1
|
Yosri M, Dokhan M, Aboagye E, Al Moussawy M, Abdelsamed HA. Mechanisms governing bystander activation of T cells. Front Immunol 2024; 15:1465889. [PMID: 39669576 PMCID: PMC11635090 DOI: 10.3389/fimmu.2024.1465889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
The immune system is endowed with the capacity to distinguish between self and non-self, so-called immune tolerance or "consciousness of the immune system." This type of awareness is designed to achieve host protection by eliminating cells expressing a wide range of non-self antigens including microbial-derived peptides. Such a successful immune response is associated with the secretion of a whole spectrum of soluble mediators, e.g., cytokines and chemokines, which not only contribute to the clearance of infected host cells but also activate T cells that are not specific to the original cognate antigen. This kind of non-specific T-cell activation is called "bystander activation." Although it is well-established that this phenomenon is cytokine-dependent, there is evidence in the literature showing the involvement of peptide/MHC recognition depending on the type of T-cell subset (naive vs. memory). Here, we will summarize our current understanding of the mechanism(s) of bystander T-cell activation as well as its biological significance in a wide range of diseases including microbial infections, cancer, auto- and alloimmunity, and chronic inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Mohammed Yosri
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Mohamed Dokhan
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
| | - Elizabeth Aboagye
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
| | - Mouhamad Al Moussawy
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Immunology Center of Georgia (IMMCG), Medical College of Georgia (MCG), Augusta University, Augusta, GA, United States
- Department of Physiology, Augusta University, Augusta, GA, United States
| |
Collapse
|
2
|
Cho MJ, Lee HG, Yoon JW, Kim GR, Koo JH, Taneja R, Edelson BT, Lee YJ, Choi JM. Steady-state memory-phenotype conventional CD4 + T cells exacerbate autoimmune neuroinflammation in a bystander manner via the Bhlhe40/GM-CSF axis. Exp Mol Med 2023:10.1038/s12276-023-00995-1. [PMID: 37121980 DOI: 10.1038/s12276-023-00995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 05/02/2023] Open
Abstract
Memory-phenotype (MP) CD4+ T cells are a substantial population of conventional T cells that exist in steady-state mice, yet their immunological roles in autoimmune disease remain unclear. In this work, we unveil a unique phenotype of MP CD4+ T cells determined by analyzing single-cell transcriptomic data and T cell receptor (TCR) repertoires. We found that steady-state MP CD4+ T cells in the spleen were composed of heterogeneous effector subpopulations and existed regardless of germ and food antigen exposure. Distinct subpopulations of MP CD4+ T cells were specifically activated by IL-1 family cytokines and STAT activators, revealing that the cells exerted TCR-independent bystander effector functions similar to innate lymphoid cells. In particular, CCR6high subpopulation of MP CD4+ T cells were major responders to IL-23 and IL-1β without MOG35-55 antigen reactivity, which gave them pathogenic Th17 characteristics and allowed them to contribute to autoimmune encephalomyelitis. We identified that Bhlhe40 in CCR6high MP CD4+ T cells as a key regulator of GM-CSF expression through IL-23 and IL-1β signaling, contributing to central nervous system (CNS) pathology in experimental autoimmune encephalomyelitis. Collectively, our findings reveal the clearly distinct effector-like heterogeneity of MP CD4+ T cells in the steady state and indicate that CCR6high MP CD4+ T cells exacerbate autoimmune neuroinflammation via the Bhlhe40/GM-CSF axis in a bystander manner.
Collapse
Affiliation(s)
- Min-Ji Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jae-Won Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, 02139, USA
| | - Reshma Taneja
- Department of Physiology and Healthy Longevity Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore, Singapore
| | - Brian T Edelson
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, 63119, USA
| | - You Jeong Lee
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
3
|
Yamada H. The Search for the Pathogenic T Cells in the Joint of Rheumatoid Arthritis: Which T-Cell Subset Drives Autoimmune Inflammation? Int J Mol Sci 2023; 24:ijms24086930. [PMID: 37108093 PMCID: PMC10138952 DOI: 10.3390/ijms24086930] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder affecting systemic synovial tissues, leading to the destruction of multiple joints. Its etiology is still unknown, but T-cell-mediated autoimmunity has been thought to play critical roles, which is supported by experimental as well as clinical observations. Therefore, efforts have been made to elucidate the functions and antigen specificity of pathogenic autoreactive T cells, which could be a therapeutic target for disease treatment. Historically, T-helper (Th)1 and Th17 cells are hypothesized to be pathogenic T cells in RA joints; however, lines of evidence do not fully support this hypothesis, showing polyfunctionality of the T cells. Recent progress in single-cell analysis technology has led to the discovery of a novel helper T-cell subset, peripheral helper T cells, and attracted attention to the previously unappreciated T-cell subsets, such as cytotoxic CD4 and CD8 T cells, in RA joints. It also enables a comprehensive view of T-cell clonality and function. Furthermore, the antigen specificity of the expanded T-cell clones can be determined. Despite such progress, which T-cell subset drives inflammation is yet known.
Collapse
Affiliation(s)
- Hisakata Yamada
- Department of Clinical Immunology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
4
|
Carlé C, Degboe Y, Ruyssen-Witrand A, Arleevskaya MI, Clavel C, Renaudineau Y. Characteristics of the (Auto)Reactive T Cells in Rheumatoid Arthritis According to the Immune Epitope Database. Int J Mol Sci 2023; 24:ijms24054296. [PMID: 36901730 PMCID: PMC10001542 DOI: 10.3390/ijms24054296] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
T cells are known to be involved in the pathogenesis of rheumatoid arthritis (RA). Accordingly, and to better understand T cells' contribution to RA, a comprehensive review based on an analysis of the Immune Epitope Database (IEDB) was conducted. An immune CD8+ T cell senescence response is reported in RA and inflammatory diseases, which is driven by active viral antigens from latent viruses and cryptic self-apoptotic peptides. RA-associated pro-inflammatory CD4+ T cells are selected by MHC class II and immunodominant peptides, which are derived from molecular chaperones, host extra-cellular and cellular peptides that could be post-translationally modified (PTM), and bacterial cross-reactive peptides. A large panel of techniques have been used to characterize (auto)reactive T cells and RA-associated peptides with regards to their interaction with the MHC and TCR, capacity to enter the docking site of the shared epitope (DRB1-SE), capacity to induce T cell proliferation, capacity to select T cell subsets (Th1/Th17, Treg), and clinical contribution. Among docking DRB1-SE peptides, those with PTM expand autoreactive and high-affinity CD4+ memory T cells in RA patients with an active disease. Considering original therapeutic options in RA, mutated, or altered peptide ligands (APL) have been developed and are tested in clinical trials.
Collapse
Affiliation(s)
- Caroline Carlé
- Referral Medical Biology Laboratory, Immunology Department, Institut Fédératif de Biologie, Toulouse University Hospital Center, 31300 Toulouse, France
- Laboratory of Cell Biology and Cytology, Institut Fédératif de Biologie, Toulouse University Hospital Center, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
| | - Yannick Degboe
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
- Rheumatology Department, Toulouse University Hospital Center, 31300 Toulouse, France
| | | | - Marina I. Arleevskaya
- Central Research Laboratory, Kazan State Medical Academy, 420012 Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Cyril Clavel
- Laboratory of Cell Biology and Cytology, Institut Fédératif de Biologie, Toulouse University Hospital Center, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
| | - Yves Renaudineau
- Referral Medical Biology Laboratory, Immunology Department, Institut Fédératif de Biologie, Toulouse University Hospital Center, 31300 Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM U1291, CNRS U5051, University Toulouse III, 31062 Toulouse, France
- Correspondence: ; Tel.: +33-561-776-245
| |
Collapse
|
5
|
Komech EA, Koltakova AD, Barinova AA, Minervina AA, Salnikova MA, Shmidt EI, Korotaeva TV, Loginova EY, Erdes SF, Bogdanova EA, Shugay M, Lukyanov S, Lebedev YB, Zvyagin IV. TCR repertoire profiling revealed antigen-driven CD8+ T cell clonal groups shared in synovial fluid of patients with spondyloarthritis. Front Immunol 2022; 13:973243. [PMID: 36325356 PMCID: PMC9618624 DOI: 10.3389/fimmu.2022.973243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Spondyloarthritis (SpA) comprises a number of inflammatory rheumatic diseases with overlapping clinical manifestations. Strong association with several HLA-I alleles and T cell infiltration into an inflamed joint suggest involvement of T cells in SpA pathogenesis. In this study, we performed high-throughput T cell repertoire profiling of synovial fluid (SF) and peripheral blood (PB) samples collected from a large cohort of SpA patients. We showed that synovial fluid is enriched with expanded T cell clones that are shared between patients with similar HLA genotypes and persist during recurrent synovitis. Using an algorithm for identification of TCRs involved in immune response we discovered several antigen-driven CD8+ clonal groups associated with risk HLA-B*27 or HLA-B*38 alleles. We further show that these clonal groups were enriched in SF and had higher frequency in PB of SpA patients vs healthy donors, implying their relevance to SpA pathogenesis. Several of the groups were shared among patients with different SpAs that suggests a common immunopathological mechanism of the diseases. In summary, our results provide evidence for the role of specific CD8+ T cell clones in pathogenesis of SpA.
Collapse
Affiliation(s)
- Ekaterina A. Komech
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anastasia D. Koltakova
- Department of Systemic Sclerosis, Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Anna A. Barinova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anastasia A. Minervina
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Maria A. Salnikova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Evgeniya I. Shmidt
- Department of Rheumatology, Pirogov City Clinical Hospital #1, Moscow, Russia
| | - Tatiana V. Korotaeva
- Department of Spondyloarthritis, Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Elena Y. Loginova
- Department of Spondyloarthritis, Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Shandor F. Erdes
- Department of Spondyloarthritis, Nasonova Research Institute of Rheumatology, Moscow, Russia
| | - Ekaterina A. Bogdanova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Mikhail Shugay
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Sergey Lukyanov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Yury B. Lebedev
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ivan V. Zvyagin
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Department of Molecular Technologies, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- *Correspondence: Ivan V. Zvyagin,
| |
Collapse
|
6
|
Abstract
Autoimmune disease is known to be caused by unregulated self-antigen-specific T cells, causing tissue damage. Although antigen specificity is an important mechanism of the adaptive immune system, antigen non-related T cells have been found in the inflamed tissues in various conditions. Bystander T cell activation refers to the activation of T cells without antigen recognition. During an immune response to a pathogen, bystander activation of self-reactive T cells via inflammatory mediators such as cytokines can trigger autoimmune diseases. Other antigen-specific T cells can also be bystander-activated to induce innate immune response resulting in autoimmune disease pathogenesis along with self-antigen-specific T cells. In this review, we summarize previous studies investigating bystander activation of various T cell types (NKT, γδ T cells, MAIT cells, conventional CD4+, and CD8+ T cells) and discuss the role of innate-like T cell response in autoimmune diseases. In addition, we also review previous findings of bystander T cell function in infection and cancer. A better understanding of bystander-activated T cells versus antigen-stimulated T cells provides a novel insight to control autoimmune disease pathogenesis.
Collapse
Affiliation(s)
- Chae-Hyeon Shim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Sookyung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young-Mi Shin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Sciences, Institute for Rheumatology Research, Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
7
|
Brouwers H, von Hegedus JH, van der Linden E, Mahdad R, Kloppenburg M, Toes R, Giera M, Ioan-Facsinay A. Hyaluronidase treatment of synovial fluid is required for accurate detection of inflammatory cells and soluble mediators. Arthritis Res Ther 2022; 24:18. [PMID: 34998422 PMCID: PMC8742425 DOI: 10.1186/s13075-021-02696-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synovial fluid (SF) is commonly used for diagnostic and research purposes, as it is believed to reflect the local inflammatory environment. Owing to its complex composition and especially the presence of hyaluronic acid, SF is usually viscous and non-homogeneous. In this study, we investigated the importance of homogenization of the total SF sample before subsequent analysis. METHODS SF was obtained from the knee of 29 arthritis patients (26 rheumatoid arthritis, 2 osteoarthritis, and 1 juvenile idiopathic arthritis patient) as part of standard clinical care. Synovial fluid was either treated with hyaluronidase as a whole or after aliquoting to determine whether the concentration of soluble mediators is evenly distributed in the viscous synovial fluid. Cytokine and IgG levels were measured by ELISA or Luminex and a total of seven fatty acid and oxylipin levels were determined using LC-MS/MS in all aliquots. For cell analysis, synovial fluid was first centrifuged and the pellet was separated from the fluid. The fluid was subsequently treated with hyaluronidase and centrifuged to isolate remaining cells. Cell numbers and phenotype were determined using flow cytometry. RESULTS In all patients, there was less variation in IgG, 17-HDHA, leukotriene B4 (LTB4), and prostaglandin E2 (PGE2) levels when homogenization was performed before aliquoting the SF sample. There was no difference in variation for cytokines, 15-HETE, and fatty acids arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Between 0.8 and 70% of immune cells (median 5%) remained in suspension and were missing in subsequent analyses when the cells were isolated from untreated SF. This percentage was higher for T and B cells: 7-85% (median 22%) and 7-88% (median 23 %), respectively. CONCLUSIONS Homogenization of the entire SF sample leads to less variability in IgG and oxylipin levels and prevents erroneous conclusions based on incomplete isolation of synovial fluid cells.
Collapse
Affiliation(s)
- Hilde Brouwers
- Department of Rheumatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | | | - Enrike van der Linden
- Department of Orthopedics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rachid Mahdad
- Department of Orthopedics, Alrijne Healthcare Group, Leiden, The Netherlands
| | - Margreet Kloppenburg
- Department of Rheumatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - René Toes
- Department of Rheumatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Andreea Ioan-Facsinay
- Department of Rheumatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
8
|
Abstract
Adaptive immunity plays central roles in the pathogenesis of rheumatoid arthritis (RA), as it is regarded as an autoimmune disease. Clinical investigations revealed infiltrations of B cells in the synovium, especially those with ectopic lymphoid neogenesis, associate with disease severity. While some B cells in the synovium differentiate into plasma cells producing autoantibodies such as anti-citrullinated protein antibody, others differentiate into effector B cells producing proinflammatory cytokines and expressing RANKL. Synovial B cells might also be important as antigen-presenting cells. Synovial T cells are implicated in the induction of antibody production as well as local inflammation. In the former, a recently identified CD4 T cell subset, peripheral helper T (Tph), which is characterized by the expression of PD-1 and production of CXCL13 and IL-21, is implicated, while the latter might be mediated by Th1-like CD4 T cell subsets that can produce multiple proinflammatory cytokines, including IFN-γ, TNF-α, and GM-CSF, and express cytotoxic molecules, such as perforin, granzymes and granulysin. CD8 T cells in the synovium are able to produce large amount of IFN-γ. However, the involvement of those lymphocytes in the pathogenesis of RA still awaits verification. Their antigen-specificity also needs to be clarified.
Collapse
Affiliation(s)
- Hisakata Yamada
- Department of Arthritis and Immunology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
10
|
Cruz-Muñoz ME, Fuentes-Pananá EM. Beta and Gamma Human Herpesviruses: Agonistic and Antagonistic Interactions with the Host Immune System. Front Microbiol 2018; 8:2521. [PMID: 29354096 PMCID: PMC5760548 DOI: 10.3389/fmicb.2017.02521] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses are the most abundant and diverse biological entities in the planet. Historically, our main interest in viruses has focused on their pathogenic role, recognized by pandemics that have decimated the world population. However, viral infections have also played a major role in the evolution of cellular organisms, both through interchanging of genes with novel functions and shaping the immune system. Examples abound of infections that seriously compromise the host integrity, but evidence of plant and insect viruses mutualistic relationships have recently surfaced in which infected hosts are better suited for survival, arguing that virus-host interactions are initially parasitic but become mutualistic over years of co-evolution. A similar mutual help scenario has emerged with commensal gut bacteria. EBV is a herpesvirus that shares more than a hundred million years of co-evolution with humans, today successfully infecting close to 100% of the adult world population. Infection is usually acquired early in childhood persisting for the host lifetime mostly without apparent clinical symptoms. Disturbance of this homeostasis is rare and results in several diseases, of which the best understood are infectious mononucleosis and several EBV-associated cancers. Less understood are recently found inborn errors of the immune system that result in primary immunodeficiencies with an increased predisposition almost exclusive to EBV-associated diseases. Puzzling to these scenarios of broken homeostasis is the co-existence of immunosuppression, inflammation, autoimmunity and cancer. Homologous to EBV, HCMV, HHV-6 and HHV-7 are herpesviruses that also latently infect most individuals. Several lines of evidence support a mutualistic equilibrium between HCMV/EBV and hosts, that when altered trigger diseases in which the immune system plays a critical role. Interestingly, these beta and gamma herpesviruses persistently infect all immune lineages and early precursor cells. In this review, we will discuss the evidence of the benefits that infection of immune cells with these herpesviruses brings to the host. Also, the circumstances in which this positive relationship is broken, predisposing the host to diseases characterized by an abnormal function of the host immune system.
Collapse
Affiliation(s)
- Mario E Cruz-Muñoz
- Laboratorio de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
11
|
Abstract
Cytological analysis of synovial fluid is widely used in the clinic to assess joint health and disease. However, in general practice, only the total number of white blood cells (WBCs) are available for cytologic evaluation of the joint. Moreover, sufficient volume of synovial aspirates is critical to run conventional analyses, despite limited volume of aspiration that can normally be obtained from a joint. Therefore, there is a lack of consistent and standardized synovial fluid cytological tests in the clinic. To address these shortcomings, we developed a microfluidic platform (Synovial Chip), for the first time in the literature, to achieve repeatable, cost- and time-efficient, and standardized synovial fluid cytological analysis based on specific cell surface markers. Microfluidic channels functionalized with antibodies against specific cell surface antigens are connected in series to capture WBC subpopulations, including CD4+, CD8+, and CD66b+ cells, simultaneously from miniscule volumes (100 μL) of synovial fluid aspirates. Cell capture specificity was evaluated by fluorescent labeling of isolated cells in microchannels and was around 90% for all three WBC subpopulations. Furthermore, we investigated the effect of synovial fluid viscosity on capture efficiency in the microfluidic channels and utilized hyaluronidase enzyme treatment to reduce viscosity and to improve cell capture efficiency (>60%) from synovial fluid samples. Synovial Chip allows efficient and standardized point-of-care isolation and analysis of WBC subpopulations in miniscule volumes of patient synovial fluid samples in the clinic.
Collapse
|
12
|
Gerlach K, Tomuschat C, Finke R, Staege MS, Brütting C, Brandt J, Jordan B, Schwesig R, Rosemeier A, Delank KS, Kornhuber ME, Emmer A. Experimental Arthritis in the Rat Induced by the Superantigen Staphylococcal Enterotoxin A. Scand J Immunol 2017; 85:191-196. [PMID: 28128856 DOI: 10.1111/sji.12530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 01/21/2017] [Indexed: 11/29/2022]
Abstract
The pathogenesis of rheumatoid arthritis (RA) is incompletely understood. Human endogenous retroviruses (HERVs) and their superantigenic envelope protein (env) have been implicated in the pathogenesis of RA. In the present investigation, the arthritogenic potential of the superantigen staphylococcal enterotoxin A (SEA) has been investigated. In the present investigation, the bacterial superantigen staphylococcal enterotoxin A (SEA) was injected into the right knee joint of 15 Lewis rats. Further nine animals received saline. Animals were sacrificed one, five and 10 days after the injection, respectively. The antigens CD3, CD4, CD8, MHC class I, MHC class II, Pax5 and CD138 were investigated by immunohistochemistry on cryo-sections. After intra-articular SEA injection, the inflammation was initially dominated by CD8+ T cells. In the course of the investigation, the numbers of CD4+, Pax5+, CD138+ and MHC class II+ cells increased. CD3 was expressed in low numbers as compared to CD8. After saline injection, no similar inflammatory response has been detected. The arthritis induced by the superantigen SEA may be a novel model for inflammatory joint diseases, that is rheumatoid arthritis or juvenile idiopathic arthritis.
Collapse
Affiliation(s)
- K Gerlach
- Department of Paediatric Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Paediatrics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - C Tomuschat
- Department of Paediatric Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - R Finke
- Department of Paediatric Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - M S Staege
- Department of Paediatrics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - C Brütting
- Department of Paediatrics, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - J Brandt
- Department of Orthopaedics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - B Jordan
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - R Schwesig
- Department of Orthopaedics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - A Rosemeier
- Department of Orthopaedics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - K-S Delank
- Department of Orthopaedics, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - M E Kornhuber
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - A Emmer
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
13
|
Broadley I, Pera A, Morrow G, Davies KA, Kern F. Expansions of Cytotoxic CD4 +CD28 - T Cells Drive Excess Cardiovascular Mortality in Rheumatoid Arthritis and Other Chronic Inflammatory Conditions and Are Triggered by CMV Infection. Front Immunol 2017; 8:195. [PMID: 28303136 PMCID: PMC5332470 DOI: 10.3389/fimmu.2017.00195] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022] Open
Abstract
A large proportion of cardiovascular (CV) pathology results from immune-mediated damage, including systemic inflammation and cellular proliferation, which cause a narrowing of the blood vessels. Expansions of cytotoxic CD4+ T cells characterized by loss of CD28 (“CD4+CD28− T cells” or “CD4+CD28null cells”) are closely associated with cardiovascular disease (CVD), in particular coronary artery damage. Direct involvement of these cells in damaging the vasculature has been demonstrated repeatedly. Moreover, CD4+CD28− T cells are significantly increased in rheumatoid arthritis (RA) and other autoimmune conditions. It is striking that expansions of this subset beyond 1–2% occur exclusively in CMV-infected people. CMV infection itself is known to increase the severity of autoimmune diseases, in particular RA and has also been linked to increased vascular pathology. A review of the recent literature on immunological changes in CVD, RA, and CMV infection provides strong evidence that expansions of cytotoxic CD4+CD28− T cells in RA and other chronic inflammatory conditions are limited to CMV-infected patients and driven by CMV infection. They are likely to be responsible for the excess CV mortality observed in these situations. The CD4+CD28− phenotype convincingly links CMV infection to CV mortality based on a direct cellular-pathological mechanism rather than epidemiological association.
Collapse
Affiliation(s)
- Iain Broadley
- Division of Medicine, Brighton and Sussex Medical School , Brighton , UK
| | - Alejandra Pera
- Division of Medicine, Brighton and Sussex Medical School, Brighton, UK; Department of Immunology, Maimonides Institute for Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Cordoba, Cordoba, Spain
| | - George Morrow
- Division of Medicine, Brighton and Sussex Medical School , Brighton , UK
| | - Kevin A Davies
- Division of Medicine, Brighton and Sussex Medical School , Brighton , UK
| | - Florian Kern
- Division of Medicine, Brighton and Sussex Medical School , Brighton , UK
| |
Collapse
|
14
|
Immune Mediators in Osteoarthritis: Infrapatellar Fat Pad-Infiltrating CD8+ T Cells Are Increased in Osteoarthritic Patients with Higher Clinical Radiographic Grading. Int J Rheumatol 2016; 2016:9525724. [PMID: 28070192 PMCID: PMC5192329 DOI: 10.1155/2016/9525724] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/25/2016] [Accepted: 11/09/2016] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis is a condition of joint failure characterized by many pathologic changes of joint-surrounding tissues. Many evidences suggest the role of both innate and adaptive immunity that interplay, resulting either in initiation or in progression of osteoarthritis. Adaptive immune cells, in particular T cells, have been demonstrated to play a role in the development of OA in animal models. However, the underlying mechanism is yet unclear. Our aim was to correlate the frequency and phenotype of tissue-infiltrating T cells in the synovial tissue and infrapatellar fat pad with radiographic grading. Our results show that CD8+ T cells are increased in osteoarthritic patients with higher radiographic grading. When peripheral blood CD8+ T cells were examined, we show that CD8+ T cells possess a significantly higher level of activation than its CD4+ T cell counterpart (P < 0.0001). Our results suggest a role for CD8+ T cells and recruitment of these activated circulating peripheral blood CD8+ T cells to the knee triggering local inflammation within the knee joint.
Collapse
|
15
|
Rist MJ, Hibbert KM, Croft NP, Smith C, Neller MA, Burrows JM, Miles JJ, Purcell AW, Rossjohn J, Gras S, Burrows SR. T Cell Cross-Reactivity between a Highly Immunogenic EBV Epitope and a Self-Peptide Naturally Presented by HLA-B*18:01+ Cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:4668-75. [PMID: 25855358 DOI: 10.4049/jimmunol.1500233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/12/2015] [Indexed: 01/06/2023]
Abstract
T cell cross-reactivity underpins the molecular mimicry hypothesis in which microbial peptides sharing structural features with host peptides stimulate T cells that cross-react with self-peptides, thereby initiating and/or perpetuating autoimmune disease. EBV represents a potentially important factor in the pathogenesis of several T cell-mediated autoimmune disorders, with molecular mimicry a likely mechanism. In this study, we describe a human self-peptide (DELEIKAY) that is a homolog of a highly immunogenic EBV T cell epitope (SELEIKRY) presented by HLA-B*18:01. This self-peptide was shown to bind stably to HLA-B*18:01, and peptide elution/mass spectrometric studies showed it is naturally presented by this HLA molecule on the surface of human cells. A significant proportion of CD8(+) T cells raised from some healthy individuals against this EBV epitope cross-reacted with the self-peptide. A diverse array of TCRs was expressed by the cross-reactive T cells, with variable functional avidity for the self-peptide, including some T cells that appeared to avoid autoreactivity by a narrow margin, with only 10-fold more of the self-peptide required for equivalent activation as compared with the EBV peptide. Structural studies revealed that the self-peptide-HLA-B*18:01 complex is a structural mimic of the EBV peptide-HLA-B*18:01 complex, and that the strong antiviral T cell response is primarily dependent on the alanine/arginine mismatch at position 7. To our knowledge, this is the first report confirming the natural presentation of a self-peptide cross-recognized in the context of self-HLA by EBV-reactive CD8(+) T cells. These results illustrate how aberrant immune responses and immunopathological diseases could be generated by EBV infection.
Collapse
Affiliation(s)
- Melissa J Rist
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Kelly M Hibbert
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and
| | - Nathan P Croft
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Corey Smith
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Michelle A Neller
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | | | - John J Miles
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; and
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia;
| |
Collapse
|
16
|
Oda K, Minata M. Drug free remission after steroid-dependent disappearance of lymphoproliferative disorder in rheumatoid arthritis patient treated with TNF-alpha blockade: case study. SPRINGERPLUS 2015; 4:41. [PMID: 25694859 PMCID: PMC4323387 DOI: 10.1186/s40064-015-0798-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/05/2015] [Indexed: 12/25/2022]
Abstract
Introduction TNF-α inhibitors plus MTX appear to have benefit in the longer-term reduction of RA. Boolean long-term remission under drug-free conditions is rare. The therapeutic mechanism and the factor of predicting response have not been clarified yet. Case description A 24-year-old female rheumatoid arthritis (RA) patient, who once attained complete remission (CR) with the combination therapy with tumor necrosis factor alpha (TNF-alpha) inhibitor adalimumab (ADA) and methotrexate (MTX), showed the occurrence of Epstain- Barr virus (EBV)-associated lymphoproliferative disorder (LPD). Pulse treatment with methylprednisolone after the termination of anti TNF-α therapy resulted in the remission of EBV-associated LPD. The administration of prednisolone (PSL) was tapered off after the improvement of clinical symptoms and laboratory data. The patients achieved drug-free 12 months after urgent hospitalization and delivered healthy baby 2 years after hospital discharge. She has been complete drug-free Boolean remission for 5 years. Discussion and evaluation The purpose of this brief case is report that we experienced the remission of LPD after CR with combined therapy with ADA and MTX. We believe this case report will be one of the paths for unveiling the pathogenesis and improving the treatment for RA. Conclusions We believe this case report will be one of the paths for unveiling the pathogenesis and improving the treatment for RA.
Collapse
Affiliation(s)
- Kosaku Oda
- Department of Orthopedic Surgery, Takatsuki Red Cross Hospital, 1-1-1 Abuno, Takatsuki, Osaka 569-1045 Japan
| | - Mutsuko Minata
- Department of Neurological Surgery, Ohio State University, 400 W Wiseman Hall 12th Ave, Columbus, Ohio 43210 USA
| |
Collapse
|
17
|
Lossius A, Johansen JN, Vartdal F, Robins H, Jūratė Šaltytė B, Holmøy T, Olweus J. High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells. Eur J Immunol 2014; 44:3439-52. [PMID: 25103993 DOI: 10.1002/eji.201444662] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/25/2014] [Accepted: 08/06/2014] [Indexed: 01/15/2023]
Abstract
Epstein-Barr virus (EBV) has long been suggested as a pathogen in multiple sclerosis (MS). Here, we used high-throughput sequencing to determine the diversity, compartmentalization, persistence, and EBV-reactivity of the T-cell receptor (TCR) repertoires in MS. TCR-β genes were sequenced in paired samples of cerebrospinal fluid (CSF) and blood from patients with MS and controls with other inflammatory neurological diseases. The TCR repertoires were highly diverse in both compartments and patient groups. Expanded T-cell clones, represented by TCR-β sequences >0.1%, were of different identity in CSF and blood of MS patients, and persisted for more than a year. Reference TCR-β libraries generated from peripheral blood T cells reactive against autologous EBV-transformed B cells were highly enriched for public EBV-specific sequences and were used to quantify EBV-reactive TCR-β sequences in CSF. TCR-β sequences of EBV-reactive CD8+ T cells, including several public EBV-specific sequences, were intrathecally enriched in MS patients only, whereas those of EBV-reactive CD4+ T cells were also enriched in CSF of controls. These data provide evidence for a clonally diverse, yet compartmentalized and persistent, intrathecal T-cell response in MS. The presented strategy links TCR sequence to intrathecal T-cell specificity, demonstrating enrichment of EBV-reactive CD8+ T cells in MS.
Collapse
Affiliation(s)
- Andreas Lossius
- Department of Immunology and Transfusion Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Neurology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
18
|
Epstein-Barr virus in systemic autoimmune diseases. Clin Dev Immunol 2013; 2013:535738. [PMID: 24062777 PMCID: PMC3766599 DOI: 10.1155/2013/535738] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/17/2013] [Indexed: 02/07/2023]
Abstract
Systemic autoimmune diseases (SADs) are a group of connective tissue diseases with diverse, yet overlapping, symptoms and autoantibody development. The etiology behind SADs is not fully elucidated, but a number of genetic and environmental factors are known to influence the incidence of SADs. Recent findings link dysregulation of Epstein-Barr virus (EBV) with SAD development. EBV causes a persistent infection with a tight latency programme in memory B-cells, which enables evasion of the immune defence. A number of immune escape mechanisms and immune-modulating proteins have been described for EBV. These immune modulating functions make EBV a good candidate for initiation of autoimmune diseases and exacerbation of disease progression. This review focuses on systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and Sjögren's syndrome (SS) and sum up the existing data linking EBV with these diseases including elevated titres of EBV antibodies, reduced T-cell defence against EBV, and elevated EBV viral load. Together, these data suggest that uncontrolled EBV infection can develop diverse autoreactivities in genetic susceptible individuals with different manifestations depending on the genetic background and the site of reactivation.
Collapse
|
19
|
Lossius A, Johansen JN, Torkildsen Ø, Vartdal F, Holmøy T. Epstein-Barr virus in systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis—association and causation. Viruses 2013; 4:3701-30. [PMID: 23342374 PMCID: PMC3528287 DOI: 10.3390/v4123701] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epidemiological data suggest that the Epstein-Barr virus (EBV) is associated with several autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. However, it is not clear whether EBV plays a role in the pathogenesis of these diseases, and if so, by which mechanisms the virus may contribute. In this review, we discuss possible viral and immunological mechanisms that might explain associations between EBV and autoimmune diseases and whether these associations represent causes or effects of inflammation and autoimmunity.
Collapse
Affiliation(s)
- Andreas Lossius
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway.
| | | | | | | | | |
Collapse
|
20
|
Carvalheiro H, da Silva JAP, Souto-Carneiro MM. Potential roles for CD8+ T cells in rheumatoid arthritis. Autoimmun Rev 2013; 12:401-9. [DOI: 10.1016/j.autrev.2012.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023]
|
21
|
Cytomegalovirus (CMV)-related cutaneous necrotizing vasculitis: case report and literature review. Braz J Infect Dis 2012; 16:482-5. [DOI: 10.1016/j.bjid.2012.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 03/18/2012] [Indexed: 11/22/2022] Open
|
22
|
Davis JM, Knutson KL, Skinner JA, Strausbauch MA, Crowson CS, Therneau TM, Wettstein PJ, Matteson EL, Gabriel SE. A profile of immune response to herpesvirus is associated with radiographic joint damage in rheumatoid arthritis. Arthritis Res Ther 2012; 14:R24. [PMID: 22293286 PMCID: PMC3392817 DOI: 10.1186/ar3706] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 12/23/2011] [Accepted: 01/31/2012] [Indexed: 12/18/2022] Open
Abstract
Introduction Progression of joint damage despite appropriate therapy remains a significant problem for patients with rheumatoid arthritis (RA). This study was undertaken to identify profiles of immune response that correlate with radiographic joint damage as a first step toward the discovery of new pathogenic mechanisms of joint destruction in RA. Methods The study included 58 patients with RA and 15 healthy controls. The profiles of cytokine release from peripheral blood mononuclear cells (PBMC) in response to stimulation for 48 hours with one of six stimuli, or in media alone, were measured. Immune response profiles identified for each stimulus were correlated with radiographic joint damage as defined by the Sharp-van der Heijde score (SHS), before and after multivariable adjustment. For profiles correlated with the SHS, the distributions of individual cytokines were evaluated in patients according to the severity of joint damage and compared to healthy controls. Results The immune response profile for cytomegalovirus (CMV)/Epstein-Barr virus (EBV) stimulation was correlated with both the SHS total and erosion scores (r = 0.31, P = 0.018 and r = 0.33, P = 0.011, respectively). After adjusting for age, sex, disease duration, autoantibody status, CMV/EBV serological status, current disease activity, disability and treatments, the correlation of the CMV/EBV immune response and the SHS erosion score became stronger (r = 0.43, P < 0.003). The CMV/EBV immune response correlated with CMV IgG (r = 0.44, P < 0.001), but not with EBV IgG. The most important cytokines for the CMV/EBV immune response profile were IFN-γ, IL-2, IL-4, IL-5, IL-13 and IL-17A, all of which are associated with T-cell immunity. Both the summary immune response score and the individual responses of IFN-γ and IL-13 to CMV/EBV stimulation were associated with greater joint damage. Conclusions A profile of immune response to purified CMV/EBV lysates is associated with radiographic joint damage. The correlation of this immune response to CMV serology implies possible involvement of latent CMV infection. Therefore, the findings suggest that the immune response to latent CMV infection could play a fundamental role in the progression of inflammation and structural joint damage in patients with RA.
Collapse
Affiliation(s)
- John M Davis
- Division of Rheumatology, Department of Medicine, College of Medicine, Mayo Clinic; 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Molnar-Kimber KL, Kimber CT. Each type of cause that initiates rheumatoid arthritis or RA flares differentially affects the response to therapy. Med Hypotheses 2011; 78:123-9. [PMID: 22051110 DOI: 10.1016/j.mehy.2011.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 01/21/2023]
Abstract
The autoimmune disease rheumatoid arthritis (RA) presents difficulty in diagnosis, commonly observed flare ups, polycyclical nature of RA progression, and variable response to therapies. Congruent with multiple causes, literature has documented various infectious agents, environmental factors, physical trauma, silica and food sensitivities as potential causes of RA or RA flares in different populations. We propose that these>36 events can initiate RA or RA flares which complicates treatment decisions. Each pharmaceutical medicine benefits 15-82% of RA patients. Predictive factors are needed. Because the initiating cause of RA or RA flare affects the type of joint damage, initial inflammatory response, adaptive immune response, and potential molecular mimicry, we propose the "RA cause affects response to therapy" (RACART) theory. The potential cause combined with confounding factors such as genetic risk factors, nutritional status, epigenetic status, inflammatory levels, and detoxification ability may help predict responses to various therapies.
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Patients with chronic large granular lymphocyte (LGL) leukemia often have rheumatoid arthritis (RA), neutropenia and splenomegaly, thereby resembling the manifestations observed in patients with Felty's syndrome, which is a rare complication of RA characterized by neutropenia and splenomegaly. Both entities have similar clinical and laboratory presentation, as well as a common genetic determinant, HLA-DR4, indicating they may be part of the same disease spectrum. This review paper seeks to discuss the underlying pathogenesis and therapeutic algorithm of RA, neutropenia and splenomegaly in the spectrum of LGL leukemia and Felty's syndrome. RECENT FINDINGS We hypothesize that there may be a common pathogenic mechanism between LGL leukemia and typical Felty's syndrome. Phenotypic and functional data have strongly suggested that CD3 LGL leukemia is antigen-activated. Aberrations in the T-cell repertoire with the emergence of oligoclonal/clonal lymphoid populations have been found to play a pivotal role in pathogenesis of RA. The biologic properties of the pivotal T cell involved in RA pathogenesis are remarkably similar to those in leukemic LGL. SUMMARY RA-associated T-cell LGL leukemia and articular manifestations of typical Felty's syndrome are not distinguishable. A common pathogenetic link between LGL leukemia and RA is proposed.
Collapse
Affiliation(s)
- Xin Liu
- Department of Medicine, Penn State Hershey Cancer Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-0850, USA.
| | | |
Collapse
|
25
|
Abstract
Osteoarthritis (OA), one of the most common rheumatic disorders, is characterized by cartilage breakdown and by synovial inflammation that is directly linked to clinical symptoms such as joint swelling, synovitis and inflammatory pain. The gold-standard method for detecting synovitis is histological analysis of samples obtained by biopsy, but the noninvasive imaging techniques MRI and ultrasonography might also perform well. The inflammation of the synovial membrane that occurs in both the early and late phases of OA is associated with alterations in the adjacent cartilage that are similar to those seen in rheumatoid arthritis. Catabolic and proinflammatory mediators such as cytokines, nitric oxide, prostaglandin E(2) and neuropeptides are produced by the inflamed synovium and alter the balance of cartilage matrix degradation and repair, leading to excess production of the proteolytic enzymes responsible for cartilage breakdown. Cartilage alteration in turn amplifies synovial inflammation, creating a vicious circle. As synovitis is associated with clinical symptoms and also reflects joint degradation in OA, synovium-targeted therapy could help alleviate the symptoms of the disease and perhaps also prevent structural progression.
Collapse
|
26
|
The ubiquitin–proteasome pathway and viral infections in articular cartilage of patients with osteoarthritis. Rheumatol Int 2009; 29:969-72. [DOI: 10.1007/s00296-009-0891-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 03/04/2009] [Indexed: 01/12/2023]
|
27
|
Pandya S. Methotrexate and hydroxychloroquine combination therapy in chronic chikungunya arthritis: a 16 week study. INDIAN JOURNAL OF RHEUMATOLOGY 2008. [DOI: 10.1016/s0973-3698(10)60125-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
28
|
Thomas R, Turner M, Cope AP. High avidity autoreactive T cells with a low signalling capacity through the T-cell receptor: central to rheumatoid arthritis pathogenesis? Arthritis Res Ther 2008; 10:210. [PMID: 18710589 PMCID: PMC2575618 DOI: 10.1186/ar2446] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Self-reactive T cells with low signalling capacity through the T-cell receptor were recently observed in the SKG mouse model of rheumatoid arthritis (RA) and have been linked to a spontaneous mutation in the ZAP-70 signal transduction molecule. Here we hypothesize that similar mechanisms also drive RA, associated with an abnormal innate and adaptive immune response driven by nuclear factor-κB activation and tumour necrosis factor secretion. Similar to the essential role played by pathogens in SKG mice, we propose that HLA-associated immunity to chronic viral infection is a key factor in the immune dysregulation and joint inflammation that characterize RA.
Collapse
Affiliation(s)
- Ranjeny Thomas
- Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia.
| | | | | |
Collapse
|
29
|
Abstract
Psoriatic arthritis is characterized by chronic inflammation of the skin and synovial joint. T cells are abundant in the inflamed joint and skin. Disease susceptibility is associated with major histocompatibility complex, which presents antigens to T cells. T cells in the synovial joints have an activated phenotype and demonstrate selective T-cell receptor usage suggestive of oligoclonal expansions. Taken together, these facts suggest that psoriatic arthritis is driven by antigen or autoantigen-driven T-cell activation. The therapeutic benefit of anti-T-cell agents further supports an important pathogenic role for T cells in persistent synovial inflammation and joint damage in psoriatic arthritis.
Collapse
Affiliation(s)
- Ernest Choy
- Academic Department of Rheumatology, King's College London, Weston Education Center, Cutcombe Road, London, SE5 9PJ, UK.
| |
Collapse
|
30
|
Fekete A, Soos L, Szekanecz Z, Szabo Z, Szodoray P, Barath S, Lakos G. Disturbances in B- and T-cell homeostasis in rheumatoid arthritis: suggested relationships with antigen-driven immune responses. J Autoimmun 2007; 29:154-63. [PMID: 17826949 DOI: 10.1016/j.jaut.2007.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 07/17/2007] [Accepted: 07/17/2007] [Indexed: 11/17/2022]
Abstract
Naïve and memory B- and T-cell subsets were examined with three-color flow cytometry in the peripheral blood of patients with rheumatoid arthritis (RA) in comparison with healthy controls, and their association with disease duration, activity and autoantibodies was investigated in order to reveal potential imprints of antigen-specific immune response in RA. The B-cell population consisted of significantly less naïve (58.1+/-3.9% versus 68.7+/-3.7%; p=0.04), and more IgD-/CD27+ memory B cells (19.6+/-2.1% versus 13.7+/-2.1%; p=0.04) compared to healthy subjects. In addition, strong correlation was demonstrated between disease duration and the percentage of memory B cells (p<0.0001). Increased CD8+ terminally differentiated effector memory/central memory T-cell ratio (1.35+/-0.35 versus 0.84+/-0.24) was also detected in RA patients compared with controls, which also correlated with the duration of RA (p=0.005). The frequency of memory B cells and CD8+ effector memory T cells correlated with the proportion of CD4+ effector memory lymphocytes, suggesting cooperation between immune cells. Our results reflect disturbances in B- and T-cell homeostasis characterized by the accumulation of memory B cells and a shift towards CD8+ terminally differentiated effector memory T cells in RA, suggesting ongoing, antigen-driven immune response and accelerated differentiation of B and T lymphocytes into effector cells.
Collapse
Affiliation(s)
- Andrea Fekete
- Laboratory of Immunology, 3rd Department of Medicine, Medical and Health Science Center, University of Debrecen, 22 Moricz Street, H-4032 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
31
|
Miceli-Richard C, Mariette X. EBV-specific T-cell response and immunosuppression by methotrexate and TNFα antagonists in patients with chronic inflammatory joint disease. Joint Bone Spine 2007; 74:560-2. [DOI: 10.1016/j.jbspin.2007.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
|
32
|
Toussirot E, Roudier J. Pathophysiological links between rheumatoid arthritis and the Epstein–Barr virus: An update. Joint Bone Spine 2007; 74:418-26. [PMID: 17625943 DOI: 10.1016/j.jbspin.2007.05.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Accepted: 01/31/2007] [Indexed: 12/17/2022]
Abstract
Numerous associations have been documented between the Epstein-Barr virus (EBV) and rheumatoid arthritis (RA). Thus, anti-EBV antibody titers are higher in RA patients than in healthy controls. Lymphocytes from RA patients show impaired responses to EBV. Several EBV antigens share similarities with self antigens; more specifically, the glycine/alanine repeats in EBNA-1 resemble synovial proteins and the EBV gp110 glycoprotein contains a copy of the shared epitope. Cell-mediated responses to EBV replicative cycle proteins and to gp110 have been documented in joint fluid from RA patients. In situ hybridization and PCR techniques have identified EBV antigens and genetic material within the rheumatoid synovium, albeit with variable yields. The EBV burden in peripheral blood mononuclear cells is higher in RA patients than in controls. EBNA-1 can undergo citrullination, and the EBV can induce antibodies to citrullinated peptides. RA patients are at increased risk for lymphoma, including EBV-associated lymphoma. Despite these multiple and complex links between EBV and RA, proof of a causal association is lacking. EBV infection may contribute indirectly to the pathophysiology of RA by impairing immune control of EBV replication, causing increased exposure to EBV antigens and, thereby, chronic inflammation. The effect of biotherapies for RA on EBV-host relations needs to be investigated.
Collapse
Affiliation(s)
- Eric Toussirot
- Rheumatology Department, Jean Minjoz Teaching Hospital, Boulevard A. Fleming, 25030 Besançon, France.
| | | |
Collapse
|
33
|
Pedroza-Seres M, Linares M, Voorduin S, Enrique RR, Lascurain R, Garfias Y, Jimenez-Martinez MC. Pars planitis is associated with an increased frequency of effector-memory CD57+ T cells. Br J Ophthalmol 2007; 91:1393-8. [PMID: 17475702 PMCID: PMC2001003 DOI: 10.1136/bjo.2007.116277] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIM To evaluate the frequency, phenotype and the potential function of CD57+ T cell subsets in patients with pars planitis. METHODS CD4+CD57+ and CD8+CD57+ T cells were quantitated in peripheral blood from 15 patients with pars planitis and 15 healthy controls. To evaluate the phenotype and potential function of CD57+ T cell subsets CCR7, CD27, CD28, CD45RA, CD45RO, intracellular IFN-gamma, IL-4, perforin and granzyme-A expression were assessed by flow cytometry. RESULTS CD57+ T cells subsets were increased in patients with pars planitis (p = 0.002). The majority of CD4+CD57+ T cells were CCR7-CD27-CD28-CD45RO+, while the most CD8+CD57+ T cells were CCR7-CD27-CD28-CD45RA+. The number of cells positive for intracellular IFN-gamma and IL-4 was higher in the CD57+ T cell populations. A greater number of CD8+CD57+ T cells than CD8+CD57- T cells were positive to perforin (p = 0.006) and granzyme-A (p = 0.01). CONCLUSIONS CD57+ T cells had a phenotype associated with peripheral memory (CCR7-CD27-CD28-). Cytokine production by CD57+ T cells suggests that these cells may play a role in helper cell regulation. High expression of intracellular proteins involved in cytotoxicity suggests that CD8+CD57+ T cells may play an effector role. Taken together, this study proposes that CD57+ T cells function as memory-effector T cell subsets during pars planitis pathogenesis.
Collapse
Affiliation(s)
- Miguel Pedroza-Seres
- Research Unit and Uvea Department, Institute of Ophthalmology, Fundación Conde de Valenciana, Chimalpopoca 14, Col Obrera, CP 06800, México DF, México
| | | | | | | | | | | | | |
Collapse
|
34
|
Sakkas LI, Platsoucas CD. The role of T cells in the pathogenesis of osteoarthritis. ACTA ACUST UNITED AC 2007; 56:409-24. [PMID: 17265476 DOI: 10.1002/art.22369] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Lazaros I Sakkas
- Temple University School of Medicine, Philadelphia, PA, USA and Thessaly University School of Medicine, Larisa, Greece
| | | |
Collapse
|
35
|
Hartwig UF, Nonn M, Khan S, Meyer RG, Huber C, Herr W. Depletion of alloreactive T cells via CD69: implications on antiviral, antileukemic and immunoregulatory T lymphocytes. Bone Marrow Transplant 2006; 37:297-305. [PMID: 16327814 DOI: 10.1038/sj.bmt.1705238] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Selective depletion of alloreactive T cells from stem-cell allografts should abrogate graft-versus-host disease while preserving beneficial T cell specificities to facilitate engraftment and immune reconstitution. We therefore explored a refined immunomagnetic separation strategy to effectively deplete alloreactive donor lymphocytes expressing the activation antigen CD69 upon stimulation, and examined the retainment of antiviral, antileukemic, and immunoregulatory T cells. In addition to the CD69high T cell fraction, our studies retrieved two T cell subsets based on residual CD69 expression. Whereas, truly CD69(neg) cells were devoid of detectable alloresponses to original stimulators, CD69-low (CD69low)-expressing T cells elicited significant residual alloreactivity upon restimulation. In interferon-gamma enzyme linked immunospot assays, anti-cytomegalovirus and anti-Epstein-Barr virus responses were preserved at significant numbers among CD69neg T lymphocytes. Accordingly, T cells recognizing the leukemia-associated Wilm's tumor-1 antigen were still detectable in the CD69neg subset. However, antiviral and antileukemic specificities were also consistently found within CD69low T cells, suggesting that memory-type donor T cells were partially captured due to residual CD69 expression. Finally, CD4+CD25+ Foxp3+ immunoregulatory T cells did not upregulate CD69 upon allogeneic stimulation. Our data suggest that CD69-mediated removal of alloreactivity can result in efficient allodepletion, but may partially affect the persistence of antiviral and antileukemic donor memory specificities captured among CD69low-expressing lymphocytes.
Collapse
Affiliation(s)
- U F Hartwig
- Department of Medicine III--Hematology and Oncology, Johannes Gutenberg-University School of Medicine, Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Söderberg-Nauclér C. Does cytomegalovirus play a causative role in the development of various inflammatory diseases and cancer? J Intern Med 2006; 259:219-46. [PMID: 16476101 DOI: 10.1111/j.1365-2796.2006.01618.x] [Citation(s) in RCA: 239] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human cytomegalovirus (HCMV) is a herpes virus that infects and is carried by 70-100% of the world's population. During its evolution, this virus has developed mechanisms that allow it to survive in an immunocompetent host. For many years, HCMV was not considered to be a major human pathogen, as it appeared to cause only rare cases of HCMV inclusion disease in neonates. However, HCMV is poorly adapted for survival in the immunosuppressed host and has emerged as an important human pathogen in AIDS patients and in patients undergoing immunosuppressive therapy following organ or bone marrow transplantation. HCMV-mediated disease in such patients has highlighted the possible role of this virus in the development of other diseases, in particular inflammatory diseases such as vascular diseases, autoimmune diseases and, more recently, with certain forms of cancers. Current research is focused on determining whether HCMV plays a causative role in these diseases or is merely an epiphenomenon of inflammation. Inflammation plays a central role in the pathogenesis of HCMV. This virus has developed a number of mechanisms that enable it to hide from the cells of the immune system and, at the same time, reactivation of a latent infection requires immune activation. Numerous products of the HCMV genome are devoted to control central functions of the innate and adaptive immune responses. By influencing the regulation of various cellular processes including the cell cycle, apoptosis and migration as well as tumour invasiveness and angiogenesis, HCMV may participate in disease development. Thus, the various drugs now available for treatment of HCMV disease (e.g. ganciclovir, acyclovir and foscarnet), may also prove to be useful in the treatment of other, more widespread diseases.
Collapse
Affiliation(s)
- C Söderberg-Nauclér
- Department of Medicine, Center for Molecular Medicine, L8:03, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
37
|
Söderholm J, Ahlén G, Kaul A, Frelin L, Alheim M, Barnfield C, Liljeström P, Weiland O, Milich DR, Bartenschlager R, Sällberg M. Relation between viral fitness and immune escape within the hepatitis C virus protease. Gut 2006; 55:266-74. [PMID: 16105887 PMCID: PMC1856491 DOI: 10.1136/gut.2005.072231] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The hepatitis C virus (HCV) mutates within human leucocyte antigen (HLA) class I restricted immunodominant epitopes of the non-structural (NS) 3/4A protease to escape cytotoxic T lymphocyte (CTL) recognition and promote viral persistence. However, variability is not unlimited, and sometimes almost absent, and factors that restrict viral variability have not been defined experimentally. AIMS We wished to explore whether the variability of the immunodominant CTL epitope at residues 1073-1081 of the NS3 protease was limited by viral fitness. PATIENTS Venous blood was obtained from six patients (four HLA-A2+) with chronic HCV infection and from one HLA-A2+ patient with acute HCV infection. METHODS NS3/4A genes were amplified from serum, cloned in a eukaryotic expression plasmid, sequenced, and expressed. CTL recognition of naturally occurring and artificially introduced escape mutations in HLA-A2-restricted NS3 epitopes were determined using CTLs from human blood and genetically immunised HLA-A2-transgenic mice. HCV replicons were used to test the effect of escape mutations on HCV protease activity and RNA replication. RESULTS Sequence analysis of NS3/4A confirmed low genetic variability. The major viral species had functional proteases with 1073-1081 epitopes that were generally recognised by cross reactive human and murine HLA-A2 restricted CTLs. Introduction of mutations at five positions of the 1073-1081 epitope prevented CTL recognition but three of these reduced protease activity and RNA replication. CONCLUSIONS Viral fitness can indeed limit the variability of HCV within immunological epitopes. This helps to explain why certain immunological escape variants never appear as a major viral species in infected humans.
Collapse
Affiliation(s)
- J Söderholm
- Division of Clinical Virology, Karolinska Institutet at Karolinska University Hospital, S-141 86 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Miles JJ, Elhassen D, Borg NA, Silins SL, Tynan FE, Burrows JM, Purcell AW, Kjer-Nielsen L, Rossjohn J, Burrows SR, McCluskey J. CTL recognition of a bulged viral peptide involves biased TCR selection. THE JOURNAL OF IMMUNOLOGY 2005; 175:3826-34. [PMID: 16148129 DOI: 10.4049/jimmunol.175.6.3826] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MHC class I molecules generally present peptides of 8-10 aa long, forming an extended coil in the HLA cleft. Although longer peptides can also bind to class I molecules, they tend to bulge from the cleft and it is not known whether the TCR repertoire has sufficient plasticity to recognize these determinants during the antiviral CTL response. In this study, we show that unrelated individuals infected with EBV generate a significant CTL response directed toward an HLA-B*3501-restricted, 11-mer epitope from the BZLF1 Ag. The 11-mer determinant adopts a highly bulged conformation with seven of the peptide side chains being solvent-exposed and available for TCR interaction. Such a complex potentially creates a structural challenge for TCR corecognition of both HLA-B*3501 and the peptide Ag. Surprisingly, unrelated B*3501 donors recognizing the 11-mer use identical or closely related alphabeta TCR sequences that share particular CDR3 motifs. Within the small number of dominant CTL clonotypes observed, each has discrete fine specificity for the exposed side chain residues of the peptide. The data show that bulged viral peptides are indeed immunogenic but suggest that the highly constrained TCR repertoire reflects a limit to TCR diversity when responding to some unusual MHC peptide ligands.
Collapse
Affiliation(s)
- John J Miles
- Cellular Immunology Laboratory, Queensland Institute of Medical Research, Brisbane, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sollid LM, Jabri B. Is celiac disease an autoimmune disorder? Curr Opin Immunol 2005; 17:595-600. [PMID: 16214317 DOI: 10.1016/j.coi.2005.09.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/16/2005] [Indexed: 01/12/2023]
Abstract
Celiac disease, which results from an immune reaction to ingested cereal gluten proteins, has several autoimmune features. In particular, celiac disease patients produce highly disease specific IgA and IgG autoantibodies to tissue transglutaminase when they are on a gluten-containing diet, and they have small intestinal intraepithelial lymphocytes which can mediate direct cytotoxicity of enterocytes expressing MIC molecules in an antigen non-specific manner. Similar to typical autoimmune disorders, celiac disease has a multifactorial aetiology with complex genetics, and several autoimmune diseases are commonly presented by patients with celiac disease. Much has been learned about the immunology of celiac disease in recent years, and there is overwhelming evidence that the immune response to gluten is central to the pathogenesis. In light of this, the many autoimmune phenomena associated with celiac disease are thought-provoking, and they challenge us to rethink the boundaries between autoimmunity and immunopathology.
Collapse
Affiliation(s)
- Ludvig M Sollid
- Institute of Immunology, University of Oslo and Rikshospitalet University Hospital, Rikshospitalet, N-0027 Oslo, Norway.
| | | |
Collapse
|
40
|
Lin WL, Fincke JE, Sharer LR, Monos DS, Lu S, Gaughan J, Platsoucas CD, Oleszak EL. Oligoclonal T cells are infiltrating the brains of children with AIDS: sequence analysis reveals high proportions of identical beta-chain T-cell receptor transcripts. Clin Exp Immunol 2005; 141:338-56. [PMID: 15996199 PMCID: PMC1809433 DOI: 10.1111/j.1365-2249.2005.02845.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We have recently described the presence of perivascular CD3+ CD45RO+ T cells infiltrating the brains of children with AIDS. To determine whether these infiltrates contain oligoclonal populations of T cells, we amplified by PCR beta-chain T-cell receptor (TCR) transcripts from autopsy brains of four paediatric patients with AIDS. The amplified transcripts were cloned and sequenced. Sequence analysis of the beta-chain TCR transcripts from all four patients revealed multiple identical copies of TCR beta-chain transcripts, suggesting the presence of oligoclonal populations of T-cells. These TCR transcripts were novel. The presence of oligoclonal populations of T cells in the brains of these four paediatric patients with AIDS suggests that these T cells have undergone antigen-driven proliferation and clonal expansion very likely in situ, in the brains of these AIDS patients, in response to viral or self-antigens. Although the specificity of the clonally expanded beta-chain TCR transcripts remains to be elucidated, none of the beta-chain TCR transcripts identified in this study were identical to those specific for HIV-1 antigens that are currently reported in the GENBANK/EMBL databases. Certain common CDR3 motifs were observed in brain-infiltrating T cells within and between certain patients. Large proportions (24 of 61; 39%) of beta-chain TCR clones from one patient (NP95-73) and 2 of 27 (7%) of another patient (NP95-184-O) exhibited substantial CDR3 homology to myelin basic protein (MBP)-specific TCR derived from normal donors or TCR expressed in the brain of patients with multiple sclerosis (MS) or with viral encephalitis. These two patients (NP95-73 and NP95-184-O) also shared HLA class II with the normal donors and the MS patients who expressed these homologous TCR. Pathologic examination at autopsy of the brains revealed the presence of myelin pallor only in patient NP95-73. T-cell clones identified in the brain of patients NP95-73 and NP95-184-O may recognize MBP or another CNS self antigen and this recognition may be restricted by either DRB1*15 or DQB1*0602 specificities.
Collapse
Affiliation(s)
- W L Lin
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Hislop AD, Kuo M, Drake-Lee AB, Akbar AN, Bergler W, Hammerschmitt N, Khan N, Palendira U, Leese AM, Timms JM, Bell AI, Buckley CD, Rickinson AB. Tonsillar homing of Epstein-Barr virus-specific CD8+ T cells and the virus-host balance. J Clin Invest 2005; 115:2546-55. [PMID: 16110323 PMCID: PMC1187932 DOI: 10.1172/jci24810] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Accepted: 06/07/2005] [Indexed: 11/17/2022] Open
Abstract
Patients with infectious mononucleosis (IM) undergoing primary EBV infection show large expansions of EBV-specific CD8+ T cells in the blood. While latent infection of the B cell pool is quickly controlled, virus shedding from lytically infected cells in the oropharynx remains high for several months. We therefore studied how responses localize to the tonsil, a major target site for EBV, during primary infection and persistence. In acute IM, EBV-specific effectors were poorly represented among CD8+ T cells in tonsil compared with blood, coincident with absence of the CCR7 lymphoid homing marker on these highly activated cells. In patients who had recently recovered from IM, latent epitope reactivities were quicker than lytic reactivities both to acquire CCR7 and to accumulate in the tonsil, with some of these cells now expressing the CD103 integrin, which mediates retention at mucosal sites. By contrast, in long-term virus carriers in whom both lytic and latent infections had been controlled, there was 2- to 5-fold enrichment of lytic epitope reactivities and 10- to 20-fold enrichment of latent epitope reactivities in tonsil compared with blood; up to 20% of tonsillar CD8+ T cells were EBV specific, and many now expressed CD103. We suggest that efficient control of EBV infection requires appropriate CD8+ T cell homing to oropharyngeal sites.
Collapse
Affiliation(s)
- Andrew D Hislop
- Institute for Cancer Studies and Medical Research Council Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Reports of infection with certain chronic persistent microbes (herpesviruses or Chlamydiae) in human autoimmune diseases are consistent with the hypothesis that these microbes are reactivated in the setting of immunodeficiency and often target the site of autoimmune inflammation. New experimental animal models demonstrate the principle. A herpesvirus or Chlamydia species can be used to infect mice with induced transient autoimmune diseases. This results in increased disease severity and even relapse. The evidence suggests that the organisms are specifically imported to the inflammatory sites and cause further tissue destruction, especially when the host is immunosuppressed. We review the evidence for the amplification of autoimmune inflammatory disease by microbial infection, which may be a general mechanism applicable to many human diseases. We suggest that patients with autoimmune disorders receiving immunosuppressing drugs should benefit from preventive antiviral therapy.
Collapse
Affiliation(s)
- David N Posnett
- Immunology Program, Graduate School of Medical Sciences, Weill Medical College, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Rheumatoid arthritis is a complex multisystem disorder. The manifestations of joint disease are usually clinically apparent, but the effects of the concomitant abnormalities of immune function are more subtle. It has been suggested that patients with rheumatoid arthritis have an impaired capacity to control infection with Epstein-Barr virus. Epstein-Barr virus has oncogenic potential and is implicated in the development of some lymphomas. This review analyses the relation between Epstein-Barr virus, rheumatoid arthritis, and the risk of lymphoma and considers the effect of immunosuppression on this triad. RECENT FINDINGS Recent publications provide evidence for an altered Epstein-Barr virus-host balance in patients with rheumatoid arthritis, who have a relatively high Epstein-Barr virus load. Large epidemiologic studies confirm that lymphoma is more likely to develop in patients with rheumatoid arthritis than in the general population. The overall risk of development of lymphoma has not risen with the increased use of methotrexate or biologic agents. Histologic analysis reveals that most lymphomas in rheumatoid arthritis patients are diffuse large B cell lymphomas, a form of non-Hodgkin lymphoma. Epstein-Barr virus is detected in a proportion of these. SUMMARY Overall, patients with rheumatoid arthritis have approximately a twofold increased risk of experiencing lymphoma. Some, but not all, of this increased risk reflects an increase in Epstein-virus-associated lymphomas. This in turn may be influenced by the elevated Epstein-Barr virus load found in rheumatoid arthritis patients and may reflect subtle impairment of antiviral immunity in this group of patients.
Collapse
Affiliation(s)
- Margaret F C Callan
- Department of Immunology, Division of Medicine, Imperial College, London, UK.
| |
Collapse
|
44
|
Yarilin DA, Valiando J, Posnett DN. A Mouse Herpesvirus Induces Relapse of Experimental Autoimmune Arthritis by Infection of the Inflammatory Target Tissue. THE JOURNAL OF IMMUNOLOGY 2004; 173:5238-46. [PMID: 15470069 DOI: 10.4049/jimmunol.173.8.5238] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is not known what is required for successive relapses in autoimmune diseases or evolution to a progressive chronic disease. Autoimmune arthritis caused by passive transfer of autoantibodies against glucose 6-phosphate isomerase is transient and therefore lends itself well to test for what might extend the disease. Herpesviruses have long been suspected of contributing to human autoimmune disease. We infected mice with a murine gamma-herpesvirus (MHV-68). In immunodeficient mice, transient arthritis was followed by a relapse. This was due to lytic viral infection of synovial tissues demonstrated by PCR, immunohistochemistry, and electron microscopy. Latent infection could be reactivated in the synovium of normal mice when treated with Cytoxan and this was associated with increased clinical arthritis. We conclude that herpesviruses may play an ancillary pathogenic role in autoimmune arthritis by infection of the inflammatory target tissue.
Collapse
Affiliation(s)
- Dmitry A Yarilin
- Immunology Program, Graduate School of Medical Sciences, Division of Hematology-Oncology, Weill Medical College, Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
45
|
van Leeuwen EMM, Remmerswaal EBM, Vossen MTM, Rowshani AT, Wertheim-van Dillen PME, van Lier RAW, ten Berge IJM. Emergence of a CD4+CD28−Granzyme B+, Cytomegalovirus-Specific T Cell Subset after Recovery of Primary Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2004; 173:1834-41. [PMID: 15265915 DOI: 10.4049/jimmunol.173.3.1834] [Citation(s) in RCA: 282] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytotoxic CD4(+)CD28(-) T cells form a rare subset in human peripheral blood. The presence of CD4(+)CD28(-) cells has been associated with chronic viral infections, but how these particular cells are generated is unknown. In this study, we show that in primary CMV infections, CD4(+)CD28(-) T cells emerge just after cessation of the viral load, indicating that infection with CMV triggers the formation of CD4(+)CD28(-) T cells. In line with this, we found these cells only in CMV-infected persons. CD4(+)CD28(-) cells had an Ag-primed phenotype and expressed the cytolytic molecules granzyme B and perforin. Importantly, CD4(+)CD28(-) cells were to a large extent CMV-specific because proliferation was only induced by CMV-Ag, but not by recall Ags such as purified protein derivative or tetanus toxoid. CD4(+)CD28(-) cells only produced IFN-gamma after stimulation with CMV-Ag, whereas CD4(+)CD28(+) cells also produced IFN-gamma in response to varicella-zoster virus and purified protein derivative. Thus, CD4(+)CD28(-) T cells emerge as a consequence of CMV infection.
Collapse
Affiliation(s)
- Ester M M van Leeuwen
- Department of Internal Medicine, and Laboratory of for Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
46
|
Curran SA, FitzGerald OM, Costello PJ, Selby JM, Kane DJ, Bresnihan B, Winchester R. Nucleotide sequencing of psoriatic arthritis tissue before and during methotrexate administration reveals a complex inflammatory T cell infiltrate with very few clones exhibiting features that suggest they drive the inflammatory process by recognizing autoantigens. THE JOURNAL OF IMMUNOLOGY 2004; 172:1935-44. [PMID: 14734779 DOI: 10.4049/jimmunol.172.3.1935] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Psoriatic arthritis is an interesting MHC class I allele associated autoimmune disease where injury is likely mediated exclusively by T cells. We used TCR beta-chain nucleotide sequencing to gain insight into the adaptive immune events responsible for this injury and determine whether the numerous oligoclonal expansions of this disease represent extreme determinant spreading among driving clones that recognize autoantigen or were non-Ag-driven, inflammation-related expansions. Because methotrexate suppresses but does not eliminate this inflammation, we hypothesized that clones persisting during methotrexate treatment would likely drive the inflammation. Seventy-six percent of the T cell clones in active tissue were polyclonal and unexpanded, accounting for 31% of transcripts. They were decreased greatly by methotrexate. Strikingly, most expanded clones in the inflamed joint did not persist during methotrexate treatment, were found only in inflammatory sites, exhibited no structural homology to one another, and were either CD4 or CD8 in lineage, suggesting they were non-autoantigen-driven, inflammation-related expansions. Only 12% of the expanded clones could be grouped into clonal sets distinguished by structurally homologous CDR3 beta-chain amino acid motifs suggesting Ag drive. These were exclusively CD8 in lineage, persisted during methotrexate administration, and were present in both joint fluid and blood implying they were candidate driver clones that recognized an autoantigen. However, a major set of putative driver clones exhibited a previously described EBV-specific beta-chain motif, emphasizing that the dominant feature of the disease was activation of multiple clones apparently lacking specificity for an inciting autoantigen.
Collapse
Affiliation(s)
- Shane A Curran
- Division of Autoimmune and Molecular Disease, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Sakkas LI, Koussidis G, Avgerinos E, Gaughan J, Platsoucas CD. Decreased expression of the CD3zeta chain in T cells infiltrating the synovial membrane of patients with osteoarthritis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:195-202. [PMID: 14715568 PMCID: PMC321327 DOI: 10.1128/cdli.11.1.195-202.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 07/16/2003] [Accepted: 10/02/2003] [Indexed: 01/05/2023]
Abstract
Osteoarthritis (OA) is a heterogeneous disease which rheumatologists consider to be noninflammatory. However, recent studies suggest that, at least in certain patients, OA is an inflammatory disease and that patients often exhibit inflammatory infiltrates in the synovial membranes (SMs) of macrophages and activated T cells expressing proinflammatory cytokines. We report here that the expression of CD3zeta is significantly decreased in T cells infiltrating the SMs of patients with OA. The CD3zeta chain is involved in the T-cell signal transduction cascade, which is initiated by the engagement of the T-cell antigen receptor and which culminates in T-cell activation. Double immunofluorescence of single-cell suspensions derived from the SMs from nine patients with OA revealed significantly increased proportions of CD3epsilon-positive (CD3epsilon+) cells compared with the proportions of CD3zeta-positive (CD3zeta+) T cells (means +/- standard errors of the means, 80.48% +/- 3.92% and 69.02% +/- 6.51%, respectively; P = 0.0096), whereas there were no differences in the proportions of these cells in peripheral blood mononuclear cells (PBMCs) from healthy donors (94.73% +/- 1.39% and 93.79% +/- 1.08%, respectively; not significant). The CD3zeta+ cell/CD3epsilon+ cell ratio was also significantly decreased for T cells from the SMs of patients with OA compared with that for T cells from the PBMCs of healthy donors (0.84 +/- 0.17 and 0.99 +/- 0.01, respectively; P = 0.0302). The proportions of CD3epsilon+ CD3zeta+ cells were lower in the SMs of patients with OA than in the PBMCs of healthy donors (65.04% +/- 6.7% and 90.81% +/- 1.99%, respectively; P = 0.0047). Substantial proportions (about 15%) of CD3epsilon+ CD3zeta-negative (CD3zeta-) and CD3epsilon-negative (CD3epsilon-) CD3zeta- cells were found in the SMs of patients with OA. Amplification of the CD3zeta and CD3delta transcripts from the SMs of patients with OA by reverse transcriptase PCR consistently exhibited stronger bands for CD3delta cDNA than for CD3zeta cDNA The CD3zeta/CD3delta transcript ratio in the SMs of patients with OA was significantly lower than that in PBMCs from healthy controls (P < 0.0001). These results were confirmed by competitive MIMIC PCR. Immunoreactivities for the CD3zeta protein were detected in the SMs of 10 of 19 patients with OA, and they were of various intensities, whereas SMs from all patients were CD3epsilon+ (P = 0.0023). The decreased expression of the CD3zeta transcript and protein in T cells from the SMs of patients with OA relative to that of the CD3epsilon transcript is suggestive of chronic T-cell stimulation and supports the concept of T-cell involvement in OA.
Collapse
Affiliation(s)
- Lazaros I Sakkas
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
48
|
Callan MFC. The evolution of antigen-specific CD8+ T cell responses after natural primary infection of humans with Epstein-Barr virus. Viral Immunol 2003; 16:3-16. [PMID: 12725684 DOI: 10.1089/088282403763635401] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is a persistent, gamma-herpes virus that infects 90% of the human population. Primary infection, particularly if it is delayed until adolescence or beyond, may cause acute infectious mononucleosis and persistent infection may be associated with the development of several malignancies. CD8(+) T cells play a critical role in controlling both the primary and persistent phases of infection. This review summarises work that has been done characterising the primary immune responses to EBV. It goes on to describe the down regulation of the primary immune response and to discuss some of the factors that may be involved in determining the death or survival of populations of antigen-specific CD8(+) T cells. Finally it describes features of the populations of memory cells that mediate the long-term control of EBV in healthy seropositive individuals. The studies show differences in the responses to epitopes from lytic cycle versus latent proteins and highlight the complexity of naturally occurring, in vivo, immune responses. A clear understanding of the means by which CD8(+) T cells control EBV is important if we are to successfully develop vaccines and other forms of immunotherapy for the virus and its related malignancies.
Collapse
Affiliation(s)
- Margaret F C Callan
- Weatherall Institute of Molecular Medicine, The John Radcliffe, Oxford, United Kingdom.
| |
Collapse
|
49
|
Ouyang Q, Wagner WM, Walter S, Müller CA, Wikby A, Aubert G, Klatt T, Stevanovic S, Dodi T, Pawelec G. An age-related increase in the number of CD8+ T cells carrying receptors for an immunodominant Epstein-Barr virus (EBV) epitope is counteracted by a decreased frequency of their antigen-specific responsiveness. Mech Ageing Dev 2003; 124:477-85. [PMID: 12714256 DOI: 10.1016/s0047-6374(03)00026-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The aim of this study was to provide a basis for investigating the effects of one very common environmental factor, Epstein-Barr virus (EBV), on age-related changes in the immune system. To this end, the frequency of CD8(+) T cells carrying receptors for an immunodominant EBV lytic epitope was assessed by direct staining with HLA-peptide tetrameric complexes in 19 very old (>87 years) and 12 young (20-40 years) EBV carriers. The frequency of EBV-tetramer-positive cells within the CD8(+) subset was significantly greater in the old compared to the young group (P=0.001). However, the frequency of EBV antigen-specific IFN-gamma producing T cells, as determined by ELISPOT, was significantly lower in the old (P=0.001). Therefore, the absolute number of functional EBV-specific T cells in the elderly and the young was probably similar. These data suggest CD8 clonal expansions in the elderly, resulting in an accumulation of dysfunctional EBV-specific cells which possibly fill the 'immunological space' and could lead to a shrinking of the T cell repertoire for other novel antigens. This may help to explain the increased incidence and case-fatality caused by viruses and intracellular pathogens in the elderly.
Collapse
Affiliation(s)
- Qin Ouyang
- Tuebingen Ageing and Tumour Immunology Group, Center for Medical Research, ZMF, Waldhoernlestr. 22, 72072, Tuebingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Massa M, Mazzoli F, Pignatti P, De Benedetti F, Passalia M, Viola S, Samodal R, La Cava A, Giannoni F, Ollier W, Martini A, Albani S. Proinflammatory responses to self HLA epitopes are triggered by molecular mimicry to Epstein-Barr virus proteins in oligoarticular juvenile idiopathic arthritis. ARTHRITIS AND RHEUMATISM 2002; 46:2721-9. [PMID: 12384932 DOI: 10.1002/art.10564] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To evaluate whether abnormal T cell recognition may be generated by exposure to exogenous antigens presenting sequence homology with epitopes contained in self HLA alleles, and if such recognition may be part of the mechanisms that fuel inflammation in autoimmune diseases associated with certain HLA alleles. METHODS Cytotoxic responses of peripheral blood mononuclear cells to 9-mer peptides derived from HLA molecules (DRB1*1101, DRB1*0801, or DPB1*0201) associated with oligoarticular juvenile idiopathic arthritis (JIA) or homologous peptides derived from Epstein-Barr virus (EBV) proteins (Bolf1 or Balf2) were analyzed in patients with oligoarticular JIA and in healthy controls matched for HLA-DRB1*1101, DRB1*0801, or DPB1*0201. Production of proinflammatory cytokines in culture supernatants was determined by enzyme-linked immunosorbent assay. RESULTS T cell cytotoxic responses and production of proinflammatory cytokines in response to stimulation with self HLA-derived peptides were found only in patients with oligoarticular JIA, and not in controls. Patients with oligoarticular JIA, but none of the healthy controls, had EBV-self HLA cross-reactive T cells. CONCLUSION Our data suggest a disease- and allele-specific mechanism of autoimmunity in oligoarticular JIA. This mechanism may be part of the pathogenesis of the disease, and could be the basis of one of the likely multiple candidates for antigen-specific immunotherapy approaches in the future.
Collapse
|