1
|
Kanlayaprasit S, Saeliw T, Thongkorn S, Panjabud P, Kasitipradit K, Lertpeerapan P, Songsritaya K, Yuwattana W, Jantheang T, Jindatip D, Hu VW, Kikkawa T, Osumi N, Sarachana T. Sex-specific impacts of prenatal bisphenol A exposure on genes associated with cortical development, social behaviors, and autism in the offspring's prefrontal cortex. Biol Sex Differ 2024; 15:40. [PMID: 38750585 PMCID: PMC11094985 DOI: 10.1186/s13293-024-00614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Recent studies have shown that prenatal BPA exposure altered the transcriptome profiles of autism-related genes in the offspring's hippocampus, disrupting hippocampal neuritogenesis and causing male-specific deficits in learning. However, the sex differences in the effects of prenatal BPA exposure on the developing prefrontal cortex, which is another brain region highly implicated in autism spectrum disorder (ASD), have not been investigated. METHODS We obtained transcriptome data from RNA sequencing analysis of the prefrontal cortex of male and female rat pups prenatally exposed to BPA or control and reanalyzed. BPA-responsive genes associated with cortical development and social behaviors were selected for confirmation by qRT-PCR analysis. Neuritogenesis of primary cells from the prefrontal cortex of pups prenatally exposed to BPA or control was examined. The social behaviors of the pups were assessed using the two-trial and three-chamber tests. The male-specific impact of the downregulation of a selected BPA-responsive gene (i.e., Sema5a) on cortical development in vivo was interrogated using siRNA-mediated knockdown by an in utero electroporation technique. RESULTS Genes disrupted by prenatal BPA exposure were associated with ASD and showed sex-specific dysregulation. Sema5a and Slc9a9, which were involved in neuritogenesis and social behaviors, were downregulated only in males, while Anxa2 and Junb, which were also linked to neuritogenesis and social behaviors, were suppressed only in females. Neuritogenesis was increased in males and showed a strong inverse correlation with Sema5a and Slc9a9 expression levels, whereas, in the females, neuritogenesis was decreased and correlated with Anxa2 and Junb levels. The siRNA-mediated knockdown of Sema5a in males also impaired cortical development in utero. Consistent with Anxa2 and Junb downregulations, deficits in social novelty were observed only in female offspring but not in males. CONCLUSION This is the first study to show that prenatal BPA exposure dysregulated the expression of ASD-related genes and functions, including cortical neuritogenesis and development and social behaviors, in a sex-dependent manner. Our findings suggest that, besides the hippocampus, BPA could also exert its adverse effects through sex-specific molecular mechanisms in the offspring's prefrontal cortex, which in turn would lead to sex differences in ASD-related neuropathology and clinical manifestations, which deserves further investigation.
Collapse
Grants
- NRU59-031-HR National Research University Project, Office of Higher Education Commission
- HEA663700091 Thailand Science Research and Innovation Fund Chulalongkorn University
- GRU 6300437001-1 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- GRU_64_033_37_004 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- GRU 6506537004-1 Ratchadapisek Somphot Fund for Supporting Research Unit, Chulalongkorn University
- the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand
- the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand
- the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand
- the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand the Second Century Fund (C2F), Chulalongkorn University, Bangkok, Thailand
- PHD/0029/2561 a Royal Golden Jubilee Ph.D. Programme Scholarship, the Thailand Research Fund and National Research Council of Thailand
- N41A650065 a Royal Golden Jubilee Ph.D. Programme Scholarship, the Thailand Research Fund and National Research Council of Thailand
- NRCT5-RGJ63001-018 a Royal Golden Jubilee Ph.D. Programme Scholarship, the Thailand Research Fund and National Research Council of Thailand
- GCUGR1125632108D-108 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125632109D-109 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125651062D-062 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- GCUGR1125651060D-060 The 90th Anniversary Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), Graduate School, Chulalongkorn University
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship
- The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship The 100th Anniversary Chulalongkorn University Fund for Doctoral Scholarship
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- The National Research Council of Thailand (NRCT) fund for research and innovation activity The National Research Council of Thailand (NRCT) fund for research and innovation activity
- Scholarship from the Graduate School Chulalongkorn University to commemorate the 72nd anniversary of His Majesty King Bhumibala Aduladeja Scholarship from the Graduate School Chulalongkorn University to commemorate the 72nd anniversary of His Majesty King Bhumibala Aduladeja
- Chulalongkorn University Laboratory Animal Center (CULAC) Grant Chulalongkorn University Laboratory Animal Center (CULAC) Grant
- PMU-B; B36G660008 Program Management Unit for Human Resources and Institutional Development, Research and Innovation
- CE66_046_3700_003 Ratchadapisek Somphot Fund for Supporting Center of Excellence, Chulalongkorn University
- The National Research Council of Thailand (NRCT) fund for research and innovation activity
Collapse
Affiliation(s)
- Songphon Kanlayaprasit
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand
| | - Thanit Saeliw
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand
| | - Surangrat Thongkorn
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pawinee Panjabud
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kasidit Kasitipradit
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kwanjira Songsritaya
- The M.Sc. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wasana Yuwattana
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanawin Jantheang
- The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Depicha Jindatip
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand
- Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W Hu
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Takako Kikkawa
- Department of Developmental Neuroscience, Centers for Advanced Research and Translational Medicine (ART), Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, Centers for Advanced Research and Translational Medicine (ART), Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan
| | - Tewarit Sarachana
- Chulalongkorn Autism Research and Innovation Center of Excellence (Chula ACE), Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Bangkok, Wangmai, Pathumwan, 10330, Thailand.
| |
Collapse
|
2
|
Zhang P, Zhang W, Sun W, Xu J, Hu H, Wang L, Wong L. Identification of gene biomarkers for brain diseases via multi-network topological semantics extraction and graph convolutional network. BMC Genomics 2024; 25:175. [PMID: 38350848 PMCID: PMC10865627 DOI: 10.1186/s12864-024-09967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Brain diseases pose a significant threat to human health, and various network-based methods have been proposed for identifying gene biomarkers associated with these diseases. However, the brain is a complex system, and extracting topological semantics from different brain networks is necessary yet challenging to identify pathogenic genes for brain diseases. RESULTS In this study, we present a multi-network representation learning framework called M-GBBD for the identification of gene biomarker in brain diseases. Specifically, we collected multi-omics data to construct eleven networks from different perspectives. M-GBBD extracts the spatial distributions of features from these networks and iteratively optimizes them using Kullback-Leibler divergence to fuse the networks into a common semantic space that represents the gene network for the brain. Subsequently, a graph consisting of both gene and large-scale disease proximity networks learns representations through graph convolution techniques and predicts whether a gene is associated which brain diseases while providing associated scores. Experimental results demonstrate that M-GBBD outperforms several baseline methods. Furthermore, our analysis supported by bioinformatics revealed CAMP as a significantly associated gene with Alzheimer's disease identified by M-GBBD. CONCLUSION Collectively, M-GBBD provides valuable insights into identifying gene biomarkers for brain diseases and serves as a promising framework for brain networks representation learning.
Collapse
Affiliation(s)
- Ping Zhang
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277100, Shandong, China
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Weihan Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Hubei Hongshan Laboratory, Wuhan, 430074, China
| | - Weicheng Sun
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinsheng Xu
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hua Hu
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277100, Shandong, China.
| | - Lei Wang
- College of Information Science and Engineering, Zaozhuang University, Zaozhuang, 277100, Shandong, China.
- Guangxi Key Lab of Human-Machine Interaction and Intelligent Decision, Guangxi Academy of Sciences, Nanning, 530007, China.
| | - Leon Wong
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
3
|
Dopp J, Ortega A, Davie K, Poovathingal S, Baz ES, Liu S. Single-cell transcriptomics reveals that glial cells integrate homeostatic and circadian processes to drive sleep-wake cycles. Nat Neurosci 2024; 27:359-372. [PMID: 38263460 PMCID: PMC10849968 DOI: 10.1038/s41593-023-01549-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 12/07/2023] [Indexed: 01/25/2024]
Abstract
The sleep-wake cycle is determined by circadian and sleep homeostatic processes. However, the molecular impact of these processes and their interaction in different brain cell populations are unknown. To fill this gap, we profiled the single-cell transcriptome of adult Drosophila brains across the sleep-wake cycle and four circadian times. We show cell type-specific transcriptomic changes, with glia displaying the largest variation. Glia are also among the few cell types whose gene expression correlates with both sleep homeostat and circadian clock. The sleep-wake cycle and sleep drive level affect the expression of clock gene regulators in glia, and disrupting clock genes specifically in glia impairs homeostatic sleep rebound after sleep deprivation. These findings provide a comprehensive view of the effects of sleep homeostatic and circadian processes on distinct cell types in an entire animal brain and reveal glia as an interaction site of these two processes to determine sleep-wake dynamics.
Collapse
Affiliation(s)
- Joana Dopp
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Antonio Ortega
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Kristofer Davie
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Suresh Poovathingal
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - El-Sayed Baz
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Sha Liu
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium.
- Department of Neurosciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Chen H, Li X, Li F, Li Y, Chen F, Zhang L, Ye F, Gong M, Bu H. Prediction of coexisting invasive carcinoma on ductal carcinoma in situ (DCIS) lesions by mass spectrometry imaging. J Pathol 2023; 261:125-138. [PMID: 37555360 DOI: 10.1002/path.6154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 05/16/2023] [Accepted: 06/07/2023] [Indexed: 08/10/2023]
Abstract
Due to limited biopsy samples, ~20% of DCIS lesions confirmed by biopsy are upgraded to invasive ductal carcinoma (IDC) upon surgical resection. Avoiding underestimation of IDC when diagnosing DCIS has become an urgent challenge in an era discouraging overtreatment of DCIS. In this study, the metabolic profiles of 284 fresh frozen breast samples, including tumor tissues and adjacent benign tissues (ABTs) and distant surrounding tissues (DSTs), were analyzed using desorption electrospray ionization-mass spectrometry (DESI-MS) imaging. Metabolomics analysis using DESI-MS data revealed significant differences in metabolite levels, including small-molecule antioxidants, long-chain polyunsaturated fatty acids (PUFAs) and phospholipids between pure DCIS and IDC. However, the metabolic profile in DCIS with invasive carcinoma components clearly shifts to be closer to adjacent IDC components. For instance, DCIS with invasive carcinoma components showed lower levels of antioxidants and higher levels of free fatty acids compared to pure DCIS. Furthermore, the accumulation of long-chain PUFAs and the phosphatidylinositols (PIs) containing PUFA residues may also be associated with the progression of DCIS. These distinctive metabolic characteristics may offer valuable indications for investigating the malignant potential of DCIS. By combining DESI-MS data with machine learning (ML) methods, various breast lesions were discriminated. Importantly, the pure DCIS components were successfully distinguished from the DCIS components in samples with invasion in postoperative specimens by a Lasso prediction model, achieving an AUC value of 0.851. In addition, pixel-level prediction based on DESI-MS data enabled automatic visualization of tissue properties across whole tissue sections. Summarily, DESI-MS imaging on histopathological sections can provide abundant metabolic information about breast lesions. By analyzing the spatial metabolic characteristics in tissue sections, this technology has the potential to facilitate accurate diagnosis and individualized treatment of DCIS by inferring the presence of IDC components surrounding DCIS lesions. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hong Chen
- Department of Pathology and Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, PR China
- Key Laboratory of Transplant Engineering and Immunology of the National Health Commission, West China Hospital, Sichuan University, Chengdu, PR China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Fengling Li
- Department of Pathology and Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, PR China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Yijie Li
- Department of Pathology and Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, PR China
- Key Laboratory of Transplant Engineering and Immunology of the National Health Commission, West China Hospital, Sichuan University, Chengdu, PR China
| | - Fei Chen
- Department of Pathology and Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| | - Lu Zhang
- Image Processing and Parallel Computing Laboratory, School of Computer Science, Southwest Petroleum University, Chengdu, PR China
| | - Feng Ye
- Department of Pathology and Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, PR China
- Key Laboratory of Transplant Engineering and Immunology of the National Health Commission, West China Hospital, Sichuan University, Chengdu, PR China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, PR China
| | - Hong Bu
- Department of Pathology and Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, PR China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
5
|
Baykal S, Voldoire M, Desterke C, Sorel N, Cayssials E, Johnson-Ansah H, Guerci-Bresler A, Bennaceur-Griscelli A, Chomel JC, Turhan AG. ENOX2 NADH Oxidase: A BCR-ABL1-Dependent Cell Surface and Secreted Redox Protein in Chronic Myeloid Leukemia. Turk J Haematol 2023; 40:101-117. [PMID: 37026766 PMCID: PMC10240159 DOI: 10.4274/tjh.galenos.2023.2022-0339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/06/2023] [Indexed: 04/08/2023] Open
Abstract
Objective Chronic myeloid leukemia (CML) is a disease caused by the acquisition of BCR-ABL1 fusion in hematopoietic stem cells. In this study, we focus on the oncofetal ENOX2 protein as a potential secretable biomarker in CML. Materials and Methods We used cell culture, western blot, quantitative RT-PCR, ELISA, transcriptome analyses, and bioinformatics techniques to investigate ENOX2 mRNA and protein expression. Results Western blot analyses of UT-7 and TET-inducible Ba/F3 cell lines demonstrated the upregulation of the ENOX2 protein. BCR-ABL1 was found to induce ENOX2 overexpression in a kinase-dependent manner. We confirmed increased ENOX2 mRNA expression in a cohort of CML patients at diagnosis. In a series of CML patients, ELISA assays showed a highly significant increase of ENOX2 protein levels in the plasma of patients with CML compared to controls. Reanalyzing the transcriptomic dataset confirmed ENOX2 mRNA overexpression in the chronic phase of the disease. Bioinformatic analyses identified several genes whose mRNA expressions were positively correlated with ENOX2 in the context of BCR-ABL1. Some of them encode proteins involved in cellular functions compatible with the growth deregulation observed in CML. Conclusion Our results highlight the upregulation of a secreted redox protein in a BCR-ABL1-dependent manner in CML. The data presented here suggest that ENOX2, through its transcriptional mechanism, plays a significant role in BCR-ABL1 leukemogenesis.
Collapse
Affiliation(s)
- Seda Baykal
- İzmir Biomedicine and Genome Center, İzmir, Türkiye
- Dokuz Eylül University Faculty of Medicine, Department of Medical Biology, İzmir, Türkiye
| | - Maud Voldoire
- CHD La Roche-sur-Yon-Service de Médecine Onco-Hématologie, La Roche-sur-Yon, Pays de la Loire, France
| | - Christophe Desterke
- Université Paris-Saclay BU Kremlin-Bicêtre-Faculté de Médecine, Le Kremlin-Bicetre, Île-de-France
| | - Nathalie Sorel
- CHU Poitiers-Service de Cancérologie Biologique, Poitiers, France
| | - Emilie Cayssials
- CHU Poitiers-Service d’Oncologie Hématologique et Thérapie Cellulaire, Poitiers, France
| | | | | | | | | | - Ali G. Turhan
- Paris-Saclay University-Service d'hematologie, Hopital Bicetre, Paris, Villejuif, France
| |
Collapse
|
6
|
El Filaly H, Desterke C, Outlioua A, Badre W, Rabhi M, Karkouri M, Riyad M, Khalil A, Arnoult D, Akarid K. CXCL-8 as a signature of severe Helicobacter pylori infection and a stimulator of stomach region-dependent immune response. Clin Immunol 2023; 252:109648. [PMID: 37209806 DOI: 10.1016/j.clim.2023.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Helicobacter pylori infection is involved in development of diverse gastro-pathologies. Our aim is to investigate potential signature of cytokines-chemokine levels (IL-17A, IL-1β, and CXCL-8) in H. pylori-infected patients and their impact on immune response in both corpus and antrum. Multivariate level analysis with machine learning model were carried out using cytokines/chemokine levels of infected Moroccan patients. In addition, Geo dataset was used to run enrichment analysis following CXCL-8 upregulation. Our analysis showed that combination of cytokines-chemokine levels allowed prediction of positive H. pylori density score with <5% of miss-classification error, with fundus CXCL-8 being the most important variable for this discrimination. Furthermore, CXCL-8 dependent expression profile was mainly associated to IL6/JAK/STAT3 signaling in the antrum, interferons alpha and gamma responses in the corpus and commonly induced transcriptional /proliferative activities. To conclude, CXCL-8 level might be a signature of Moroccan H. pylori-infected patients and an inducer of regional-dependent immune response at the gastric level. Larger trials must be carried out to validate the relevance of these results for diverse populations.
Collapse
Affiliation(s)
- Hajar El Filaly
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Christophe Desterke
- INSERM UMRS-1311, Faculty of Medicine, University of Paris-Saclay, Villejuif, France; Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahmed Outlioua
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Wafaa Badre
- Gastroenterology Department, CHU IbnRochd, Casablanca, Morocco
| | - Moncef Rabhi
- Diagnostic Center, Hôpital Militaire d'Instruction Mohammed V, Mohammed V University, Rabat, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, CHU Ibn Rochd/Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco
| | - Myriam Riyad
- Research Team on Immunopathology of Infectious and Systemic Diseases, Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco
| | - Abdelouahed Khalil
- Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France; Université Paris-Saclay, Paris, France
| | - Khadija Akarid
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco.
| |
Collapse
|
7
|
Imeri J, Desterke C, Marcoux P, Chaker D, Oudrhiri N, Fund X, Faivre J, Bennaceur-Griscelli A, Turhan AG. Case report: Long-term voluntary Tyrosine Kinase Inhibitor (TKI) discontinuation in chronic myeloid leukemia (CML): Molecular evidence of an immune surveillance. Front Oncol 2023; 13:1117781. [PMID: 37007090 PMCID: PMC10062417 DOI: 10.3389/fonc.2023.1117781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
The classical natural history of chronic myeloid leukemia (CML) has been drastically modified by the introduction of tyrosine kinase inhibitor (TKI) therapies. TKI discontinuation is currently possible in patients in deep molecular responses, using strict recommendations of molecular follow-up due to risk of molecular relapse, especially during the first 6 months. We report here the case of a patient who voluntarily interrupted her TKI therapy. She remained in deep molecular remission (MR4) for 18 months followed by detection of a molecular relapse at +20 months. Despite this relapse, she declined therapy until the occurrence of the hematological relapse (+ 4 years and 10 months). Retrospective sequential transcriptome experiments and a single-cell transcriptome RNA-seq analysis were performed. They revealed a molecular network focusing on several genes involved in both activation and inhibition of NK-T cell activity. Interestingly, the single-cell transcriptome analysis showed the presence of cells expressing NKG7, a gene involved in granule exocytosis and highly involved in anti-tumor immunity. Single cells expressing as granzyme H, cathepsin-W, and granulysin were also identified. The study of this case suggests that CML was controlled for a long period of time, potentially via an immune surveillance phenomenon. The role of NKG7 expression in the occurrence of treatment-free remissions (TFR) should be evaluated in future studies.
Collapse
Affiliation(s)
- Jusuf Imeri
- INSERM Unité Mixte de Recherche (UMR)_S_1310, Université Paris Saclay, Villejuif, France
| | - Christophe Desterke
- INSERM Unité Mixte de Recherche (UMR)_S_1310, Université Paris Saclay, Villejuif, France
- INGESTEM National IPSC Infrastructure, Villejuif, France
| | - Paul Marcoux
- INSERM Unité Mixte de Recherche (UMR)_S_1310, Université Paris Saclay, Villejuif, France
| | - Diana Chaker
- INSERM Unité Mixte de Recherche (UMR)_S_1310, Université Paris Saclay, Villejuif, France
- CITHERA, Center for iPSC Therapies, Evry, France
| | - Noufissa Oudrhiri
- INSERM Unité Mixte de Recherche (UMR)_S_1310, Université Paris Saclay, Villejuif, France
- INGESTEM National IPSC Infrastructure, Villejuif, France
- CITHERA, Center for iPSC Therapies, Evry, France
- APHP Paris Saclay, Division of Hematology, Paris Saclay University Hospitals, Le Kremlin Bicêtre, and Villejuif, France
| | - Xavier Fund
- INSERM Unité Mixte de Recherche (UMR)_S_1310, Université Paris Saclay, Villejuif, France
- APHP Paris Saclay, Division of Hematology, Paris Saclay University Hospitals, Le Kremlin Bicêtre, and Villejuif, France
| | - Jamila Faivre
- APHP Paris Saclay, Division of Hematology, Paris Saclay University Hospitals, Le Kremlin Bicêtre, and Villejuif, France
- Inserm Unité Mixte de Recherche (UMR) 1193 Centre-Hepato Biliaire, Paul Brousse, Villejuif, France
| | - Annelise Bennaceur-Griscelli
- INSERM Unité Mixte de Recherche (UMR)_S_1310, Université Paris Saclay, Villejuif, France
- INGESTEM National IPSC Infrastructure, Villejuif, France
- APHP Paris Saclay, Division of Hematology, Paris Saclay University Hospitals, Le Kremlin Bicêtre, and Villejuif, France
- Inserm Unité Mixte de Recherche (UMR) 1193 Centre-Hepato Biliaire, Paul Brousse, Villejuif, France
| | - Ali G. Turhan
- INSERM Unité Mixte de Recherche (UMR)_S_1310, Université Paris Saclay, Villejuif, France
- INGESTEM National IPSC Infrastructure, Villejuif, France
- APHP Paris Saclay, Division of Hematology, Paris Saclay University Hospitals, Le Kremlin Bicêtre, and Villejuif, France
- Inserm Unité Mixte de Recherche (UMR) 1193 Centre-Hepato Biliaire, Paul Brousse, Villejuif, France
- *Correspondence: Ali G. Turhan,
| |
Collapse
|
8
|
Dysfunctional mitochondria accumulate in a skeletal muscle knockout model of Smn1, the causal gene of spinal muscular atrophy. Cell Death Dis 2023; 14:162. [PMID: 36849544 PMCID: PMC9971247 DOI: 10.1038/s41419-023-05573-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 03/01/2023]
Abstract
The approved gene therapies for spinal muscular atrophy (SMA), caused by loss of survival motor neuron 1 (SMN1), greatly ameliorate SMA natural history but are not curative. These therapies primarily target motor neurons, but SMN1 loss has detrimental effects beyond motor neurons and especially in muscle. Here we show that SMN loss in mouse skeletal muscle leads to accumulation of dysfunctional mitochondria. Expression profiling of single myofibers from a muscle specific Smn1 knockout mouse model revealed down-regulation of mitochondrial and lysosomal genes. Albeit levels of proteins that mark mitochondria for mitophagy were increased, morphologically deranged mitochondria with impaired complex I and IV activity and respiration and that produced excess reactive oxygen species accumulated in Smn1 knockout muscles, because of the lysosomal dysfunction highlighted by the transcriptional profiling. Amniotic fluid stem cells transplantation that corrects the SMN knockout mouse myopathic phenotype restored mitochondrial morphology and expression of mitochondrial genes. Thus, targeting muscle mitochondrial dysfunction in SMA may complement the current gene therapy.
Collapse
|
9
|
Li X, Meng X, Chen H, Fu X, Wang P, Chen X, Gu C, Zhou J. Integration of single sample and population analysis for understanding immune evasion mechanisms of lung cancer. NPJ Syst Biol Appl 2023; 9:4. [PMID: 36765073 PMCID: PMC9918494 DOI: 10.1038/s41540-023-00267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
A deep understanding of the complex interaction mechanism between the various cellular components in tumor microenvironment (TME) of lung adenocarcinoma (LUAD) is a prerequisite for understanding its drug resistance, recurrence, and metastasis. In this study, we proposed two complementary computational frameworks for integrating multi-source and multi-omics data, namely ImmuCycReg framework (single sample level) and L0Reg framework (population or subtype level), to carry out difference analysis between the normal population and different LUAD subtypes. Then, we aimed to identify the possible immune escape pathways adopted by patients with different LUAD subtypes, resulting in immune deficiency which may occur at different stages of the immune cycle. More importantly, combining the research results of the single sample level and population level can improve the credibility of the regulatory network analysis results. In addition, we also established a prognostic scoring model based on the risk factors identified by Lasso-Cox method to predict survival of LUAD patients. The experimental results showed that our frameworks could reliably identify transcription factor (TF) regulating immune-related genes and could analyze the dominant immune escape pathways adopted by each LUAD subtype or even a single sample. Note that the proposed computational framework may be also applicable to the immune escape mechanism analysis of pan-cancer.
Collapse
Affiliation(s)
- Xiong Li
- School of Software, East China Jiaotong University, Nanchang, 330013, China.
| | - Xu Meng
- grid.440711.7School of Software, East China Jiaotong University, Nanchang, 330013 China
| | - Haowen Chen
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xiangzheng Fu
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Peng Wang
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xia Chen
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Changlong Gu
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Juan Zhou
- grid.440711.7School of Software, East China Jiaotong University, Nanchang, 330013 China
| |
Collapse
|
10
|
Sahiri V, Caron J, Roger E, Desterke C, Ghachem K, Mohamadou I, Serre J, Prakoura N, Fellahi S, Placier S, Adriouch S, Zhang L, Chadjichristos CE, Chatziantoniou C, Lorenzo HK, Boffa JJ. The Angiogenesis Inhibitor Isthmin-1 (ISM1) Is Overexpressed in Experimental Models of Glomerulopathy and Impairs the Viability of Podocytes. Int J Mol Sci 2023; 24:ijms24032723. [PMID: 36769045 PMCID: PMC9916724 DOI: 10.3390/ijms24032723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a major cause of end-stage renal disease and remains without specific treatment. To identify new events during FSGS progression, we used an experimental model of FSGS associated with nephroangiosclerosis in rats injected with L-NAME (Nω-nitro-L-arginine methyl ester). After transcriptomic analysis we focused our study on the role of Isthmin-1 (ISM1, an anti-angiogenic protein involved in endothelial cell apoptosis. We studied the renal expression of ISM1 in L-NAME rats and other models of proteinuria, particularly at the glomerular level. In the L-NAME model, withdrawal of the stimulus partially restored basal ISM1 levels, along with an improvement in renal function. In other four animal models of proteinuria, ISM1 was overexpressed and localized in podocytes while the renal function was degraded. Together these facts suggest that the glomerular expression of ISM1 correlates directly with the progression-recovery of the disease. Further in vitro experiments demonstrated that ISM1 co-localized with its receptors GRP78 and integrin αvβ5 on podocytes. Treatment of human podocytes with low doses of recombinant ISM1 decreased cell viability and induced caspase activation. Stronger ISM1 stimuli in podocytes dropped mitochondrial membrane potential and induced nuclear translocation of apoptosis-inducing factor (AIF). Our results suggest that ISM1 participates in the progression of glomerular diseases and promotes podocyte apoptosis in two different complementary ways: one caspase-dependent and one caspase-independent associated with mitochondrial destabilization.
Collapse
Affiliation(s)
- Virgilia Sahiri
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Jonathan Caron
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Elena Roger
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Christophe Desterke
- Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
- Université Paris Saclay, INSERM UA/09 UMR-S 935, 94800 Villejuif, France
| | - Khalil Ghachem
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Inna Mohamadou
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Justine Serre
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Niki Prakoura
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Soraya Fellahi
- Inserm UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75013 Paris, France
| | - Sandrine Placier
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Sahil Adriouch
- UNIROUEN, INSERM, U1234, Pathophysiology, Autoimmunity, Neuromuscular Diseases and Regenerative THERapies (PANTHER), Normandie University, 76000 Rouen, France
| | - Lu Zhang
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210004, China
| | - Christos E. Chadjichristos
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Christos Chatziantoniou
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
| | - Hans Kristian Lorenzo
- Université Paris Saclay, INSERM UA/09 UMR-S 935, 94800 Villejuif, France
- Department of Nephrology, Bicêtre Hospital, AP-HP, 94270 Le Kremlin-Bicêtre, France
- Université Paris Saclay, INSERM UMR_S 1197, 94803 Villejuif, France
| | - Jean-Jacques Boffa
- Sorbonne Université, UMR_S 1155, 75006 Paris, France
- Institut National de la Santé et de la Recherche Médicale UMR_S 1155, 75020 Paris, France
- Département Néphrologie et Dialyses, Tenon Hospital, AP-HP, 75020 Paris, France
- Correspondence:
| |
Collapse
|
11
|
Furlan S, Paradiso B, Greotti E, Volpe P, Nori A. Calsequestrin in Purkinje cells of mammalian cerebellum. Acta Histochem 2023; 125:152001. [PMID: 36669254 DOI: 10.1016/j.acthis.2023.152001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Cerebellum is devoted to motor coordination and cognitive functions. Endoplasmic reticulum is the largest intracellular calcium store involved in all neuronal functions. Intralumenal calcium binding proteins play a pivotal role in calcium storage and contribute to both calcium release and uptake. Calsequestrin, a key calcium binding protein of sarco-endoplasmic reticulum in skeletal and cardiac muscles, was identified in chicken and fish cerebellum Purkinje cells, but its expression in mammals and human counterpart has not been studied in depth. Aim of the present paper was to investigate expression and localization of Calsequestrin in mammalian cerebellum. Calsequestrin was found to be expressed at low level in cerebellum, but specifically concentrated in Calbindin D28- and zebrin- immunopositive-Purkinje cells. Two additional fundamental calcium store markers, sarco-endoplasmic calcium pump isoform 2, SERCA2, and Inositol-trisphosphate receptor isoform 1, IP3R1, were found to be co-expressed in the region, with some localization peculiarities. In conclusion, a new marker was identified for Purkinje cells in adult mammals, including humans. Such a marker might help in staminal neuronal cells specification and in dissection of still unknown neurodegeneration and physio-pathological effects of dysregulated calcium homeostasis.
Collapse
Affiliation(s)
- Sandra Furlan
- National Research Council, Institute of Neuroscience, 35121 Padova, Italy
| | - Beatrice Paradiso
- General Pathology Unit, Dolo Hospital, Riviera XXIX Aprile, 2, 30031 Dolo, Venice, Italy
| | - Elisa Greotti
- National Research Council, Institute of Neuroscience, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), 35131 Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Pompeo Volpe
- University of Padova, Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), 35131 Padova, Italy
| | - Alessandra Nori
- University of Padova, Department of Biomedical Sciences and Interdepartmental Research Center of Myology (cirMYO), 35131 Padova, Italy.
| |
Collapse
|
12
|
Metabolomics Unravels Grazing Interactions under Nutrient Enrichment from Aquaculture. DIVERSITY 2022. [DOI: 10.3390/d15010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Our goal was to understand the mechanisms behind the impact of nutrient enrichment at intermediate distances from aquaculture on the interactions of a subtidal macroalgae community with its main grazer, the sea urchin Paracentrotus lividus. We assessed the diversity and cover of the macroalgal community, the abundance and biometrics of the sea urchins, the carbon and nitrogen elemental and isotopic compositions, and their metabolome in two stations, at an intermediate distance (station A) and away (station B) from a fish cage facility in the Aegean Sea (Greece), during the warm and cold seasons. The nutrient input at station A favored a shift to a macroalgal assemblage dominated by turf-forming species, depleted of native-erected species and with a higher abundance of invasive algae. A stable isotope analysis showed fish-farm-associated nitrogen enrichment of the macroalgae and trophic transfer to P. lividus. A decrease in metabolites related to grazing, reproduction, and energy reserves was found in P. lividus at station A. Furthermore, the metabolomic analysis was able to pinpoint stress in P. lividus at an intermediate distance from aquaculture. The chosen combination of traditional ecology with omics technology could be used to uncover not only the sublethal effects of nutrient loading but also the pathways for species interactions.
Collapse
|
13
|
Britigan EMC, Wan J, Sam DK, Copeland SE, Lasek AL, Hrycyniak LCF, Wang L, Audhya A, Burkard ME, Roopra A, Weaver BA. Increased Aurora B expression reduces substrate phosphorylation and induces chromosomal instability. Front Cell Dev Biol 2022; 10:1018161. [PMID: 36313574 PMCID: PMC9606593 DOI: 10.3389/fcell.2022.1018161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/28/2022] Open
Abstract
Increased Aurora B protein expression, which is common in cancers, is expected to increase Aurora B kinase activity, yielding elevated phosphorylation of Aurora B substrates. In contrast, here we show that elevated expression of Aurora B reduces phosphorylation of six different Aurora B substrates across three species and causes defects consistent with Aurora B inhibition. Complexes of Aurora B and its binding partner INCENP autophosphorylate in trans to achieve full Aurora B activation. Increased expression of Aurora B mislocalizes INCENP, reducing the local concentration of Aurora B:INCENP complexes at the inner centromere/kinetochore. Co-expression of INCENP rescues Aurora B kinase activity and mitotic defects caused by elevated Aurora B. However, INCENP expression is not elevated in concert with Aurora B in breast cancer, and increased expression of Aurora B causes resistance rather than hypersensitivity to Aurora B inhibitors. Thus, increased Aurora B expression reduces, rather than increases, Aurora B kinase activity.
Collapse
Affiliation(s)
- Eric M. C. Britigan
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Jun Wan
- Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Daniel K. Sam
- Cellular and Molecular Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Sarah E. Copeland
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Amber L. Lasek
- Cellular and Molecular Biology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Laura C. F. Hrycyniak
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Lei Wang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark E. Burkard
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, United States
| | - Beth A. Weaver
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Beth A. Weaver,
| |
Collapse
|
14
|
Cai H, Wu P, Vandemeulebroucke L, Dhondt I, Rasulova M, Vierstraete A, Braeckman BP. Axenic Culture of Caenorhabditis elegans Alters Lysosomal/Proteasomal Balance and Increases Neuropeptide Expression. Int J Mol Sci 2022; 23:11517. [PMID: 36232823 PMCID: PMC9570027 DOI: 10.3390/ijms231911517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Axenically cultured C. elegans show many characteristic traits of worms subjected to dietary restriction, such as slowed development, reduced fertility, and increased stress resistance. Hence, the term axenic dietary restriction (ADR) is often applied. ADR dramatically extends the worm lifespan compared to other DR regimens such as bacterial dilution. However, the underlying molecular mechanisms still remain unclear. The primary goal of this study is to comprehensively investigate transcriptional alterations that occur when worms are subjected to ADR and to estimate the molecular and physiological changes that may underlie ADR-induced longevity. One of the most enriched clusters of up-regulated genes under ADR conditions is linked to lysosomal activity, while proteasomal genes are significantly down-regulated. The up-regulation of genes specifically involved in amino acid metabolism is likely a response to the high peptide levels found in axenic culture medium. Genes related to the integrity and function of muscles and the extracellular matrix are also up-regulated. Consistent down-regulation of genes involved in DNA replication and repair may reflect the reduced fertility phenotype of ADR worms. Neuropeptide genes are found to be largely up-regulated, suggesting a possible involvement of neuroendocrinal signaling in ADR-induced longevity. In conclusion, axenically cultured worms seem to rely on increased amino acid catabolism, relocate protein breakdown from the cytosol to the lysosomes, and do not invest in DNA maintenance but rather retain muscle integrity and the extracellular matrix. All these changes may be coordinated by peptidergic signaling.
Collapse
Affiliation(s)
- Huaihan Cai
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
- Overseas Pharmaceuticals, Ltd., Room 201, Building C1, No. 11 Kaiyuan Avenue, Huangpu District, Guangzhou 510530, China
| | - Ping Wu
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Lieselot Vandemeulebroucke
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Ineke Dhondt
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Madina Rasulova
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Andy Vierstraete
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart P. Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
15
|
Chen H, Liu J, Wu Y, Jiang L, Tang M, Wang X, Fang X, Wang X. Weighted gene co-expression identification of CDKN1A as a hub inflammation gene following cardiopulmonary bypass in children with congenital heart disease. Front Surg 2022; 9:963850. [PMID: 36090322 PMCID: PMC9448909 DOI: 10.3389/fsurg.2022.963850] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Congenital heart disease (CHD) is the most common type of birth defect. Most patients with CHD require surgery, and cardiopulmonary bypass (CPB) is the most common surgery performed. Methods The present study utilized weighted gene co-expression network analysis (WGCNA) to identify key inflammation genes after CPB for CHD. The GSE132176 dataset was downloaded from the Gene Expression Omnibus(GEO) database for WGCNA to identify the modules closely related to clinical traits. Disease enrichment, functional annotation and pathway enrichment were performed on genes in the module closely related to clinical traits using Enrichr and Metascape. Immune infiltration analysis was also performed on the training dataset using CIBERSORT. Finally, we identified hub genes using high gene significance (GS), high module members (MMs) and Cytoscape, and we verified the hub genes using an independent dataset and Western blot analysis. Results WGCNA showed that the brown module with 461 genes had the highest correlation to CHD after CPB. Functional annotation and pathway enrichment analysis were performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, which showed that genes in the brown module were enriched in inflammation-related pathways. In the disease enrichment analysis, genes in the brown module were enriched for inflammatory diseases. After the 30 most highly associated brown intramodular genes were screened, a protein-protein interaction network was constructed using the STRING online analysis website. The protein-protein interaction results were then calculated using 12 algorithms in the cytoHubba plugin of Cytoscape software. The final result showed that CDKN1A was the fundamental gene of post-CPB for CHD. Using another independent validation dataset (GSE12486), we confirmed that CDKN1A was significantly differentially expressed between preoperative and postoperative CPB (Wilcoxon, P = 0.0079; T-test, P = 0.006). In addition, CDKN1A expression was elevated in eosinophils, neutrophils, memory CD4 T cells and activated mast cells. Western blot analysis showed that the expression of CDKN1A protein was significantly higher postoperative CPB than preoperative CPB. Moreover, CDKN1A was mainly related to inflammation. Conclusion In summary, we found a relationship between CDKN1A and inflammation after CPB for congenital heart disease by WGCNA, experiments and various bioinformatics methods. Thus, CDKN1A maybe serve as a biomarker or therapeutic target for accurate diagnosis and treatment of inflammation after CPB in the future.
Collapse
Affiliation(s)
- Huan Chen
- Department of Obstetrics and Gynecology, The Second XIANGYA Hospital Of Central South University, Changsha, China
| | - Jinglan Liu
- Department of Obstetrics and Gynecology, Zhu Zhou Hospital Affiliated to Xiangya school of medicine, CSU, Zhuzhou, China
| | - Yuqing Wu
- Department of Obstetrics and Gynecology, The Second XIANGYA Hospital Of Central South University, Changsha, China
| | - Li Jiang
- Department of Obstetrics and Gynecology, The Second XIANGYA Hospital Of Central South University, Changsha, China
| | - Mi Tang
- Department of cardiovascular surgery, The Second XIANGYA Hospital Of Central South University, Changsha, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, The Second XIANGYA Hospital Of Central South University, Changsha, China
| | - Xiaoling Fang
- Department of Obstetrics and Gynecology, The Second XIANGYA Hospital Of Central South University, Changsha, China
| | - Xi Wang
- Department of Obstetrics and Gynecology, The Second XIANGYA Hospital Of Central South University, Changsha, China
- Correspondence: Xi Wang
| |
Collapse
|
16
|
Desterke C, Chung C, Pan D, Trauner M, Samuel D, Azoulay D, Feray C. Early Deregulation of Cholangiocyte NR0B2 During Primary Sclerosing Cholangitis. GASTRO HEP ADVANCES 2022; 2:49-62. [PMID: 39130146 PMCID: PMC11307415 DOI: 10.1016/j.gastha.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Primary sclerosing cholangitis (PSC) is a probable autoimmune liver disease characterized by persistent and progressive biliary inflammation that leads to biliary infection, cirrhosis, or cholangiocarcinoma. Genome-wide omics data are scarce regarding this severe disease. Methods MEDLINE database gene prioritization by text mining (biliary inflammation, biliary fibrosis, biliary stasis) was integrated in distinct omics data: (1) PSC liver transcriptome training and validation cohorts, (2) farnesoid X receptor (FXR) mice liver transcriptome subjected to an FXR agonist or FXR knockout mice; (3) liver single-cell transcriptome of the Abcb4-/- mice model of PSC. Results A liver molecular network highlighted the involvement of nuclear receptor subfamily 0 group B member 2 (NR0B2) and its associated nuclear receptor FXR in a metabolic cascade that may influence the immune response. NR0B2 upregulation in PSC liver was independent of gender, age, body mass index, liver fibrosis, and PSC complications. Heterogeneity of NR0B2 upregulation was found in cholangiocyte cell types in which the NR0B2-based cell fate decision revealed the involvement of several metabolic pathways for detoxification (sulfur, glutathione derivative, and monocarboxylic acid metabolisms). Genes potentially implicated in carcinogenesis were also discovered on this cholangiocyte trajectory: GSTA3, inhibitor of DNA binding 2, and above all, TMEM45A, a transmembrane molecule from the Golgi apparatus considered as oncogenic in several cancers. Conclusion By revisiting PSC through PubMed data mining, we evidenced the early cholangiocyte deregulation of NR0B2, highlighting a metabolic and premalignant reprogramming of the cholangiocyte cell type. The therapeutic targeting of NR0B2 could potentiate that of FXR and enable action on early events of the disease and prevent its progression.
Collapse
Affiliation(s)
- Christophe Desterke
- Hôpital Paul-Brousse, Institut National de la Santé et de la Recherche Médicale UMRS1310, Université Paris-Saclay, Villejuif, France
| | | | - David Pan
- Gilead Sciences, Inc, Foster City, California
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Didier Samuel
- Hôpital Paul-Brousse, Institut National de la Santé et de la Recherche Médicale UMRS1310, Université Paris-Saclay, Villejuif, France
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1193, Université Paris-Saclay, Villejuif, France
| | - Daniel Azoulay
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1193, Université Paris-Saclay, Villejuif, France
| | - Cyrille Feray
- Centre Hépato-Biliaire, Hôpital Paul-Brousse, Assistance Publique-Hôpitaux de Paris, Institut National de la Santé et de la Recherche Médicale U1193, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
17
|
Sándor S, Jónás D, Tátrai K, Czeibert K, Kubinyi E. Poly(A) RNA sequencing reveals age-related differences in the prefrontal cortex of dogs. GeroScience 2022; 44:1269-1293. [PMID: 35288843 PMCID: PMC9213612 DOI: 10.1007/s11357-022-00533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Dogs may possess a unique translational potential to investigate neural aging and dementia because they are prone to age-related cognitive decline, including an Alzheimer’s disease–like pathological condition. Yet very little is known about the molecular mechanisms underlying canine cognitive decline. The goal of the current study was to explore the transcriptomic differences between young and old dogs’ frontal cortex, which is a brain region often affected by various forms of age-related dementia in humans. RNA isolates from the frontal cortical brain area of 13 pet dogs, which represented 7 different breeds and crossbreds, were analyzed. The dogs were euthanized for medical reasons, and their bodies had been donated by their owners for scientific purposes. The poly(A) tail RNA subfraction of the total transcriptome was targeted in the sequencing analysis. Cluster analyses, differential gene expression analyses, and gene ontology analyses were carried out to assess which genes and genetic regulatory mechanisms were mostly affected by aging. Age was the most prominent factor in the clustering of the animals, indicating the presence of distinct gene expression patterns related to aging in a genetically variable population. A total of 3436 genes were found to be differentially expressed between the age groups, many of which were linked to neural function, immune system, and protein synthesis. These findings are in accordance with previous human brain aging RNA sequencing studies. Some genes were found to behave more similarly to humans than to rodents, further supporting the applicability of dogs in translational aging research.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary.
| | - Dávid Jónás
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Kitti Tátrai
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary.,Department of Genetics, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Kálmán Czeibert
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, 1/c Pázmány Péter sétány, Budapest, 1117, Hungary
| |
Collapse
|
18
|
Thakur S, Cahais V, Turkova T, Zikmund T, Renard C, Stopka T, Korenjak M, Zavadil J. Chromatin Remodeler Smarca5 Is Required for Cancer-Related Processes of Primary Cell Fitness and Immortalization. Cells 2022; 11:808. [PMID: 35269430 PMCID: PMC8909548 DOI: 10.3390/cells11050808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
Smarca5, an ATPase of the ISWI class of chromatin remodelers, is a key regulator of chromatin structure, cell cycle and DNA repair. Smarca5 is deregulated in leukemia and breast, lung and gastric cancers. However, its role in oncogenesis is not well understood. Chromatin remodelers often play dosage-dependent roles in cancer. We therefore investigated the epigenomic and phenotypic impact of controlled stepwise attenuation of Smarca5 function in the context of primary cell transformation, a process relevant to tumor formation. Upon conditional single- or double-allele Smarca5 deletion, the cells underwent both accelerated growth arrest and senescence entry and displayed gradually increased sensitivity to genotoxic insults. These phenotypic characteristics were explained by specific remodeling of the chromatin structure and the transcriptome in primary cells prior to the immortalization onset. These molecular programs implicated Smarca5 requirement in DNA damage repair, telomere maintenance, cell cycle progression and in restricting apoptosis and cellular senescence. Consistent with the molecular programs, we demonstrate for the first time that Smarca5-deficient primary cells exhibit dramatically decreased capacity to bypass senescence and immortalize, an indispensable step during cell transformation and cancer development. Thus, Smarca5 plays a crucial role in key homeostatic processes and sustains cancer-promoting molecular programs and cellular phenotypes.
Collapse
Affiliation(s)
- Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
- Faculty of Science, Charles University, 128 43 Prague, Czech Republic; (S.T.)
- Biocev, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (T.T.); (T.Z.); (T.S.)
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
| | - Tereza Turkova
- Biocev, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (T.T.); (T.Z.); (T.S.)
| | - Tomas Zikmund
- Biocev, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (T.T.); (T.Z.); (T.S.)
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum, D-81377 München, Germany; (T.Z.)
| | - Claire Renard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
| | - Tomáš Stopka
- Biocev, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (T.T.); (T.Z.); (T.S.)
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
| |
Collapse
|
19
|
Spatiotemporal analysis identifies ABF2 and ABF3 as key hubs of endodermal response to nitrate. Proc Natl Acad Sci U S A 2022; 119:2107879119. [PMID: 35046022 PMCID: PMC8794810 DOI: 10.1073/pnas.2107879119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Nitrate is a nutrient and a potent signal that impacts global gene expression in plants. However, the regulatory factors controlling temporal and cell type-specific nitrate responses remain largely unknown. We assayed nitrate-responsive transcriptome changes in five major root cell types of the Arabidopsis thaliana root as a function of time. We found that gene-expression response to nitrate is dynamic and highly localized and predicted cell type-specific transcription factor (TF)-target interactions. Among cell types, the endodermis stands out as having the largest and most connected nitrate-regulatory gene network. ABF2 and ABF3 are major hubs for transcriptional responses in the endodermis cell layer. We experimentally validated TF-target interactions for ABF2 and ABF3 by chromatin immunoprecipitation followed by sequencing and a cell-based system to detect TF regulation genome-wide. Validated targets of ABF2 and ABF3 account for more than 50% of the nitrate-responsive transcriptome in the endodermis. Moreover, ABF2 and ABF3 are involved in nitrate-induced lateral root growth. Our approach offers an unprecedented spatiotemporal resolution of the root response to nitrate and identifies important components of cell-specific gene regulatory networks.
Collapse
|
20
|
Ung CY, Levee TM, Zhang C, Correia C, Yeo KS, Li H, Zhu S. Gene utility recapitulates chromosomal aberrancies in advanced stage neuroblastoma. Comput Struct Biotechnol J 2022; 20:3291-3303. [PMID: 35832612 PMCID: PMC9251784 DOI: 10.1016/j.csbj.2022.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/11/2022] [Indexed: 11/03/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in children. Although only a few recurrent somatic mutations have been identified, chromosomal abnormalities, including the loss of heterozygosity (LOH) at the chromosome 1p and gains of chromosome 17q, are often seen in the high-risk cases. The biological basis and evolutionary forces that drive such genetic abnormalities remain enigmatic. Here, we conceptualize the Gene Utility Model (GUM) that seeks to identify genes driving biological signaling via their collective gene utilities and apply it to understand the impact of those differentially utilized genes on constraining the evolution of NB karyotypes. By employing a computational process-guided flow algorithm to model gene utility in protein–protein networks that built based on transcriptomic data, we conducted several pairwise comparative analyses to uncover genes with differential utilities in stage 4 NBs with distinct classification. We then constructed a utility karyotype by mapping these differentially utilized genes to their respective chromosomal loci. Intriguingly, hotspots of the utility karyotype, to certain extent, can consistently recapitulate the major chromosomal abnormalities of NBs and also provides clues to yet identified predisposition sites. Hence, our study not only provides a new look, from a gene utility perspective, into the known chromosomal abnormalities detected by integrative genomic sequencing efforts, but also offers new insights into the etiology of NB and provides a framework to facilitate the identification of novel therapeutic targets for this devastating childhood cancer.
Collapse
|
21
|
Abellán-Álvaro M, Ayala G, Barneo-Muñoz M, Martínez-García F, Agustín-Pavón C, Lanuza E. Motherhood-induced gene expression in the mouse medial amygdala: Changes induced by pregnancy and lactation but not by pup stimuli. FASEB J 2021; 35:e21806. [PMID: 34369605 DOI: 10.1096/fj.202100163rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
During lactation, adult female mice display aggressive responses toward male intruders, triggered by male-derived chemosensory signals. This aggressive behavior is not shown by pup-sensitized virgin females sharing pup care with dams. The genetic mechanisms underlying the switch from attraction to aggression are unknown. In this work, we investigate the differential gene expression in lactating females expressing maternal aggression compared to pup-sensitized virgin females in the medial amygdala (Me), a key neural structure integrating chemosensory and hormonal information. The results showed 197 genes upregulated in dams, including genes encoding hormones such as prolactin, growth hormone, or follicle-stimulating hormone, neuropeptides such as galanin, oxytocin, and pro-opiomelanocortin, and genes related to catecholaminergic and cholinergic neurotransmission. In contrast, 99 genes were downregulated in dams, among which we find those encoding for inhibins and transcription factors of the Fos and early growth response families. The gene set analysis revealed numerous Gene Ontology functional groups with higher expression in dams than in pup-sensitized virgin females, including those related with the regulation of the Jak/Stat cascade. Of note, a number of olfactory and vomeronasal receptor genes was expressed in the Me, although without differences between dams and virgins. For prolactin and growth hormone, a qPCR experiment comparing dams, pup-sensitized, and pup-naïve virgin females showed that dams expressed higher levels of both hormones than pup-naïve virgins, with pup-sensitized virgins showing intermediate levels. Altogether, the results show important gene expression changes in the Me, which may underlie some of the behavioral responses characterizing maternal behavior.
Collapse
Affiliation(s)
- María Abellán-Álvaro
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Guillermo Ayala
- Department d'Estadística i Investigació Operativa, Facultat de Matemàtiques, Universitat de València, València, Spain
| | - Manuela Barneo-Muñoz
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Unitat Predepartamental de Medicina, Fac. Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Fernando Martínez-García
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Unitat Predepartamental de Medicina, Fac. Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Carmen Agustín-Pavón
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Enrique Lanuza
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| |
Collapse
|
22
|
Nazarieh M, Hoeppner M, Helms V. Identification of Biomarkers Controlling Cell Fate In Blood Cell Development. FRONTIERS IN BIOINFORMATICS 2021; 1:653054. [PMID: 36303754 PMCID: PMC9581055 DOI: 10.3389/fbinf.2021.653054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
A blood cell lineage consists of several consecutive developmental stages starting from the pluri- or multipotent stem cell to a state of terminal differentiation. Despite their importance for human biology, the regulatory pathways and gene networks that govern these differentiation processes are not yet fully understood. This is in part due to challenges associated with delineating the interactions between transcription factors (TFs) and their corresponding target genes. A possible step forward in this case is provided by the increasing amount of expression data, as a basis for linking differentiation stages and gene activities. Here, we present a novel hierarchical approach to identify characteristic expression peak patterns that global regulators excert along the differentiation path of cell lineages. Based on such simple patterns, we identified cell state-specific marker genes and extracted TFs that likely drive their differentiation. Integration of the mean expression values of stage-specific “key player” genes yielded a distinct peaking pattern for each lineage that was used to identify further genes in the dataset which behave similarly. Incorporating the set of TFs that regulate these genes led to a set of stage-specific regulators that control the biological process of cell fate. As proof of concept, we considered two expression datasets covering key differentiation events in blood cell formation of mice.
Collapse
Affiliation(s)
- Maryam Nazarieh
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Kiel, Germany
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Marc Hoeppner
- Institute of Clinical Molecular Biology, Christian-Albrecht-University of Kiel, Kiel, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbruecken, Germany
- *Correspondence: Volkhard Helms,
| |
Collapse
|
23
|
Peng D, Gleyzer R, Tai WH, Kumar P, Bian Q, Isaacs B, da Rocha EL, Cai S, DiNapoli K, Huang FW, Cahan P. Evaluating the transcriptional fidelity of cancer models. Genome Med 2021; 13:73. [PMID: 33926541 PMCID: PMC8086312 DOI: 10.1186/s13073-021-00888-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cancer researchers use cell lines, patient-derived xenografts, engineered mice, and tumoroids as models to investigate tumor biology and to identify therapies. The generalizability and power of a model derive from the fidelity with which it represents the tumor type under investigation; however, the extent to which this is true is often unclear. The preponderance of models and the ability to readily generate new ones has created a demand for tools that can measure the extent and ways in which cancer models resemble or diverge from native tumors. METHODS We developed a machine learning-based computational tool, CancerCellNet, that measures the similarity of cancer models to 22 naturally occurring tumor types and 36 subtypes, in a platform and species agnostic manner. We applied this tool to 657 cancer cell lines, 415 patient-derived xenografts, 26 distinct genetically engineered mouse models, and 131 tumoroids. We validated CancerCellNet by application to independent data, and we tested several predictions with immunofluorescence. RESULTS We have documented the cancer models with the greatest transcriptional fidelity to natural tumors, we have identified cancers underserved by adequate models, and we have found models with annotations that do not match their classification. By comparing models across modalities, we report that, on average, genetically engineered mice and tumoroids have higher transcriptional fidelity than patient-derived xenografts and cell lines in four out of five tumor types. However, several patient-derived xenografts and tumoroids have classification scores that are on par with native tumors, highlighting both their potential as faithful model classes and their heterogeneity. CONCLUSIONS CancerCellNet enables the rapid assessment of transcriptional fidelity of tumor models. We have made CancerCellNet available as a freely downloadable R package ( https://github.com/pcahan1/cancerCellNet ) and as a web application ( http://www.cahanlab.org/resources/cancerCellNet_web ) that can be applied to new cancer models that allows for direct comparison to the cancer models evaluated here.
Collapse
Affiliation(s)
- Da Peng
- grid.21107.350000 0001 2171 9311Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Rachel Gleyzer
- grid.21107.350000 0001 2171 9311Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Wen-Hsin Tai
- grid.21107.350000 0001 2171 9311Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Pavithra Kumar
- grid.21107.350000 0001 2171 9311Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Qin Bian
- grid.21107.350000 0001 2171 9311Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Bradley Isaacs
- grid.21107.350000 0001 2171 9311Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Edroaldo Lummertz da Rocha
- grid.411237.20000 0001 2188 7235Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, SC Brazil
| | - Stephanie Cai
- grid.21107.350000 0001 2171 9311Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Kathleen DiNapoli
- grid.21107.350000 0001 2171 9311Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218 USA
| | - Franklin W. Huang
- grid.266102.10000 0001 2297 6811Division of Hematology/Oncology, Department of Medicine; Helen Diller Family Cancer Center; Bakar Computational Health Sciences Institute; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA USA
| | - Patrick Cahan
- grid.21107.350000 0001 2171 9311Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA ,grid.21107.350000 0001 2171 9311Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
24
|
Matoo OB, Lannig G, Bock C, Sokolova IM. Temperature but not ocean acidification affects energy metabolism and enzyme activities in the blue mussel, Mytilus edulis. Ecol Evol 2021; 11:3366-3379. [PMID: 33841790 PMCID: PMC8019023 DOI: 10.1002/ece3.7289] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/29/2022] Open
Abstract
In mosaic marine habitats, such as intertidal zones, ocean acidification (OA) is exacerbated by high variability of pH, temperature, and biological CO2 production. The nonlinear interactions among these drivers can be context-specific and their effect on organisms in these habitats remains largely unknown, warranting further investigation.We were particularly interested in Mytilus edulis (the blue mussel) from intertidal zones of the Gulf of Maine (GOM), USA, for this study. GOM is a hot spot of global climate change (average sea surface temperature (SST) increasing by >0.2°C/year) with >60% decline in mussel population over the past 40 years.Here, we utilize bioenergetic underpinnings to identify limits of stress tolerance in M. edulis from GOM exposed to warming and OA. We have measured whole-organism oxygen consumption rates and metabolic biomarkers in mussels exposed to control and elevated temperatures (10 vs. 15°C, respectively) and current and moderately elevated P CO2 levels (~400 vs. 800 µatm, respectively).Our study demonstrates that adult M. edulis from GOM are metabolically resilient to the moderate OA scenario but responsive to warming as seen in changes in metabolic rate, energy reserves (total lipids), metabolite profiles (glucose and osmolyte dimethyl amine), and enzyme activities (carbonic anhydrase and calcium ATPase).Our results are in agreement with recent literature that OA scenarios for the next 100-300 years do not affect this species, possibly as a consequence of maintaining its in vivo acid-base balance.
Collapse
Affiliation(s)
- Omera B. Matoo
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNEUSA
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
| | - Gisela Lannig
- Helmholtz Centre for Polar and Marine ResearchAlfred Wegener InstituteBremerhavenGermany
| | - Christian Bock
- Helmholtz Centre for Polar and Marine ResearchAlfred Wegener InstituteBremerhavenGermany
| | - Inna M. Sokolova
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNCUSA
- Department of Marine BiologyInstitute of Biological SciencesUniversität RostockRostockGermany
| |
Collapse
|
25
|
Thongkorn S, Kanlayaprasit S, Panjabud P, Saeliw T, Jantheang T, Kasitipradit K, Sarobol S, Jindatip D, Hu VW, Tencomnao T, Kikkawa T, Sato T, Osumi N, Sarachana T. Sex differences in the effects of prenatal bisphenol A exposure on autism-related genes and their relationships with the hippocampus functions. Sci Rep 2021; 11:1241. [PMID: 33441873 PMCID: PMC7806752 DOI: 10.1038/s41598-020-80390-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Our recent study has shown that prenatal exposure to bisphenol A (BPA) altered the expression of genes associated with autism spectrum disorder (ASD). In this study, we further investigated the effects of prenatal BPA exposure on ASD-related genes known to regulate neuronal viability, neuritogenesis, and learning/memory, and assessed these functions in the offspring of exposed pregnant rats. We found that prenatal BPA exposure increased neurite length, the number of primary neurites, and the number of neurite branches, but reduced the size of the hippocampal cell body in both sexes of the offspring. However, in utero exposure to BPA decreased the neuronal viability and the neuronal density in the hippocampus and impaired learning/memory only in the male offspring while the females were not affected. Interestingly, the expression of several ASD-related genes (e.g. Mief2, Eif3h, Cux1, and Atp8a1) in the hippocampus were dysregulated and showed a sex-specific correlation with neuronal viability, neuritogenesis, and/or learning/memory. The findings from this study suggest that prenatal BPA exposure disrupts ASD-related genes involved in neuronal viability, neuritogenesis, and learning/memory in a sex-dependent manner, and these genes may play an important role in the risk and the higher prevalence of ASD in males subjected to prenatal BPA exposure.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanit Saeliw
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanawin Jantheang
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875The Ph.D. Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthathip Sarobol
- grid.411628.80000 0000 9758 8584Specimen Center, Department of Laboratory Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Tewin Tencomnao
- grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Takako Kikkawa
- grid.69566.3a0000 0001 2248 6943Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Tatsuya Sato
- grid.412754.10000 0000 9956 3487Department of Healthcare Management, Faculty of Health Sciences, Tohoku Fukushi University, Sendai, Miyagi Japan
| | - Noriko Osumi
- grid.69566.3a0000 0001 2248 6943Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi Japan
| | - Tewarit Sarachana
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand ,grid.7922.e0000 0001 0244 7875Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
26
|
Machine Learning and Systems Biology Approaches to Characterize Dosage-Based Gene Dependencies in Cancer Cells. JOURNAL OF BIOINFORMATICS AND SYSTEMS BIOLOGY : OPEN ACCESS 2021; 4:13-32. [PMID: 33842927 PMCID: PMC8031731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Mapping of cancer survivability factors allows for the identification of novel biological insights for drug targeting. Using genomic editing techniques, gene dependencies can be extracted in a high-throughput and quantitative manner. Dependencies have been predicted using machine learning techniques on -omics data, but the biological consequences of dependency predictor pairs has not been explored. In this work we devised a framework to explore gene dependency using an ensemble of machine learning methods, and our learned models captured meaningful biological information beyond just gene dependency prediction. We show that dosage-based dependent predictors (DDPs) primarily belonged to transcriptional regulation ontologies. We also found that anti-sense RNAs and long- noncoding RNA transcripts display DDPs. Network analyses revealed that SOX10, HLA-J, and ZEB2 act as a triad of network hubs in the dependent-predictor network. Collectively, we demonstrate the powerful combination of machine learning and systems biology approach can illuminate new insights in understanding gene dependency and guide novel targeting avenues.
Collapse
|
27
|
Oda H, Mizuno T, Ikejiri M, Nakamura M, Tsunoda A, Ishihara M, Saito K, Tamaru S, Yamashita Y, Nishimura Y, Nakatani K, Katayama N. Risk factors for cisplatin-induced acute kidney injury: A pilot study on the usefulness of genetic variants for predicting nephrotoxicity in clinical practice. Mol Clin Oncol 2020; 13:58. [PMID: 32953112 PMCID: PMC7484732 DOI: 10.3892/mco.2020.2127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Several studies have reported risk factors for predicting cisplatin-induced acute kidney injury (AKI), including old age, female sex, smoking, hypoalbuminemia, hypokalemia, hypomagnesemia, a high body surface area, advanced cancer and the total dose of cisplatin administered. Recently, some studies have focused on the associations between genetic alterations in the genes coding for renal drug transporters, such as organic cation transporter 2 (OCT2), and the nephrotoxicity of cisplatin. However, genetic variants have not been fully elucidated for clinical use. Patients who had received cisplatin (≥50 mg/m2)-containing chemotherapy as a first-line treatment were considered as eligible for the present study. The occurrence of AKI and its associations with baseline characteristics, conventional biomarkers and single-nucleotide variants (SNV) were assessed. AKI was defined as an increase in the serum creatinine level of >0.3 mg/dl or to 1.5-2 times the baseline level. Genotyping was conducted using the DMET platform (DMET Plus), which characterizes 1,936 genetic variants (1,931 SNV and 5 copy number variations) in 231 genes. Between April 2014 and June 2016, a total of 28 patients (22 men and 6 women) were enrolled. AKI occurred in 8 of the 28 enrolled patients (28.6%). Univariate analyses demonstrated that the urinary β2-microglobulin level and body surface area were significantly higher in the AKI group (P<0.05). As regards the associations between AKI and SNV, none of the examined SNV were found to be associated with cisplatin-induced AKI. The findings of the present study suggested that certain clinical factors were associated with the onset of AKI, but no associations were identified with genetic factors, including OCT2. Although this was a small pilot study, the findings indicated that genetic factors may not be of value for predicting AKI in clinical practice.
Collapse
Affiliation(s)
- Hiroyasu Oda
- Department of Medical Oncology, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan
| | - Toshiro Mizuno
- Department of Medical Oncology, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan
| | - Makoto Ikejiri
- Department of Clinical Laboratory, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan.,Department of Genomic Medicine, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan
| | - Maki Nakamura
- Department of Clinical Laboratory, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan.,Department of Genomic Medicine, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan
| | - Akira Tsunoda
- Department of Medical Oncology, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan
| | - Mikiya Ishihara
- Department of Medical Oncology, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan
| | - Kanako Saito
- Department of Medical Oncology, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan
| | - Satoshi Tamaru
- Department of Medical Oncology, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan
| | - Yoshiki Yamashita
- Department of Medical Oncology, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan
| | - Kaname Nakatani
- Department of Clinical Laboratory, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan.,Department of Genomic Medicine, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan
| | - Naoyuki Katayama
- Department of Medical Oncology, Mie University Graduate School of Medicine, Tsu, Mie 5148507, Japan
| |
Collapse
|
28
|
Van de Sande B, Flerin C, Davie K, De Waegeneer M, Hulselmans G, Aibar S, Seurinck R, Saelens W, Cannoodt R, Rouchon Q, Verbeiren T, De Maeyer D, Reumers J, Saeys Y, Aerts S. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat Protoc 2020; 15:2247-2276. [PMID: 32561888 DOI: 10.1038/s41596-020-0336-2] [Citation(s) in RCA: 528] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/17/2020] [Indexed: 11/09/2022]
Abstract
This protocol explains how to perform a fast SCENIC analysis alongside standard best practices steps on single-cell RNA-sequencing data using software containers and Nextflow pipelines. SCENIC reconstructs regulons (i.e., transcription factors and their target genes) assesses the activity of these discovered regulons in individual cells and uses these cellular activity patterns to find meaningful clusters of cells. Here we present an improved version of SCENIC with several advances. SCENIC has been refactored and reimplemented in Python (pySCENIC), resulting in a tenfold increase in speed, and has been packaged into containers for ease of use. It is now also possible to use epigenomic track databases, as well as motifs, to refine regulons. In this protocol, we explain the different steps of SCENIC: the workflow starts from the count matrix depicting the gene abundances for all cells and consists of three stages. First, coexpression modules are inferred using a regression per-target approach (GRNBoost2). Next, the indirect targets are pruned from these modules using cis-regulatory motif discovery (cisTarget). Lastly, the activity of these regulons is quantified via an enrichment score for the regulon's target genes (AUCell). Nonlinear projection methods can be used to display visual groupings of cells based on the cellular activity patterns of these regulons. The results can be exported as a loom file and visualized in the SCope web application. This protocol is illustrated on two use cases: a peripheral blood mononuclear cell data set and a panel of single-cell RNA-sequencing cancer experiments. For a data set of 10,000 genes and 50,000 cells, the pipeline runs in <2 h.
Collapse
Affiliation(s)
- Bram Van de Sande
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Christopher Flerin
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Kristofer Davie
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium
| | - Maxime De Waegeneer
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Gert Hulselmans
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Sara Aibar
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium.,Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Ruth Seurinck
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Wouter Saelens
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Robrecht Cannoodt
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Quentin Rouchon
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Toni Verbeiren
- Janssen Pharmaceutica, Beerse, Belgium.,Data Intuitive, Ghent, Belgium
| | | | | | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Stein Aerts
- VIB Center for Brain & Disease Research, KU Leuven, Leuven, Belgium. .,Department of Human Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
29
|
Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. ACTA ACUST UNITED AC 2020; 68:e86. [PMID: 31756036 DOI: 10.1002/cpbi.86] [Citation(s) in RCA: 1383] [Impact Index Per Article: 345.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MetaboAnalyst (https://www.metaboanalyst.ca) is an easy-to-use web-based tool suite for comprehensive metabolomic data analysis, interpretation, and integration with other omics data. Since its first release in 2009, MetaboAnalyst has evolved significantly to meet the ever-expanding bioinformatics demands from the rapidly growing metabolomics community. In addition to providing a variety of data processing and normalization procedures, MetaboAnalyst supports a wide array of functions for statistical, functional, as well as data visualization tasks. Some of the most widely used approaches include PCA (principal component analysis), PLS-DA (partial least squares discriminant analysis), clustering analysis and visualization, MSEA (metabolite set enrichment analysis), MetPA (metabolic pathway analysis), biomarker selection via ROC (receiver operating characteristic) curve analysis, as well as time series and power analysis. The current version of MetaboAnalyst (4.0) features a complete overhaul of the user interface and significantly expanded underlying knowledge bases (compound database, pathway libraries, and metabolite sets). Three new modules have been added to support pathway activity prediction directly from mass peaks, biomarker meta-analysis, and network-based multi-omics data integration. To enable more transparent and reproducible analysis of metabolomic data, we have released a companion R package (MetaboAnalystR) to complement the web-based application. This article provides an overview of the main functional modules and the general workflow of MetaboAnalyst 4.0, followed by 12 detailed protocols: © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Data uploading, processing, and normalization Basic Protocol 2: Identification of significant variables Basic Protocol 3: Multivariate exploratory data analysis Basic Protocol 4: Functional interpretation of metabolomic data Basic Protocol 5: Biomarker analysis based on receiver operating characteristic (ROC) curves Basic Protocol 6: Time-series and two-factor data analysis Basic Protocol 7: Sample size estimation and power analysis Basic Protocol 8: Joint pathway analysis Basic Protocol 9: MS peaks to pathway activities Basic Protocol 10: Biomarker meta-analysis Basic Protocol 11: Knowledge-based network exploration of multi-omics data Basic Protocol 12: MetaboAnalystR introduction.
Collapse
Affiliation(s)
- Jasmine Chong
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - David S Wishart
- Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jianguo Xia
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.,Department of Animal Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
30
|
Embryonic Program Activated during Blast Crisis of Chronic Myelogenous Leukemia (CML) Implicates a TCF7L2 and MYC Cooperative Chromatin Binding. Int J Mol Sci 2020; 21:ijms21114057. [PMID: 32517078 PMCID: PMC7312032 DOI: 10.3390/ijms21114057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic myeloid leukemia (CML) is characterized by an inherent genetic instability, which contributes to the progression of the disease towards an accelerated phase (AP) and blast crisis (BC). Several cytogenetic and genomic alterations have been reported in the progression towards BC, but the precise molecular mechanisms of this event are undetermined. Transcription Factor 7 like 2 (TFC7L2) is a member of the TCF family of proteins that are known to activate WNT target genes such as Cyclin D1. TCF7L2 has been shown to be overexpressed in acute myeloid leukemia (AML) and represents a druggable target. We report here that TCF7L2 transcription factor expression was found to be correlated to blast cell numbers during the progression of the disease. In these cells, TCF7L2 CHIP-sequencing highlighted distal cis active enhancer, such as elements in SMAD3, ATF5, and PRMT1 genomic regions and a proximal active transcriptional program of 144 genes. The analysis of CHIP-sequencing of MYC revealed a significant overlapping of TCF7L2 epigenetic program with MYC. The β-catenin activator lithium chloride and the MYC-MAX dimerization inhibitor 10058-F4 significantly modified the expression of three epigenetic targets in the BC cell line K562. These results suggest for the first time the cooperative role of TCF7L2 and MYC during CML-BC and they strengthen previous data showing a possible involvement of embryonic genes in this process.
Collapse
|
31
|
Furlan S, Campione M, Murgia M, Mosole S, Argenton F, Volpe P, Nori A. Calsequestrins New Calcium Store Markers of Adult Zebrafish Cerebellum and Optic Tectum. Front Neuroanat 2020; 14:15. [PMID: 32372920 PMCID: PMC7188384 DOI: 10.3389/fnana.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Calcium stores in neurons are heterogeneous in compartmentalization and molecular composition. Danio rerio (zebrafish) is an animal model with a simply folded cerebellum similar in cellular organization to that of mammals. The aim of the study was to identify new endoplasmic reticulum (ER) calcium store markers in zebrafish adult brain with emphasis on cerebellum and optic tectum. By quantitative polymerase chain reaction, we found three RNA transcripts coding for the intra-ER calcium binding protein calsequestrin: casq1a, casq1b, and casq2. In brain homogenates, two isoforms were detected by mass spectrometry and western blotting. Fractionation experiments of whole brain revealed that Casq1a and Casq2 were enriched in a heavy fraction containing ER microsomes and synaptic membranes. By in situ hybridization, we found the heterogeneous expression of casq1a and casq2 mRNA to be compatible with the cellular localization of calsequestrins investigated by immunofluorescence. Casq1 was expressed in neurogenic differentiation 1 expressing the granule cells of the cerebellum and the periventricular zone of the optic tectum. Casq2 was concentrated in parvalbumin expressing Purkinje cells. At a subcellular level, Casq1 was restricted to granular cell bodies, and Casq2 was localized in cell bodies, dendrites, and axons. Data are discussed in relation to the differential cellular and subcellular distribution of other cerebellum calcium store markers and are evaluated with respect to the putative relevance of calsequestrins in the neuron-specific functional activity.
Collapse
Affiliation(s)
- Sandra Furlan
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Padova, Italy
| | - Marina Campione
- Consiglio Nazionale delle Ricerche, Institute of Neuroscience, Padova, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Istituto Interuniversitario di Miologia, Padova, Italy.,Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Simone Mosole
- Institute of Oncology Research (IOR), Bellinzona, Switzerland
| | | | - Pompeo Volpe
- Department of Biomedical Sciences, University of Padova, Istituto Interuniversitario di Miologia, Padova, Italy
| | - Alessandra Nori
- Department of Biomedical Sciences, University of Padova, Istituto Interuniversitario di Miologia, Padova, Italy
| |
Collapse
|
32
|
Integrative phenotypic and gene expression data identify myostatin as a muscle growth inhibitor in Chinese shrimp Fenneropenaeus chinensis. Sci Rep 2020; 10:5985. [PMID: 32249771 PMCID: PMC7136249 DOI: 10.1038/s41598-020-61382-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/20/2020] [Indexed: 11/09/2022] Open
Abstract
Growth traits, largely determined by muscle growth, are the most critical economic traits in shrimp breeding. Myostatin (Mstn) is a conserved inhibitor of muscle growth in vertebrates, but until now solid evidence supporting a similar function of Mstn in invertebrates has been lacking. In the present study, we examined the Mstn expression along with growth trait data in a Fenneropenaeus chinensis population, to establish a potential correlation between Mstn and growth. The heritabilities of FcMstn expression, body weight at 190 days of culture, body weight and length at 230 days of culture, and average daily gain were estimated using 773 individuals and a thirteen-generation pedigree. The results showed FcMstn expression was negatively correlated with the growth traits, and the mean FcMstn expression in females was significantly lower than that of males, indicating Mstn negatively regulates muscle growth in shrimp, and its lower expression may underscore the faster growth of females. Low heritabilities were detected for FcMstn expression, suggesting that the expression of Mstn might be heritable in shrimp. These results provide strong support for a growth inhibitory function of Mstn in F. chinensis, and suggest a potential method for selective breeding of this species without substantial experimental resources and labor force.
Collapse
|
33
|
Ahmed R, Omidian Z, Giwa A, Cornwell B, Majety N, Bell DR, Lee S, Zhang H, Michels A, Desiderio S, Sadegh-Nasseri S, Rabb H, Gritsch S, Suva ML, Cahan P, Zhou R, Jie C, Donner T, Hamad ARA. A Public BCR Present in a Unique Dual-Receptor-Expressing Lymphocyte from Type 1 Diabetes Patients Encodes a Potent T Cell Autoantigen. Cell 2020; 177:1583-1599.e16. [PMID: 31150624 DOI: 10.1016/j.cell.2019.05.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
T and B cells are the two known lineages of adaptive immune cells. Here, we describe a previously unknown lymphocyte that is a dual expresser (DE) of TCR and BCR and key lineage markers of both B and T cells. In type 1 diabetes (T1D), DEs are predominated by one clonotype that encodes a potent CD4 T cell autoantigen in its antigen binding site. Molecular dynamics simulations revealed that this peptide has an optimal binding register for diabetogenic HLA-DQ8. In concordance, a synthetic version of the peptide forms stable DQ8 complexes and potently stimulates autoreactive CD4 T cells from T1D patients, but not healthy controls. Moreover, mAbs bearing this clonotype are autoreactive against CD4 T cells and inhibit insulin tetramer binding to CD4 T cells. Thus, compartmentalization of adaptive immune cells into T and B cells is not absolute, and violators of this paradigm are likely key drivers of autoimmune diseases.
Collapse
Affiliation(s)
- Rizwan Ahmed
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zahra Omidian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adebola Giwa
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Benjamin Cornwell
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neha Majety
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David R Bell
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Sangyun Lee
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Aaron Michels
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO 80045, USA
| | - Stephen Desiderio
- Department of Molecular Biology and Genetics and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Hamid Rabb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Simon Gritsch
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Mario L Suva
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Patrick Cahan
- Department of Molecular Biology and Genetics and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA.
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University, Des Moines, IA 50312, USA
| | - Thomas Donner
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
34
|
Mandarino A, Gregory DJ, McGuire CC, Leblanc BW, Witt H, Rivera LM, Godleski JJ, Fedulov AV. The effect of talc particles on phagocytes in co-culture with ovarian cancer cells. ENVIRONMENTAL RESEARCH 2020; 180:108676. [PMID: 31785414 PMCID: PMC8722446 DOI: 10.1016/j.envres.2019.108676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/15/2019] [Accepted: 08/15/2019] [Indexed: 05/11/2023]
Abstract
Talc and titanium dioxide are naturally occurring water-insoluble mined products usually available in the form of particulate matter. This study was prompted by epidemiological observations suggesting that perineal use of talc powder is associated with increased risk of ovarian cancer, particularly in a milieu with higher estrogen. We aimed to test the effects of talc vs. control particles on the ability of prototypical macrophage cell lines to curb the growth of ovarian cancer cells in culture in the presence of estrogen. We found that murine ovarian surface epithelial cells (MOSEC), a prototype of certain forms of ovarian cancer, were present in larger numbers after co-culture with macrophages treated to a combination of talc and estradiol than to either agent alone or vehicle. Control particles (titanium dioxide, concentrated urban air particulates or diesel exhaust particles) did not have this effect. Co-exposure of macrophages to talc and estradiol has led to increased production of reactive oxygen species and changes in expression of macrophage genes pertinent in cancer development and immunosurveillance. These findings suggest that in vitro exposure to talc, particularly in a high-estrogen environment, may compromise immunosurveillance functions of macrophages and prompt further studies to elucidate this mechanism.
Collapse
Affiliation(s)
- Angelo Mandarino
- Alpert Medical School of Brown University, Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Providence, RI, USA
| | - David J Gregory
- Harvard Medical School, Massachusetts General Hospital, Department of Pediatrics, Boston, MA, USA
| | - Connor C McGuire
- University of Rochester Medical Center, Department of Environmental Medicine, Rochester, NY, USA
| | - Brian W Leblanc
- Alpert Medical School of Brown University, Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Providence, RI, USA
| | - Hadley Witt
- Alpert Medical School of Brown University, Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Providence, RI, USA
| | - Loreilys Mejias Rivera
- Alpert Medical School of Brown University, Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Providence, RI, USA
| | - John J Godleski
- John J. Godleski, MD, PLLC, Milton, MA, USA; Harvard Medical School, Department of Pathology (Emeritus), Boston, MA, USA; Department of Environmental Health, Harvard TH Chan School of Public Health (Retired), Boston, MA, USA
| | - Alexey V Fedulov
- Alpert Medical School of Brown University, Department of Surgery, Division of Surgical Research, Rhode Island Hospital, Providence, RI, USA; Department of Environmental Health, Harvard TH Chan School of Public Health (Retired), Boston, MA, USA.
| |
Collapse
|
35
|
Apicco DJ, Zhang C, Maziuk B, Jiang L, Ballance HI, Boudeau S, Ung C, Li H, Wolozin B. Dysregulation of RNA Splicing in Tauopathies. Cell Rep 2019; 29:4377-4388.e4. [PMID: 31875547 PMCID: PMC6941411 DOI: 10.1016/j.celrep.2019.11.093] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/28/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022] Open
Abstract
Pathological aggregation of RNA binding proteins (RBPs) is associated with dysregulation of RNA splicing in PS19 P301S tau transgenic mice and in Alzheimer's disease brain tissues. The dysregulated splicing particularly affects genes involved in synaptic transmission. The effects of neuroprotective TIA1 reduction on PS19 mice are also examined. TIA1 reduction reduces disease-linked alternative splicing events for the major synaptic mRNA transcripts examined, suggesting that normalization of RBP functions is associated with the neuroprotection. Use of the NetDecoder informatics algorithm identifies key upstream biological targets, including MYC and EGFR, underlying the transcriptional and splicing changes in the protected compared to tauopathy mice. Pharmacological inhibition of MYC and EGFR activity in neuronal cultures tau recapitulates the neuroprotective effects of TIA1 reduction. These results demonstrate that dysfunction of RBPs and RNA splicing processes are major elements of the pathophysiology of tauopathies, as well as potential therapeutic targets for tauopathies.
Collapse
Affiliation(s)
- Daniel J Apicco
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | | | - Brandon Maziuk
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Lulu Jiang
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Heather I Ballance
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | - Samantha Boudeau
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA
| | | | - Hu Li
- Mayo Clinic, Rochester, MN, USA.
| | - Benjamin Wolozin
- Boston University School of Medicine, Department of Pharmacology and Experimental Therapeutics, Boston, MA, USA; Boston University School of Medicine, Department of Neurology, Boston, MA, USA.
| |
Collapse
|
36
|
Sidahmed-Adrar N, Ottavi JF, Benzoubir N, Ait Saadi T, Bou Saleh M, Mauduit P, Guettier C, Desterke C, Le Naour F. Tspan15 Is a New Stemness-Related Marker in Hepatocellular Carcinoma. Proteomics 2019; 19:e1900025. [PMID: 31390680 DOI: 10.1002/pmic.201900025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 07/15/2019] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second cause of cancer-related deaths worldwide. A clearer understanding of the molecular mechanisms underlying tumor growth and invasiveness remains crucial for developing new therapies. Here, the expression of tetraspanins, a family of plasma membrane organizers involved in tumor progression, has been addressed. Integrative approaches combining transcriptomics and bioinformatics allow demonstrating the induced and heterogeneous expression of Tspan15 in HCC. Tspan15 positive tumors exhibit signatures related to hepatic progenitor cells as well as recurrence of cancer. Immunohistochemistry experiments confirm Tspan15 expression in the subset of HCC expressing stemness-related markers such as EpCAM and Cytokeratin-19. Functional networks reveal that most of these genes expressed in correlation to Tspan15 support cell proliferation. Furthermore, Tspan15 overexpression in the hepatoma cell line HepG2 significantly increases cell proliferation. A quantitative proteomic analysis of the secretome reveals a higher abundance of the protein connective tissue growth factor (CTGF), a pleiotropic matricellular signaling protein. Proteomic profiling of Tspan15 complexes allows identifying numerous membrane proteins including several growth factor receptors. Finally, Tspan15 increases ERK1/2 phosphorylation that directly controls CTGF expression and secretion. In conclusion, Tspan15 is a new stemness-related marker in HCC which exhibits high potential of tumor growth and recurrence.
Collapse
Affiliation(s)
- Nazha Sidahmed-Adrar
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Jean-François Ottavi
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Nassima Benzoubir
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Taous Ait Saadi
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Mohamed Bou Saleh
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France
| | - Philippe Mauduit
- Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,Inserm, Unité 1197, Villejuif, F-94800, France
| | - Catherine Guettier
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,AP-HP Hôpital Bicêtre, Service d'Anatomopathologie, Le Kremlin-Bicêtre, F-94275, France
| | - Christophe Desterke
- Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,Inserm, US33, Villejuif, F-94800, France
| | - François Le Naour
- Inserm, Unité 1193, Villejuif, F-94800, France.,Université Paris-Sud, Institut André Lwoff, Villejuif, F-94800, France.,Inserm, US33, Villejuif, F-94800, France
| |
Collapse
|
37
|
Tan Y, Cahan P. SingleCellNet: A Computational Tool to Classify Single Cell RNA-Seq Data Across Platforms and Across Species. Cell Syst 2019; 9:207-213.e2. [PMID: 31377170 DOI: 10.1016/j.cels.2019.06.004] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/18/2019] [Accepted: 06/12/2019] [Indexed: 11/28/2022]
Abstract
Single-cell RNA-seq has emerged as a powerful tool in diverse applications, from determining the cell-type composition of tissues to uncovering regulators of developmental programs. A near-universal step in the analysis of single-cell RNA-seq data is to hypothesize the identity of each cell. Often, this is achieved by searching for combinations of genes that have previously been implicated as being cell-type specific, an approach that is not quantitative and does not explicitly take advantage of other single-cell RNA-seq studies. Here, we describe our tool, SingleCellNet, which addresses these issues and enables the classification of query single-cell RNA-seq data in comparison to reference single-cell RNA-seq data. SingleCellNet compares favorably to other methods in sensitivity and specificity, and it is able to classify across platforms and species. We highlight SingleCellNet's utility by classifying previously undetermined cells, and by assessing the outcome of a cell fate engineering experiment.
Collapse
Affiliation(s)
- Yuqi Tan
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick Cahan
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
38
|
Achanta S, Verma A, Srivastava A, Nilakantan H, Hoek JB, Vadigepalli R. Single-Cell Gene Expression Analysis Identifies Chronic Alcohol-Mediated Shift in Hepatocyte Molecular States After Partial Hepatectomy. Gene Expr 2019; 19:97-119. [PMID: 30189915 PMCID: PMC6466177 DOI: 10.3727/105221618x15361728786767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The analysis of molecular states of individual cells, as defined by their mRNA expression profiles and protein composition, has gained widespread interest in studying biological phenomena ranging from embryonic development to homeostatic tissue function and genesis and evolution of cancers. Although the molecular content of individual cells in a tissue can vary widely, their molecular states tend to be constrained within a transcriptional landscape partly described by the canonical archetypes of a population of cells. In this study, we sought to characterize the effects of an acute (partial hepatectomy) and chronic (alcohol consumption) perturbation on the molecular states of individual hepatocytes during the onset and progression of liver regeneration. We analyzed the expression of 84 genes across 233 individual hepatocytes acquired using laser capture microdissection. Analysis of the single-cell data revealed that hepatocyte molecular states can be considered as distributed across a set of four states irrespective of perturbation, with the proportions of hepatocytes in these states being dependent on the perturbation. In addition to the quiescent, primed, and replicating hepatocytes, we identified a fourth molecular state lying between the primed and replicating subpopulations. Comparison of the proportions of hepatocytes from each experimental condition in these four molecular states suggested that, in addition to aberrant priming, a slower transition from primed to replication state could contribute toward ethanol-mediated suppression of liver regenerative response to partial hepatectomy.
Collapse
Affiliation(s)
- Sirisha Achanta
- *Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aalap Verma
- *Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
- †Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Ankita Srivastava
- *Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Harshavardhan Nilakantan
- *Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jan B. Hoek
- *Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rajanikanth Vadigepalli
- *Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
39
|
Omura S, Sato F, Martinez NE, Park AM, Fujita M, Kennett NJ, Cvek U, Minagar A, Alexander JS, Tsunoda I. Bioinformatics Analyses Determined the Distinct CNS and Peripheral Surrogate Biomarker Candidates Between Two Mouse Models for Progressive Multiple Sclerosis. Front Immunol 2019; 10:516. [PMID: 30941144 PMCID: PMC6434997 DOI: 10.3389/fimmu.2019.00516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Previously, we have established two distinct progressive multiple sclerosis (MS) models by induction of experimental autoimmune encephalomyelitis (EAE) with myelin oligodendrocyte glycoprotein (MOG) in two mouse strains. A.SW mice develop ataxia with antibody deposition, but no T cell infiltration, in the central nervous system (CNS), while SJL/J mice develop paralysis with CNS T cell infiltration. In this study, we determined biomarkers contributing to the homogeneity and heterogeneity of two models. Using the CNS and spleen microarray transcriptome and cytokine data, we conducted computational analyses. We identified up-regulation of immune-related genes, including immunoglobulins, in the CNS of both models. Pro-inflammatory cytokines, interferon (IFN)-γ and interleukin (IL)-17, were associated with the disease progression in SJL/J mice, while the expression of both cytokines was detected only at the EAE onset in A.SW mice. Principal component analysis (PCA) of CNS transcriptome data demonstrated that down-regulation of prolactin may reflect disease progression. Pattern matching analysis of spleen transcriptome with CNS PCA identified 333 splenic surrogate markers, including Stfa2l1, which reflected the changes in the CNS. Among them, we found that two genes (PER1/MIR6883 and FKBP5) and one gene (SLC16A1/MCT1) were also significantly up-regulated and down-regulated, respectively, in human MS peripheral blood, using data mining.
Collapse
Affiliation(s)
- Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan.,Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan.,Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Nicholas E Martinez
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Nikki J Kennett
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Urška Cvek
- Department of Computer Science, Louisiana State University Shreveport, Shreveport, LA, United States
| | - Alireza Minagar
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - J Steven Alexander
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Japan.,Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States.,Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
40
|
Abstract
The identification of genes that are differentially expressed provides a molecular foothold onto biological questions of interest. Whether some genes are more likely to be differentially expressed than others, and to what degree, has never been assessed on a global scale. Here, we reanalyze more than 600 studies and find that knowledge of a gene’s prior probability of differential expression (DE) allows for accurate prediction of DE hit lists, regardless of the biological question. This result suggests redundancy in transcriptomics experiments that both informs gene set interpretation and highlights room for growth within the field. Differential expression (DE) is commonly used to explore molecular mechanisms of biological conditions. While many studies report significant results between their groups of interest, the degree to which results are specific to the question at hand is not generally assessed, potentially leading to inaccurate interpretation. This could be particularly problematic for metaanalysis where replicability across datasets is taken as strong evidence for the existence of a specific, biologically relevant signal, but which instead may arise from recurrence of generic processes. To address this, we developed an approach to predict DE based on an analysis of over 600 studies. A predictor based on empirical prior probability of DE performs very well at this task (mean area under the receiver operating characteristic curve, ∼0.8), indicating that a large fraction of DE hit lists are nonspecific. In contrast, predictors based on attributes such as gene function, mutation rates, or network features perform poorly. Genes associated with sex, the extracellular matrix, the immune system, and stress responses are prominent within the “DE prior.” In a series of control studies, we show that these patterns reflect shared biology rather than technical artifacts or ascertainment biases. Finally, we demonstrate the application of the DE prior to data interpretation in three use cases: (i) breast cancer subtyping, (ii) single-cell genomics of pancreatic islet cells, and (iii) metaanalysis of lung adenocarcinoma and renal transplant rejection transcriptomics. In all cases, we find hallmarks of generic DE, highlighting the need for nuanced interpretation of gene phenotypic associations.
Collapse
|
41
|
Marchi E, Lee LN, Klenerman P. Inflation vs. Exhaustion of Antiviral CD8+ T-Cell Populations in Persistent Infections: Two Sides of the Same Coin? Front Immunol 2019; 10:197. [PMID: 30894851 PMCID: PMC6414785 DOI: 10.3389/fimmu.2019.00197] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 01/23/2019] [Indexed: 12/31/2022] Open
Abstract
Persistent virus infection can drive CD8+ T-cell responses which are markedly divergent in terms of frequency, phenotype, function, and distribution. On the one hand viruses such as Lymphocytic Choriomeningitis Virus (LCMV) Clone 13 can drive T-cell "exhaustion", associated with upregulation of checkpoint molecules, loss of effector functions, and diminished control of viral replication. On the other, low-level persistence of viruses such as Cytomegalovirus and Adenoviral vaccines can drive memory "inflation," associated with sustained populations of CD8+ T-cells over time, with maintained effector functions and a distinct phenotype. Underpinning these divergent memory pools are distinct transcriptional patterns-we aimed to compare these to explore the regulation of CD8+ T-cell memory against persistent viruses at the level of molecular networks and address whether dysregulation of specific modules may account for the phenotype observed. By exploring in parallel and also merging existing datasets derived from different investigators we attempted to develop a combined model of inflation vs. exhaustion and investigate the gene expression networks that are shared in these memory pools. In such comparisons, co-ordination of a critical module of genes driven by Tbx21 is markedly different between the two memory types. These exploratory data highlight both the molecular similarities as well as the differences between inflation and exhaustion and we hypothesize that co-ordinated regulation of a key genetic module may underpin the markedly different resultant functions and phenotypes in vivo-an idea which could be tested directly in future experiments.
Collapse
Affiliation(s)
- Emanuele Marchi
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lian Ni Lee
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Translational Gastroenterology Unit, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
42
|
Park SJ, Kim JK, Kim HH, Yoon BA, Ji DY, Lee CW, Kim HJ, Kim KH, Shin HY, Park SJ, Lee DY. Integrative metabolomics reveals unique metabolic traits in Guillain-Barré Syndrome and its variants. Sci Rep 2019; 9:1077. [PMID: 30705347 PMCID: PMC6355784 DOI: 10.1038/s41598-018-37572-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
Guillain-Barré syndrome (GBS) is an acute fatal progressive disease caused by autoimmune mechanism mainly affecting peripheral nervous system. Although the syndrome is clinically sub-classified into several variants, specific biomarker and exact pathomechanism of each subtypes are not well elucidated yet. In current study, integrative metabolomic and lipidomic profiles were acquisitioned from cerebrospinal fluid samples of 86 GBS from three variants and 20 disease controls. And the data were systematically compared to our previous result on inflammatory demyelination disorders of central nervous system (IDDs) and healthy controls. Primary metabolite profiles revealed unique metabolic traits in which 9 and 7 compounds were specifically changed in GBS and IDD, respectively. Next, the biomarker panel with 10 primary metabolites showed a fairly good discrimination power among 3 GBS subtypes, healthy controls, and disease controls (AUCs ranged 0.849-0.999). The robustness of the biomarker panel was vigorously validated by multi-step statistical evaluation. Subsequent lipidomics revealed GBS variant-specific alteration where the significant elevations of lyso-phosphatidylcholines and sphingomyelins were unique to AIDP (acute inflammatory demyelinating polyneuropathy) and AMAN (acute motor axonal neuropathy), respectively. And metabolome-wide multivariate correlation analysis identified potential clinical association between GBS disability scale (Hughes score) and CSF lipids (monoacylglycerols, and sphingomyelins). Finally, Bayesian network analysis of covarianced structures of primary metabolites and lipids proposed metabolic hub and potential biochemical linkage associated with the pathology.
Collapse
Affiliation(s)
- Soo Jin Park
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, 02707, Republic of Korea
| | - Jong Kuk Kim
- Department of Neurology, Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan, 49315, Republic of Korea
| | - Hyun-Hwi Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Byeol-A Yoon
- Department of Neurology, Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan, 49315, Republic of Korea
| | - Dong Yoon Ji
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, 02707, Republic of Korea
| | - Chang-Wan Lee
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, 02707, Republic of Korea
| | - Ho Jin Kim
- The Department of Neurology, Research Institute and Hospital of the National Cancer Center, Goyang, Republic of Korea
| | - Kyoung Heon Kim
- The Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Jean Park
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea.
| | - Do Yup Lee
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
43
|
Spangler A, Su EY, Craft AM, Cahan P. A single cell transcriptional portrait of embryoid body differentiation and comparison to progenitors of the developing embryo. Stem Cell Res 2018; 31:201-215. [PMID: 30118958 PMCID: PMC6579609 DOI: 10.1016/j.scr.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/28/2018] [Accepted: 07/12/2018] [Indexed: 01/08/2023] Open
Abstract
Directed differentiation of pluripotent stem cells provides an accessible system to model development. However, the distinct cell types that emerge, their dynamics, and their relationship to progenitors in the early embryo has been difficult to decipher because of the cellular heterogeneity inherent to differentiation. Here, we used a combination of bulk RNA-Seq, single cell RNA-Seq, and bioinformatics analyses to dissect the cell types that emerge during directed differentiation of mouse embryonic stem cells as embryoid bodies and we compared them to spatially and temporally resolved transcriptional profiles of early embryos. Our single cell analyses of the day 4 embryoid bodies revealed three populations which had retained related yet distinct pluripotent signatures that resemble the pre- or post-implantation epiblast, one population of presumptive neuroectoderm, one population of mesendoderm, and four populations of neural progenitors. By day 6, the neural progenitors predominated the embryoid bodies, but both a small population of pluripotent-like cells and an anterior mesoderm-like Brachyury-expressing population were present. By comparing the day 4 and day 6 populations, we identified candidate differentiation paths, transcription factors, and signaling pathways that mark the in vitro correlate of the transition from the mid-to-late primitive streak stage.
Collapse
Affiliation(s)
- Abby Spangler
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Y Su
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - April M Craft
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
44
|
Kasendra M, Tovaglieri A, Sontheimer-Phelps A, Jalili-Firoozinezhad S, Bein A, Chalkiadaki A, Scholl W, Zhang C, Rickner H, Richmond CA, Li H, Breault DT, Ingber DE. Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids. Sci Rep 2018; 8:2871. [PMID: 29440725 PMCID: PMC5811607 DOI: 10.1038/s41598-018-21201-7] [Citation(s) in RCA: 452] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/29/2018] [Indexed: 01/14/2023] Open
Abstract
Here we describe a method for fabricating a primary human Small Intestine-on-a-Chip (Intestine Chip) containing epithelial cells isolated from healthy regions of intestinal biopsies. The primary epithelial cells are expanded as 3D organoids, dissociated, and cultured on a porous membrane within a microfluidic device with human intestinal microvascular endothelium cultured in a parallel microchannel under flow and cyclic deformation. In the Intestine Chip, the epithelium forms villi-like projections lined by polarized epithelial cells that undergo multi-lineage differentiation similar to that of intestinal organoids, however, these cells expose their apical surfaces to an open lumen and interface with endothelium. Transcriptomic analysis also indicates that the Intestine Chip more closely mimics whole human duodenum in vivo when compared to the duodenal organoids used to create the chips. Because fluids flowing through the lumen of the Intestine Chip can be collected continuously, sequential analysis of fluid samples can be used to quantify nutrient digestion, mucus secretion and establishment of intestinal barrier function over a period of multiple days in vitro. The Intestine Chip therefore may be useful as a research tool for applications where normal intestinal function is crucial, including studies of metabolism, nutrition, infection, and drug pharmacokinetics, as well as personalized medicine.
Collapse
Affiliation(s)
- Magdalena Kasendra
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Emulate Inc., 27 Drydock Avenue, Boston, MA, 02210, USA
| | - Alessio Tovaglieri
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Graduate program, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Alexandra Sontheimer-Phelps
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Graduate program, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sasan Jalili-Firoozinezhad
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
- Graduate program, Department of Bioengineering and iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Amir Bein
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Angeliki Chalkiadaki
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - William Scholl
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Cheng Zhang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Hannah Rickner
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Camilla A Richmond
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Boston, MA 02115, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02139, USA.
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge 02139, MA, USA.
- Vascular Biology Program and Department Surgery, Boston Children's Hospital and Harvard Medical School, Boston 02115, MA, USA.
| |
Collapse
|
45
|
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. ADVANCES IN NEUROBIOLOGY 2018; 21:101-193. [PMID: 30334222 PMCID: PMC6310046 DOI: 10.1007/978-3-319-94593-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.
Collapse
Affiliation(s)
- Arshad M Khan
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA.
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| | - Alice H Grant
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Gully A P C Burns
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA, USA
| | - Brendan S Thatcher
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Vishwanath T Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Benjamin W Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Zachary S Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Daniel H Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
46
|
Neto M, Naval-Sánchez M, Potier D, Pereira PS, Geerts D, Aerts S, Casares F. Nuclear receptors connect progenitor transcription factors to cell cycle control. Sci Rep 2017; 7:4845. [PMID: 28687780 PMCID: PMC5501803 DOI: 10.1038/s41598-017-04936-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/23/2017] [Indexed: 01/31/2023] Open
Abstract
The specification and growth of organs is controlled simultaneously by networks of transcription factors. While the connection between these transcription factors with fate determinants is increasingly clear, how they establish the link with the cell cycle is far less understood. Here we investigate this link in the developing Drosophila eye, where two transcription factors, the MEIS1 homologue hth and the Zn-finger tsh, synergize to stimulate the proliferation of naïve eye progenitors. Experiments combining transcriptomics, open-chromatin profiling, motif analysis and functional assays indicate that these progenitor transcription factors exert a global regulation of the proliferation program. Rather than directly regulating cell cycle genes, they control proliferation through an intermediary layer of nuclear receptors of the ecdysone/estrogen-signaling pathway. This regulatory subnetwork between hth, tsh and nuclear receptors might be conserved from Drosophila to mammals, as we find a significant co-overexpression of their human homologues in specific cancer types.
Collapse
Affiliation(s)
- Marta Neto
- CABD, Andalusian Centre for Developmental Biology, CSIC-UPO-JA, 41013, Seville, Spain.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | | | - Delphine Potier
- School of Medicine, University of Leuven, box 602 3000, Leuven, Belgium
| | - Paulo S Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Dirk Geerts
- Department of Medical Biology L2-109, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stein Aerts
- School of Medicine, University of Leuven, box 602 3000, Leuven, Belgium.
| | - Fernando Casares
- CABD, Andalusian Centre for Developmental Biology, CSIC-UPO-JA, 41013, Seville, Spain.
| |
Collapse
|
47
|
Dhondt I, Petyuk VA, Bauer S, Brewer HM, Smith RD, Depuydt G, Braeckman BP. Changes of Protein Turnover in Aging Caenorhabditis elegans. Mol Cell Proteomics 2017; 16:1621-1633. [PMID: 28679685 DOI: 10.1074/mcp.ra117.000049] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 11/06/2022] Open
Abstract
Protein turnover rates severely decline in aging organisms, including C. elegans However, limited information is available on turnover dynamics at the individual protein level during aging. We followed changes in protein turnover at one-day resolution using a multiple-pulse 15N-labeling and accurate mass spectrometry approach. Forty percent of the proteome shows gradual slowdown in turnover with age, whereas only few proteins show increased turnover. Decrease in protein turnover was consistent for only a minority of functionally related protein subsets, including tubulins and vitellogenins, whereas randomly diverging turnover patterns with age were the norm. Our data suggests increased heterogeneity of protein turnover of the translation machinery, whereas protein turnover of ubiquitin-proteasome and antioxidant systems are well-preserved over time. Hence, we presume that maintenance of quality control mechanisms is a protective strategy in aging worms, although the ultimate proteome collapse is inescapable.
Collapse
Affiliation(s)
- Ineke Dhondt
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium
| | - Vladislav A Petyuk
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sophie Bauer
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium
| | - Heather M Brewer
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- §Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Geert Depuydt
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium.,¶Laboratory for Functional Genomics and Proteomics, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Bart P Braeckman
- From the ‡Laboratory for Aging Physiology and Molecular Evolution, Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent Belgium;
| |
Collapse
|
48
|
Batiuk MY, de Vin F, Duqué SI, Li C, Saito T, Saido T, Fiers M, Belgard TG, Holt MG. An immunoaffinity-based method for isolating ultrapure adult astrocytes based on ATP1B2 targeting by the ACSA-2 antibody. J Biol Chem 2017; 292:8874-8891. [PMID: 28373281 DOI: 10.1074/jbc.m116.765313] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/10/2017] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are a major cell type in the mammalian CNS. Astrocytes are now known to play a number of essential roles in processes including synapse formation and function, as well as blood-brain barrier formation and control of cerebral blood flow. However, our understanding of the molecular mechanisms underlying astrocyte development and function is still rudimentary. This lack of knowledge is at least partly due to the lack of tools currently available for astrocyte biology. ACSA-2 is a commercially available antibody originally developed for the isolation of astrocytes from young postnatal mouse brain, using magnetic cell-sorting methods, but its utility in isolating cells from adult tissue has not yet been published. Using a modified protocol, we now show that this tool can also be used to isolate ultrapure astrocytes from the adult brain. Furthermore, using a variety of techniques (including single-cell sequencing, overexpression and knockdown assays, immunoblotting, and immunohistochemistry), we identify the ACSA-2 epitope for the first time as ATP1B2 and characterize its distribution in the CNS. Finally, we show that ATP1B2 is stably expressed in multiple models of CNS injury and disease. Hence, we show that the ACSA-2 antibody possesses the potential to be an extremely valuable tool for astrocyte research, allowing the purification and characterization of astrocytes (potentially including injury and disease models) without the need for any specialized and expensive equipment. In fact, our results suggest that ACSA-2 should be a first-choice method for astrocyte isolation and characterization.
Collapse
Affiliation(s)
- Mykhailo Y Batiuk
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research.,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| | - Filip de Vin
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research.,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| | - Sandra I Duqué
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research.,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| | - Chen Li
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research.,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| | - Takashi Saito
- the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0106, Japan, and
| | - Takaomi Saido
- the Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0106, Japan, and
| | - Mark Fiers
- the VIB-KU Leuven Center for Brain and Disease Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - T Grant Belgard
- the Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3PT, United Kingdom
| | - Matthew G Holt
- From the Laboratory of Glia Biology, VIB-KU Leuven Center for Brain and Disease Research, .,the Laboratory of Glia Biology, KU Leuven Department of Neuroscience, and
| |
Collapse
|
49
|
Dash M, Yordanov YS, Georgieva T, Tschaplinski TJ, Yordanova E, Busov V. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:692-705. [PMID: 27813246 DOI: 10.1111/tpj.13413] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 05/07/2023]
Abstract
Developing drought-resistance varieties is a major goal for bioenergy crops, such as poplar (Populus), which will be grown on marginal lands with little or no water input. Root architecture can affect drought resistance, but few genes that affect root architecture in relation to water availability have been identified. Here, using activation tagging in the prime bioenergy crop poplar, we have identified a mutant that overcomes the block of lateral root (LR) formation under osmotic stress. Positioning of the tag, validation of the activation and recapitulation showed that the phenotype is caused by the poplar PtabZIP1-like (PtabZIP1L) gene with highest homology to bZIP1 from Arabidopsis. PtabZIP1L is predominantly expressed in roots, particularly in zones where lateral root primordia (LRP) initiate and LR differentiate and emerge. Transgenics overexpressing PtabZIP1L showed precocious LRP and LR development, while PtabZIP1L suppression significantly delayed both LRP and LR formation. Transgenic overexpression and suppression of PtabZIP1L also resulted in modulation of key metabolites like proline, asparagine, valine and several flavonoids. Consistently, expression of both of the poplar Proline Dehydrogenase orthologs and two of the Flavonol Synthases genes was also increased and decreased in overexpressed and suppressed transgenics, respectively. These findings suggest that PtabZIP1L mediates LR development and drought resistance through modulation of multiple metabolic pathways.
Collapse
Affiliation(s)
- Madhumita Dash
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Yordan S Yordanov
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Tatyana Georgieva
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | | | - Elena Yordanova
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| | - Victor Busov
- Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
50
|
Cellular reactions to long-term volatile organic compound (VOC) exposures. Sci Rep 2016; 6:37842. [PMID: 27905399 PMCID: PMC5131358 DOI: 10.1038/srep37842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/31/2016] [Indexed: 11/24/2022] Open
Abstract
Investigations of cellular processes initiated by volatile organic compounds (VOCs) are limited when modelling realistic long-term exposure scenarios at low concentrations. Exposure to indoor VOCs is associated with a range of adverse effects, but data on molecular changes at regulatory threshold limits are lacking. Activity analysis of VOC in vitro can be a valuable complement to inhalation toxicological evaluations. We developed an exposure platform that generates a stable VOC atmosphere and allows the exposure of cells for longer periods. Using formaldehyde as a model analyte, air-liquid interface cultured A549 lung epithelial cells were exposed to critical concentrations of 0.1 and 0.5 ppm for 3 days. Owing to the lack of known exposure biomarkers, we applied a genome-wide transcriptional analysis to investigate cellular responses at these sublethal concentrations. We demonstrate a minor overlap of differentially expressed transcripts for both treatment concentrations, which can be further analyzed for their use as exposure biomarkers. Moreover, distinct expression patterns emerge for 0.1 and 0.5 ppm formaldehyde exposure, which is reflected in significant enrichment of distinct biological processes. More specifically, metabolism of specific compound classes, lipid biosynthesis and lung-associated functions are affected by lower exposure levels and processes affecting proliferation and apoptosis dominate the higher exposure levels.
Collapse
|