin
- Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Lanlan Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Department of Rheumatology, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1 Da Hua Road, Dong Dan, Beijing, 100730, China
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, 100730, China
| | - Min Wang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Clinical Immunology Center, Chinese Academy of Medical Sciences & Peking Union Medical College, NO.1 Da Hua Road, Dong Dan, Beijing, 100730, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China.
| |
Collapse
|
13
|
Younes AK, Hammad R, Othman M, Sobhy A. CD4, CD8 and natural killer cells are depressed in patients with alopecia areata: their association with disease activity. BMC Immunol 2022; 23:13. [PMID: 35300587 PMCID: PMC8932005 DOI: 10.1186/s12865-022-00486-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alopecia areata (AA) is a common inflammatory disorder targeting the hair follicles leading to non-scaring hair loss. The pathogenesis of AA is still unclear, despite the accumulating evidence of the immune-mediated nature of this disease. So, in this study, we aimed to assess the level of CD4 T cells, CD8 T cells and natural killer (NK) cells in the peripheral blood of patients with active AA and control subjects, and to evaluate the association between the level of those cells and the duration of disease in different subtypes of AA. RESULTS Fifty female patients and 50 age- and sex-matched healthy controls were enrolled in this case control study. CBC analysis and the level of CD4, CD8 T cells and NK cells were evaluated during the active stage of the disease. We found that CD4, CD8 T cells and NK cells proportion was significantly lower (P < 0.05) in patients with active stage AA compared with healthy subjects, however, the ratio of CD4:CD8 T cells was significantly higher in patients than control subjects. The level of CD4, CD8 T cells CD56 bright CD16- % NK cells were positively correlated with the disease duration. CONCLUSION Active stage of AA disease is associated with a reduction of the circulating CD4, CD8 T cells and NK cells and an increase in CD4/CD8 T cells ratio, however, the level of those cells were higher with prolonged disease duration. Our findings confirm that immune mechanisms are involved in the pathogenesis of AA.
Collapse
Affiliation(s)
- Abdel-Khalek Younes
- Dermatology, Andrology and STIs Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Refaat Hammad
- Dermatology, Andrology and STIs Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Mona Othman
- Dermatology, Andrology and STIs Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt.
| | - Ali Sobhy
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
14
|
Lu Z, Tian Y, Bai Z, Liu J, Zhang Y, Qi J, Jin M, Zhu J, Li X. Increased oxidative stress contributes to impaired peripheral CD56 dimCD57 + NK cells from patients with systemic lupus erythematosus. Arthritis Res Ther 2022; 24:48. [PMID: 35172900 PMCID: PMC8848960 DOI: 10.1186/s13075-022-02731-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Systemic lupus erythematosus (SLE) is characterized by loss of immune tolerance and imbalance of immune cell subsets. Natural killer (NK) cells contribute to regulate both the innate and adaptive immune response. In this study, we aimed to detect alterations of peripheral NK cells and explore intrinsic mechanisms involving in NK cell abnormality in SLE. Methods Blood samples from healthy controls (HCs) and patients with SLE and rheumatoid arthritis (RA) were collected. The NK count, NK subsets (CD56bright, CD56dimCD57−, and CD56dimCD57+), phenotypes, and apoptosis were evaluated with flow cytometer. Mitochondrial reactive oxygen species (mtROS) and total ROS levels were detected with MitoSOX Red and DCFH-DA staining respectively. Published data (GSE63829 and GSE23695) from Gene Expression Omnibus (GEO) was analyzed by Gene Set Enrichment Analysis (GSEA). Results Total peripheral NK count was down-regulated in untreated SLE patients in comparison to that in untreated RA patients and HCs. SLE patients exhibited a selective reduction in peripheral CD56dimCD57+ NK cell proportion, which was negatively associated with disease activity and positively correlated with levels of complement(C)3 and C4. Compared with HCs, peripheral CD56dimCD57+ NK cells from SLE patients exhibited altered phenotypes, increased endogenous apoptosis and higher levels of mtROS and ROS. In addition, when treated with hydrogen peroxide (H2O2), peripheral CD56dimCD57+ NK cell subset was more prone to undergo apoptosis than CD56dimCD57− NK cells. Furthermore, this NK cell subset from SLE patients exhibited impaired cytotoxicity in response to activated CD4+ T cells in vitro. Conclusion Our study demonstrated a selective loss of mature CD56dimCD57+ NK cell subset in SLE patients, which may caused by preferential apoptosis of this subset under increased oxidative stress in SLE. The attenuated in vitro cytotoxicity of CD56dimCD57+ NK cells may contribute to the impaired ability of eliminating pathogenic CD4+ T cells in SLE. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02731-y.
Collapse
Affiliation(s)
- Zhimin Lu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China.,Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, People's Republic of China
| | - Yao Tian
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China.,Flow Cytometry Center, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China
| | - Jiaqing Liu
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China
| | - Yan Zhang
- Department of Rheumatology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Jingjing Qi
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China
| | - Jie Zhu
- Flow Cytometry Center, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
15
|
Ren C, Li M, Zheng Y, Cai B, Du W, Zhang H, Wu F, Tong M, Lin F, Wang J, Quan R. Single-cell RNA-seq reveals altered NK cell subsets and reduced levels of cytotoxic molecules in patients with ankylosing spondylitis. J Cell Mol Med 2022; 26:1071-1082. [PMID: 34994057 PMCID: PMC8831943 DOI: 10.1111/jcmm.17159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 01/04/2023] Open
Abstract
Ankylosing spondylitis (AS) is an autoimmune disease with unknown aetiology. To unravel the mechanisms mediating AS pathogenesis, we profiled peripheral blood mononuclear cells (PBMCs) from AS patients and healthy subjects using 10X single-cell RNA sequencing. The frequencies of immune cell subsets were evaluated by flow cytometry. NK cells were purified from PBMCs using isolation kit and were examined for gene expression by RT-qPCR. Plasma levels of cytolytic molecules were examined by enzyme-linked immunosorbent assay. Compared to healthy controls, AS patients showed a significant decrease in total NK cells as well as CD56dim NK subset, whereas CD56bright NK cells were increased. Additionally, impaired expression of cytotoxic genes in NK cells of AS patients was observed by bioinformatics algorithm and verified by RT-qPCR and flow cytometry. Consistent with changes in transcriptomics, we found decreased plasma levels of granzymes, but not granulysin, in AS patients. Furthermore, Pearson correlation analysis revealed a negative correlation between plasma GZMB levels and disease activity (r = -0.5275, p = 0.0358). No correlation was observed between plasma cytolytic molecules and biochemical indexes (ESR and CRP). Our findings uncover altered NK cell subsets and cytotoxic profiles in peripheral circulation of AS patients at single-cell resolution.
Collapse
Affiliation(s)
- Conglin Ren
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mingshuang Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yang Zheng
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bingbing Cai
- Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Weibin Du
- Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Helou Zhang
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fengqing Wu
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengsha Tong
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Fu Lin
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jinfu Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Renfu Quan
- Research Institute of Orthopedics, The Affiliated Jiangnan Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.,Department of Orthopedics, Hangzhou Xiaoshan Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Wang Y, Li L, Li J, Zhao B, Huang G, Li X, Xie Z, Zhou Z. The Emerging Role of m6A Modification in Regulating the Immune System and Autoimmune Diseases. Front Cell Dev Biol 2021; 9:755691. [PMID: 34869344 PMCID: PMC8635162 DOI: 10.3389/fcell.2021.755691] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/28/2021] [Indexed: 12/30/2022] Open
Abstract
Over the past several decades, RNA modifications have rapidly emerged as an indispensable topic in epitranscriptomics. N6-methyladenosine (m6A), namely, methylation at the sixth position of an adenine base in an RNA molecule, is the most prevalent RNA modification in both coding and noncoding RNAs. m6A has emerged as a crucial posttranscriptional regulator involved in both physiological and pathological processes. Based on accumulating evidence, m6A participates in the pathogenesis of immune-related diseases by regulating both innate and adaptive immune cells through various mechanisms. Autoimmune diseases are caused by a self-destructive immune response in the setting of genetic and environmental factors, and recent studies have discovered that m6A may play an essential role in the development of autoimmune diseases. In this review, we focus on the important role of m6A modification in biological functions and highlight its contributions to immune cells and the development of autoimmune diseases, thereby providing promising epitranscriptomic targets for preventing and treating autoimmune disorders.
Collapse
Affiliation(s)
- Yimeng Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Lifang Li
- Department of Ultrasound, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Zhao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Gan Huang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xia Li
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguo Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Zhiguang Zhou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
17
|
Sierra JM, Secchiari F, Nuñez SY, Iraolagoitia XLR, Ziblat A, Friedrich AD, Regge MV, Santilli MC, Torres NI, Gantov M, Trotta A, Ameri C, Vitagliano G, Pita HR, Rico L, Rovegno A, Richards N, Domaica CI, Zwirner NW, Fuertes MB. Tumor-Experienced Human NK Cells Express High Levels of PD-L1 and Inhibit CD8 + T Cell Proliferation. Front Immunol 2021; 12:745939. [PMID: 34616407 PMCID: PMC8488336 DOI: 10.3389/fimmu.2021.745939] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Natural Killer (NK) cells play a key role in cancer immunosurveillance. However, NK cells from cancer patients display an altered phenotype and impaired effector functions. In addition, evidence of a regulatory role for NK cells is emerging in diverse models of viral infection, transplantation, and autoimmunity. Here, we analyzed clear cell renal cell carcinoma (ccRCC) datasets from The Cancer Genome Atlas (TCGA) and observed that a higher expression of NK cell signature genes is associated with reduced survival. Analysis of fresh tumor samples from ccRCC patients unraveled the presence of a high frequency of tumor-infiltrating PD-L1+ NK cells, suggesting that these NK cells might exhibit immunoregulatory functions. In vitro, PD-L1 expression was induced on NK cells from healthy donors (HD) upon direct tumor cell recognition through NKG2D and was further up-regulated by monocyte-derived IL-18. Moreover, in vitro generated PD-L1hi NK cells displayed an activated phenotype and enhanced effector functions compared to PD-L1- NK cells, but simultaneously, they directly inhibited CD8+ T cell proliferation in a PD-L1-dependent manner. Our results suggest that tumors might drive the development of PD-L1-expressing NK cells that acquire immunoregulatory functions in humans. Hence, rational manipulation of these regulatory cells emerges as a possibility that may lead to improved anti-tumor immunity in cancer patients.
Collapse
Affiliation(s)
- Jessica M Sierra
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Florencia Secchiari
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sol Y Nuñez
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ximena L Raffo Iraolagoitia
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Ziblat
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Adrián D Friedrich
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Inmunología, Buenos Aires, Argentina
| | - María V Regge
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - M Cecilia Santilli
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Nicolás I Torres
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Gantov
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Aldana Trotta
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | | | - Luis Rico
- Hospital Alemán, Buenos Aires, Argentina
| | - Agustín Rovegno
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires, Argentina
| | - Nicolás Richards
- Centro de Educación Médica e Investigaciones Clínicas "Norberto Quirno" (CEMIC), Buenos Aires, Argentina
| | - Carolina I Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Norberto W Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mercedes B Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
18
|
Behairy OG, El-Shimi OS, Shalan NH, Baghdady SM. Association of the killer immunoglobulin-like receptor genes KIR2DS1 and KIR2DS4 with pediatric autoimmune hepatitis type I in Egypt. EGYPTIAN LIVER JOURNAL 2021. [DOI: 10.1186/s43066-021-00145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Killer cell immunoglobulin-like receptors (KIR) are considered to be the key receptors that control the development and function of human natural killer cells which play complex mechanisms in autoimmune diseases. We aimed in this study to assess possible associations between killer cell immunoglobulin-like receptors (KIR2DS1 and 2DS4) genes and susceptibility to autoimmune hepatitis type I in Egyptian children.
Results
In the case-control study conducted on eighty children diagnosed as autoimmune hepatitis (AIH) type I and eighty apparently healthy age and sex-matched control, we found that KIR2DS1, -2DS4, KIR2DS4-full length allele, and homozygous KIR2DS4-full/full variant were significantly associated with AIH-I, while the KIR1D allele and homozygous KIR2DS4-del/del variant were significantly observed in controls (P < 0.05 each). Absence of KIR2DS4 gene was significant among ANA positive AIH-I patients, patients on steroid therapy alone, and patients showing complete disease remission (P < 0.05 each). Higher activity and fibrosis indices were found significantly in patients lacking one or both studied genes.
Conclusions
Children carrying KIR2DS1, -2DS4 genes, KIR2DS4-full length allele, and homozygous KIR2DS4-full/full variant could be more susceptible to develop autoimmune hepatitis type I.
Collapse
|
19
|
Wang H, Fang K, Yan W, Chang X. T-Cell Immune Imbalance in Rheumatoid Arthritis Is Associated with Alterations in NK Cells and NK-Like T Cells Expressing CD38. J Innate Immun 2021; 14:148-166. [PMID: 34428762 DOI: 10.1159/000516642] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/18/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CD38+ NK (CD3- CD16+ CD38+ CD56+) cells were increased in rheumatoid arthritis (RA), which suppressed Treg cell differentiation. This study explored how CD38+ NK cells regulated CD4+ T-cell differentiation into Treg cells in RA. METHODS Proportions of CD38+ NK cells and their counterpart CD38+ NK-like T (CD3+ CD16+ CD38+ CD56+) cells were measured in RA and rats with collagen-induced arthritis (CIA). CD38+ NK cells and CD38+ NK-like T cells were cocultured with CD4+ T cells, respectively. RESULTS A significantly increased proportion of CD38+ NK cells and a decreased proportion of CD38+ NK-like T cells were detected in RA and CIA blood and synovial fluids. When CD4+ T cells were cocultured with CD38+ NK cells, mammalian target of rapamycin (mTOR) signaling was activated, and Th1/Th2 and Th17/Treg ratios were increased. When CD38+ NK cells were pretreated with anti-CD38 antibody, Treg cell proportion was increased, and Th1/Th2 and Th17/Treg ratios were decreased. CD38+ NK-like T cells showed the opposite results. CD38+ NK cells and CD38+ NK-like-T cells activated differential gene expressions and pathways in CD4+ T cells and initiated Th1 and Th2 cell differentiation by differential gene nodes. CONCLUSIONS This study suggest that the high CD38+ NK cell proportion and low CD38+ NK-like T cell proportion in RA suppress Treg cell differentiation by stimulating mTOR signaling in CD4+ T cells, which consequentially disturbs the immune tolerance.
Collapse
Affiliation(s)
- Hongxing Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Clinical Laboratory of Qilu Hospital, Shandong University, Jinan, China
| | - Kehua Fang
- Clinical Laboratory of The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weining Yan
- Joint Surgery Department of The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao Engineering Technology Center for Major Disease Marker, Qingdao, China
| |
Collapse
|
20
|
Probert F, Yeo T, Zhou Y, Sealey M, Arora S, Palace J, Claridge TDW, Hillenbrand R, Oechtering J, Leppert D, Kuhle J, Anthony DC. Integrative biochemical, proteomics and metabolomics cerebrospinal fluid biomarkers predict clinical conversion to multiple sclerosis. Brain Commun 2021; 3:fcab084. [PMID: 33997784 PMCID: PMC8111065 DOI: 10.1093/braincomms/fcab084] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/23/2022] Open
Abstract
Eighty-five percent of multiple sclerosis cases begin with a discrete attack termed clinically isolated syndrome, but 37% of clinically isolated syndrome patients do not experience a relapse within 20 years of onset. Thus, the identification of biomarkers able to differentiate between individuals who are most likely to have a second clinical attack from those who remain in the clinically isolated syndrome stage is essential to apply a personalized medicine approach. We sought to identify biomarkers from biochemical, metabolic and proteomic screens that predict clinically defined conversion from clinically isolated syndrome to multiple sclerosis and generate a multi-omics-based algorithm with higher prognostic accuracy than any currently available test. An integrative multi-variate approach was applied to the analysis of cerebrospinal fluid samples taken from 54 individuals at the point of clinically isolated syndrome with 2-10 years of subsequent follow-up enabling stratification into clinical converters and non-converters. Leukocyte counts were significantly elevated at onset in the clinical converters and predict the occurrence of a second attack with 70% accuracy. Myo-inositol levels were significantly increased in clinical converters while glucose levels were decreased, predicting transition to multiple sclerosis with accuracies of 72% and 63%, respectively. Proteomics analysis identified 89 novel gene products related to conversion. The identified biochemical and protein biomarkers were combined to produce an algorithm with predictive accuracy of 83% for the transition to clinically defined multiple sclerosis, outperforming any individual biomarker in isolation including oligoclonal bands. The identified protein biomarkers are consistent with an exaggerated immune response, perturbed energy metabolism and multiple sclerosis pathology in the clinical converter group. The new biomarkers presented provide novel insight into the molecular pathways promoting disease while the multi-omics algorithm provides a means to more accurately predict whether an individual is likely to convert to clinically defined multiple sclerosis.
Collapse
Affiliation(s)
- Fay Probert
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, UK
| | - Tianrong Yeo
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.,Department of Neurology, National Neuroscience Institute, Singapore 308437, Singapore
| | - Yifan Zhou
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Megan Sealey
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Siddharth Arora
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | | | | | - Johanna Oechtering
- Neurology, Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - David Leppert
- Neurology, Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Jens Kuhle
- Neurology, Departments of Medicine, Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel CH-4031, Switzerland
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
21
|
Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, Deniz G. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol 2021; 12:622306. [PMID: 33717125 PMCID: PMC7947192 DOI: 10.3389/fimmu.2021.622306] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells, the large granular lymphocytes differentiated from the common lymphoid progenitors, were discovered in early 1970's. They are members of innate immunity and were initially defined by their strong cytotoxicity against virus-infected cells and by their important effector functions in anti-tumoral immune responses. Nowadays, NK cells are classified among the recently discovered innate lymphoid cell subsets and have capacity to influence both innate and adaptive immune responses. Therefore, they can be considered as innate immune cells that stands between the innate and adaptive arms of immunity. NK cells don't express T or B cell receptors and are recognized by absence of CD3. There are two major subgroups of NK cells according to their differential expression of CD16 and CD56. While CD16+CD56dim subset is best-known by their cytotoxic functions, CD16-CD56bright NK cell subset produces a bunch of cytokines comparable to CD4+ T helper cell subsets. Another subset of NK cells with production of interleukin (IL)-10 was named as NK regulatory cells, which has suppressive properties and could take part in immune-regulatory responses. Activation of NK cells is determined by a delicate balance of cell-surface receptors that have either activating or inhibitory properties. On the other hand, a variety of cytokines including IL-2, IL-12, IL-15, and IL-18 influence NK cell activity. NK-derived cytokines and their cytotoxic functions through induction of apoptosis take part in regulation of the immune responses and could contribute to the pathogenesis of many immune mediated diseases including ankylosing spondylitis, Behçet's disease, multiple sclerosis, rheumatoid arthritis, psoriasis, systemic lupus erythematosus and type-1 diabetes. Dysregulation of NK cells in autoimmune disorders may occur through multiple mechanisms. Thanks to the rapid developments in biotechnology, progressive research in immunology enables better characterization of cells and their delicate roles in the complex network of immunity. As NK cells stand in between innate and adaptive arms of immunity and "bridge" them, their contribution in inflammation and immune regulation deserves intense investigations. Better understanding of NK-cell biology and their contribution in both exacerbation and regulation of inflammatory disorders is a requisite for possible utilization of these multi-faceted cells in novel therapeutic interventions.
Collapse
Affiliation(s)
- Umut Can Kucuksezer
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Esin Aktas Cetin
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Fehim Esen
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Department of Ophthalmology, Medical Faculty, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ilhan Tahrali
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nilgun Akdeniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Metin Yusuf Gelmez
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Gunnur Deniz
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
22
|
Binder C, Sellberg F, Cvetkovski F, Berg S, Berglund E, Berglund D. Siplizumab Induces NK Cell Fratricide Through Antibody-Dependent Cell-Mediated Cytotoxicity. Front Immunol 2021; 12:599526. [PMID: 33643309 PMCID: PMC7904868 DOI: 10.3389/fimmu.2021.599526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
The glycoprotein CD2 is expressed on T and NK cells and contributes to cell-cell conjugation, agonistic signaling and actin cytoskeleton rearrangement. CD2 has previously been shown to have an important function in natural NK cell cytotoxicity but to be expendable in antibody-mediated cytotoxicity. Siplizumab is a monoclonal anti-CD2 IgG1 antibody that is currently undergoing clinical trials in the field of transplantation. This study investigated the effect of CD2 binding and Fc γ receptor binding by siplizumab (Fc-active) and Fc-silent anti-CD2 monoclonal antibodies in allogeneic mixed lymphocyte reaction and autologous lymphocyte culture. Further, induction of NK cell fratricide and inhibition of natural cytotoxicity as well as antibody-dependent cytotoxicity by these agents were assessed. Blockade of CD2 via monoclonal antibodies in the absence of Fc γ receptor binding inhibited NK cell activation in allogeneic mixed lymphocyte reaction. In contrast, siplizumab increased NK cell activation in both mixed lymphocyte reaction and autologous lymphocyte culture due to FcγRIIIA binding. However, experiments using purified NK cells did not show an inhibitory effect of CD2 blockade on natural cytotoxicity or antibody-dependent cytotoxicity. Lastly, it was shown that siplizumab induces NK cell fratricide. Concluding, siplizumab is a promising biopharmaceutical drug candidate for depletion of T and NK cells with minimal off-target effects.
Collapse
Affiliation(s)
- Christian Binder
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Felix Sellberg
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | | | - Stefan Berg
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Erik Berglund
- Research and Development, ITB-Med AB, Stockholm, Sweden
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden
- Research and Development, ITB-Med AB, Stockholm, Sweden
| |
Collapse
|
23
|
Yang Y, Day J, Souza-Fonseca Guimaraes F, Wicks IP, Louis C. Natural killer cells in inflammatory autoimmune diseases. Clin Transl Immunology 2021; 10:e1250. [PMID: 33552511 PMCID: PMC7850912 DOI: 10.1002/cti2.1250] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are a specialised population of innate lymphoid cells (ILCs) that help control local immune responses. Through natural cytotoxicity, production of cytokines and chemokines, and migratory capacity, NK cells play a vital immunoregulatory role in the initiation and chronicity of inflammatory and autoimmune responses. Our understanding of their functional differences and contributions in disease settings is evolving owing to new genetic and functional murine proof-of-concept studies. Here, we summarise current understanding of NK cells in several classic autoimmune disorders, particularly in rheumatoid arthritis (RA), multiple sclerosis (MS), systemic lupus erythematosus (SLE) and type 1 diabetes mellitus (T1DM), but also less understood diseases such as idiopathic inflammatory myopathies (IIMs). A better understanding of how NK cells contribute to these autoimmune disorders may pave the way for NK cell-targeted therapeutics.
Collapse
Affiliation(s)
- Yuyan Yang
- Tsinghua University School of Medicine Beijing China.,Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia
| | - Jessica Day
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | | | - Ian P Wicks
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia.,Rheumatology Unit The Royal Melbourne Hospital Parkville VIC Australia
| | - Cynthia Louis
- Inflammation Division The Walter and Eliza Hall Institute of Medical Research Parkville VIC Australia.,Medical Biology University of Melbourne Melbourne VIC Australia
| |
Collapse
|
24
|
Gomez-Muñoz L, Perna-Barrull D, Villalba A, Rodriguez-Fernandez S, Ampudia RM, Teniente-Serra A, Vazquez F, Murillo M, Perez J, Corripio R, Bel J, Vives-Pi M. NK Cell Subsets Changes in Partial Remission and Early Stages of Pediatric Type 1 Diabetes. Front Immunol 2021; 11:611522. [PMID: 33569058 PMCID: PMC7869615 DOI: 10.3389/fimmu.2020.611522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disease characterized by the autoimmune destruction of β-cells in the pancreatic islets. T1D is preceded by islet-specific inflammation led by several immune cells. Among them, natural killer (NK) cells are emerging as important players in T1D development. Human NK cells are characterized by CD56 and CD16 expression, which allows classifying NK cells into four subsets: 1) CD56dimCD16+ or effector NK cells (NKeff); 2) CD56brightCD16- or regulatory NK cells (NKreg); 3) intermediate CD56brightCD16+ NK cells; and 4) CD56dimCD16- NK cells, whose function is not well determined. Since many studies have shown that T1D progression is associated with changes in various immune cell types, we hypothesize that the kinetics of NK cell subsets in the blood could correlate with different stages of T1D. To that aim, pediatric patients newly diagnosed with T1D were recruited, and peripheral NK cell subsets were analyzed by flow cytometry at several disease checkpoints: disease onset, partial remission (PR), 8 months (for non-remitters), and 12 months of progression. Our results showed that total NK cells and their four subsets are altered at the early stages of T1D. A decrease in the counts and percentage of total NK cells and NKeff cells at the different disease stages was found when compared to controls. These results suggest the extravasation of these cells into the islets at disease onset, which is maintained throughout the follow-up. By contrast, NKreg cells increased during the early stages after T1D onset, and both intermediate NK cells and CD56dimCD16- NK cells diminished at the PR stage, which might reflect the immunoregulatory attempts and could be candidate biomarkers for this stage. Also, CD56dimCD16- NK cells increased during T1D progression. Finally, changes in CD16 expression were identified in the different T1D stages, highlighting a CD16 expression reduction in total NK cells and NKeff cells 1 year after diagnosis. That may reflect a state of exhaustion after multiple cell-to-cell interactions. Altogether, our preliminary data provide a longitudinal picture of peripheral NK cell subpopulations during the different T1D stages, which could be potential candidate biomarkers indicators of disease progression.
Collapse
Affiliation(s)
- Laia Gomez-Muñoz
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - David Perna-Barrull
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Adrian Villalba
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Rosa-Maria Ampudia
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Aina Teniente-Serra
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Federico Vazquez
- Endocrinology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Marta Murillo
- Pediatrics Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Jacobo Perez
- Department of Pediatric Endocrine, Parc Tauli Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autonoma de Barcelona, Sabadell, Spain
| | - Raquel Corripio
- Department of Pediatric Endocrine, Parc Tauli Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autonoma de Barcelona, Sabadell, Spain
| | - Joan Bel
- Pediatrics Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Marta Vives-Pi
- Immunology Service, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| |
Collapse
|
25
|
Maas RJ, Hoogstad-van Evert JS, Van der Meer JM, Mekers V, Rezaeifard S, Korman AJ, de Jonge PK, Cany J, Woestenenk R, Schaap NP, Massuger LF, Jansen JH, Hobo W, Dolstra H. TIGIT blockade enhances functionality of peritoneal NK cells with altered expression of DNAM-1/TIGIT/CD96 checkpoint molecules in ovarian cancer. Oncoimmunology 2020; 9:1843247. [PMID: 33224630 PMCID: PMC7657585 DOI: 10.1080/2162402x.2020.1843247] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Advanced ovarian cancer (OC) patients have a poor 5-year survival of only 28%, emphasizing the medical need for improved therapies. Adjuvant immunotherapy could be an attractive approach since OC is an immunogenic disease and the presence of tumor-infiltrating lymphocytes has shown to positively correlate with patient survival. Among these infiltrating lymphocytes are natural killer (NK) cells, key players involved in tumor targeting, initiated by signaling via activating and inhibitory receptors. Here, we investigated the role of the DNAM-1/TIGIT/CD96 axis in the anti-tumor response of NK cells toward OC. Ascites-derived NK cells from advanced OC patients showed lower expression of activating receptor DNAM-1 compared to healthy donor peripheral blood NK cells, while inhibitory receptor TIGIT and CD96 expression was equal or higher, respectively. This shift to a more inhibitory phenotype could also be induced in vitro by co-culturing healthy donor NK cells with OC tumor spheroids, and in vivo on intraperitoneally infused NK cells in SKOV-3 OC bearing NOD/SCID-IL2Rγnull (NSG) mice. Interestingly, TIGIT blockade enhanced degranulation and interferon gamma (IFNγ) production of healthy donor CD56dim NK cells in response to OC tumor cells, especially when DNAM-1/CD155 interactions were in place. Importantly, TIGIT blockade boosted functional responsiveness of CD56dim NK cells of OC patients with a baseline reactivity against SKOV-3 cells. Overall, our data show for the first time that checkpoint molecules TIGIT/DNAM-1/CD96 play an important role in NK cell responsiveness against OC, and provides rationale for incorporating TIGIT interference in NK cell-based immunotherapy in OC patients.
Collapse
Affiliation(s)
- Ralph Ja Maas
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Janneke S Hoogstad-van Evert
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jolien Mr Van der Meer
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vera Mekers
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Somayeh Rezaeifard
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alan J Korman
- Bristol-Myers Squibb, Redwood City, CA, USA.,AK Vir Biotechnology, San Francisco, CA, USA
| | - Paul Kjd de Jonge
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeannette Cany
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob Woestenenk
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicolaas Pm Schaap
- Department of Hematology, Radboud University Medical Center/Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Leon F Massuger
- Department of Obstetrics and Gynecology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
26
|
Innate immune response in systemic autoimmune diseases: a potential target of therapy. Inflammopharmacology 2020; 28:1421-1438. [DOI: 10.1007/s10787-020-00762-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
|
27
|
Mausberg AK, Heininger MK, Meyer Zu Horste G, Cordes S, Fleischer M, Szepanowski F, Kleinschnitz C, Hartung HP, Kieseier BC, Stettner M. NK cell markers predict the efficacy of IV immunoglobulins in CIDP. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 7:7/6/e884. [PMID: 33008921 PMCID: PMC7577535 DOI: 10.1212/nxi.0000000000000884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Objective To assess whether IV immunoglobulins (IVIgs) as a first-line treatment for chronic inflammatory demyelinating polyneuropathy (CIDP) have a regulative effect on natural killer (NK) cells that is related to clinical responsiveness to IVIg. Methods In a prospective longitudinal study, we collected blood samples of 29 patients with CIDP before and after initiation of IVIg treatment for up to 6 months. We used semiquantitative PCR and flow cytometry in the peripheral blood to analyze the effects of IVIg on the NK cells. The results were correlated with clinical aspects encompassing responsiveness. Results We found a reduction in the expression of several typical NK cell genes 1 day after IVIg administration. Flow cytometry furthermore revealed a reduced cytotoxic CD56dim NK cell population, whereas regulatory CD56bright NK cells remained mostly unaffected or were even increased after IVIg treatment. Surprisingly, the observed effects on NK cells almost exclusively occurred in IVIg-responsive patients with CIDP. Conclusions The correlation between the altered NK cell population and treatment efficiency suggests a crucial role for NK cells in the still speculative mode of action of IVIg treatment. Analyzing NK cell subsets after 24 hours of treatment initiation appeared as a predictive marker for IVIg responsiveness. Further studies are warranted investigating the potential of NK cell status as a routine parameter in patients with CIDP before IVIg therapy. Classification of evidence This study provides Class I evidence that NK cell markers predict clinical response to IVIg in patients with CIDP.
Collapse
Affiliation(s)
- Anne K Mausberg
- From the Department of Neurology (A.K.M., M.F., F.S., C.K., M.S.), Research Group for Clinical and Experimental Neuroimmunology, University Hospital Essen; Department of Neurology (M.K.H., H.-P.H., B.C.K.), Medical Faculty, Heinrich-Heine University Duesseldorf; Department of Neurology with Institute of Translational Neurology (G.M.Z.H.), University Hospital Münster; and Oncology and Tumor Immunology (S.C.), Charité University Medicine, Berlin, Germany.
| | - Maximilian K Heininger
- From the Department of Neurology (A.K.M., M.F., F.S., C.K., M.S.), Research Group for Clinical and Experimental Neuroimmunology, University Hospital Essen; Department of Neurology (M.K.H., H.-P.H., B.C.K.), Medical Faculty, Heinrich-Heine University Duesseldorf; Department of Neurology with Institute of Translational Neurology (G.M.Z.H.), University Hospital Münster; and Oncology and Tumor Immunology (S.C.), Charité University Medicine, Berlin, Germany
| | - Gerd Meyer Zu Horste
- From the Department of Neurology (A.K.M., M.F., F.S., C.K., M.S.), Research Group for Clinical and Experimental Neuroimmunology, University Hospital Essen; Department of Neurology (M.K.H., H.-P.H., B.C.K.), Medical Faculty, Heinrich-Heine University Duesseldorf; Department of Neurology with Institute of Translational Neurology (G.M.Z.H.), University Hospital Münster; and Oncology and Tumor Immunology (S.C.), Charité University Medicine, Berlin, Germany
| | - Steffen Cordes
- From the Department of Neurology (A.K.M., M.F., F.S., C.K., M.S.), Research Group for Clinical and Experimental Neuroimmunology, University Hospital Essen; Department of Neurology (M.K.H., H.-P.H., B.C.K.), Medical Faculty, Heinrich-Heine University Duesseldorf; Department of Neurology with Institute of Translational Neurology (G.M.Z.H.), University Hospital Münster; and Oncology and Tumor Immunology (S.C.), Charité University Medicine, Berlin, Germany
| | - Michael Fleischer
- From the Department of Neurology (A.K.M., M.F., F.S., C.K., M.S.), Research Group for Clinical and Experimental Neuroimmunology, University Hospital Essen; Department of Neurology (M.K.H., H.-P.H., B.C.K.), Medical Faculty, Heinrich-Heine University Duesseldorf; Department of Neurology with Institute of Translational Neurology (G.M.Z.H.), University Hospital Münster; and Oncology and Tumor Immunology (S.C.), Charité University Medicine, Berlin, Germany
| | - Fabian Szepanowski
- From the Department of Neurology (A.K.M., M.F., F.S., C.K., M.S.), Research Group for Clinical and Experimental Neuroimmunology, University Hospital Essen; Department of Neurology (M.K.H., H.-P.H., B.C.K.), Medical Faculty, Heinrich-Heine University Duesseldorf; Department of Neurology with Institute of Translational Neurology (G.M.Z.H.), University Hospital Münster; and Oncology and Tumor Immunology (S.C.), Charité University Medicine, Berlin, Germany
| | - Christoph Kleinschnitz
- From the Department of Neurology (A.K.M., M.F., F.S., C.K., M.S.), Research Group for Clinical and Experimental Neuroimmunology, University Hospital Essen; Department of Neurology (M.K.H., H.-P.H., B.C.K.), Medical Faculty, Heinrich-Heine University Duesseldorf; Department of Neurology with Institute of Translational Neurology (G.M.Z.H.), University Hospital Münster; and Oncology and Tumor Immunology (S.C.), Charité University Medicine, Berlin, Germany
| | - Hans-Peter Hartung
- From the Department of Neurology (A.K.M., M.F., F.S., C.K., M.S.), Research Group for Clinical and Experimental Neuroimmunology, University Hospital Essen; Department of Neurology (M.K.H., H.-P.H., B.C.K.), Medical Faculty, Heinrich-Heine University Duesseldorf; Department of Neurology with Institute of Translational Neurology (G.M.Z.H.), University Hospital Münster; and Oncology and Tumor Immunology (S.C.), Charité University Medicine, Berlin, Germany
| | - Bernd C Kieseier
- From the Department of Neurology (A.K.M., M.F., F.S., C.K., M.S.), Research Group for Clinical and Experimental Neuroimmunology, University Hospital Essen; Department of Neurology (M.K.H., H.-P.H., B.C.K.), Medical Faculty, Heinrich-Heine University Duesseldorf; Department of Neurology with Institute of Translational Neurology (G.M.Z.H.), University Hospital Münster; and Oncology and Tumor Immunology (S.C.), Charité University Medicine, Berlin, Germany
| | - Mark Stettner
- From the Department of Neurology (A.K.M., M.F., F.S., C.K., M.S.), Research Group for Clinical and Experimental Neuroimmunology, University Hospital Essen; Department of Neurology (M.K.H., H.-P.H., B.C.K.), Medical Faculty, Heinrich-Heine University Duesseldorf; Department of Neurology with Institute of Translational Neurology (G.M.Z.H.), University Hospital Münster; and Oncology and Tumor Immunology (S.C.), Charité University Medicine, Berlin, Germany
| |
Collapse
|
28
|
Uddin MN, Yao Y, Manley K, Lawrence DA. Development, phenotypes of immune cells in BTBR T +Itpr3 tf/J mice. Cell Immunol 2020; 358:104223. [PMID: 33137646 DOI: 10.1016/j.cellimm.2020.104223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/01/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that is characterized by a lack of social interaction, decreased verbal and non-verbal communication skills, and stereotyped repetitive behavior. There is strong evidence that a dysregulated immune response may influence neurodevelopment and thus may have a role in the development of ASD. This study focuses on the characterization of immune cell phenotypes in the BTBR T+Itpr3tf/J (BTBR) mouse strain, a widely used animal model for autism research. Our study demonstrated that BTBR mice have a different immune profile compared to C57BL/6J (B6) mice, which do not display ASD-like characteristics. Thymic cells of BTBR mice have more single positive (SP) CD4+ and CD8+ T cells and fewer double positive (DP) T cells than B6 mice. The development of T cells is increased in BTBR mice with regard to the double negative (DN4) population being much higher in BTBR mice. The spleens and blood of BTBR mice also have more T helper type 1 (Th1), T helper type 2 (Th2) and T regulatory (Treg) cells compared to B6 mice. Aire expression in the thymus and spleen of BTBR mice compared to B6 mice was equivalent and lower, respectively. The mature natural killer (NK) innate immune cell population in blood and spleen is lower in BTBR than B6 mice; NK cell development is blocked prior to the double positive (DN) CD11b+CD27+ stage in BTBR mice. Since BTBR mice have more CD4+ T cells and elevated numbers of Th1 (T-bet+) and Th2 (GATA3+) cells, their low defense against pathogen may be explained by the lower number of NK cells and the significantly lower Th1 to Th2 ratio. The elevated number of plasma cells and autoantibodies of BTBR mice may be due to less presence and function of splenic AIRE.
Collapse
Affiliation(s)
- Mohammad Nizam Uddin
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Yunyi Yao
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Kevin Manley
- Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - David A Lawrence
- Wadsworth Center, New York State Department of Health, Albany, NY, United States; University at Albany School of Public Health, Rensselaer, NY, United States.
| |
Collapse
|
29
|
Gremese E, Ferraccioli ES, Alivernini S, Tolusso B, Ferraccioli G. Basic immunology may lead to translational therapeutic rationale: SARS-CoV-2 and rheumatic diseases. Eur J Clin Invest 2020; 50:e13342. [PMID: 32645207 PMCID: PMC7404583 DOI: 10.1111/eci.13342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 pandemia is a major concern for patients and healthcare systems. The fear of infection by patients with concomitant rheumatic diseases (either adult or children) and connective tissue diseases is arising worldwide, because of their immunological background and immunological therapies. Analysing the basic biology of single diseases, the data suggest that there is an "immunological umbrella" that seems to protect against the infection, through IFN type 1 and NK cell function. To date, reports from China, United States and Europe did not reveal an higher risk of infection, either for rheumatoid arthritis, juvenile idiopathic arthritis nor for lupus erythematosus. Antimalarials, anti-IL6-Anti-IL6 receptor, anti-IL1, anti-GM-CSF receptor and JAK1/2/3 inhibitors, are under investigation in COVID-dedicated clinical trials to control the inflammation raised by SARS-CoV-2 infection. Initial reports on the occurrence of autoimmune phenomena in the convalescence phase of SARS-CoV-2 infection suggests that the immunological consequences of the infection need to be strictly understood. Reporting of the study conforms to broad EQUATOR guidelines (Simera et al January 2010 issue of EJCI).
Collapse
Affiliation(s)
- Elisa Gremese
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy.,Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | | - Stefano Alivernini
- Division of Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy.,Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Tolusso
- Division of Rheumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | | |
Collapse
|
30
|
Activation status of CD56 dim natural killer cells is associated with disease activity of patients with systemic lupus erythematosus. Clin Rheumatol 2020; 40:1103-1112. [PMID: 32797360 DOI: 10.1007/s10067-020-05306-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/07/2020] [Accepted: 07/21/2020] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Decreased natural killer (NK) cells have been reported in systemic lupus erythematosus (SLE) patients. However, the role of NK cells in the pathogenesis of SLE is not well understood. In this study, we aimed to characterize NK cell subsets, phenotypes, and cytokine-secreting functions and investigate the clinical relevance of NK cells in SLE patients. METHODS Peripheral blood samples from 81 SLE patients and 59 healthy donors (HDs) were collected. The frequency and phenotype of NK cells were measured by flow cytometry. Intracellular interferon-γ (IFN-γ) production by NK cells was evaluated by flow cytometry after stimulation with interleukin-12 (IL-12) and IL-18. RESULTS The percentages of NK cells in the peripheral blood of SLE patients were significantly lower than those in HDs, and the percentages of CD56dim NK cells among total NK cells showed a trend toward decrease. The CD56dim NK cells in SLE patients showed increased production of IFN-γ and displayed relatively activated phenotypic characteristics, including significant increases in NKp44, NKp46, and CD69 and decreased expression of CD16 and CD158a/h/g. Furthermore, CD56dim NK cells in active SLE patients had higher percentages of NKp44+ cells and lower percentages of CD158a/h/g+ cells than those in inactive SLE patients. The percentages of CD158a/h/g+ cells among CD56dim NK cells were negatively correlated with the systemic lupus erythematosus disease activity index (SLEDAI) and positively correlated with C3 and C4 levels. CONCLUSION CD56dim NK cells in SLE patients show a reduced proportion tendency among total NK cells and are activated, which partially reflects the disease activity. CD158a/h/g expression on CD56dim NK cells may be considered an index of disease activity. Key Points • In patients with SLE, the proportion of CD56dim NK cells showed a decreased trend and CD56dim NK cells were phenotypically activated which partially reflects the disease activity. • CD158a/h/g expression on CD56dim NK cells were decreased which may be used as an indicator for evaluating disease activity in SLE patients.
Collapse
|
31
|
Huang Z, Qi G, Miller JS, Zheng SG. CD226: An Emerging Role in Immunologic Diseases. Front Cell Dev Biol 2020; 8:564. [PMID: 32850777 PMCID: PMC7396508 DOI: 10.3389/fcell.2020.00564] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/15/2020] [Indexed: 01/03/2023] Open
Abstract
CD226, a member of the immunoglobulin superfamily, is a functional protein initially expressed on natural killer and T cells. In recent years, the function of CD226 has been increasingly realized and researched. Accumulating evidence shows that CD226 is closely related to the occurrence of autoimmune diseases, infectious diseases, and tumors. Because of the CD226’s increasing importance, the author herein discusses the structure, mechanism of action, and role of CD226 in various pathophysiological environments, allowing for further understanding of the function of CD226 and providing the basis for further research in related diseases.
Collapse
Affiliation(s)
- Zhiyi Huang
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Guangyin Qi
- Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China
| | - Joseph S Miller
- Ohio University Heritage College of Osteopathic Medicine, Dublin, OH, United States
| | - Song Guo Zheng
- Department of Internal Medicine, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
32
|
Binder C, Cvetkovski F, Sellberg F, Berg S, Paternina Visbal H, Sachs DH, Berglund E, Berglund D. CD2 Immunobiology. Front Immunol 2020; 11:1090. [PMID: 32582179 PMCID: PMC7295915 DOI: 10.3389/fimmu.2020.01090] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/05/2020] [Indexed: 01/21/2023] Open
Abstract
The glycoprotein CD2 is a costimulatory receptor expressed mainly on T and NK cells that binds to LFA3, a cell surface protein expressed on e.g., antigen-presenting cells. CD2 has an important role in the formation and organization of the immunological synapse that is formed between T cells and antigen-presenting cells upon cell-cell conjugation and associated intracellular signaling. CD2 expression is upregulated on memory T cells as well as activated T cells and plays an important role in activation of memory T cells despite the coexistence of several other costimulatory pathways. Anti-CD2 monoclonal antibodies have been shown to induce immune modulatory effects in vitro and clinical studies have proven the safety and efficacy of CD2-targeting biologics. Investigators have highlighted that the lack of attention to the CD2/LFA3 costimulatory pathway is a missed opportunity. Overall, CD2 is an attractive target for monoclonal antibodies intended for treatment of pathologies characterized by undesired T cell activation and offers an avenue to more selectively target memory T cells while favoring immune regulation.
Collapse
Affiliation(s)
- Christian Binder
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | | | - Felix Sellberg
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Stefan Berg
- Research and Development, ITB-Med AB, Stockholm, Sweden
| | - Horacio Paternina Visbal
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| | - David H Sachs
- Research and Development, ITB-Med AB, Stockholm, Sweden.,Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Erik Berglund
- Research and Development, ITB-Med AB, Stockholm, Sweden.,Division of Transplantation Surgery, CLINTEC, Karolinska Institute, and Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - David Berglund
- Department of Immunology, Genetics and Pathology, Section of Clinical Immunology, Uppsala University, Uppsala, Sweden.,Research and Development, ITB-Med AB, Stockholm, Sweden
| |
Collapse
|
33
|
Market M, Tennakoon G, Ng J, Scaffidi M, de Souza CT, Kennedy MA, Auer RC. A Method of Assessment of Human Natural Killer Cell Phenotype and Function in Whole Blood. Front Immunol 2020; 11:963. [PMID: 32508837 PMCID: PMC7251181 DOI: 10.3389/fimmu.2020.00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
The majority of data on human Natural Killer (NK) cell phenotype and function has been generated using cryopreserved peripheral blood mononuclear cells (PBMCs). However, cryopreservation can have adverse effects on PBMCs. In contrast, investigating immune cells in whole blood can reduce the time, volume of blood required, and potential artefacts associated with manipulation of the cells. Whole blood collected from healthy donors and cancer patients was processed by three separate protocols that can be used independently or in parallel to assess extracellular receptors, intracellular signaling protein phosphorylation, and intracellular and extracellular cytokine production in human NK cells. To assess extracellular receptor expression, 200 μL of whole blood was incubated with an extracellular staining (ECS) mix and cells were subsequently fixed and RBCs lysed prior to analysis. The phosphorylation status of signaling proteins was assessed in 500 μL of whole blood following co-incubation with interleukin (IL)-2/12 and an ECS mix for 20 min prior to cell fixation, RBC lysis, and subsequent permeabilization for staining with an intracellular staining (ICS) mix. Cytokine production (IFNγ) was similarly assessed by incubating 1 mL of whole blood with PMA-ionomycin or IL-2/12 prior to incubation with ECS and subsequent ICS antibodies. In addition, plasma was collected from stimulated samples prior to ECS for quantification of secreted IFNγ by ELISA. Results were consistent, despite inherent inter-patient variability. Although we did not investigate an exhaustive list of targets, this approach enabled quantification of representative ECS surface markers including activating (NKG2D and DNAM-1) and inhibitory (NKG2A, PD-1, TIGIT, and TIM-3) receptors, cytokine receptors (CD25, CD122, CD132, and CD212) and ICS markers associated with NK cell activation following stimulation, including signaling protein phosphorylation (p-STAT4, p-STAT5, p-p38 MAPK, p-S6) and IFNγ in both healthy donors and cancer patients. In addition, we compared extracellular receptor expression using whole blood vs. cryopreserved PBMCs and observed a significant difference in the expression of almost all receptors. The methods presented permit a relatively rapid parallel assessment of immune cell receptor expression, signaling protein activity, and cytokine production in a minimal volume of whole blood from both healthy donors and cancer patients.
Collapse
Affiliation(s)
| | - Gayashan Tennakoon
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Juliana Ng
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | | | | | - Michael A Kennedy
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rebecca C Auer
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Surgery, University of Ottawa, The Ottawa Hospital, Ottawa, ON, Canada
| |
Collapse
|
34
|
Baci D, Bosi A, Gallazzi M, Rizzi M, Noonan DM, Poggi A, Bruno A, Mortara L. The Ovarian Cancer Tumor Immune Microenvironment (TIME) as Target for Therapy: A Focus on Innate Immunity Cells as Therapeutic Effectors. Int J Mol Sci 2020; 21:ijms21093125. [PMID: 32354198 PMCID: PMC7247443 DOI: 10.3390/ijms21093125] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/27/2022] Open
Abstract
Ovarian cancer (OvCA) accounts for one of the leading causes of death from gynecologic malignancy. Despite progress in therapy improvements in OvCA, most patients develop a recurrence after first-line treatments, dependent on the tumor and non-tumor complexity/heterogeneity of the neoplasm and its surrounding tumor microenvironment (TME). The TME has gained greater attention in the design of specific therapies within the new era of immunotherapy. It is now clear that the immune contexture in OvCA, here referred as tumor immune microenvironment (TIME), acts as a crucial orchestrator of OvCA progression, thus representing a necessary target for combined therapies. Currently, several advancements of antitumor immune responses in OvCA are based on the characterization of tumor-infiltrating lymphocytes, which have been shown to correlate with a significantly improved clinical outcome. Here, we reviewed the literature on selected TIME components of OvCA, such as macrophages, neutrophils, γδ T lymphocytes, and natural killer (NK) cells; these cells can have a role in either supporting or limiting OvCA, depending on the TIME stimuli. We also reviewed and discussed the major (immune)-therapeutic approaches currently employed to target and/or potentiate macrophages, neutrophils, γδ T lymphocytes, and NK cells in the OvCA context.
Collapse
Affiliation(s)
- Denisa Baci
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Annalisa Bosi
- Laboratory of Pharmacology, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy;
| | - Matteo Gallazzi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Manuela Rizzi
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
| | - Douglas M. Noonan
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
- IRCCS MultiMedica, 20138 Milan, Italy;
| | - Alessandro Poggi
- UOSD Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy;
| | | | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.B.); (M.G.); (M.R.); (D.M.N.)
- Correspondence:
| |
Collapse
|
35
|
Diversity of peripheral blood human NK cells identified by single-cell RNA sequencing. Blood Adv 2020; 4:1388-1406. [PMID: 32271902 PMCID: PMC7160259 DOI: 10.1182/bloodadvances.2019000699] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
Human natural killer (NK) cells in peripheral blood perform many functions, and classification of specific subsets has been a longstanding goal. We report single-cell RNA sequencing of NK cells, comparing gene expression in unstimulated and interleukin (IL)-2-activated cells from healthy cytomegalovirus (CMV)-negative donors. Three NK cell subsets resembled well-described populations; CD56brightCD16-, CD56dimCD16+CD57-, and CD56dimCD16+CD57+. CD56dimCD16+CD57- cells subdivided to include a population with higher chemokine mRNA and increased frequency of killer-cell immunoglobulin-like receptor expression. Three novel human blood NK cell populations were identified: a population of type I interferon-responding NK cells that were CD56neg; a population exhibiting a cytokine-induced memory-like phenotype, including increased granzyme B mRNA in response to IL-2; and finally, a small population, with low ribosomal expression, downregulation of oxidative phosphorylation, and high levels of immediate early response genes indicative of cellular activation. Analysis of CMV+ donors established that CMV altered the proportion of NK cells in each subset, especially an increase in adaptive NK cells, as well as gene regulation within each subset. Together, these data establish an unexpected diversity in blood NK cells and provide a new framework for analyzing NK cell responses in health and disease.
Collapse
|
36
|
Xu X, Zhou Y, Fu B, Zhang J, Dong Z, Zhang X, Shen N, Sun R, Tian Z, Wei H. PBX1 promotes development of natural killer cells by binding directly to the Nfil3 promoter. FASEB J 2020; 34:6479-6492. [PMID: 32190943 DOI: 10.1096/fj.202000121r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 01/23/2023]
Abstract
The transcription factor nuclear factor interleukin-3-regulated protein (NFIL3, also called E4BP4) is crucial for commitment of natural killer (NK) cells from common lymphoid progenitors (CLPs). However, the identity of the factor that can regulate NFIL3 directly during the NK-cell development is not known. Here, we reveal that pre-B-cell leukemia transcription factor 1 (PBX1) can upregulate the NFIL3 expression directly. We used conditional knockout mice in which PBX1 in hematopoietic cells was specifically absent. The number of NK-committed progenitor pre-NKP cells and rNKP cells was reduced significantly in the absence of PBX1, which was consistent with NFIL3 deficiency. Also, the NFIL3 expression in NK cells was decreased if PBX1 was absent. We demonstrated that PBX1 was bound directly to the promoter of Nfil3 and facilitated transcription. Upon knockout of the binding site of PBX1 in the Nfil3 promoter, mice showed fewer NK-precursor cells and NK cells, just like that observed in Nfil3 knockout mice. Furthermore, asparagine N286 in the homeodomain of PBX1 controlled the binding of PBX1 to the Nfil3 promoter. Collectively, these findings demonstrate that the transcription factor PBX1 promotes the early development of NK cells by upregulating the Nfil3 expression directly.
Collapse
Affiliation(s)
- Xiuxiu Xu
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China
| | - Yonggang Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China.,First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Binqing Fu
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China
| | - Jinghe Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhongjun Dong
- School of Medicine, Tsinghua University, Beijing, China
| | - Xiaoren Zhang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Nan Shen
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Sun
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Hefei National Laboratory for Physical Sciences at Microscale, Division of Molecular Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China.,Institue of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
37
|
Manukyan G, Martirosyan A, Slavik L, Margaryan S, Ulehlova J, Mikulkova Z, Hlusi A, Papajik T, Kriegova E. Anti-domain 1 β2 glycoprotein antibodies increase expression of tissue factor on monocytes and activate NK Cells and CD8+ cells in vitro. AUTOIMMUNITY HIGHLIGHTS 2020; 11:5. [PMID: 32127041 PMCID: PMC7065342 DOI: 10.1186/s13317-020-00128-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
Abstract
Background β2-Glycoprotein I (β2GPI) represents the major antigenic target for antiphospholipid antibodies (aPL), with domain 1 (D1) being identified as a risk factor for thrombosis and pregnancy complications in APS. We aimed to analyse the ability of aPL, and particularly anti-D1 β2GPI, to stimulate prothrombotic and proinflammatory activity of immune cells in vitro. Methods Peripheral blood mononuclear cells (PBMCs) from 11 healthy individuals were incubated with: (1) “anti-D1(+)”—pooled plasma derived from patients suspected of having APS contained anticardiolipin antibodies (aCL), lupus anticoagulant (LA), anti-β2GPI and anti-D1 β2GPI; (2) “anti-D1(−)”—pooled plasma from patients suspected of having APS contained aCL, LA, anti-β2GPI, and negative for anti-D1 β2GPI; (3) “seronegative”—negative for aPL. Results The presence of anti-D1(+) and anti-D1(−) plasma resulted in increased HLA-DR and CD11b on monocytes. While only anti-D1(+) plasma markedly increased the percentage and median fluorescence intensity (MFI) of CD142 (tissue factor, TF) on monocytes in comparison with those cultured with anti-D1(−) and seronegative plasma. Anti-D1(+) plasma resulted in increased percentage and MFI of activation marker CD69 on NK and T cytotoxic cells. Expression of IgG receptor FcγRIII(CD16) on monocytes and NK cells was down-regulated by the anti-D1(+) plasma. Conclusions Taking together, our study shows the ability of patient-derived aPL to induce immune cell activation and TF expression on monocytes. For the first time, we demonstrated the influence of anti-D1 β2GPI on the activation status of monocytes, NK and cytotoxic T cells. Our findings further support a crucial role of D1 epitope in the promotion of thrombosis and obstetrical complications in APS.
Collapse
Affiliation(s)
- Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan St., 0014, Yerevan, Armenia. .,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic.
| | - Anush Martirosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan St., 0014, Yerevan, Armenia
| | - Ludek Slavik
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Sona Margaryan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology NAS RA, 7 Hasratyan St., 0014, Yerevan, Armenia.,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Jana Ulehlova
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Zuzana Mikulkova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Antonin Hlusi
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Tomas Papajik
- Department of Hemato-oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| | - Eva Kriegova
- Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Faculty Hospital, Olomouc, Czech Republic
| |
Collapse
|
38
|
Dean JW, Peters LD, Fuhrman CA, Seay HR, Posgai AL, Stimpson SE, Brusko MA, Perry DJ, Yeh WI, Newby BN, Haller MJ, Muir AB, Atkinson MA, Mathews CE, Brusko TM. Innate inflammation drives NK cell activation to impair Treg activity. J Autoimmun 2020; 108:102417. [PMID: 32035746 PMCID: PMC7086400 DOI: 10.1016/j.jaut.2020.102417] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022]
Abstract
IL-12 and IL-18 synergize to promote TH1 responses and have been implicated as accelerators of autoimmune pathogenesis in type 1 diabetes (T1D). We investigated the influence of these cytokines on immune cells involved in human T1D progression: natural killer (NK) cells, regulatory T cells (Tregs), and cytotoxic T lymphocytes (CTL). NK cells from T1D patients exhibited higher surface CD226 versus controls and lower CD25 compared to first-degree relatives and controls. Changes in NK cell phenotype towards terminal differentiation were associated with cytomegalovirus (CMV) seropositivity, while possession of IL18RAP, IFIH1, and IL2RA T1D-risk variants impacted NK cell activation as evaluated by immuno-expression quantitative trait loci (eQTL) analyses. IL-12 and IL-18 stimulated NK cells from healthy donors exhibited enhanced specific killing of myelogenous K562 target cells. Moreover, activated NK cells increased expression of NKG2A, NKG2D, CD226, TIGIT and CD25, which enabled competition for IL-2 upon co-culture with Tregs, resulting in Treg downregulation of FOXP3, production of IFNγ, and loss of suppressive function. We generated islet-autoreactive CTL "avatars", which upon exposure to IL-12 and IL-18, upregulated IFNγ and Granzyme-B leading to increased lymphocytotoxicity of a human β-cell line in vitro. These results support a model for T1D pathogenesis wherein IL-12 and IL-18 synergistically enhance CTL and NK cell cytotoxic activity and disrupt immunoregulation by Tregs.
Collapse
MESH Headings
- Adolescent
- Adult
- Biomarkers
- Cells, Cultured
- Child
- Cytokines/metabolism
- Cytotoxicity, Immunologic
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/metabolism
- Disease Susceptibility
- Female
- Humans
- Immunity, Innate
- Immunophenotyping
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation/immunology
- Lymphocyte Count
- Male
- Middle Aged
- Models, Biological
- Phenotype
- Quantitative Trait Loci
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Young Adult
Collapse
Affiliation(s)
- Joseph W Dean
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA; Department of Infectious Disease and Immunology, University of Florida, Gainesville, FL, USA
| | - Leeana D Peters
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Christopher A Fuhrman
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA; NanoString Technologies, Seattle, WA, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA; BD Biosciences, Ashland, OR, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Scott E Stimpson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Maigan A Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Wen-I Yeh
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA; BD Biosciences, Ashland, OR, USA
| | - Brittney N Newby
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA; Fate Therapeutics, San Diego, CA, USA
| | - Michael J Haller
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew B Muir
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Mark A Atkinson
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Clayton E Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA; Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA; Department of Pediatrics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
39
|
Shimizu Y, Kohyama M, Yorifuji H, Jin H, Arase N, Suenaga T, Arase H. FcγRIIIA-mediated activation of NK cells by IgG heavy chain complexed with MHC class II molecules. Int Immunol 2020; 31:303-314. [PMID: 30721990 DOI: 10.1093/intimm/dxz010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 01/31/2019] [Indexed: 01/09/2023] Open
Abstract
Natural killer (NK) cells are a major FcγRIIIA-expressing lymphocyte population that mediate antibody-dependent cellular cytotoxicity. Although NK cells are critical for immunity against viruses and tumors, they are also activated in the joints of patients with rheumatoid arthritis (RA) and may be involved in disease progression. We previously found that human leukocyte antigen (HLA) class II molecules transport misfolded cellular proteins, such as IgG heavy chain (IgGH), to the cell surface via association with their peptide-binding grooves. Furthermore, we found that IgGHs bound to HLA class II molecules encoded by RA susceptibility alleles are specific targets for rheumatoid factor, an auto-antibody involved in RA. Here, we report that IgGHs bound to HLA class II molecules preferentially stimulate FcγRIIIA-expressing but not FcγRI-expressing cells. A significant correlation was observed between the reactivity of FcγRIIIA-expressing cells to IgGH complexed with a specific HLA-DR allele and the odds ratio for HLA-DR allele's association with RA. Moreover, primary human NK cells expressing FcγRIIIA demonstrated IFN-γ production and cytotoxicity against cells expressing IgGH complexed with HLA class II molecules. Our findings suggest that IgGH complexed with HLA class II molecules are involved in the activation of FcγRIIIA-expressing NK cells observed within arthritic joints.
Collapse
Affiliation(s)
- Yuta Shimizu
- Department of Immunochemistry, Research Institute for Microbial Diseases.,Laboratory of Immunochemistry, WPI Immunology Frontier Research Center
| | - Masako Kohyama
- Department of Immunochemistry, Research Institute for Microbial Diseases.,Laboratory of Immunochemistry, WPI Immunology Frontier Research Center
| | - Hideki Yorifuji
- Department of Immunochemistry, Research Institute for Microbial Diseases.,Laboratory of Immunochemistry, WPI Immunology Frontier Research Center.,Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine
| | - Hui Jin
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center
| | - Noriko Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases.,Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tadahiro Suenaga
- Department of Immunochemistry, Research Institute for Microbial Diseases.,Laboratory of Immunochemistry, WPI Immunology Frontier Research Center
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases.,Laboratory of Immunochemistry, WPI Immunology Frontier Research Center
| |
Collapse
|
40
|
Jiao Y, Wu L, Huntington ND, Zhang X. Crosstalk Between Gut Microbiota and Innate Immunity and Its Implication in Autoimmune Diseases. Front Immunol 2020; 11:282. [PMID: 32153586 PMCID: PMC7047319 DOI: 10.3389/fimmu.2020.00282] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
The emerging concept of microbiota contributing to local mucosal homeostasis has fueled investigation into its specific role in immunology. Gut microbiota is mostly responsible for maintaining the balance between host defense and immune tolerance. Dysbiosis of gut microbiota has been shown to be related to various alterations of the immune system. This review focuses on the reciprocal relationship between gut microbiota and innate immunity compartment, with emphasis on gut-associated lymphoid tissue, innate lymphoid cells, and phagocytes. From a clinical perspective, the review gives a possible explanation of how the “gut microbiota—innate immunity” axis might contribute to the pathogenesis of autoimmune diseases like rheumatoid arthritis, spondyloarthritis, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Yuhao Jiao
- The Ministry of Education Key Laboratory, Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,School of Medicine, Tsinghua University, Beijing, China
| | - Li Wu
- Institute for Immunology, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Centre for Life Sciences, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Xuan Zhang
- The Ministry of Education Key Laboratory, Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Immunology Centre, Medical Epigenetics Research Centre, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Yahara H, Horita S, Yanamoto S, Kitagawa Y, Asaka T, Yoda T, Morita K, Michi Y, Takechi M, Shimasue H, Maruoka Y, Kondo E, Kusukawa J, Tsujiguchi H, Sato T, Kannon T, Nakamura H, Tajima A, Hosomichi K, Yahara K. A Targeted Genetic Association Study of the Rare Type of Osteomyelitis. J Dent Res 2020; 99:271-276. [PMID: 31977282 DOI: 10.1177/0022034520901519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic nonbacterial osteomyelitis is a rare bone disorder that can be found in the jaw. It is often associated with systemic conditions, including autoimmune deficiencies. However, little is known about how the genetic and immunologic background of patients influences the disease. Here, we focus on human leukocyte antigen (HLA), killer cell immunoglobulin-like receptors (KIRs), and their specific combinations that have been difficult to analyze owing to their high diversity. We employed a recently developed technology of simultaneous typing of HLA alleles and KIR haplotype and investigated alleles of the 35 HLA loci and KIR haplotypes composed of centromeric and telomeric motifs in 18 cases and 18 controls for discovery and 472 independent controls for validation. We identified an amino acid substitution of threonine at position 94 of HLA-C in combination with the telomeric KIR genotype of haplotype tA01/tB01 that had significantly higher frequency (>20%) in the case population than in both control populations. Multiple logistic regression analysis based on a dominant model with adjustments for age and sex revealed and validated its statistical significance and high predictive accuracy (C-statistic ≥0.85). Structure-based analysis revealed that the combination of the amino acid change in HLA-C and the telomeric genotype tA01/tB01 could be associated with lower stability of HLA-C. This is the first case-control study of a rare disease that employed the latest sequencing technology enabling simultaneous typing and investigated amino acid polymorphisms at HLA loci in combination with KIR haplotype.
Collapse
Affiliation(s)
- H Yahara
- Department of Molecular Immunology and Inflammation, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - S Horita
- Department of Bioregulation and Pharmacological Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - S Yanamoto
- Department of Clinical Oral Oncology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Y Kitagawa
- Department of Oral Diagnosis and Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - T Asaka
- Department of Oral Diagnosis and Medicine, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - T Yoda
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - K Morita
- Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Y Michi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - M Takechi
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - H Shimasue
- Department of Oral and Maxillofacial Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Y Maruoka
- Department of Oral and Maxillofacial Surgery, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - E Kondo
- Department of Dentistry and Oral Surgery, School of Medicine, Shinshu University, Matsumoto, Japan
| | - J Kusukawa
- Dental and Oral Medical Center, School of Medicine, Kurume University, Fukuoka, Japan
| | - H Tsujiguchi
- Department of Environmental and Preventive Medicine, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - T Sato
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - T Kannon
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - H Nakamura
- Department of Environmental and Preventive Medicine, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - A Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - K Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - K Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
42
|
Villalba M, Alexia C, Bellin-Robert A, Fayd'herbe de Maudave A, Gitenay D. Non-Genetically Improving the Natural Cytotoxicity of Natural Killer (NK) Cells. Front Immunol 2020; 10:3026. [PMID: 31998309 PMCID: PMC6970430 DOI: 10.3389/fimmu.2019.03026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
The innate lymphocyte lineage natural killer (NK) is now the target of multiple clinical applications, although none has received an agreement from any regulatory agency yet. Transplant of naïve NK cells has not proven efficient enough in the vast majority of clinical trials. Hence, new protocols wish to improve their medical use by producing them from stem cells and/or modifying them by genetic engineering. These techniques have given interesting results but these improvements often hide that natural killers are mainly that: natural. We discuss here different ways to take advantage of NK physiology to improve their clinical activity without the need of additional modifications except for in vitro activation and expansion and allograft in patients. Some of these tactics include combination with monoclonal antibodies (mAb), drugs that change metabolism and engraftment of specific NK subsets with particular activity. Finally, we propose to use specific NK cell subsets found in certain patients that show increase activity against a specific disease, including the use of NK cells derived from patients.
Collapse
Affiliation(s)
- Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France.,IRMB, CHU Montpellier, Montpellier, France
| | - Catherine Alexia
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | | | - Delphine Gitenay
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| |
Collapse
|
43
|
Karimizadeh E, Mostafaei S, Aslani S, Gharibdoost F, Xavier RM, Salim PH, Kavosi H, Farhadi E, Mahmoudi M. Evaluation of the association between KIR polymorphisms and systemic sclerosis: a meta-analysis. Adv Rheumatol 2020; 60:8. [PMID: 31924272 DOI: 10.1186/s42358-019-0107-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/23/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The results of investigations on the association between killer cell immunoglobulin-like receptor (KIR) gene polymorphisms and the risk of systemic sclerosis (SSc) are inconsistent. To comprehensively evaluate the influence of KIR polymorphisms on the risk of SSc, this meta-analysis was performed. METHODS A systematic literature search was performed in electronic databases including Scopus and PubMed/MEDLINE to find all available studies involving KIR gene family polymorphisms and SSc risk prior to July 2019. Pooled odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were measured to detect associations between KIR gene family polymorphisms and SSc risk. RESULTS Five articles, comprising 571 patients and 796 healthy participants, evaluating the KIR gene family polymorphisms were included in the final meta-analysis according to the inclusion and exclusion criteria, and 16 KIR genes were assessed. None of the KIR genes were significantly associated with the risk of SSc. CONCLUSIONS The current meta-analysis provides evidence that KIR genes might not be potential risk factors for SSc risk.
Collapse
Affiliation(s)
- Elham Karimizadeh
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Shayan Mostafaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Farhad Gharibdoost
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Ricardo Machado Xavier
- Universidade Federal do Rio Grande do Sul, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Patricia Hartstein Salim
- Universidade Federal do Rio Grande do Sul, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Yang Q, Zhang L, Guo C, Kou C, Long Y, Li J, Zhang HQ. Reduced proportion and activity of natural killer cells in patients with Graves’ disease. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220942337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural killer cells not only play important roles in protecting against viral infection and cancer but also involved in the pathogenesis of Graves’ disease. Killer Ig-like receptor (KIR) genes encode receptors which are mostly expressed on and regulate the activation of natural killer cells. Our previous research found that the KIR2DS4 gene frequency was lower in patients with Graves’ disease than in controls. Nevertheless, the specific mechanisms by which natural killer cell act is obscure in Graves’ disease. In total, 178 participants including newly diagnosed Graves’ disease patients (n = 95) and healthy individuals (n = 83) were recruited in this study. TSH (thyrotropin), FT3 (free triiodothyronine), and FT4 (free thyroxine) were assayed using electro chemiluminescent immunoassays. The counts of natural killer cell (CD3−CD56+ natural killer cell), activated natural killer cell (CD3−CD56+CD69+ natural killer cell), and KIR2DS4-expressing natural killer cell (CD3−CD56+CD158i+ natural killer cell) in peripheral blood were analyzed using flow cytometry. The proportions of natural killer cells and activated natural killer cells were lower in the newly diagnosed Graves’ disease patients than in the controls; the difference was statistically significant ( P < 0.05). However, the difference in the proportion of KIR2DS4-expressing natural killer cells between the two groups was not statistically significant. In Graves’ disease patients, no relationship was found between the proportion of natural killer cells and the blood FT3 level, the blood FT4 level, or the blood TSH level; however, the proportion of activated natural killer cells was negatively correlated with FT3 and FT4 and positively correlated with TSH. Our research findings revealed that a reduction in the counts of natural killer cell and activated natural killer cell might be involved in Graves’ disease pathogenesis.
Collapse
Affiliation(s)
- Qingqing Yang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Li Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital affiliated to Shandong University, Jinan, China
| | - Cheng Guo
- Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - ChunJia Kou
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yu Long
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Jianting Li
- Department of Endocrinology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Hai-Qing Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
45
|
Farmer JR, DeLelys M. Flow Cytometry as a Diagnostic Tool in Primary and Secondary Immune Deficiencies. Clin Lab Med 2019; 39:591-607. [PMID: 31668272 DOI: 10.1016/j.cll.2019.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Flow cytometry is an incredibly powerful diagnostic tool in the evaluation of primary and secondary immune deficiencies. Assay design and setup involves a methodological consideration of specimen collection, marker and fluorochrome selection, antibody titration, instrumentation, compensation, gating, reference range development, and cross validation. Commonly used analyses for lymphocytes are the lymphocyte subset, T-cell subset, B-cell and T-cell naive/memory, double-negative T-cell, and plasmablast panels. Flow cytometry has direct clinical applicability to the workup of severe forms of primary immune deficiency disorders and is used diagnostically and for therapeutic monitoring in the context of secondary immune deficiency disorders.
Collapse
Affiliation(s)
- Jocelyn R Farmer
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, COX 201, MGH, 55 Fruit Street, Boston, MA 02114, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| | - Michelle DeLelys
- Cellular Therapeutics and Transplantation/Flow Cytometry, Department of Pathology, Massachusetts General Hospital, WRN 506, MGH, 55 Fruit Street, Boston, MA 02114, USA; Cellular Therapeutics and Transplantation/Flow Cytometry, Department of Cancer Center, Massachusetts General Hospital, WRN 506, MGH, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
46
|
Invariant NKT Cells and Rheumatic Disease: Focus on Primary Sjogren Syndrome. Int J Mol Sci 2019; 20:ijms20215435. [PMID: 31683641 PMCID: PMC6862604 DOI: 10.3390/ijms20215435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Primary Sjogren syndrome (pSS) is a complex autoimmune disease mainly affecting salivary and lacrimal glands. Several factors contribute to pSS pathogenesis; in particular, innate immunity seems to play a key role in disease etiology. Invariant natural killer (NK) T cells (iNKT) are a T-cell subset able to recognize glycolipid antigens. Their function remains unclear, but studies have pointed out their ability to modulate the immune system through the promotion of specific cytokine milieu. In this review, we discussed the possible role of iNKT in pSS development, as well as their implications as future markers of disease activity.
Collapse
|
47
|
Haque N, Ramasamy TS, Kasim NHA. Mechanisms of Mesenchymal Stem Cells for Autoimmune Disease Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-23421-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Wallace PK. Issue Highlights-May 2018 (94B3). CYTOMETRY PART B-CLINICAL CYTOMETRY 2019; 94:387-391. [PMID: 29734502 DOI: 10.1002/cyto.b.21640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Paul K Wallace
- Department of Flow and Image Cytometry, Roswell Park Cancer Institute, Elm & Carlton Streets, New York, 14263 Buffalo
| |
Collapse
|
49
|
Aghaei H, Mostafaei S, Aslani S, Jamshidi A, Mahmoudi M. Association study between KIR polymorphisms and rheumatoid arthritis disease: an updated meta-analysis. BMC MEDICAL GENETICS 2019; 20:24. [PMID: 30696403 PMCID: PMC6352331 DOI: 10.1186/s12881-019-0754-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/15/2019] [Indexed: 12/14/2022]
Abstract
Background Currently published studies investigating association between the killer cell immunoglobulin-like receptor (KIR) gene polymorphisms and rheumatoid arthritis (RA) reported inconsistent and contradictory results. Hence, we aim to carry out this comprehensive meta-analysis of all eligible studies meeting the inclusion criteria to achieve precise and comprehensive relationships between genetic variations in KIR gene cluster and risk of RA. Methods Databases of Medline/PubMed and Scopus were searched to investigate case-control studies prior to May 2018. The associations between KIR gene polymorphisms and RA susceptibility were analyzed by computing the odds ratio (OR) and 95% confidence interval (95% CI) for each study. Results A total of 11 comparative case-control studies involving 1847 RA patients and 2409 healthy individuals were included in this meta-analysis. Four significant associations of 2DL3 (OR = 0.591, 95% CI = 0.351–0.994; P = 0.047), 2DL5 (OR = 0.716, 95% CI = 0.601–0.853; P < 0.001), 2DS5 (OR = 0.623, 95% CI = 0.393–0.988; P = 0.045), and 3DL3 (OR = 0.324, 95% CI = 0.129–0.814; P = 0.016) genes with decreased RA risk were discovered in this meta-analysis. Although, other KIR receptors including 2DL1, 2DL2, 2DL4, 3DL1, 3DL2, 3DS1, 2DS1-2DS4, and two pseudo gens of 2DP1 and 3DP1 displayed no significant association with predisposition to RA. Conclusions These findings provide reliable evidence that 2DL3, 2DL5, 3DL3, and 2DS5 might have a potential protective role for RA.
Collapse
Affiliation(s)
- Hamideh Aghaei
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, PO Box: 1411713137, Tehran, Iran.
| |
Collapse
|
50
|
Throm AA, Alinger JB, Pingel JT, Daugherty AL, Pachman LM, French AR. Dysregulated NK cell PLCγ2 signaling and activity in juvenile dermatomyositis. JCI Insight 2018; 3:123236. [PMID: 30429375 DOI: 10.1172/jci.insight.123236] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Juvenile dermatomyositis (JDM) is a debilitating pediatric autoimmune disease manifesting with characteristic rash and muscle weakness. To delineate signaling abnormalities in JDM, mass cytometry was performed with PBMCs from treatment-naive JDM patients and controls. NK cell percentages were lower while frequencies of naive B cells and naive CD4+ T cells were higher in JDM patients than in controls. These cell frequency differences were attenuated with cessation of active disease. A large number of signaling differences were identified in treatment-naive JDM patients compared with controls. Classification models incorporating feature selection demonstrated that differences in phospholipase Cγ2 (PLCγ2) phosphorylation comprised 10 of 12 features (i.e., phosphoprotein in a specific immune cell subset) distinguishing the 2 groups. Because NK cells represented 5 of these 12 features, further studies focused on the PLCγ2 pathway in NK cells, which is responsible for stimulating calcium flux and cytotoxic granule movement. No differences were detected in upstream signaling or total PLCγ2 protein levels. Hypophosphorylation of PLCγ2 and downstream mitogen-activated protein kinase-activated protein kinase 2 were partially attenuated with cessation of active disease. PLCγ2 hypophosphorylation in treatment-naive JDM patients resulted in decreased calcium flux. The identification of dysregulation of PLCγ2 phosphorylation and decreased calcium flux in NK cells provides potential mechanistic insight into JDM pathogenesis.
Collapse
Affiliation(s)
- Allison A Throm
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Joshua B Alinger
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jeanette T Pingel
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Allyssa L Daugherty
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lauren M Pachman
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Stanley Manne Children's Research Institute, Cure JM Center of Excellence in Juvenile Myositis Research, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Anthony R French
- Division of Pediatric Rheumatology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| |
Collapse
|