1
|
Cazares O, Chen M, Menendez J, Molinuevo R, Thomas G, Cervantes J, Yee M, Cadell M, Durham M, Zhu Y, Strietzel C, Bubolz JW, Hinck L. SLIT Loss or Sequestration Increases Mammary Alveologenesis and Lactogenesis. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001264. [PMID: 39381643 PMCID: PMC11461027 DOI: 10.17912/micropub.biology.001264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
SLITs comprise a family of secreted proteins that function as ligands for Roundabout (ROBO) receptors. Previous research showed that ROBO1 promotes the differentiation of milk-producing alveolar cells by inhibiting Notch signaling in mammary luminal cells. Here, we show enhanced alveolar development and increased milk production in Slit2-/-;Slit3-/- knockout mammary gland epithelia. This result can also be achieved by intraperitoneal delivery of recombinant ROBO1 extracellular domain fragment, ROBO1-5Ig-Fc, which sequesters SLITs. Together, our phenotypic studies suggest that SLITs restrict alveologenesis and lactogenesis by inhibiting ROBO1.
Collapse
Affiliation(s)
| | - Min Chen
- University of California, Santa Cruz, CA, USA
| | | | | | - Gwen Thomas
- University of California, Santa Cruz, CA, USA
| | | | - Michael Yee
- University of California, Santa Cruz, CA, USA
| | | | | | - Yaqi Zhu
- Zoetis (United States), Kalamazoo, MI, United States
| | | | | | | |
Collapse
|
2
|
Nightingale R, Reehorst CM, Vukelic N, Papadopoulos N, Liao Y, Guleria S, Bell C, Vaillant F, Paul S, Luk IY, Dhillon AS, Jenkins LJ, Morrow RJ, Jackling FC, Chand AL, Chisanga D, Chen Y, Williams DS, Anderson RL, Ellis S, Meikle PJ, Shi W, Visvader JE, Pal B, Mariadason JM. Ehf controls mammary alveolar lineage differentiation and is a putative suppressor of breast tumorigenesis. Dev Cell 2024; 59:1988-2004.e11. [PMID: 38781975 DOI: 10.1016/j.devcel.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
The transcription factor EHF is highly expressed in the lactating mammary gland, but its role in mammary development and tumorigenesis is not fully understood. Utilizing a mouse model of Ehf deletion, herein, we demonstrate that loss of Ehf impairs mammary lobuloalveolar differentiation at late pregnancy, indicated by significantly reduced levels of milk genes and milk lipids, fewer differentiated alveolar cells, and an accumulation of alveolar progenitor cells. Further, deletion of Ehf increased proliferative capacity and attenuated prolactin-induced alveolar differentiation in mammary organoids. Ehf deletion also increased tumor incidence in the MMTV-PyMT mammary tumor model and increased the proliferative capacity of mammary tumor organoids, while low EHF expression was associated with higher tumor grade and poorer outcome in luminal A and basal human breast cancers. Collectively, these findings establish EHF as a non-redundant regulator of mammary alveolar differentiation and a putative suppressor of mammary tumorigenesis.
Collapse
Affiliation(s)
- Rebecca Nightingale
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Camilla M Reehorst
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Natalia Vukelic
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Nikolaos Papadopoulos
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yang Liao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Shalini Guleria
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Caroline Bell
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - François Vaillant
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sudip Paul
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ian Y Luk
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Amardeep S Dhillon
- The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| | - Laura J Jenkins
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Riley J Morrow
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Felicity C Jackling
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
| | - Ashwini L Chand
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - David Chisanga
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yunshun Chen
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - David S Williams
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Department of Pathology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Sarah Ellis
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Peter J Meikle
- Metabolomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC 3086, Australia
| | - Wei Shi
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jane E Visvader
- Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia.
| | - John M Mariadason
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC 3086, Australia; Department of Medicine, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
3
|
Shao H, Huang J, Wang H, Wang G, Yang X, Cheng M, Sun C, Zou L, Yang Q, Zhang D, Liu Z, Jiang X, Shi L, Shi P, Han B, Jiao B. Fused in sarcoma (FUS) inhibits milk production efficiency in mammals. Nat Commun 2024; 15:3953. [PMID: 38729967 PMCID: PMC11087553 DOI: 10.1038/s41467-024-48428-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.
Collapse
Affiliation(s)
- Haili Shao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Jipeng Huang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hui Wang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Guolei Wang
- Department of Obstetrics, Weifang People's Hospital, Weifang, Shandong, 261042, China
| | - Xu Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Mei Cheng
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Changjie Sun
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Zou
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Kunming College of Life Science, University of the Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Qin Yang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Dandan Zhang
- Luoyang Maternal and Child Health Hospital, Luoyang, Henan, 471000, China
| | - Zhen Liu
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xuelong Jiang
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lei Shi
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Peng Shi
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China
| | - Baowei Han
- Luoyang Maternal and Child Health Hospital, Luoyang, Henan, 471000, China.
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650203, China.
| |
Collapse
|
4
|
Wang W, Wang S, Wang H, Zheng E, Wu Z, Li Z. Protein Dynamic Landscape during Mouse Mammary Gland Development from Virgin to Pregnant, Lactating, and Involuting Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7546-7557. [PMID: 38513219 DOI: 10.1021/acs.jafc.3c09647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The mammary gland undergoes significant physiological changes as it undergoes a transition from virgin to pregnancy, lactation, and involution. However, the dynamic role of proteins in regulating these processes during mouse mammary gland development has not been thoroughly explored. In this study, we collected mouse mammary gland tissues from mature virgins aged 8-10 weeks (V), day 16 of pregnancy (P16d), day 12 of lactation (L12d), day 1 of forced weaning (FW 1d), and day 3 of forced weaning (FW 3d) stages for analysis using DIA-based quantitative proteomics technology. A total of 3,312 proteins were identified, of which 843 were DAPs that were categorized into nine clusters based on their abundance changes across developmental stages. Notably, DAPs in cluster 2, which peaked at the L12d stage, were primarily associated with mammary gland development and lactation. The protein-protein interaction network revealed that the epidermal growth factor (EGF) was central to this cluster. Our study provides a comprehensive overview of the mouse mammary gland development proteome and identifies some important proteins, such as EGF, Janus kinase 1 (JAK1), and signal transducer and activator of transcription 6 (STAT6) that may serve as potential targets for future research to provide guidelines for a deeper understanding of the developmental biology of mammary glands.
Collapse
Affiliation(s)
- Wenjing Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Shunbo Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Hao Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| |
Collapse
|
5
|
Zorc M, Dolinar M, Dovč P. A Single-Cell Transcriptome of Bovine Milk Somatic Cells. Genes (Basel) 2024; 15:349. [PMID: 38540408 PMCID: PMC10970057 DOI: 10.3390/genes15030349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 06/14/2024] Open
Abstract
The production of milk by dairy cows far exceeds the nutritional needs of the calf and is vital for the economical use of dairy cattle. High milk yield is a unique production trait that can be effectively enhanced through traditional selection methods. The process of lactation in cows serves as an excellent model for studying the biological aspects of lactation with the aim of exploring the mechanistic base of this complex trait at the cellular level. In this study, we analyzed the milk transcriptome at the single-cell level by conducting scRNA-seq analysis on milk samples from two Holstein Friesian cows at mid-lactation (75 and 93 days) using the 10× Chromium platform. Cells were pelleted and fat was removed from milk by centrifugation. The cell suspension from each cow was loaded on separate channels, resulting in the recovery of 9313 and 14,544 cells. Library samples were loaded onto two lanes of the NovaSeq 6000 (Illumina) instrument. After filtering at the cell and gene levels, a total of 7988 and 13,973 cells remained, respectively. We were able to reconstruct different cell types (milk-producing cells, progenitor cells, macrophages, monocytes, dendritic cells, T cells, B cells, mast cells, and neutrophils) in bovine milk. Our findings provide a valuable resource for identifying regulatory elements associated with various functions of the mammary gland such as lactation, tissue renewal, native immunity, protein and fat synthesis, and hormonal response.
Collapse
Affiliation(s)
| | | | - Peter Dovč
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (M.Z.); (M.D.)
| |
Collapse
|
6
|
Miller JL, Reddy A, Harman RM, Van de Walle GR. A xenotransplantation mouse model to study physiology of the mammary gland from large mammals. PLoS One 2024; 19:e0298390. [PMID: 38416747 PMCID: PMC10901318 DOI: 10.1371/journal.pone.0298390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024] Open
Abstract
Although highly conserved in structure and function, many (patho)physiological processes of the mammary gland vary drastically between mammals, with mechanisms regulating these differences not well understood. Large mammals display variable lactation strategies and mammary cancer incidence, however, research into these variations is often limited to in vitro analysis due to logistical limitations. Validating a model with functional mammary xenografts from cryopreserved tissue fragments would allow for in vivo comparative analysis of mammary glands from large and/or rare mammals and would improve our understanding of postnatal development, lactation, and premalignancy across mammals. To this end, we generated functional mammary xenografts using mammary tissue fragments containing mammary stroma and parenchyma isolated via an antibody-independent approach from healthy, nulliparous equine and canine donor tissues to study these species in vivo. Cryopreserved mammary tissue fragments were xenotransplanted into de-epithelialized fat pads of immunodeficient mice and resulting xenografts were structurally and functionally assessed. Preimplantation of mammary stromal fibroblasts was performed to promote ductal morphogenesis. Xenografts recapitulated mammary lobule architecture and contained donor-derived stromal components. Mammatropic hormone stimulation resulted in (i) upregulation of lactation-associated genes, (ii) altered proliferation index, and (iii) morphological changes, indicating functionality. Preimplantation of mammary stromal fibroblasts did not promote ductal morphogenesis. This model presents the opportunity to study novel mechanisms regulating unique lactation strategies and mammary cancer induction in vivo. Due to the universal applicability of this approach, this model serves as proof-of-concept for developing mammary xenografts for in vivo analysis of virtually any mammals, including large and rare mammals.
Collapse
Affiliation(s)
- James L Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexandra Reddy
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
7
|
Howe CG, Armstrong DA, Muse ME, Gilbert-Diamond D, Gui J, Hoen AG, Palys TJ, Barnaby RL, Stanton BA, Jackson BP, Christensen BC, Karagas MR. Periconceptional and Prenatal Exposure to Metals and Extracellular Vesicle and Particle miRNAs in Human Milk: A Pilot Study. EXPOSURE AND HEALTH 2023; 15:731-743. [PMID: 38074282 PMCID: PMC10707483 DOI: 10.1007/s12403-022-00520-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 06/30/2024]
Abstract
Human milk is a rich source of microRNAs (miRNAs), which can be transported by extracellular vesicles and particles (EVPs) and are hypothesized to contribute to maternal-offspring communication and child development. Environmental contaminant impacts on EVP miRNAs in human milk are largely unknown. In a pilot study of 54 mother-child pairs from the New Hampshire Birth Cohort Study, we examined relationships between five metals (arsenic, lead, manganese, mercury, and selenium) measured in maternal toenail clippings, reflecting exposures during the periconceptional and prenatal periods, and EVP miRNA levels in human milk. 798 miRNAs were profiled using the NanoString nCounter platform; 200 miRNAs were widely detectable and retained for downstream analyses. Metal-miRNA associations were evaluated using covariate-adjusted robust linear regression models. Arsenic exposure during the periconceptional and prenatal periods was associated with lower total miRNA content in human milk EVPs (PBonferroni < 0.05). When evaluating miRNAs individually, 13 miRNAs were inversely associated with arsenic exposure, two in the periconceptional period and 11 in the prenatal period (PBonferroni < 0.05). Other metal-miRNA associations were not statistically significant after multiple testing correction (PBonferroni ≥ 0.05). Many of the arsenic-associated miRNAs are involved in lactation and have anti-inflammatory properties in the intestine and tumor suppressive functions in breast cells. Our findings raise the possibility that periconceptional and prenatal arsenic exposure may reduce levels of multiple miRNAs in human milk EVPs. However, larger confirmatory studies, which can apply environmental mixture approaches, evaluate potential effect modifiers of these relationships, and examine possible downstream consequences for maternal and child health and breastfeeding outcomes, are needed.
Collapse
Affiliation(s)
- Caitlin G. Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - David A. Armstrong
- Department of Dermatology, Dartmouth-Hitchcock Medical Center, 1 Medical Center Dr, Lebanon, NH, USA
- Research Service, VA Medical Center, 215 N Main St, White River Junction, VT, USA
| | - Meghan E. Muse
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Thomas J. Palys
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Roxanna L. Barnaby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 66 College St, Hanover, NH, USA
| | - Bruce A. Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, 66 College St, Hanover, NH, USA
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, 6105 Sherman Fairchild Hall, Hanover, NH, USA
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, 1 Medical Center Dr, Lebanon, NH, USA
| |
Collapse
|
8
|
Hannan FM, Elajnaf T, Vandenberg LN, Kennedy SH, Thakker RV. Hormonal regulation of mammary gland development and lactation. Nat Rev Endocrinol 2023; 19:46-61. [PMID: 36192506 DOI: 10.1038/s41574-022-00742-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Lactation is critical to infant short-term and long-term health and protects mothers from breast cancer, ovarian cancer and type 2 diabetes mellitus. The mammary gland is a dynamic organ, regulated by the coordinated actions of reproductive and metabolic hormones. These hormones promote gland development from puberty onwards and induce the formation of a branched, epithelial, milk-secreting organ by the end of pregnancy. Progesterone withdrawal following placental delivery initiates lactation, which is maintained by increased pituitary secretion of prolactin and oxytocin, and stimulated by infant suckling. After weaning, local cytokine production and decreased prolactin secretion trigger large-scale mammary cell loss, leading to gland involution. Here, we review advances in the molecular endocrinology of mammary gland development and milk synthesis. We discuss the hormonal functions of the mammary gland, including parathyroid hormone-related peptide secretion that stimulates maternal calcium mobilization for milk synthesis. We also consider the hormonal composition of human milk and its associated effects on infant health and development. Finally, we highlight endocrine and metabolic diseases that cause lactation insufficiency, for example, monogenic disorders of prolactin and prolactin receptor mutations, maternal obesity and diabetes mellitus, interventions during labour and delivery, and exposure to endocrine-disrupting chemicals such as polyfluoroalkyl substances in consumer products and other oestrogenic compounds.
Collapse
Affiliation(s)
- Fadil M Hannan
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
| | - Taha Elajnaf
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Stephen H Kennedy
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Furth PA, Wang W, Kang K, Rooney BL, Keegan G, Muralidaran V, Zou X, Flaws JA. Esr1 but Not CYP19A1 Overexpression in Mammary Epithelial Cells during Reproductive Senescence Induces Pregnancy-Like Proliferative Mammary Disease Responsive to Anti-Hormonals. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:84-102. [PMID: 36464512 PMCID: PMC9768685 DOI: 10.1016/j.ajpath.2022.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022]
Abstract
Molecular-level analyses of breast carcinogenesis benefit from vivo disease models. Estrogen receptor 1 (Esr1) and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) overexpression targeted to mammary epithelial cells in genetically engineered mouse models induces largely similar rates of proliferative mammary disease in prereproductive senescent mice. Herein, with natural reproductive senescence, Esr1 overexpression compared with CYP19A1 overexpression resulted in significantly higher rates of preneoplasia and cancer. Before reproductive senescence, Esr1, but not CYP19A1, overexpressing mice are tamoxifen resistant. However, during reproductive senescence, Esr1 mice exhibited responsiveness. Both Esr1 and CYP19A1 are responsive to letrozole before and after reproductive senescence. Gene Set Enrichment Analyses of RNA-sequencing data sets showed that higher disease rates in Esr1 mice were accompanied by significantly higher expression of cell proliferation genes, including members of prognostic platforms for women with early-stage hormone receptor-positive disease. Tamoxifen and letrozole exposure induced down-regulation of these genes and resolved differences between the two models. Both Esr1 and CYP19A1 overexpression induced abnormal developmental patterns of pregnancy-like gene expression. This resolved with progression through reproductive senescence in CYP19A1 mice, but was more persistent in Esr1 mice, resolving only with tamoxifen and letrozole exposure. In summary, genetically engineered mouse models of Esr1 and CYP19A1 overexpression revealed a diversion of disease processes resulting from the two distinct molecular pathophysiological mammary gland-targeted intrusions into estrogen signaling during reproductive senescence.
Collapse
Affiliation(s)
- Priscilla A Furth
- Department of Oncology, Georgetown University, Washington, District of Columbia; Department of Medicine, Georgetown University, Washington, District of Columbia.
| | - Weisheng Wang
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Keunsoo Kang
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
| | - Brendan L Rooney
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Grace Keegan
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Vinona Muralidaran
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Xiaojun Zou
- Department of Oncology, Georgetown University, Washington, District of Columbia
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
10
|
Critical Review on Physiological and Molecular Features during Bovine Mammary Gland Development: Recent Advances. Cells 2022; 11:cells11203325. [PMID: 36291191 PMCID: PMC9600653 DOI: 10.3390/cells11203325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
The mammary gland is a unique organ with the ability to undergo repeated cyclic changes throughout the life of mammals. Among domesticated livestock species, ruminants (cattle and buffalo) constitute a distinct class of livestock species that are known milk producers. Cattle and buffalo contribute to 51 and 13% of the total milk supply in the world, respectively. They also play an essential role in the development of the economy for farming communities by providing milk, meat, and draft power. The development of the ruminant mammary gland is highly dynamic and multiphase in nature. There are six developmental stages: embryonic, prepubertal, pubertal, pregnancy, lactation, and involution. There has been substantial advancement in our understanding of the development of the mammary gland in both mouse and human models. Until now, there has not been a thorough investigation into the molecular processes that underlie the various stages of cow udder development. The current review sheds light on the morphological and molecular changes that occur during various developmental phases in diverse species, with a particular focus on the cow udder. It aims to explain the physiological differences between cattle and non-ruminant mammalian species such as humans, mice, and monkeys. Understanding the developmental biology of the mammary gland in molecular detail, as well as species-specific variations, will facilitate the researchers working in this area in further studies on cellular proliferation, differentiation, apoptosis, organogenesis, and carcinogenesis. Additionally, in-depth knowledge of the mammary gland will promote its use as a model organ for research work and promote enhanced milk yield in livestock animals without affecting their health and welfare.
Collapse
|
11
|
Liang J, Ingalla ER, Yao X, Wang BE, Tai L, Giltnane J, Liang Y, Daemen A, Moore HM, Aimi J, Chang CW, Gates MR, Eng-Wong J, Tam L, Bacarro N, Roose-Girma M, Bellet M, Hafner M, Metcalfe C. Giredestrant reverses progesterone hypersensitivity driven by estrogen receptor mutations in breast cancer. Sci Transl Med 2022; 14:eabo5959. [PMID: 36130016 DOI: 10.1126/scitranslmed.abo5959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ESR1 (estrogen receptor 1) hotspot mutations are major contributors to therapeutic resistance in estrogen receptor-positive (ER+) breast cancer. Such mutations confer estrogen independence to ERα, providing a selective advantage in the presence of estrogen-depleting aromatase inhibitors. In addition, ESR1 mutations reduce the potency of tamoxifen and fulvestrant, therapies that bind ERα directly. These limitations, together with additional liabilities, inspired the development of the next generation of ERα-targeted therapeutics, of which giredestrant is a high-potential candidate. Here, we generated Esr1 mutant-expressing mammary gland models and leveraged patient-derived xenografts (PDXs) to investigate the biological properties of the ESR1 mutations and their sensitivity to giredestrant in vivo. In the mouse mammary gland, Esr1 mutations promote hypersensitivity to progesterone, triggering pregnancy-like tissue remodeling and profoundly elevated proliferation. These effects were driven by an altered progesterone transcriptional response and underpinned by gained sites of ERα-PR (progesterone receptor) cobinding at the promoter regions of pro-proliferation genes. PDX experiments showed that the mutant ERα-PR proliferative program is also relevant in human cancer cells. Giredestrant suppressed the mutant ERα-PR proliferation in the mammary gland more so than the standard-of-care agents, tamoxifen and fulvestrant. Giredestrant was also efficacious against the progesterone-stimulated growth of ESR1 mutant PDX models. In addition, giredestrant demonstrated activity against a molecularly characterized ESR1 mutant tumor from a patient enrolled in a phase 1 clinical trial. Together, these data suggest that mutant ERα can collaborate with PR to drive protumorigenic proliferation but remain sensitive to inhibition by giredestrant.
Collapse
Affiliation(s)
- Jackson Liang
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Ellen Rei Ingalla
- Translational Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Xiaosai Yao
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Bu-Er Wang
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| | - Lisa Tai
- Research Pathology, Genentech, South San Francisco, CA 94080, USA
| | | | - Yuxin Liang
- Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA 94080, USA
| | - Anneleen Daemen
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Heather M Moore
- Oncology Biomarker Development, Genentech, South San Francisco, CA 94080, USA
| | - Junko Aimi
- Oncology Biomarker Development, Genentech, South San Francisco, CA 94080, USA
| | - Ching-Wei Chang
- Biostatistics, Genentech, South San Francisco, CA 94080, USA
| | - Mary R Gates
- Early Clinical Development, Genentech, South San Francisco, CA 94080, USA
| | - Jennifer Eng-Wong
- Early Clinical Development, Genentech, South San Francisco, CA 94080, USA
| | - Lucinda Tam
- Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | - Natasha Bacarro
- Molecular Biology, Genentech, South San Francisco, CA 94080, USA
| | | | - Meritxell Bellet
- Department of Medical Oncology, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Marc Hafner
- Oncology Bioinformatics, Genentech, South San Francisco, CA 94080, USA
| | - Ciara Metcalfe
- Department of Discovery Oncology, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
12
|
Al-Khaldi S, Almohanna F, Barnawi R, Fallatah M, Islam SS, Ghebeh H, Al-Alwan M. Fascin is essential for mammary gland lactogenesis. Dev Biol 2022; 492:25-36. [PMID: 36152869 DOI: 10.1016/j.ydbio.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 05/29/2022] [Accepted: 09/16/2022] [Indexed: 11/03/2022]
Abstract
Fascin expression has commonly been observed in certain subtypes of breast cancer, where its expression is associated with poor clinical outcome. However, its role in normal mammary gland development has not been elucidated. Here, we used a fascin knockout mouse model to assess its role in normal mammary gland morphogenesis and lactation. Fascin knockout was not embryonically lethal, and its effect on the litter size or condition at birth was minimal. However, litter survival until the weaning stage significantly depended on fascin expression solely in the nursing dams. Accordingly, pups that nursed from fascin-/- dams had smaller milk spots in their abdomen, suggesting a lactation defect in the nursing dams. Mammary gland whole-mounts of pregnant and lactating fascin-/- mice showed significantly reduced side branching and alveologenesis. Despite a typical composition of basal, luminal, and stromal subsets of mammary cells and normal ductal architecture of myoepithelial and luminal layers, the percentage of alveolar progenitors (ALDH+) in fascin-/- epithelial fraction was significantly reduced. Further in-depth analyses of fascin-/- mammary glands showed a significant reduction in the expression of Elf5, the master regulator of alveologenesis, and a decrease in the activity of its downstream target p-STAT5. In agreement, there was a significant reduction in the expression of the milk proteins, whey acidic protein (WAP), and β-casein in fascin-/- mammary glands. Collectively, our data demonstrate, for the first time, the physiological role of fascin in normal mammary gland lactogenesis, an addition that could reveal its contribution to breast cancer initiation and progression.
Collapse
Affiliation(s)
- Samiyah Al-Khaldi
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Sciences and Technology, Riyadh, Saudi Arabia.
| | | | | | - Mohannad Fallatah
- National Center for Biotechnology, Life Science and Environment Research Institute, King Abdulaziz City for Sciences and Technology, Riyadh, Saudi Arabia.
| | - Syed S Islam
- Molecular Oncology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia; Collage of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.
| | - Hazem Ghebeh
- Stem Cell and Tissue Re-Engineering Program, Saudi Arabia; Collage of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.
| | - Monther Al-Alwan
- Stem Cell and Tissue Re-Engineering Program, Saudi Arabia; Collage of Medicine, Al-Faisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
13
|
Rostom H, Meng X, Price H, Fry A, Elajnaf T, Humphrey R, Guha N, James T, Kennedy SH, Hannan FM. Protocol for an observational study investigating hormones triggering the onset of sustained lactation: the INSIGHT study. BMJ Open 2022; 12:e062478. [PMID: 36041762 PMCID: PMC9438014 DOI: 10.1136/bmjopen-2022-062478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Lactation is a hormonally controlled process that promotes infant growth and neurodevelopment and reduces the long-term maternal risk of diabetes, cardiovascular disease and breast cancer. Hormones, such as prolactin and progesterone, mediate mammary development during pregnancy and are critical for initiating copious milk secretion within 24-72 hours post partum. However, the hormone concentrations mediating lactation onset are ill defined. METHODS AND ANALYSIS The primary objective of the investigating hormones triggering the onset of sustained lactation study is to establish reference intervals for the circulating hormone concentrations initiating postpartum milk secretion. The study will also assess how maternal factors such as parity, pregnancy comorbidities and complications during labour and delivery, which are known to delay lactation, may affect hormone concentrations. This single-centre observational study will recruit up to 1068 pregnant women over a 3-year period. A baseline blood sample will be obtained at 36 weeks' gestation. Participants will be monitored during postpartum days 1-4. Lactation onset will be reported using a validated breast fullness scale. Blood samples will be collected before and after a breastfeed on up to two occasions per day during postpartum days 1-4. Colostrum, milk and spot urine samples will be obtained on a single occasion. Serum hormone reference intervals will be calculated as mean±1.96 SD, with 90% CIs determined for the upper and lower reference limits. Differences in hormone values between healthy breastfeeding women and those at risk of delayed onset of lactation will be assessed by repeated measures two-way analysis of variance or a mixed linear model. Correlations between serum hormone concentrations and milk composition and volume will provide insights into the endocrine regulation of milk synthesis. ETHICS AND DISSEMINATION Approval for this study had been granted by the East of England-Cambridgeshire and Hertfordshire Research Ethics Committee (REC No. 20/EE/0172), by the Health Research Authority (HRA), and by the Oxford University Hospitals National Health Service Foundation Trust. The findings will be published in high-ranking journals and presented at national and international conferences. TRIAL REGISTRATION NUMBER ISRCTN12667795.
Collapse
Affiliation(s)
- Hussam Rostom
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Xin Meng
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Helen Price
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Alexandria Fry
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Taha Elajnaf
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Robert Humphrey
- Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Nishan Guha
- Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Tim James
- Clinical Biochemistry, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Stephen H Kennedy
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Fadil M Hannan
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Milionis C, Ilias I, Koukkou E. Progesterone in gender-affirming therapy of trans women. World J Biol Chem 2022; 13:66-71. [PMID: 35721880 PMCID: PMC10558402 DOI: 10.4331/wjbc.v13.i3.66] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Progesterone is an endogenous steroid hormone with an important role for the physiology of the female reproductive system and the mammary gland. It has additional significant actions in other tissues, such as the cardiovascular system, the central nervous system, and bones. The present article explores potential clinical implications from the addition of bioidentical progesterone to gender-affirming treatment of trans women. For this purpose, it provides an overview of the physiological action of progesterone in target tissues and speculates on possible benefits for gender transitioning. Progesterone is expected to exert moderate anti-androgen action through suppression of the hypothalamic-pituitary-gonadal axis and inhibition of the conversion of testosterone to dihydrotestosterone. It may also contribute to breast maturation. In the long-term, progesterone could prevent bone loss and protect cardiovascular health. The potential benefits are mainly inferred by extrapolating evidence from biological actions in cisgender women and medical assumptions and hence, clinicians need to be cautious when applying these data into practice. Further research is needed to ascertain the efficacy and safety of progesterone in current hormonal regimens.
Collapse
Affiliation(s)
- Charalampos Milionis
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens GR-11521, Greece
| | - Ioannis Ilias
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens GR-11521, Greece
| | - Eftychia Koukkou
- Department of Endocrinology, Diabetes and Metabolism, Elena Venizelou Hospital, Athens GR-11521, Greece
| |
Collapse
|
15
|
Zammit NW, McDowell J, Warren J, Muskovic W, Gamble J, Shi YC, Kaczorowski D, Chan CL, Powell J, Ormandy C, Brown D, Oakes SR, Grey ST. TNFAIP3 Reduction-of-Function Drives Female Infertility and CNS Inflammation. Front Immunol 2022; 13:811525. [PMID: 35464428 PMCID: PMC9027572 DOI: 10.3389/fimmu.2022.811525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Women with autoimmune and inflammatory aetiologies can exhibit reduced fecundity. TNFAIP3 is a master negative regulator of inflammation, and has been linked to many inflammatory conditions by genome wide associations studies, however its role in fertility remains unknown. Here we show that mice harbouring a mild Tnfaip3 reduction-of-function coding variant (Tnfaip3I325N) that reduces the threshold for inflammatory NF-κB activation, exhibit reduced fecundity. Sub-fertility in Tnfaip3I325N mice is associated with irregular estrous cycling, low numbers of ovarian secondary follicles, impaired mammary gland development and insulin resistance. These pathological features are associated with infertility in human subjects. Transplantation of Tnfaip3I325N ovaries, mammary glands or pancreatic islets into wild-type recipients rescued estrous cycling, mammary branching and hyperinsulinemia respectively, pointing towards a cell-extrinsic hormonal mechanism. Examination of hypothalamic brain sections revealed increased levels of microglial activation with reduced levels of luteinizing hormone. TNFAIP3 coding variants may offer one contributing mechanism for the cause of sub-fertility observed across otherwise healthy populations as well as for the wide variety of auto-inflammatory conditions to which TNFAIP3 is associated. Further, TNFAIP3 represents a molecular mechanism that links heightened immunity with neuronal inflammatory homeostasis. These data also highlight that tuning-up immunity with TNFAIP3 comes with the potentially evolutionary significant trade-off of reduced fertility.
Collapse
Affiliation(s)
- Nathan W. Zammit
- Immunity and Inflammation Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Joseph McDowell
- Immunity and Inflammation Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Joanna Warren
- Immunity and Inflammation Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Walter Muskovic
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Joanne Gamble
- Centre for NSW Health Pathology, Institute of Clinical Pathology And Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - Yan-Chuan Shi
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Dominik Kaczorowski
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Chia-Ling Chan
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Joseph Powell
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Chris Ormandy
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Translation Science Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - David Brown
- Centre for NSW Health Pathology, Institute of Clinical Pathology And Medical Research, Westmead Hospital, Westmead, NSW, Australia
| | - Samantha R. Oakes
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Translation Science Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Shane T. Grey
- Immunity and Inflammation Theme, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Translation Science Pillar, Garvan Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|
16
|
Bartlett AP, Harman RM, Weiss JR, Van de Walle GR. Establishment and characterization of equine mammary organoids using a method translatable to other non-traditional model species. Development 2022; 149:274742. [DOI: 10.1242/dev.200412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Mammary organoid (MaO) models are only available for a few traditional model organisms, limiting our ability to investigate mammary gland development and cancer across mammals. This study established equine mammary organoids (EqMaOs) from cryopreserved mammary tissue, in which mammary tissue fragments were isolated and embedded into a 3D matrix to produce EqMaOs. We evaluated viability, proliferation and budding capacity of EqMaOs at different time points during culture, showing that although the number of proliferative cells decreased over time, viability was maintained and budding increased. We further characterized EqMaOs based on expression of stem cell, myoepithelial and luminal markers, and found that EqMaOs expressed these markers throughout culture and that a bilayered structure as seen in vivo was recapitulated. We used the milk-stimulating hormone prolactin to induce milk production, which was verified by the upregulation of milk proteins, most notably β-casein. Additionally, we showed that our method is also applicable to additional non-traditional mammalian species, particularly domesticated animals such as cats, pigs and rabbits. Collectively, MaO models across species will be a useful tool for comparative developmental and cancer studies.
Collapse
Affiliation(s)
- Arianna P. Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer R. Weiss
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
17
|
Abstract
Fluid secretion by exocrine glandular organs is essential to the survival of mammals. Each glandular unit within the body is uniquely organized to carry out its own specific functions, with failure to establish these specialized structures resulting in impaired organ function. Here, we review glandular organs in terms of shared and divergent architecture. We first describe the structural organization of the diverse glandular secretory units (the end-pieces) and their fluid transporting systems (the ducts) within the mammalian system, focusing on how tissue architecture corresponds to functional output. We then highlight how defects in development of end-piece and ductal architecture impacts secretory function. Finally, we discuss how knowledge of exocrine gland structure-function relationships can be applied to the development of new diagnostics, regenerative approaches and tissue regeneration.
Collapse
Affiliation(s)
- Sameed Khan
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Sarah Knox
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Ripla Arora
- Department of Obstetrics Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
18
|
Wang L, Miao X, Nie R, Zhang Z, Zhang J, Cai J. MultiCapsNet: A General Framework for Data Integration and Interpretable Classification. Front Genet 2021; 12:767602. [PMID: 34899854 PMCID: PMC8652257 DOI: 10.3389/fgene.2021.767602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
The latest progresses of experimental biology have generated a large number of data with different formats and lengths. Deep learning is an ideal tool to deal with complex datasets, but its inherent “black box” nature needs more interpretability. At the same time, traditional interpretable machine learning methods, such as linear regression or random forest, could only deal with numerical features instead of modular features often encountered in the biological field. Here, we present MultiCapsNet (https://github.com/wanglf19/MultiCapsNet), a new deep learning model built on CapsNet and scCapsNet, which possesses the merits such as easy data integration and high model interpretability. To demonstrate the ability of this model as an interpretable classifier to deal with modular inputs, we test MultiCapsNet on three datasets with different data type and application scenarios. Firstly, on the labeled variant call dataset, MultiCapsNet shows a similar classification performance with neural network model, and provides importance scores for data sources directly without an extra importance determination step required by the neural network model. The importance scores generated by these two models are highly correlated. Secondly, on single cell RNA sequence (scRNA-seq) dataset, MultiCapsNet integrates information about protein-protein interaction (PPI), and protein-DNA interaction (PDI). The classification accuracy of MultiCapsNet is comparable to the neural network and random forest model. Meanwhile, MultiCapsNet reveals how each transcription factor (TF) or PPI cluster node contributes to classification of cell type. Thirdly, we made a comparison between MultiCapsNet and SCENIC. The results show several cell type relevant TFs identified by both methods, further proving the validity and interpretability of the MultiCapsNet.
Collapse
Affiliation(s)
- Lifei Wang
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China.,China National Center for Bioinformation, Beijing, China.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuexia Miao
- China National Center for Bioinformation, Beijing, China.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Rui Nie
- China National Center for Bioinformation, Beijing, China.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhang Zhang
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Jiang Zhang
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Jun Cai
- China National Center for Bioinformation, Beijing, China.,Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Cazares O, Chatterjee S, Lee P, Strietzel C, Bubolz JW, Harburg G, Howard J, Katzman S, Sanford J, Hinck L. Alveolar progenitor differentiation and lactation depends on paracrine inhibition of notch via ROBO1/CTNNB1/JAG1. Development 2021; 148:dev199940. [PMID: 34758082 PMCID: PMC8627605 DOI: 10.1242/dev.199940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022]
Abstract
In the mammary gland, how alveolar progenitor cells are recruited to fuel tissue growth with each estrus cycle and pregnancy remains poorly understood. Here, we identify a regulatory pathway that controls alveolar progenitor differentiation and lactation by governing Notch activation in mouse. Loss of Robo1 in the mammary gland epithelium activates Notch signaling, which expands the alveolar progenitor cell population at the expense of alveolar differentiation, resulting in compromised lactation. ROBO1 is expressed in both luminal and basal cells, but loss of Robo1 in basal cells results in the luminal differentiation defect. In the basal compartment, ROBO1 inhibits the expression of Notch ligand Jag1 by regulating β-catenin (CTNNB1), which binds the Jag1 promoter. Together, our studies reveal how ROBO1/CTTNB1/JAG1 signaling in the basal compartment exerts paracrine control of Notch signaling in the luminal compartment to regulate alveolar differentiation during pregnancy.
Collapse
Affiliation(s)
- Oscar Cazares
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Sharmila Chatterjee
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Pinky Lee
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, USA
| | | | - J. W. Bubolz
- Zoetis Inc. 333 Portage Street, Building 300, Kalamazoo, MI 49007, USA
| | - Gwyndolen Harburg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Jon Howard
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
| | - Sol Katzman
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
| | - Jeremy Sanford
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | - Lindsay Hinck
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
20
|
Roth MJ, Moorehead RA. The miR-200 family in normal mammary gland development. BMC DEVELOPMENTAL BIOLOGY 2021; 21:12. [PMID: 34454436 PMCID: PMC8399786 DOI: 10.1186/s12861-021-00243-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/08/2021] [Indexed: 12/23/2022]
Abstract
The miR-200 family of microRNAs plays a significant role in inhibiting mammary tumor growth and progression, and its members are being investigated as therapeutic targets. Additionally, if future studies can prove that miR-200s prevent mammary tumor initiation, the microRNA family could also offer a preventative strategy. Before utilizing miR-200s in a therapeutic setting, understanding how they regulate normal mammary development is necessary. No studies investigating the role of miR-200s in embryonic ductal development could be found, and only two studies examined the impact of miR-200s on pubertal ductal morphogenesis. These studies showed that miR-200s are expressed at low levels in virgin mammary glands, and elevated expression of miR-200s have the potential to impair ductal morphogenesis. In contrast to virgin mammary glands, miR-200s are expressed at high levels in mammary glands during late pregnancy and lactation. miR-200s are also found in the milk of several mammalian species, including humans. However, the relevance of miR-200s in milk remains unclear. The increase in miR-200 expression in late pregnancy and lactation suggests a role for miR-200s in the development of alveoli and/or regulating milk production. Therefore, studies investigating the consequence of miR-200 overexpression or knockdown are needed to identify the function of miR-200s in alveolar development and lactation.
Collapse
Affiliation(s)
- Majesta J Roth
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Roger A Moorehead
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
21
|
Jaswal S, Anand V, Ali SA, Jena MK, Kumar S, Kaushik JK, Mohanty AK. TMT based deep proteome analysis of buffalo mammary epithelial cells and identification of novel protein signatures during lactogenic differentiation. FASEB J 2021; 35:e21621. [PMID: 33977573 DOI: 10.1096/fj.202002476rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/04/2023]
Abstract
The lactating mammary gland harbours numerous matured alveoli with their lumen surrounded by differentiated mammary epithelial cells (MECs), which are exclusively involved in milk synthesis and secretion. Buffalo (Bubalus bubalis) is the second major milk-producing animal, and its physiology is different from cattle. The complete protein machinery involved in MECs differentiation is still not defined in ruminants, in particular, buffalo. Therefore, we have studied the differential expression of regulated proteins in the in vitro grown buffalo MECs (BuMECs) at different time points (on 3, 6, 12, and 15 days) of their differentiation in the presence of lactogenic hormones. TMT-based MS analysis identified 4,934 proteins; of them, 681 were differentially expressed proteins (DEPs). The principal component analysis suggested a highly heterogeneous expression of DEPs at the four-time points of hormone treatment, with most of them (307) attained the highest expression on 12 days. Bioinformatics analysis revealed the association of DEPs with 24 KEGG pathways. We observed few new proteins, namely ABCA13, IVL, VPS37, CZIB, RFX7, Rab5, TTLL12, SMEK1, GDI2, and TMEM131 in BuMECs. The function of one of the highly upregulated proteins, namely involucrin in the differentiation of BuMECs was confirmed based on biochemical inhibition assay. The results further conclude that the proteins with higher abundance can be considered as the potential biomarkers for differentiation, and they may have a significant association with the lactation process in buffalo too. The proteome dataset obtained can be used to understand the species-specific variations among other lactating animals.
Collapse
Affiliation(s)
- Shalini Jaswal
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Vijay Anand
- Department of Veterinary Physiology and Biochemistry, Veterinary College and Research Institute (TANUVAS), Orathanadu, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Manoj K Jena
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India
| | - Sudarshan Kumar
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Jai K Kaushik
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| | - Ashok K Mohanty
- Proteomics and Cell Biology Lab, Animal Biotechnology Centre, National Dairy Research Institute (NDRI), Karnal, India
| |
Collapse
|
22
|
Development of a Pig Mammary Epithelial Cell Culture Model as a Non-Clinical Tool for Studying Epithelial Barrier-A Contribution from the IMI-ConcePTION Project. Animals (Basel) 2021; 11:ani11072012. [PMID: 34359140 PMCID: PMC8300391 DOI: 10.3390/ani11072012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/02/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The information about the risks related to the use of medication during breastfeeding is lacking for most commonly used drugs. The ConcePTION project aims to fill this gap using multiple approaches. Within the project, the pig has been selected as the most appropriate in vivo animal model. In agreement with the application of the “3Rs” principle (Replacement, Reduction and Refinement) and international legislations, the present paper reports the establishment of cellular lines of porcine mammary epithelial cells as a valid tool to study the mammary epithelial barrier function in vitro. Abstract The ConcePTION project aims at generating further knowledge about the risks related to the use of medication during breastfeeding, as this information is lacking for most commonly used drugs. Taking into consideration multiple aspects, the pig model has been considered by the consortium as the most appropriate choice. The present research was planned to develop an efficient method for the isolation and culture of porcine Mammary Epithelial Cells (pMECs) to study the mammary epithelial barrier in vitro. Mammary gland tissues were collected at a local slaughterhouse, dissociated and the selected cellular population was cultured, expanded and characterized by morphology, cell cycle analysis and immunophenotyping. Their ability to create a barrier was tested by TEER measurement and sodium fluorescein transport activity. Expression of 84 genes related to drug transporters was evaluated by a PCR array. Our results show that primary cells express epithelial cell markers: CKs, CK18, E-Cad and tight junctions molecules ZO-1 and OCL. All the three pMEC cellular lines were able to create a tight barrier, although with different strengths and kinetics, and express the main ABC and SLC drug transporters. In conclusion, in the present paper we have reported an efficient method to obtain primary pMEC lines to study epithelial barrier function in the pig model.
Collapse
|
23
|
Valdés-Mora F, Salomon R, Gloss BS, Law AMK, Venhuizen J, Castillo L, Murphy KJ, Magenau A, Papanicolaou M, Rodriguez de la Fuente L, Roden DL, Colino-Sanguino Y, Kikhtyak Z, Farbehi N, Conway JRW, Sikta N, Oakes SR, Cox TR, O'Donoghue SI, Timpson P, Ormandy CJ, Gallego-Ortega D. Single-cell transcriptomics reveals involution mimicry during the specification of the basal breast cancer subtype. Cell Rep 2021; 35:108945. [PMID: 33852842 DOI: 10.1016/j.celrep.2021.108945] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/29/2020] [Accepted: 03/14/2021] [Indexed: 01/02/2023] Open
Abstract
Basal breast cancer is associated with younger age, early relapse, and a high mortality rate. Here, we use unbiased droplet-based single-cell RNA sequencing (RNA-seq) to elucidate the cellular basis of tumor progression during the specification of the basal breast cancer subtype from the luminal progenitor population in the MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mammary tumor model. We find that basal-like cancer cells resemble the alveolar lineage that is specified upon pregnancy and encompass the acquisition of an aberrant post-lactation developmental program of involution that triggers remodeling of the tumor microenvironment and metastatic dissemination. This involution mimicry is characterized by a highly interactive multicellular network, with involution cancer-associated fibroblasts playing a pivotal role in extracellular matrix remodeling and immunosuppression. Our results may partially explain the increased risk and poor prognosis of breast cancer associated with childbirth.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cancer-Associated Fibroblasts/metabolism
- Cancer-Associated Fibroblasts/pathology
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Cell Lineage/genetics
- Chemokine CXCL12/genetics
- Chemokine CXCL12/metabolism
- Collagen Type I, alpha 1 Chain/genetics
- Collagen Type I, alpha 1 Chain/metabolism
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Female
- Gene Expression Regulation, Neoplastic
- High-Throughput Nucleotide Sequencing
- Humans
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/virology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/metabolism
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/growth & development
- Mammary Tumor Virus, Mouse/pathogenicity
- Matrix Metalloproteinase 3/genetics
- Matrix Metalloproteinase 3/metabolism
- Mice
- Neoplasm Metastasis
- Pregnancy
- Single-Cell Analysis
- Transcriptome
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Fátima Valdés-Mora
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| | - Robert Salomon
- Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Institute for Biomedical Materials and Devices, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Brian Stewart Gloss
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Andrew Man Kit Law
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Jeron Venhuizen
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Lesley Castillo
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Kendelle Joan Murphy
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Astrid Magenau
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Michael Papanicolaou
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Laura Rodriguez de la Fuente
- Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Daniel Lee Roden
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Yolanda Colino-Sanguino
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Personalised Medicine, Children's Cancer Institute, Sydney, NSW 2031, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia
| | - Zoya Kikhtyak
- Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nona Farbehi
- Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Neblina Sikta
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Samantha Richelle Oakes
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Thomas Robert Cox
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Seán Ignatius O'Donoghue
- Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; CSIRO Data61, Eveleigh, NSW 2015, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Paul Timpson
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Christopher John Ormandy
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - David Gallego-Ortega
- St. Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW 2010, Australia; Garvan-Weizmann Centre for Cellular Genomics. Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; Cancer Theme, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia.
| |
Collapse
|
24
|
Watson CJ, Khaled WT. Mammary development in the embryo and adult: new insights into the journey of morphogenesis and commitment. Development 2020; 147:dev169862. [PMID: 33191272 DOI: 10.1242/dev.169862] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammary gland is a unique tissue and the defining feature of the class Mammalia. It is a late-evolving epidermal appendage that has the primary function of providing nutrition for the young, although recent studies have highlighted additional benefits of milk including the provision of passive immunity and a microbiome and, in humans, the psychosocial benefits of breastfeeding. In this Review, we outline the various stages of mammary gland development in the mouse, with a particular focus on lineage specification and the new insights that have been gained by the application of recent technological advances in imaging in both real-time and three-dimensions, and in single cell RNA sequencing. These studies have revealed the complexity of subpopulations of cells that contribute to the mammary stem and progenitor cell hierarchy and we suggest a new terminology to distinguish these cells.
Collapse
Affiliation(s)
- Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
25
|
Cayre S, Faraldo MM, Bardin S, Miserey-Lenkei S, Deugnier MA, Goud B. RAB6 GTPase regulates mammary secretory function by controlling the activation of STAT5. Development 2020; 147:dev.190744. [PMID: 32895290 PMCID: PMC7561474 DOI: 10.1242/dev.190744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
The Golgi-associated RAB GTPases, RAB6A and RAB6A', regulate anterograde and retrograde transport pathways from and to the Golgi. In vitro, RAB6A/A' control several cellular functions including cell division, migration, adhesion and polarity. However, their role remains poorly described in vivo Here, we generated BlgCre; Rab6a F/F mice presenting a specific deletion of Rab6a in the mammary luminal secretory lineage during gestation and lactation. Rab6a loss severely impaired the differentiation, maturation and maintenance of the secretory tissue, compromising lactation. The mutant epithelium displayed a decreased activation of STAT5, a key regulator of the lactogenic process primarily governed by prolactin. Data obtained with a mammary epithelial cell line suggested that defective STAT5 activation might originate from a perturbed transport of the prolactin receptor, altering its membrane expression and signaling cascade. Despite the major functional defects observed upon Rab6a deletion, the polarized organization of the mammary epithelial bilayer was preserved. Altogether, our data reveal a crucial role for RAB6A/A' in the lactogenic function of the mammary gland and suggest that the trafficking pathways controlled by RAB6A/A' depend on cell-type specialization and tissue context.
Collapse
Affiliation(s)
- Surya Cayre
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Marisa M Faraldo
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France.,INSERM, Paris F-75013, France
| | - Sabine Bardin
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Stéphanie Miserey-Lenkei
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| | - Marie-Ange Deugnier
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France .,INSERM, Paris F-75013, France
| | - Bruno Goud
- Department of Cell Biology and Cancer, Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR144, Paris F-75005, France
| |
Collapse
|
26
|
Xu H, Yang X, Huang W, Ma Y, Ke H, Zou L, Yang Q, Jiao B. Single-cell profiling of long noncoding RNAs and their cell lineage commitment roles via RNA-DNA-DNA triplex formation in mammary epithelium. Stem Cells 2020; 38:1594-1611. [PMID: 32930441 DOI: 10.1002/stem.3274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Long noncoding RNAs (lncRNAs), which are crucial for organ development, exhibit cell-specific expression. Thus, transcriptomic analysis based on total tissue (bulk-seq) cannot accurately reflect the expression pattern of lncRNAs. Here, we used high-throughput single-cell RNA-seq data to investigate the role of lncRNAs using the hierarchical model of mammary epithelium. With our comprehensive annotation of the mammary epithelium, lncRNAs showed much greater cell-lineage specific expression than coding genes. The lineage-specific lncRNAs were functionally correlated with lineage commitment through the coding genes via the cis- and trans-effects of lncRNAs. For the working mechanism, lncRNAs formed a triplex structure with the DNA helix to regulate downstream lineage-specific marker genes. We used lncRNA-Carmn as an example to validate the above findings. Carmn, which is specifically expressed in mammary gland stem cells (MaSCs) and basal cells, positively regulated the Wnt signaling ligand Wnt10a through formation of a lncRNA-DNA-DNA triplex, and thus controlled the stemness of MaSCs. Our study suggests that lncRNAs play essential roles in cell-lineage commitment and provides an approach to decipher lncRNA functions based on single-cell RNA-seq data.
Collapse
Affiliation(s)
- Haibo Xu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
- International Cancer Center, Shenzhen University School of Medicine, Shenzhen, People's Republic of China
| | - Xing Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People's Republic of China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, People's Republic of China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, People's Republic of China
- International Cancer Center, Shenzhen University School of Medicine, Shenzhen, People's Republic of China
| | - Yujie Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Hao Ke
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Li Zou
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Qin Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
| |
Collapse
|
27
|
Kim G, Lee JG, Cheong SA, Yon JM, Lee MS, Hong EJ, Baek IJ. Progesterone receptor membrane component 1 is required for mammary gland development†. Biol Reprod 2020; 103:1249-1259. [PMID: 32915211 DOI: 10.1093/biolre/ioaa164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
The physiological functions of progesterone (P4) in female reproductive organs including the mammary glands are mediated via the progesterone receptor (PR), but not all P4 functions can be explained by PR-mediated signaling. Progesterone receptor membrane component 1 (PGRMC1), a potential mediator of P4 actions, plays an important role in the ovary and uterus in maintaining female fertility and pregnancy, but its function in mammary glands has not been elucidated. This study investigated the role of PGRMC1 in mouse mammary gland development. Unlike in the uterus, exogenous estrogen (E2) and/or P4 did not alter PGRMC1 expression in the mammary gland, and Pgrmc1-knockout (KO) mice displayed reduced ductal elongation and side branching in response to hormone treatment. During pregnancy, PGRMC1 was expressed within both the luminal and basal epithelium and gradually increased with gestation and decreased rapidly after parturition. Moreover, although lactogenic capacity was normal after parturition, Pgrmc1 KO resulted in defective mammary gland development from puberty until midpregnancy, while the expression of PR and its target genes was not significantly different between wild-type and Pgrmc1-KO mammary gland. These data suggest that PGRMC1 is essential for mammary gland development during puberty and pregnancy in a PR-independent manner.
Collapse
Affiliation(s)
- Globinna Kim
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jong Geol Lee
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Seung-A Cheong
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Jung-Min Yon
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Myeong Sup Lee
- Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of Korea.,Department of Biomedical Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - In-Jeoung Baek
- ConveRgence mEDIcine research cenTer (CREDIT), Asan Institute for Life Sciences, Seoul, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Seoul, Republic of Korea.,Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
28
|
Holloran SM, Nosirov B, Walter KR, Trinca GM, Lai Z, Jin VX, Hagan CR. Reciprocal fine-tuning of progesterone and prolactin-regulated gene expression in breast cancer cells. Mol Cell Endocrinol 2020; 511:110859. [PMID: 32407979 PMCID: PMC8941988 DOI: 10.1016/j.mce.2020.110859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Progesterone and prolactin are two key hormones involved in development and remodeling of the mammary gland. As such, both hormones have been linked to breast cancer. Despite the overlap between biological processes ascribed to these two hormones, little is known about how co-expression of both hormones affects their individual actions. Progesterone and prolactin exert many of their effects on the mammary gland through activation of gene expression, either directly (progesterone, binding to the progesterone receptor [PR]) or indirectly (multiple transcription factors being activated downstream of prolactin, most notably STAT5). Using RNA-seq in T47D breast cancer cells, we characterized the gene expression programs regulated by progestin and prolactin, either alone or in combination. We found significant crosstalk and fine-tuning between the transcriptional programs executed by each hormone independently and in combination. We divided and characterized the transcriptional programs into four broad categories. All crosstalk/fine-tuning shown to be modulated by progesterone was dependent upon the expression of PR. Moreover, PR was recruited to enhancer regions of all regulated genes. Interestingly, despite the canonical role for STAT5 in transducing prolactin-signaling in the normal and lactating mammary gland, very few of the prolactin-regulated transcriptional programs fine-tuned by progesterone in this breast cancer cell line model system were in fact dependent upon STAT5. Cumulatively, these data suggest that the interplay of progesterone and prolactin in breast cancer impacts gene expression in a more complex and nuanced manner than previously thought, and likely through different transcriptional regulators than those observed in the normal mammary gland. Studying gene regulation when both hormones are present is most clinically relevant, particularly in the context of breast cancer.
Collapse
Affiliation(s)
- Sean M Holloran
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bakhtiyor Nosirov
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA
| | - Katherine R Walter
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Zhao Lai
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
29
|
Xuan R, Chao T, Wang A, Zhang F, Sun P, Liu S, Guo M, Wang G, Ji Z, Wang J, Cheng M. Characterization of microRNA profiles in the mammary gland tissue of dairy goats at the late lactation, dry period and late gestation stages. PLoS One 2020; 15:e0234427. [PMID: 32511270 PMCID: PMC7279595 DOI: 10.1371/journal.pone.0234427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 05/25/2020] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNAs) play an important role in regulating mammary gland development and lactation. We previously analyzed miRNA expression profiles in Laoshan dairy goat mammary glands at the early (20 d postpartum), peak (90 d postpartum) and late lactation (210 d postpartum) stages. To further enrich and clarify the miRNA expression profiles during the lactation physiological cycle, we sequenced miRNAs in the mammary gland tissues of Laoshan dairy goats at three newly selected stages: the late lactation (240 d postpartum), dry period (300 d postpartum) and late gestation (140 d after mating) stages. We obtained 4038 miRNAs and 385 important miRNA families, including mir-10, let-7 and mir-9. We also identified 754 differentially expressed miRNAs in the mammary gland tissue at the 3 different stages and 6 groups of miRNA clusters that had unique expression patterns. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that GO terms such as mammary gland development (GO:0030879) and mammary gland morphogenesis (GO:0060443) and important signaling pathways, including the insulin signaling pathway (chx04910), hippo signaling pathway (chx04390) and estrogen signaling pathway (chx04915), were enriched. We screened miRNAs and potential target genes that may be involved in the regulation of lactation, mammary gland growth and differentiation, cell apoptosis, and substance transport and synthesis and detected the expression patterns of important genes at the three stages. These miRNAs and critical target genes may be important factors for mammary gland development and lactation regulation and potentially valuable molecular markers, which may provide a theoretical reference for further investigation of mammary gland physiology.
Collapse
Affiliation(s)
- Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Aili Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Fuhong Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Ping Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Shuang Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Maosen Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Guizhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong Province, P.R. China
| | - Ming Cheng
- Qingdao Research Institute of Husbandry and Veterinary, Qingdao, Shandong Province, P.R. China
| |
Collapse
|
30
|
Maternal chitosan oligosaccharide intervention optimizes the production performance and health status of gilts and their offspring. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2020; 6:134-142. [PMID: 32542193 PMCID: PMC7283373 DOI: 10.1016/j.aninu.2020.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 11/21/2022]
Abstract
Chitosan oligosaccharides (COS) are the hydrolyzed product of chitosan and have multifunctional health benefits. The objective of this study was to elucidate the effect of COS as a dietary supplement to gilts on their productivity and health and that of their litters. Gilts were randomly assigned to either a treatment (n = 30) or control group (n = 30). The treatment gilts were fed a standard dry sow ration supplemented with COS at 0.12 and 0.24 g/gilt per d during gestation and lactation, respectively, and the control group was fed the standard dry sow ration only. The body weight, reproductive performance, milk production and litter size for each gilt and body weight of corresponding litters were recorded. The serum immunoglobulins (IgA, IgG, IgM) and secretory immunoglobulin A (sIgA) concentrations of gilts and piglets and fecal sIgA concertation of gilts were measured by Enzyme-linked immunosorbent assay (ELISA). Our study showed that maternal COS supplementation 1) significantly increased gilt body weight in late pregnancy (P < 0.05), 2) significantly increased milk production of gilts at different stages (d 1, 3, 7 and 19) of lactation (P < 0.05), 3) significantly increased body weight gain of piglets at weaning (P < 0.05), 4) significantly increased the serum concentrations of IgM and sIgA in piglets, and sIgA in fecal sample of gilts (P < 0.05), and 5) tended to increase the pregnancy success rate (P > 0.05) in the treatment group compared to the control group. These results suggest that maternal COS intervention in gilts can improve gilt milk production, piglet pre-weaning growth and immunity parameters in both gilts and piglets.
Collapse
|
31
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
32
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
33
|
Occludin protects secretory cells from ER stress by facilitating SNARE-dependent apical protein exocytosis. Proc Natl Acad Sci U S A 2020; 117:4758-4769. [PMID: 32051248 DOI: 10.1073/pnas.1909731117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tight junctions (TJs) are fundamental features of both epithelium and endothelium and are indispensable for vertebrate organ formation and homeostasis. However, mice lacking Occludin (Ocln) develop relatively normally to term. Here we show that Ocln is essential for mammary gland physiology, as mutant mice fail to produce milk. Surprisingly, Ocln null mammary glands showed intact TJ function and normal epithelial morphogenesis, cell differentiation, and tissue polarity, suggesting that Ocln is not required for these processes. Using single-cell transcriptomics, we identified milk-producing cells (MPCs) and found they were progressively more prone to endoplasmic reticulum (ER) stress as protein production increased exponentially during late pregnancy and lactation. Importantly, Ocln loss in MPCs resulted in greatly heightened ER stress; this in turn led to increased apoptosis and acute shutdown of protein expression, ultimately leading to lactation failure in the mutant mice. We show that the increased ER stress was caused by a secretory failure of milk proteins in Ocln null cells. Consistent with an essential role in protein secretion, Occludin was seen to reside on secretory vesicles and to be bound to SNARE proteins. Taken together, our results demonstrate that Ocln protects MPCs from ER stress by facilitating SNARE-dependent protein secretion and raise the possibility that other TJ components may participate in functions similar to Ocln.
Collapse
|
34
|
Tripathy S, Singh S, Das SK. Potential of breastmilk in stem cell research. Cell Tissue Bank 2019; 20:467-488. [PMID: 31606767 DOI: 10.1007/s10561-019-09791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 10/01/2019] [Indexed: 11/28/2022]
Abstract
Breastmilk is a dynamic, multi-faceted, and complex fluid containing a plethora of biochemical and cellular components that execute developmental effects or differentiation program, providing nourishment and immunity to newborns. Recently, it was reported that breastmilk contains a heterogeneous population of naïve cells, including pluripotent stem cells, multipotent stem cells, immune cells, and non-immune cells. The stem cells derived from breastmilk possess immune privilege and non-tumorigenic properties. Thus, breastmilk may represent an ideal source of stem cells collected by non-perceive procedure than other available sources. Thus, this "maternally originating natural regenerative medicine" may have innumerable applications in clinical biology, cosmetics, and pharmacokinetics. This review describes the efficient integrated cellular system of mammary glands, the impressive stem cell hierarchy of breastmilk, and their possible implications in translational research and therapeutics.
Collapse
Affiliation(s)
- Seema Tripathy
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751 003, India.
| | - Shikha Singh
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751 003, India
| | - Saroj Kumar Das
- Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Kalinga Nagar, Ghatikia, Bhubaneswar, 751 003, India
| |
Collapse
|
35
|
Lu P, Zhou T, Xu C, Lu Y. Mammary stem cells, where art thou? WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e357. [PMID: 31322329 DOI: 10.1002/wdev.357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
Tremendous progress has been made in the field of stem cell biology. This is in part due to the emergence of various vertebrate organs, including the mammary gland, as an amenable model system for adult stem cell studies and remarkable technical advances in single cell technology and modern genetic lineage tracing. In the current review, we summarize the recent progress in mammary gland stem cell biology at both the adult and embryonic stages. We discuss current challenges and controversies, and potentially new and exciting directions for future research. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.
Collapse
Affiliation(s)
- Pengfei Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tao Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chongshen Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yunzhe Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
36
|
Wallace TR, Tarullo SE, Crump LS, Lyons TR. Studies of postpartum mammary gland involution reveal novel pro-metastatic mechanisms. ACTA ACUST UNITED AC 2019; 5. [PMID: 30847405 PMCID: PMC6400586 DOI: 10.20517/2394-4722.2019.01] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Postpartum involution is the process by which the lactating mammary gland returns to the pre-pregnant state after weaning. Expression of tumor-promotional collagen, upregulation of matrix metalloproteinases, infiltration of M2 macrophages, and remodeling of blood and lymphatic vasculature are all characteristics shared by the involuting mammary gland and breast tumor microenvironment. The tumor promotional nature of the involuting mammary gland is perhaps best evidenced by cases of postpartum breast cancer (PPBC), or those cases diagnosed within 10 years of most recent childbirth. Women with PPBC experience more aggressive disease and higher risk of metastasis than nulliparous patients and those diagnosed outside the postpartum window. Semaphorin 7a (SEMA7A), cyclooxygenase-2 (COX-2), and collagen are all expressed in the involuting mammary gland and, together, predict for decreased metastasis free survival in breast cancer. Studies investigating the role of these proteins in involution have been important for understanding their contributions to PPBC. Postpartum involution thus represents a valuable model for the identification of novel molecular drivers of PPBC and classical cancer hallmarks. In this review, we will highlight the similarities between involution and cancer in the mammary gland, and further define the contribution of SEMA7A/COX-2/collagen interplay to postpartum involution and breast tumor progression and metastasis.
Collapse
Affiliation(s)
- Taylor R Wallace
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sarah E Tarullo
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lyndsey S Crump
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Traci R Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,University of Colorado Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
37
|
Gopalakrishnan K, Teitelbaum SL, Wetmur J, Manservisi F, Falcioni L, Panzacchi S, Gnudi F, Belpoggi F, Chen J. Histology and Transcriptome Profiles of the Mammary Gland across Critical Windows of Development in Sprague Dawley Rats. J Mammary Gland Biol Neoplasia 2018; 23:149-163. [PMID: 29956080 PMCID: PMC6103804 DOI: 10.1007/s10911-018-9401-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/13/2018] [Indexed: 11/30/2022] Open
Abstract
Breast development occurs through well-defined stages representing 'windows of susceptibility' to adverse environmental exposures that potentially modify breast cancer risk. Systematic characterization of morphology and transcriptome during normal breast development lays the foundation of our understanding of cancer etiology. We examined mammary glands in female Sprague Dawley rats across six developmental stages - pre-pubertal, peri-pubertal, pubertal, lactation, adult parous and adult nulliparous. We investigated histology by Hematoxylin and Eosin and Mallory's Trichrome stain, proliferative and apoptotic rate by immunohistochemistry and whole-transcriptome by microarrays. We identified differentially expressed genes between adjacent developmental stages by linear models, underlying pathways by gene ontology analysis and gene networks and hubs active across developmental stages by coexpression network analysis. Mammary gland development was associated with large-scale changes in the transcriptome; particularly from pre-pubertal to peri-pubertal period and the lactation period were characterized by distinct patterns of gene expression with unique biological functions such as immune processes during pre-pubertal development and cholesterol biosynthesis during lactation. These changes were reflective of the shift in mammary gland histology, from a rudimentary organ during early stages to a secretory organ during lactation followed by regression with age. Hub genes within mammary gene networks included metabolic genes such as Pparg during the pre-pubertal stage and tight junction-related genes claudins and occludins in lactating mammary glands. Transcriptome profile paired with histology enhanced our understanding of mammary development, which is fundamental in understanding the etiologic mechanism of breast cancer, especially pertaining to windows of susceptibility to environmental exposures that may alter breast cancer risk.
Collapse
Affiliation(s)
- Kalpana Gopalakrishnan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, Box 1057, 1 Gustave Levy Place, New York, NY, 10029, USA
| | - Susan L Teitelbaum
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, Box 1057, 1 Gustave Levy Place, New York, NY, 10029, USA
| | - James Wetmur
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, Box 1054, 1 Gustave Levy Place, New York, NY, 10029, USA
| | - Fabiana Manservisi
- Cesare Maltoni Cancer Research Centre, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Laura Falcioni
- Cesare Maltoni Cancer Research Centre, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Simona Panzacchi
- Cesare Maltoni Cancer Research Centre, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Federica Gnudi
- Cesare Maltoni Cancer Research Centre, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Centre, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, Box 1057, 1 Gustave Levy Place, New York, NY, 10029, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Box 1057, 1 Gustave Levy Place, New York, NY, 10029, USA.
- Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, Box 1057, 1 Gustave Levy Place, New York, NY, 10029, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, Box 1057, 1 Gustave Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
38
|
Wahlbuhl M, Schuepbach-Mallepell S, Kowalczyk-Quintas C, Dick A, Fahlbusch FB, Schneider P, Schneider H. Attenuation of Mammary Gland Dysplasia and Feeding Difficulties in Tabby Mice by Fetal Therapy. J Mammary Gland Biol Neoplasia 2018; 23:125-138. [PMID: 29855766 DOI: 10.1007/s10911-018-9399-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Hypohidrotic ectodermal dysplasias (HED) are hereditary differentiation disorders of multiple ectodermal structures including the mammary gland. The X-linked form of HED (XLHED) is caused by a lack of the secreted signaling molecule ectodysplasin A1 (EDA1) which is encoded by the gene EDA and belongs to the tumor necrosis factor (TNF) superfamily. Although male patients (hemizygous) are usually more severely affected by XLHED, heterozygous female carriers of an EDA mutation may also suffer from a variety of symptoms, in particular from abnormal development of their breasts. In Tabby mice, a well-studied animal model of XLHED, EDA1 is absent. We investigated the effects of prenatal administration of Fc-EDA, a recombinant EDA1 replacement protein, on mammary gland development in female Tabby mice. Intra-amniotic delivery of Fc-EDA to fetal animals resulted later in improved breastfeeding and thus promoted the growth of their offspring. In detail, such treatment led to a normalization of the nipple shape (protrusion, tapering) that facilitated sucking. Mammary glands of treated female Tabby mice also showed internal changes, including enhanced branching morphogenesis and ductal elongation. Our findings indicate that EDA receptor stimulation during development has a stable impact on later stages of mammary gland differentiation, including lactation, but also show that intra-amniotic administration of an EDA1 replacement protein to fetal Tabby mice partially corrects the mammary gland phenotype in female adult animals.
Collapse
Affiliation(s)
- Mandy Wahlbuhl
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestr. 15, 91054, Erlangen, Germany.
| | | | | | - Angela Dick
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestr. 15, 91054, Erlangen, Germany
| | - Fabian B Fahlbusch
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestr. 15, 91054, Erlangen, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Holm Schneider
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Loschgestr. 15, 91054, Erlangen, Germany
| |
Collapse
|
39
|
Early lineage segregation of multipotent embryonic mammary gland progenitors. Nat Cell Biol 2018; 20:666-676. [PMID: 29784918 PMCID: PMC5985933 DOI: 10.1038/s41556-018-0095-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/26/2018] [Indexed: 12/19/2022]
Abstract
The mammary gland (MG) is composed of basal cells (BCs) and luminal cells (LCs). While it is generally believed that MG arises from embryonic multipotent progenitors (EMPs), it remains unclear when lineage restriction occurs and what are the mechanisms responsible for the switch from multipotency to unipotency during MG morphogenesis. Here, we performed multicolor lineage tracing and assessed the fate of single progenitors and demonstrated the existence of a developmental switch from multipotency to unipotency during embryonic MG development. Molecular profiling and single cell RNA-seq revealed that EMPs express a unique hybrid basal and luminal signature and the factors associated with the different lineages. Sustained p63 expression in EMPs promotes unipotent BC fate and was sufficient to reprogram adult LCs into BCs by promoting an intermediate hybrid multipotent like state. Altogether, this study identifies the timing and the mechanisms mediating the early lineage segregation of multipotent progenitors during MG development.
Collapse
|
40
|
NF-kappaB: Two Sides of the Same Coin. Genes (Basel) 2018; 9:genes9010024. [PMID: 29315242 PMCID: PMC5793177 DOI: 10.3390/genes9010024] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.
Collapse
|
41
|
The Immunoexpression of Glucocorticoid Receptors in Breast Carcinomas, Lactational Change, and Normal Breast Epithelium and Its Possible Role in Mammary Carcinogenesis. Int J Breast Cancer 2017; 2017:1403054. [PMID: 29348941 PMCID: PMC5733989 DOI: 10.1155/2017/1403054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/20/2017] [Accepted: 10/15/2017] [Indexed: 12/18/2022] Open
Abstract
The role of estrogen and progesterone receptors in breast cancer biology is well established. In contrast, other steroid hormones are less well studied. Glucocorticoids (GCs) are known to play a role in mammary development and differentiation; thus, it is of interest to attempt to delineate their immunoexpression across a spectrum of mammary epithelia. Aim. To delineate the distribution pattern of glucocorticoid receptors (GRs) in malignant versus nonmalignant epithelium with particular emphasis on lactational epithelium. Materials and Methods. Immunohistochemistry (IHC) for GRs was performed on archival formalin-fixed paraffin-embedded tissue blocks of 96 cases comprising 52 invasive carcinomas, 21 cases with lactational change, and 23 cases showing normal mammary tissue histology. Results. Results reveal an overexpression of GRs in mammary malignant epithelium as compared to both normal and lactational groups individually and combined. GR overexpression is significantly more pronounced in HER-2-negative cancers. Discussion. This is the first study to compare GR expression in human lactating epithelium versus malignant and normal epithelium. The article discusses the literature related to the pathobiology of GCs in the breast with special emphasis on breast cancer. Conclusion. The lactational epithelium did not show overexpression of GR, while GR was overexpressed in mammary NST (ductal) carcinoma, particularly HER-2-negative cancers.
Collapse
|
42
|
Lee S, Rivera OC, Kelleher SL. Zinc transporter 2 interacts with vacuolar ATPase and is required for polarization, vesicle acidification, and secretion in mammary epithelial cells. J Biol Chem 2017; 292:21598-21613. [PMID: 29114036 DOI: 10.1074/jbc.m117.794461] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/22/2017] [Indexed: 12/19/2022] Open
Abstract
An important feature of the mammary gland is its ability to undergo profound morphological, physiological, and intracellular changes to establish and maintain secretory function. During this process, key polarity proteins and receptors are recruited to the surface of mammary epithelial cells (MECs), and the vesicle transport system develops and matures. However, the intracellular mechanisms responsible for the development of secretory function in these cells are unclear. The vesicular zinc (Zn2+) transporter ZnT2 is critical for appropriate mammary gland architecture, and ZnT2 deletion is associated with cytoplasmic Zn2+ accumulation, loss of secretory function and lactation failure. The underlying mechanisms are important to understand as numerous mutations and non-synonymous genetic variation in ZnT2 have been detected in women that result in severe Zn2+ deficiency in exclusively breastfed infants. Here we found that ZnT2 deletion in lactating mice and cultured MECs resulted in Zn2+-mediated degradation of phosphatase and tensin homolog (PTEN), which impaired intercellular junction formation, prolactin receptor trafficking, and alveolar lumen development. Moreover, ZnT2 directly interacted with vacuolar H+-ATPase (V-ATPase), and ZnT2 deletion impaired vesicle biogenesis, acidification, trafficking, and secretion. In summary, our findings indicate that ZnT2 and V-ATPase interact and that this interaction critically mediates polarity establishment, alveolar development, and secretory function in the lactating mammary gland. Our observations implicate disruption in ZnT2 function as a modifier of secretory capacity and lactation performance.
Collapse
Affiliation(s)
- Sooyeon Lee
- From the Departments of Cellular and Molecular Physiology
| | | | - Shannon L Kelleher
- From the Departments of Cellular and Molecular Physiology, .,Surgery, Penn State Hershey College of Medicine, Hershey, Pennsylvania 17033 and.,Pharmacology, and.,the Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
43
|
Elastic stains in the evaluation of DCIS with comedo necrosis in breast cancers. Virchows Arch 2017; 472:1007-1014. [PMID: 29101458 DOI: 10.1007/s00428-017-2259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/09/2017] [Accepted: 10/23/2017] [Indexed: 10/18/2022]
Abstract
As concerns the microscopic morphology of ductal carcinoma in situ (DCIS), neoplastic cells are surrounded by both a myoepithelial cell layer and a basement membrane as expected from the outer structure of ducts and lobules. However, in some cases, it is impossible to state whether the structures involved by the disease are ducts or lobules. Altogether 1220 anatomic structures involved by DCIS displaying comedo necrosis from 27 slides of 21 patients (seen on both haematoxylin and eosin-stained and orcein-stained slides) were identified as representing ducts, likely ducts, unclassifiable structures, likely acini or acini on the basis of their distribution and resemblance to normal anatomic structures. All structures were then rated as having a circumferential elastic layer (as normal ducts), a partial elastic layer around more or less than half of the periphery or having no peripheral elastic layer at all (as normal acini). Structures classified as ducts or likely ducts were likely to have an elastic coating, whereas acini and likely acini had no such coating. Unclassifiable structures were generally devoid of an elastic layer. Structures (and cases) that were likely to represent neoductgenesis as proposed by Zhou et al. (Int J Breast Cancer 2014;2014:581706) were generally unclassifiable and devoid of outer elastic layer. Many duct-like structures in DCIS with comedo necrosis are devoid of elastic layer typical of normal ducts, suggesting that these structures are abnormal despite conservation of the myoepithelium and the basement membrane.
Collapse
|
44
|
Gao B, Qu Y, Han B, Nagaoka Y, Katsumata M, Deng N, Bose S, Jin L, Giuliano AE, Cui X. Inhibition of lobuloalveolar development by FOXC1 overexpression in the mouse mammary gland. Sci Rep 2017; 7:14017. [PMID: 29070831 PMCID: PMC5656618 DOI: 10.1038/s41598-017-14342-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 10/10/2017] [Indexed: 11/09/2022] Open
Abstract
The forkhead box transcription factor FOXC1 plays a critical role in embryogenesis and the development of many organs. Its mutations and high expression are associated with many human diseases including breast cancer. Although FOXC1 knockout mouse studies showed that it is not required for mammary gland development during puberty, it is not clear whether its overexpression alters normal mammary development in vivo. To address this question, we generated transgenic mice with mammary-specific FOXC1 overexpression. We report that transgenic FOXC1 overexpression suppresses lobuloalveologenesis and lactation in mice. This phenotype is associated with higher percentages of estrogen receptor-, progesterone receptor-, or ki67-positive mammary epithelial cells in the transgenic mice at the lactation stage. We also show that expression of the Elf5 transcription factor, a master regulator of mammary alveologenesis and luminal cell differentiation, is markedly reduced in mammary epithelial cells of transgenic mice. Likewise, levels of activated Stat5, another inducer of alveolar expansion and a known mediator of the Elf5 effect, are also lowered in those cells. In contrast, the cytokeratin 8-positive mammary cell population with progenitor properties is elevated in the transgenic mice at the lactation stage, suggesting inhibition of mammary cell differentiation. These results may implicate FOXC1 as a new important regulator of mammary gland development.
Collapse
Affiliation(s)
- Bowen Gao
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048,, USA
| | - Ying Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048,, USA
| | - Bingchen Han
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048,, USA
| | - Yoshiko Nagaoka
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048,, USA
| | - Makoto Katsumata
- Department of Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048,, USA
| | - Nan Deng
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048,, USA
| | - Shikha Bose
- Department of Pathology, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048,, USA
| | - Liting Jin
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048,, USA.,Department of Breast Surgery, Hubei Cancer Hospital, Wuhan, Hubei, 430079,, China
| | - Armando E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048,, USA
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048,, USA.
| |
Collapse
|
45
|
Jahan M, Kracht S, Ho Y, Haque Z, Bhattachatyya BN, Wynn PC, Wang B. Dietary lactoferrin supplementation to gilts during gestation and lactation improves pig production and immunity. PLoS One 2017; 12:e0185817. [PMID: 29023467 PMCID: PMC5638254 DOI: 10.1371/journal.pone.0185817] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 09/20/2017] [Indexed: 01/21/2023] Open
Abstract
Lactoferrin (LF), a sialylated iron-binding glycoprotein, performs multiple beneficial functions including modulating immunity and improves neurodevelopment, health and growth performance. Maternal LF intervention for gilts (first parity sows) on the performance of gilts and their offspring remains unknown. In the current study gilts were fed with a commercial pig feed supplemented with 1g LF /day (treatment group) or 1g milk casein/day (control group) from day 1 post mating throughout pregnancy and lactation for about 135 days. The milk production and body weight gain was monitored. The immunoglobulin concentrations in the serum of gilts and piglets were measured using ELISA. Our study showed that maternal LF supplementation to the gilt (1) significantly increased milk production at different time points (day 1, 3, 7 and 19) of lactation compared to the control (p<0.001); (2) significantly increased body weight gain of their piglets during the first 19 days of life compared to the control group (p<0.05); (3) tended to increase pregnancy rate, litter size and birth weight, number of piglets born alive, and decrease the number of dead and intrauterine growth restriction (IUGR) piglets; (4) significantly increased the concentration of serum IgA in gilt and serum sIgA in piglet (p<0.05). In summary, maternal Lf intervention in gilts can improve milk production, pig production and serum IgA and sIgA levels, and therefore plays a key role in shaping the performance of their progeny.
Collapse
Affiliation(s)
- Marefa Jahan
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, Australia
| | - Susie Kracht
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, Australia
| | - Yen Ho
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, Australia
| | - Ziaul Haque
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, Australia
| | - Birendra N. Bhattachatyya
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, Australia
| | - Peter C. Wynn
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, Australia
| | - Bing Wang
- Graham Centre for Agricultural Innovation, Charles Sturt University and NSW Department of Primary Industries, Wagga Wagga, NSW, Australia
- * E-mail:
| |
Collapse
|
46
|
Sisto M, Lorusso L, Ingravallo G, Lisi S. Exocrine Gland Morphogenesis: Insights into the Role of Amphiregulin from Development to Disease. Arch Immunol Ther Exp (Warsz) 2017; 65:477-499. [DOI: 10.1007/s00005-017-0478-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
|
47
|
Dianati E, Plante I. Analysis of Protein-protein Interactions and Co-localization Between Components of Gap, Tight, and Adherens Junctions in Murine Mammary Glands. J Vis Exp 2017. [PMID: 28605375 DOI: 10.3791/55772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cell-cell interactions play a pivotal role in preserving tissue integrity and the barrier between the different compartments of the mammary gland. These interactions are provided by junctional proteins that form nexuses between adjacent cells. Junctional protein mislocalization and reduced physical associations with their binding partners can result in the loss of function and, consequently, to organ dysfunction. Thus, identifying protein localization and protein-protein interactions (PPIs) in normal and disease-related tissues is essential to finding new evidences and mechanisms leading to the progression of diseases or alterations in developmental status. This manuscript presents a two-step method to evaluate PPIs in murine mammary glands. In protocol section 1, a method to perform co-immunofluorescence (co-IF) using antibodies raised against the proteins of interest, followed by secondary antibodies labeled with fluorochromes, is described. Although co-IF allows for the demonstration of the proximity of the proteins, it does make it possible to study their physical interactions. Therefore, a detailed protocol for co-immunoprecipitation (co-IP) is provided in protocol section 2. This method is used to determine the physical interactions between proteins, without confirming whether these interactions are direct or indirect. In the last few years, co-IF and co-IP techniques have demonstrated that certain components of intercellular junctions co-localize and interact together, creating stage-dependent junctional nexuses that vary during mammary gland development.
Collapse
|
48
|
Pham K, Dong J, Jiang X, Qu Y, Yu H, Yang Y, Olea W, Marini JC, Chan L, Wang J, Wehrens XHT, Cui X, Li Y, Hadsell DL, Cheng N. Loss of glutaredoxin 3 impedes mammary lobuloalveolar development during pregnancy and lactation. Am J Physiol Endocrinol Metab 2017; 312:E136-E149. [PMID: 27894063 PMCID: PMC5374299 DOI: 10.1152/ajpendo.00150.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Mammalian glutaredoxin 3 (Grx3) has been shown to be important for regulating cellular redox homeostasis in the cell. Our previous studies indicate that Grx3 is significantly overexpressed in various human cancers including breast cancer and demonstrate that Grx3 controls cancer cell growth and invasion by regulating reactive oxygen species (ROS) and NF-κB signaling pathways. However, it remains to be determined whether Grx3 is required for normal mammary gland development and how it contributes to epithelial cell proliferation and differentiation in vivo. In the present study, we examined Grx3 expression in different cell types within the developing mouse mammary gland (MG) and found enhanced expression of Grx3 at pregnancy and lactation stages. To assess the physiological role of Grx3 in MG, we generated the mutant mice in which Grx3 was deleted specifically in mammary epithelial cells (MECs). Although the reduction of Grx3 expression had only minimal effects on mammary ductal development in virgin mice, it did reduce alveolar density during pregnancy and lactation. The impairment of lobuloalveolar development was associated with high levels of ROS accumulation and reduced expression of milk protein genes. In addition, proliferative gene expression was significantly suppressed with proliferation defects occurring in knockout MECs during alveolar development compared with wild-type controls. Therefore, our findings suggest that Grx3 is a key regulator of ROS in vivo and is involved in pregnancy-dependent mammary gland development and secretory activation through modulating cellular ROS.
Collapse
Affiliation(s)
- Khanh Pham
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Jie Dong
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
| | - Xiqian Jiang
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas
| | - Ying Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Han Yu
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Yisheng Yang
- Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Walter Olea
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Juan C Marini
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lawrence Chan
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Jin Wang
- Department of Pharmacology, Baylor College of Medicine, Houston, Texas
- Center for Drug Discovery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; and
| | - Xander H T Wehrens
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; and
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas
| | - Xiaojiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Yi Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Darryl L Hadsell
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Ninghui Cheng
- USDA/ARS Children Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas;
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas; and
| |
Collapse
|
49
|
Callahan R, Chestnut BA, Raafat A. Original Research: Featured Article: Imatinib mesylate (Gleevec) inhibits Notch and c-Myc signaling: Five-day treatment permanently rescues mammary development. Exp Biol Med (Maywood) 2016; 242:53-67. [PMID: 27550925 DOI: 10.1177/1535370216665175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022] Open
Abstract
Wap-Int3 transgenic females expressing the Notch4 intracellular domain (designated Int3) from the whey acidic protein promoter exhibit two phenotypes in the mammary gland: blockage of lobuloalveolar development and lactation, and tumor development with 100% penetrance. Previously, we have shown that treatment of Wap-Int3 tumor bearing mice with Imatinib mesylate (Gleevec) is associated with complete regression of the tumor. In the present study, we show that treatment of Wap-Int3 mice during day 1 through day 6 of pregnancy with Gleevec leads to the restoration of their lobuloalveolar development and ability to lactate in subsequent pregnancies in absence of Gleevec treatment. In addition, these mice do not develop mammary tumors. We investigated the mechanism for Gleevec regulation of Notch signaling and found that Gleevec treatment results in a loss of Int3 protein but not of Int3 mRNA in HC11 mouse mammary epithelial cells expressing Int3. The addition of MG-132, a proteasome inhibitor, shows increased ubiquitination of Int3 in the presence of Gleevec. Thus, Gleevec affects the stability of Int3 by promoting the degradation of Int3 via E3 ubiquitin ligases targeting it for the proteasome degradation. Gleevec is a tyrosine kinase inhibitor that acts on c-Kit and PDGFR. Therefore, we investigated the downstream substrate kinase GSK3β to ascertain the possible role that this kinase might play in the stability of Int3. Data show that Gleevec degradation of Int3 is GSK3β dependent. We have expanded our study of the effects Gleevec has on tumorigenesis of other oncogenes. We have found that anchorage-independent growth of HC11-c-Myc cells as well as tumor growth in nude mice is inhibited by Gleevec treatment. As with Int3, Gleevec treatment appears to destabilize the c-Myc protein but not mRNA. These results indicate that Gleevec could be a potential therapeutic drug for patients bearing Notch4 and/or c-Myc positive breast carcinomas.
Collapse
Affiliation(s)
- Robert Callahan
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Barry A Chestnut
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ahmed Raafat
- Basic Research Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| |
Collapse
|
50
|
Connexins, E-cadherin, Claudin-7 and β-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol 2016; 416:52-68. [PMID: 27291930 DOI: 10.1016/j.ydbio.2016.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/15/2016] [Accepted: 06/03/2016] [Indexed: 12/21/2022]
Abstract
Gap junctions are intercellular channels made of connexins (Cxs) that allow direct communication between adjacent cells. Modulation of Cxs has been associated with abnormal development and function of the mammary gland and breast cancer. However, the mechanisms underlying their expression during normal mammary gland are not yet known. Cxs interact with components of tight and adherens junctions. Thus, we hypothesized that the expression levels of Cxs vary during mammary gland development and are regulated through stage-dependent interactions with members of the tight and adherens junctions. Our specific objectives were to: 1) determine the expression of Cxs and tight and adherens junction proteins throughout development and 2) characterize Cxs interactions with components of tight and adherens junctions. Murine mammary glands were sampled at various developmental stages (pre-pubescent to post-weaning). RT-qPCR and western-blot analyses demonstrated differential expression patterns for all gap (Cx43, Cx32, Cx26, Cx30), tight (Claudin-1, -3, -4, -7) and adherens (β-catenin, E- and P-cadherins) junctions throughout development. Interestingly, co-immunoprecipitation demonstrated interactions between these different types of junctions. Cx30 interacted with Cx26 just at the late pregnancy stage. While Cx43 showed a persistent interaction with β-catenin from virginity to post-weaning, its interactions with E-cadherin and Claudin-7 were transient. Cx32 interacted with Cx26, E-cadherin and β-catenin during lactation. Immunofluorescence results confirmed the existence of a junctional nexus that remodeled during mammary gland development. Together, our results confirm that the expression levels of Cxs vary concomitantly and that Cxs form junctional nexuses with tight and adherens junctions, suggesting the existence of common regulatory pathways.
Collapse
|