1
|
Alhussaini AJ, Veluchamy A, Jawli A, Kernohan N, Tang B, Palmer CNA, Steele JD, Nabi G. Radiogenomics Pilot Study: Association Between Radiomics and Single Nucleotide Polymorphism-Based Microarray Copy Number Variation in Diagnosing Renal Oncocytoma and Chromophobe Renal Cell Carcinoma. Int J Mol Sci 2024; 25:12512. [PMID: 39684226 DOI: 10.3390/ijms252312512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
RO and ChRCC are kidney tumours with overlapping characteristics, making differentiation between them challenging. The objective of this research is to create a radiogenomics map by correlating radiomic features to molecular phenotypes in ChRCC and RO, using resection as the gold standard. Fourteen patients (6 RO and 8 ChRCC) were included in the prospective study. A total of 1,875 radiomic features were extracted from CT scans, alongside 632 cytobands containing 16,303 genes from the genomic data. Feature selection algorithms applied to the radiomic features resulted in 13 key features. From the genomic data, 24 cytobands highly correlated with histology were selected and cross-correlated with the radiomic features. The analysis identified four radiomic features that were strongly associated with seven genomic features. These findings demonstrate the potential of integrating radiomic and genomic data to enhance the differential diagnosis of RO and ChRCC, paving the way for more precise and non-invasive diagnostic tools in clinical practice.
Collapse
Affiliation(s)
- Abeer J Alhussaini
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Department of Medical Imaging, Al-Amiri Hospital, Ministry of Health, Sulaibikhat, Kuwait City 13001, Kuwait
| | - Abirami Veluchamy
- Tayside Centre for Genomic Analysis, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Adel Jawli
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Department of Clinical Radiology, Sheikh Jaber Al-Ahmad Al-Sabah Hospital, Ministry of Health, Sulaibikhat, Kuwait City 13001, Kuwait
| | - Neil Kernohan
- Department of Pathology, Ninewells Hospital, Dundee DD9 1SY, UK
| | - Benjie Tang
- Surgical Skills Centre, Dundee Institute for Healthcare Simulation Respiratory Medicine and Gastroenterology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Colin N A Palmer
- Division of Population Pharmacogenetics, Population Health and Genomics, Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - J Douglas Steele
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Division of Neuroscience, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Ghulam Nabi
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Division of Cancer Research, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
2
|
Dugo E, Piva F, Giulietti M, Giannella L, Ciavattini A. Copy number variations in endometrial cancer: from biological significance to clinical utility. Int J Gynecol Cancer 2024; 34:1089-1097. [PMID: 38677776 DOI: 10.1136/ijgc-2024-005295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024] Open
Abstract
The molecular basis of endometrial cancer, which is the most common malignancy of the female reproductive organs, relies not only on onset of mutations but also on copy number variations, the latter consisting of gene gains or losses. In this review, we introduce copy number variations and discuss their involvement in endometrial cancer to determine the perspectives of clinical applicability. We performed a literature analysis on PubMed of publications over the past 30 years and annotated clinical information, including histological and molecular subtypes, adopted molecular techniques for identification of copy number variations, their locations, and the genes involved. We highlight correlations between the presence of some specific copy number variations and myometrial invasion, lymph node metastasis, advanced International Federation of Gynecology and Obstetrics (FIGO) stage, high grade, drug response, and cancer progression. In particular, type I endometrial cancer cells have few copy number variations and are mainly located in 8q and 1q, while type II, high grade, and advanced FIGO stage endometrial cancer cells are aneuploid and have a greater number of copy number variations. As expected, the higher the number of copy number variations the worse the prognosis, especially if they amplify CCNE1, ERBB2, KRAS, MYC, and PIK3CA oncogenes. Great variability in copy number and location among patients with the same endometrial cancer histological or molecular subtype emerged, making them interesting candidates to be explored for the improvement of patient stratification. Copy number variations have a role in endometrial cancer progression, and therefore their detection may be useful for more accurate prediction of prognosis. Unfortunately, only a few studies have been carried out on the role of copy number variations according to the molecular classification of endometrial cancer, and even fewer have explored the correlation with drugs. For these reasons, further studies, also using single cell RNA sequencing, are needed before reaching a clinical application.
Collapse
Affiliation(s)
- Erica Dugo
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luca Giannella
- Woman's Health Sciences Department, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Ciavattini
- Woman's Health Sciences Department, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
3
|
Graham JH, Schlachetzki JCM, Yang X, Breuss MW. Genomic Mosaicism of the Brain: Origin, Impact, and Utility. Neurosci Bull 2024; 40:759-776. [PMID: 37898991 PMCID: PMC11178748 DOI: 10.1007/s12264-023-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/16/2023] [Indexed: 10/31/2023] Open
Abstract
Genomic mosaicism describes the phenomenon where some but not all cells within a tissue harbor unique genetic mutations. Traditionally, research focused on the impact of genomic mosaicism on clinical phenotype-motivated by its involvement in cancers and overgrowth syndromes. More recently, we increasingly shifted towards the plethora of neutral mosaic variants that can act as recorders of cellular lineage and environmental exposures. Here, we summarize the current state of the field of genomic mosaicism research with a special emphasis on our current understanding of this phenomenon in brain development and homeostasis. Although the field of genomic mosaicism has a rich history, technological advances in the last decade have changed our approaches and greatly improved our knowledge. We will provide current definitions and an overview of contemporary detection approaches for genomic mosaicism. Finally, we will discuss the impact and utility of genomic mosaicism.
Collapse
Affiliation(s)
- Jared H Graham
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
| | - Xiaoxu Yang
- Department of Neurosciences, University of California San Diego, La Jolla, 92093-0021, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, 92123, CA, USA
| | - Martin W Breuss
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, 80045-2581, CO, USA.
| |
Collapse
|
4
|
Mortier J, van den Ende J, Declau F, Vercruysse H, Wuyts W, Van Camp G, Vanderveken O, Boudewyns A. Search for a genetic cause in children with unilateral isolated microtia and congenital aural atresia. Eur Arch Otorhinolaryngol 2023; 280:623-631. [PMID: 35759046 DOI: 10.1007/s00405-022-07522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/20/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE Microtia describes a spectrum of auricular malformations ranging from mild dysplasia to anotia. A vast majority of microtia patients demonstrate congenital aural atresia (CAA). Isolated microtia has a right ear predominance (58-61%) and is more common in the male sex. Isolated microtia is a multifactorial condition involving genetic and environmental causes. The aim of this study is to describe the phenotype of children with unilateral isolated microtia and CAA, and to search for a common genetic cause trough DNA analysis. METHODS Phenotyping included a complete clinical examination. Description on the degree of auricular malformation (Weerda classification-Weerda 1988), assessment for hemifacial microsomia and age-appropriate audiometric testing were documented. Computerized tomography of the temporal bone with 3-D rendering provided a histopathological classification (HEAR classification-Declau et al. 1999). Genetic testing was carried out by single nucleotide polymorphism (SNP) microarray. RESULTS Complete data are available for 44 children (50% was younger than 33 days at presentation; 59.1% boys; 72.7% right ear). Type III microtia was present in 28 patients. Type 2b CAA existed in 32 patients. All patients had a normal hearing at the non-affected side. Genome wide deletion duplication analysis using microarray did not reveal any pathological copy number variant (CNV) that could explain the phenotype. CONCLUSIONS Type III microtia (peanut-shell type) in combination with a type 2b CAA was the most common phenotype, present in 23 of 44 (52.3%) patients with isolated unilateral microtia. No abnormalities could be found by copy number variant (CNV) analysis. Whole exome sequencing in a larger sample with a similar phenotype may represent a future diagnostic approach.
Collapse
Affiliation(s)
- J Mortier
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - J van den Ende
- Department of Medical Genetics, Antwerp University Hospital, Edegem, Belgium
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - F Declau
- Faculty of Medicine and Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - H Vercruysse
- Department of Maxillofacial Surgery, Antwerp University Hospital, Edegem, Belgium
| | - W Wuyts
- Department of Medical Genetics, Antwerp University Hospital, Edegem, Belgium
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - G Van Camp
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - O Vanderveken
- Faculty of Medicine and Translational Neurosciences, University of Antwerp, Antwerp, Belgium
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - An Boudewyns
- Faculty of Medicine and Translational Neurosciences, University of Antwerp, Antwerp, Belgium.
- Department of Otorhinolaryngology, Head and Neck Surgery, Antwerp University Hospital, University of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium.
| |
Collapse
|
5
|
The Power of Clinical Diagnosis for Deciphering Complex Genetic Mechanisms in Rare Diseases. Genes (Basel) 2023; 14:genes14010196. [PMID: 36672937 PMCID: PMC9858967 DOI: 10.3390/genes14010196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Complex genetic disease mechanisms, such as structural or non-coding variants, currently pose a substantial difficulty in frontline diagnostic tests. They thus may account for most unsolved rare disease patients regardless of the clinical phenotype. However, the clinical diagnosis can narrow the genetic focus to just a couple of genes for patients with well-established syndromes defined by prominent physical and/or unique biochemical phenotypes, allowing deeper analyses to consider complex genetic origin. Then, clinical-diagnosis-driven genome sequencing strategies may expedite the development of testing and analytical methods to account for complex disease mechanisms as well as to advance functional assays for the confirmation of complex variants, clinical management, and the development of new therapies.
Collapse
|
6
|
Skowronek D, Pilz RA, Bonde L, Schamuhn OJ, Feldmann JL, Hoffjan S, Much CD, Felbor U, Rath M. Cas9-Mediated Nanopore Sequencing Enables Precise Characterization of Structural Variants in CCM Genes. Int J Mol Sci 2022; 23:ijms232415639. [PMID: 36555281 PMCID: PMC9779250 DOI: 10.3390/ijms232415639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Deletions in the CCM1, CCM2, and CCM3 genes are a common cause of familial cerebral cavernous malformations (CCMs). In current molecular genetic laboratories, targeted next-generation sequencing or multiplex ligation-dependent probe amplification are mostly used to identify copy number variants (CNVs). However, both techniques are limited in their ability to specify the breakpoints of CNVs and identify complex structural variants (SVs). To overcome these constraints, we established a targeted Cas9-mediated nanopore sequencing approach for CNV detection with single nucleotide resolution. Using a MinION device, we achieved complete coverage for the CCM genes and determined the exact size of CNVs in positive controls. Long-read sequencing for a CCM1 and CCM2 CNV revealed that the adjacent ANKIB1 and NACAD genes were also partially or completely deleted. In addition, an interchromosomal insertion and an inversion in CCM2 were reliably re-identified by long-read sequencing. The refinement of CNV breakpoints by long-read sequencing enabled fast and inexpensive PCR-based variant confirmation, which is highly desirable to reduce costs in subsequent family analyses. In conclusion, Cas9-mediated nanopore sequencing is a cost-effective and flexible tool for molecular genetic diagnostics which can be easily adapted to various target regions.
Collapse
Affiliation(s)
- Dariush Skowronek
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
| | - Robin A. Pilz
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
| | - Loisa Bonde
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
| | - Ole J. Schamuhn
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
| | - Janne L. Feldmann
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
| | - Sabine Hoffjan
- Department of Human Genetics, Ruhr-University, 44801 Bochum, Germany
| | - Christiane D. Much
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, 17475 Greifswald, Germany
- Department of Human Medicine and Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany
- Correspondence:
| |
Collapse
|
7
|
Andrews PW, Barbaric I, Benvenisty N, Draper JS, Ludwig T, Merkle FT, Sato Y, Spits C, Stacey GN, Wang H, Pera MF. The consequences of recurrent genetic and epigenetic variants in human pluripotent stem cells. Cell Stem Cell 2022; 29:1624-1636. [PMID: 36459966 DOI: 10.1016/j.stem.2022.11.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022]
Abstract
It is well established that human pluripotent stem cells (hPSCs) can acquire genetic and epigenetic changes during culture in vitro. Given the increasing use of hPSCs in research and therapy and the vast expansion in the number of hPSC lines available for researchers, the International Society for Stem Cell Research has recognized the need to reassess quality control standards for ensuring the genetic integrity of hPSCs. Here, we summarize current knowledge of the nature of recurrent genetic and epigenetic variants in hPSC culture, the methods for their detection, and what is known concerning their effects on cell behavior in vitro or in vivo. We argue that the potential consequences of low-level contamination of cell therapy products with cells bearing oncogenic variants are essentially unknown at present. We highlight the key challenges facing the field with particular reference to safety assessment of hPSC-derived cellular therapeutics.
Collapse
Affiliation(s)
- Peter W Andrews
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Ivana Barbaric
- Centre for Stem Cell Biology, School of Biological Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Steering Committee, International Stem Cell Initiative
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells and Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel; Steering Committee, International Stem Cell Initiative
| | - Jonathan S Draper
- Stem Cell Network, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada; Steering Committee, International Stem Cell Initiative
| | - Tenneille Ludwig
- WiCell Research Institute, Madison, WI, USA; University of Wisconsin-Madison, Madison, WI 53719, USA; Steering Committee, International Stem Cell Initiative
| | - Florian T Merkle
- Wellcome Trust-Medical Research Council Institute of Metabolic Science, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0QQ, UK; Steering Committee, International Stem Cell Initiative
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa 210-9501, Japan; Steering Committee, International Stem Cell Initiative
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Steering Committee, International Stem Cell Initiative
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100190, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China; Steering Committee, International Stem Cell Initiative
| | - Haoyi Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China; Steering Committee, International Stem Cell Initiative
| | - Martin F Pera
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA; Steering Committee, International Stem Cell Initiative.
| |
Collapse
|
8
|
Maihofer AX, Engchuan W, Huguet G, Klein M, MacDonald JR, Shanta O, Thiruvahindrapuram B, Jean-Louis M, Saci Z, Jacquemont S, Scherer SW, Ketema E, Aiello AE, Amstadter AB, Avdibegović E, Babic D, Baker DG, Bisson JI, Boks MP, Bolger EA, Bryant RA, Bustamante AC, Caldas-de-Almeida JM, Cardoso G, Deckert J, Delahanty DL, Domschke K, Dunlop BW, Dzubur-Kulenovic A, Evans A, Feeny NC, Franz CE, Gautam A, Geuze E, Goci A, Hammamieh R, Jakovljevic M, Jett M, Jones I, Kaufman ML, Kessler RC, King AP, Kremen WS, Lawford BR, Lebois LAM, Lewis C, Liberzon I, Linnstaedt SD, Lugonja B, Luykx JJ, Lyons MJ, Mavissakalian MR, McLaughlin KA, McLean SA, Mehta D, Mellor R, Morris CP, Muhie S, Orcutt HK, Peverill M, Ratanatharathorn A, Risbrough VB, Rizzo A, Roberts AL, Rothbaum AO, Rothbaum BO, Roy-Byrne P, Ruggiero KJ, Rutten BPF, Schijven D, Seng JS, Sheerin CM, Sorenson MA, Teicher MH, Uddin M, Ursano RJ, Vinkers CH, Voisey J, Weber H, Winternitz S, Xavier M, Yang R, McD Young R, Zoellner LA, Salem RM, Shaffer RA, Wu T, Ressler KJ, Stein MB, Koenen KC, Sebat J, Nievergelt CM. Rare copy number variation in posttraumatic stress disorder. Mol Psychiatry 2022; 27:5062-5069. [PMID: 36131047 PMCID: PMC9763110 DOI: 10.1038/s41380-022-01776-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 01/27/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a heritable (h2 = 24-71%) psychiatric illness. Copy number variation (CNV) is a form of rare genetic variation that has been implicated in the etiology of psychiatric disorders, but no large-scale investigation of CNV in PTSD has been performed. We present an association study of CNV burden and PTSD symptoms in a sample of 114,383 participants (13,036 cases and 101,347 controls) of European ancestry. CNVs were called using two calling algorithms and intersected to a consensus set. Quality control was performed to remove strong outlier samples. CNVs were examined for association with PTSD within each cohort using linear or logistic regression analysis adjusted for population structure and CNV quality metrics, then inverse variance weighted meta-analyzed across cohorts. We examined the genome-wide total span of CNVs, enrichment of CNVs within specified gene-sets, and CNVs overlapping individual genes and implicated neurodevelopmental regions. The total distance covered by deletions crossing over known neurodevelopmental CNV regions was significant (beta = 0.029, SE = 0.005, P = 6.3 × 10-8). The genome-wide neurodevelopmental CNV burden identified explains 0.034% of the variation in PTSD symptoms. The 15q11.2 BP1-BP2 microdeletion region was significantly associated with PTSD (beta = 0.0206, SE = 0.0056, P = 0.0002). No individual significant genes interrupted by CNV were identified. 22 gene pathways related to the function of the nervous system and brain were significant in pathway analysis (FDR q < 0.05), but these associations were not significant once NDD regions were removed. A larger sample size, better detection methods, and annotated resources of CNV are needed to explore this relationship further.
Collapse
Affiliation(s)
- Adam X Maihofer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA.
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA.
| | - Worrawat Engchuan
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, Ontario, Canada
- The Hospital for Sick Children, The Centre for Applied Genomics, Toronto, Ontario, Canada
| | - Guillaume Huguet
- Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montreal, Quebec, Canada
| | - Marieke Klein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Jeffrey R MacDonald
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, Ontario, Canada
| | - Omar Shanta
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | | | - Martineau Jean-Louis
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montreal, Quebec, Canada
| | - Zohra Saci
- Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montreal, Quebec, Canada
| | - Sebastien Jacquemont
- Centre Hospitalier Universitaire Sainte-Justine Centre de Recherche, Montreal, Quebec, Canada
- Department of Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Vaud, Switzerland
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Stephen W Scherer
- The Hospital for Sick Children, Genetics and Genome Biology, Toronto, Ontario, Canada
- University of Toronto, McLaughlin Centre, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Ketema
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Allison E Aiello
- Department of Epidemiology, Robert N Butler Columbia Aging Center, Columbia University, New York, NY, USA
| | - Ananda B Amstadter
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Esmina Avdibegović
- Department of Psychiatry, University Clinical Center of Tuzla, Tuzla, Bosnia and Herzegovina
| | - Dragan Babic
- Department of Psychiatry, University Clinical Center of Mostar, Mostar, Bosnia and Herzegovina
| | - Dewleen G Baker
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Jonathan I Bisson
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Marco P Boks
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Elizabeth A Bolger
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Richard A Bryant
- Department of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Angela C Bustamante
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Graça Cardoso
- Lisbon Institute of Global Mental Health and Comprehensive Health Research Centre, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jurgen Deckert
- University Hospital of Wuerzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Wuerzburg, Germany
| | - Douglas L Delahanty
- Department of Psychological Sciences, Kent State University, Kent, OH, USA
- Research and Sponsored Programs, Kent State University, Kent, OH, USA
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
- Faculty of Medicine, Centre for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Alma Dzubur-Kulenovic
- Department of Psychiatry, University Clinical Center of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Alexandra Evans
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Norah C Feeny
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Carol E Franz
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Aarti Gautam
- Walter Reed Army Institute of Research, Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Silver Spring, MD, USA
| | - Elbert Geuze
- Netherlands Ministry of Defence, Brain Research and Innovation Centre, Utrecht, the Netherlands
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Aferdita Goci
- Department of Psychiatry, University Clinical Centre of Kosovo, Prishtina, Kosovo
| | - Rasha Hammamieh
- Walter Reed Army Institute of Research, Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Silver Spring, MD, USA
| | - Miro Jakovljevic
- Department of Psychiatry, University Hospital Center of Zagreb, Zagreb, Croatia
| | - Marti Jett
- US Medical Research & Development Comm, Fort Detrick, MD, USA
- Walter Reed Army Institute of Research, Headquarter, Silver Spring, MD, USA
| | - Ian Jones
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Anthony P King
- Ohio State University, College of Medicine, Institute for Behavioral Medicine Research, Columbus, OH, USA
| | - William S Kremen
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Bruce R Lawford
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Catrin Lewis
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Israel Liberzon
- Department of Psychiatry and Behavioral Sciences, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Bozo Lugonja
- MRC Centre for Psychiatric Genetics and Genomics, Cardiff University, National Centre for Mental Health, Cardiff, South Glamorgan, UK
| | - Jurjen J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Michael J Lyons
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | | | | | - Samuel A McLean
- Institute for Trauma Recovery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Emergency Medicine, UNC Institute for Trauma Recovery, Chapel Hill, NC, USA
| | - Divya Mehta
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, QLD, Australia
| | - Rebecca Mellor
- Gallipoli Medical Research Foundation, Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Charles Phillip Morris
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Seid Muhie
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Holly K Orcutt
- Department of Psychology, Northern Illinois University, DeKalb, IL, USA
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Andrew Ratanatharathorn
- Department of Epidemiology, Columbia University Mailmain School of Public Health, New York, NY, USA
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Victoria B Risbrough
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Albert Rizzo
- University of Southern California, Institute for Creative Technologies, Los Angeles, CA, USA
| | - Andrea L Roberts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Alex O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Peter Roy-Byrne
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Kenneth J Ruggiero
- Department of Nursing and Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Bart P F Rutten
- Department of Psychiatry and Neuropsychology, Maastricht Universitair Medisch Centrum, School for Mental Health and Neuroscience, Maastricht, Limburg, the Netherlands
| | - Dick Schijven
- Department of Psychiatry, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, the Netherlands
| | - Julia S Seng
- University of Michigan, School of Nursing, Ann Arbor, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Women's and Gender Studies, University of Michigan, Ann Arbor, MI, USA
- University of Michigan, Institute for Research on Women and Gender, Ann Arbor, MI, USA
| | - Christina M Sheerin
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Richmond, VA, USA
| | - Michael A Sorenson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Martin H Teicher
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont, MA, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Robert J Ursano
- Department of Psychiatry, Uniformed Services University, Bethesda, MD, USA
| | - Christiaan H Vinkers
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Joanne Voisey
- School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, Australia
- Queensland University of Technology, Centre for Genomics and Personalised Health, Kelvin Grove, QLD, Australia
| | - Heike Weber
- University Hospital of Wuerzburg, Center of Mental Health, Psychiatry, Psychosomatics and Psychotherapy, Wuerzburg, Germany
| | - Sherry Winternitz
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
| | - Miguel Xavier
- Universidade Nova de Lisboa, Nova Medical School, Lisboa, Portugal
| | - Ruoting Yang
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Ross McD Young
- Queensland University of Technology, School of Clinical Sciences, Kelvin Grove, QLD, Australia
- University of the Sunshine Coast, The Chancellory, Sippy Downs, QLD, Australia
| | - Lori A Zoellner
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Rany M Salem
- University of California San Diego, Herbert Wertheim School of Public Health and Human Longevity Science, La Jolla, CA, USA
| | - Richard A Shaffer
- Department of Epidemiology and Health Sciences, Naval Health Research Center, San Diego, CA, USA
| | - Tianying Wu
- Division of Epidemiology and Biostatistics, San Diego State University, School of Public Health, San Diego, CA, USA
- University of California, San Diego, Moores Cancer Center, San Diego, CA, USA
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Psychiatry Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- University of California San Diego, School of Public Health, La Jolla, CA, USA
| | - Karestan C Koenen
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Department of Epidemiology, Harvard T. H. School of Public Health, Boston, MA, USA
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, Center of Excellence for Stress and Mental Health, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
9
|
Drackley A, Brew C, Wlodaver A, Spencer S, Leuer K, Rathbun P, Charrow J, Wieneke X, Lee Yap K, Ing A. Utility and Outcomes of the 2019 American College of Medical Genetics and Genomics-Clinical Genome Resource Guidelines for Interpretation of Copy Number Variants with Borderline Classifications at an Academic Clinical Diagnostic Laboratory. J Mol Diagn 2022; 24:1100-1111. [PMID: 35868509 DOI: 10.1016/j.jmoldx.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
In 2019, American College of Medical Genetics and Genomics and the Clinical Genome Resource published updated technical standards for the interpretation and reporting of copy number variants (CNVs), introducing a semiquantitative classification system that aims to foster greater standardization and consistency between laboratories. Evaluation of these guidelines' performance will inform laboratories about the impact of their implementation into clinical practice. A total of 145 difficult-to-classify CNVs, originally assessed by an academic molecular diagnostic laboratory, were re-interpreted/classified according to the American College of Medical Genetics and Genomics-Clinical Genome Resource guidelines. Classifications between interpretation systems were then compared. The concordance rate was 60.7%, and significantly more variants of uncertain significance were obtained when using the guidelines (n = 98) versus the laboratory's classification system (n = 49; P < 0.001). The concordance rate was presumably impacted by the intentionally unclear nature of the selected variants. The difference in variant of uncertain significance rate was largely due to laboratory-specific practices for variant interpretation and reporting, as well as differences in utilization of general population data. Laboratory-specific policies and practices may need to be addressed for true standardization to be achieved. Challenges to consistent guideline utilization are centered around the general lack of high-quality curated data available for CNV interpretations and the inherent subjectivity in the selection of evidence criteria and application of evidence points. Multiple aspects of the guidelines were highlighted as potential opportunities for subsequent refinements to further improve classification standardization.
Collapse
Affiliation(s)
- Andy Drackley
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Center for Genomics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Casey Brew
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Center for Genomics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alissa Wlodaver
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Center for Genomics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Sara Spencer
- Department of Obstetrics and Gynecology, Northwestern Medicine, Chicago, Illinois; Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Katrin Leuer
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Center for Genomics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Pamela Rathbun
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Center for Genomics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Joel Charrow
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Xuwen Wieneke
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Center for Genomics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Kai Lee Yap
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Center for Genomics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Alexander Ing
- Department of Pathology and Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Center for Genomics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Division of Genetics, Birth Defects and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois; Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
10
|
Aslam J, Ardanza-Trevijano S, Xiong J, Arsuaga J, Sazdanovic R. TAaCGH Suite for Detecting Cancer-Specific Copy Number Changes Using Topological Signatures. ENTROPY 2022; 24:e24070896. [PMID: 35885119 PMCID: PMC9318413 DOI: 10.3390/e24070896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022]
Abstract
Copy number changes play an important role in the development of cancer and are commonly associated with changes in gene expression. Persistence curves, such as Betti curves, have been used to detect copy number changes; however, it is known these curves are unstable with respect to small perturbations in the data. We address the stability of lifespan and Betti curves by providing bounds on the distance between persistence curves of Vietoris–Rips filtrations built on data and slightly perturbed data in terms of the bottleneck distance. Next, we perform simulations to compare the predictive ability of Betti curves, lifespan curves (conditionally stable) and stable persistent landscapes to detect copy number aberrations. We use these methods to identify significant chromosome regions associated with the four major molecular subtypes of breast cancer: Luminal A, Luminal B, Basal and HER2 positive. Identified segments are then used as predictor variables to build machine learning models which classify patients as one of the four subtypes. We find that no single persistence curve outperforms the others and instead suggest a complementary approach using a suite of persistence curves. In this study, we identified new cytobands associated with three of the subtypes: 1q21.1-q25.2, 2p23.2-p16.3, 23q26.2-q28 with the Basal subtype, 8p22-p11.1 with Luminal B and 2q12.1-q21.1 and 5p14.3-p12 with Luminal A. These segments are validated by the TCGA BRCA cohort dataset except for those found for Luminal A.
Collapse
Affiliation(s)
- Jai Aslam
- Department of Mathematics, NC State University, Raleigh, NC 27695, USA;
| | - Sergio Ardanza-Trevijano
- Department of Physics and Applied Mathematics, University of Navarra, 31008 Pamplona, Spain;
- Institute for Data Science and Artificial Intelligence, University of Navarra, 31009 Pamplona, Spain
| | - Jingwei Xiong
- Graduate Group in Biostatistics University of California Davis, Davis, CA 95616, USA;
| | - Javier Arsuaga
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA
- Department of Mathematics, University of California Davis, Davis, CA 95616, USA
- Correspondence: (J.A.); (R.S.)
| | - Radmila Sazdanovic
- Department of Mathematics, NC State University, Raleigh, NC 27695, USA;
- Correspondence: (J.A.); (R.S.)
| |
Collapse
|
11
|
Islam MM, Mohammed N, Wang Y, Hu P. Differential Private Deep Learning Models for Analyzing Breast Cancer Omics Data. Front Oncol 2022; 12:879607. [PMID: 35814415 PMCID: PMC9259987 DOI: 10.3389/fonc.2022.879607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022] Open
Abstract
Proper analysis of high-dimensional human genomic data is necessary to increase human knowledge about fundamental biological questions such as disease associations and drug sensitivity. However, such data contain sensitive private information about individuals and can be used to identify an individual (i.e., privacy violation) uniquely. Therefore, raw genomic datasets cannot be publicly published or shared with researchers. The recent success of deep learning (DL) in diverse problems proved its suitability for analyzing the high volume of high-dimensional genomic data. Still, DL-based models leak information about the training samples. To overcome this challenge, we can incorporate differential privacy mechanisms into the DL analysis framework as differential privacy can protect individuals’ privacy. We proposed a differential privacy based DL framework to solve two biological problems: breast cancer status (BCS) and cancer type (CT) classification, and drug sensitivity prediction. To predict BCS and CT using genomic data, we built a differential private (DP) deep autoencoder (dpAE) using private gene expression datasets that performs low-dimensional data representation learning. We used dpAE features to build multiple DP binary classifiers to predict BCS and CT in any individual. To predict drug sensitivity, we used the Genomics of Drug Sensitivity in Cancer (GDSC) dataset. We extracted GDSC’s dpAE features to build our DP drug sensitivity prediction model for 265 drugs. Evaluation of our proposed DP framework shows that it achieves improved prediction performance in predicting BCS, CT, and drug sensitivity than the previously published DP work.
Collapse
Affiliation(s)
| | - Noman Mohammed
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Yang Wang
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Pingzhao Hu
- Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
- Research Institute for Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
- *Correspondence: Pingzhao Hu,
| |
Collapse
|
12
|
Mastromoro G, Guadagnolo D, Khaleghi Hashemian N, Marchionni E, Traversa A, Pizzuti A. Molecular Approaches in Fetal Malformations, Dynamic Anomalies and Soft Markers: Diagnostic Rates and Challenges-Systematic Review of the Literature and Meta-Analysis. Diagnostics (Basel) 2022; 12:575. [PMID: 35328129 PMCID: PMC8947110 DOI: 10.3390/diagnostics12030575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Fetal malformations occur in 2-3% of pregnancies. They require invasive procedures for cytogenetics and molecular testing. "Structural anomalies" include non-transient anatomic alterations. "Soft markers" are often transient minor ultrasound findings. Anomalies not fitting these definitions are categorized as "dynamic". This meta-analysis aims to evaluate the diagnostic yield and the rates of variants of uncertain significance (VUSs) in fetuses undergoing molecular testing (chromosomal microarray (CMA), exome sequencing (ES), genome sequencing (WGS)) due to ultrasound findings. The CMA diagnostic yield was 2.15% in single soft markers (vs. 0.79% baseline risk), 3.44% in multiple soft markers, 3.66% in single structural anomalies and 8.57% in multiple structural anomalies. Rates for specific subcategories vary significantly. ES showed a diagnostic rate of 19.47%, reaching 27.47% in multiple structural anomalies. WGS data did not allow meta-analysis. In fetal structural anomalies, CMA is a first-tier test, but should be integrated with karyotype and parental segregations. In this class of fetuses, ES presents a very high incremental yield, with a significant VUSs burden, so we encourage its use in selected cases. Soft markers present heterogeneous CMA results from each other, some of them with risks comparable to structural anomalies, and would benefit from molecular analysis. The diagnostic rate of multiple soft markers poses a solid indication to CMA.
Collapse
Affiliation(s)
- Gioia Mastromoro
- Department of Experimental Medicine, Policlinico Umberto I Hospital, Sapienza University of Rome, 00161 Rome, Italy; (D.G.); (N.K.H.); (E.M.); (A.T.); (A.P.)
| | | | | | | | | | | |
Collapse
|
13
|
Yang J, Wu J, Peng H, Hou Y, Guo F, Wang D, Ouyang H, Wang Y, Yin A. Performances of NIPT for copy number variations at different sequencing depths using the semiconductor sequencing platform. Hum Genomics 2021; 15:41. [PMID: 34215332 PMCID: PMC8252301 DOI: 10.1186/s40246-021-00332-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/13/2021] [Indexed: 12/03/2022] Open
Abstract
Objective To evaluate the performance of noninvasive prenatal testing (NIPT) and NIPT-PLUS for the detection of genome-wide microdeletion and microduplication syndromes (MMSs) at different sequencing depths. The NIPT sequencing depth was 0.15X, and the data volume was 3 million reads; the NIPT-PLUS sequencing depth was 0.4X, and the data volume was 8 million reads. Methods A cohort of 50,679 pregnancies was recruited. A total of 42,969 patients opted for NIPT, and 7710 patients opted for NIPT-PLUS. All high-risk cases were advised to undergo invasive prenatal diagnosis and were followed up. Results A total of 373 cases had a high risk of a copy number variation (CNV) as predicted by NIPT and NIPT-PLUS: NIPT predicted 250 high-risk CNVs and NIPT-PLUS predicted 123. NIPT-PLUS increased the detection rate by 1.02% (0.58% vs 1.60%, p < 0.001). A total of 291 cases accepted noninvasive prenatal diagnosis, with 197 cases of NIPT and 94 cases of NIPT-PLUS. The PPV of CNV > 10 Mb for NIPT-PLUS was significantly higher than that for NIPT (p = 0.02). The total PPV of NIPT-PLUS was 12.56% higher than that of NIPT (43.61% vs 30.96%, p = 0.03). Conclusion NIPT-PLUS had a better performance in detecting CNVs in terms of the total detection rate and total PPV. However, great care must be taken in presenting results and providing appropriate counseling to patients when deeper sequencing is performed in clinical practice.
Collapse
Affiliation(s)
- Jiexia Yang
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Jing Wu
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Haishan Peng
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Yaping Hou
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Fangfang Guo
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Dongmei Wang
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Haoxin Ouyang
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Yixia Wang
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China.,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China
| | - Aihua Yin
- Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China. .,Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 511400, Guangdong, China. .,Department of Prenatal Diagnosis Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Panyu District, Guangzhou, 511400, China.
| |
Collapse
|
14
|
Chandramohan R, Kakkar N, Roy A, Parsons DW. reconCNV: interactive visualization of copy number data from high-throughput sequencing. Bioinformatics 2021; 37:1164-1167. [PMID: 32821910 DOI: 10.1093/bioinformatics/btaa746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/21/2020] [Accepted: 08/17/2020] [Indexed: 12/30/2022] Open
Abstract
SUMMARY Copy number variation (CNV) is an important category of unbalanced structural rearrangement. While methods for detecting CNV in high-throughput targeted sequencing have become increasingly sophisticated, dedicated tools for interactive and dynamic visualization of CNV from these data are still lacking. We describe reconCNV, a tool that produces an interactive and annotated web-based dashboard for viewing and summarizing CNVs detected in next-generation sequencing (NGS) data. reconCNV is designed to work with delimited result files from most NGS CNV callers with minor adjustments to the configuration file. The reconCNV output is an HTML file that is viewable on any modern web browser, requires no backend server, and can be readily appended to existing analysis pipelines. In addition to a standard CNV track for visualizing relative fold change and absolute copy number, the tool includes an auxiliary variant allele fraction track for visualizing underlying allelic imbalance and loss of heterozygosity. A feature to mask assay-specific technical artifacts and a direct HTML link out to the UCSC Genome Browser are also included to augment the reviewer experience. By providing a light-weight plugin for interactive visualization to existing NGS CNV pipelines, reconCNV can facilitate efficient NGS CNV visualization and interpretation in both research and clinical settings. AVAILABILITY AND IMPLEMENTATION The source code and documentation including a tutorial can be accessed at https://github.com/rghu/reconCNV as well as a Docker image at https://hub.docker.com/repository/docker/raghuc1990/reconcnv. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Nipun Kakkar
- Department of Pediatrics, Texas Children's Cancer Center, Houston, TX 77030, USA
| | - Angshumoy Roy
- Department of Pediatrics, Texas Children's Cancer Center, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - D Williams Parsons
- Department of Molecular and Human Genetics, Houston, TX 77030, USA
- Department of Pediatrics, Texas Children's Cancer Center, Houston, TX 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Martin LJ, Benson DW. Focused Strategies for Defining the Genetic Architecture of Congenital Heart Defects. Genes (Basel) 2021; 12:827. [PMID: 34071175 PMCID: PMC8228798 DOI: 10.3390/genes12060827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
Congenital heart defects (CHD) are malformations present at birth that occur during heart development. Increasing evidence supports a genetic origin of CHD, but in the process important challenges have been identified. This review begins with information about CHD and the importance of detailed phenotyping of study subjects. To facilitate appropriate genetic study design, we review DNA structure, genetic variation in the human genome and tools to identify the genetic variation of interest. Analytic approaches powered for both common and rare variants are assessed. While the ideal outcome of genetic studies is to identify variants that have a causal role, a more realistic goal for genetic analytics is to identify variants in specific genes that influence the occurrence of a phenotype and which provide keys to open biologic doors that inform how the genetic variants modulate heart development. It has never been truer that good genetic studies start with good planning. Continued progress in unraveling the genetic underpinnings of CHD will require multidisciplinary collaboration between geneticists, quantitative scientists, clinicians, and developmental biologists.
Collapse
Affiliation(s)
- Lisa J. Martin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - D. Woodrow Benson
- Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI 53226, USA;
| |
Collapse
|
16
|
Fitzgerald J, Wilson C, Kelly C, Gallagher L. 'More than a box of puzzles': Understanding the parental experience of having a child with a rare genetic condition". Eur J Med Genet 2021; 64:104164. [PMID: 33571692 DOI: 10.1016/j.ejmg.2021.104164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Chromosomal microarray (CMA) testing has been adopted as the first-tier diagnostic test for developmental disabilities. However, determining the clinical significance of the results is often complex. This qualitative study seeks to explore parental interpretation, adaption and coping in the context of ambiguous rare genetic findings in order to support parental adjustment and wellbeing. METHODS In-depth interviews were conducted with parents (n = 30) of children identified with a rare genetic chromosomal abnormality. RESULTS Three major themes were identified following a thematic analysis: 'Learning of the Genetic Diagnosis', "The Reality of the Rarity' and 'Beyond Genetics: The Child Takes Centre Stage'. Findings demonstrated that parental adjustment to their child's genetic results are mediated by several factors including child difficulties and stage of development, clinician communication, perception of genetics, intrinsic coping strategies, access to practical and emotional support as well as broader contextual experiences. CONCLUSION This study highlights the importance of considering the parental perspective in the context of genetic testing in clinical practice.
Collapse
Affiliation(s)
| | | | - Clare Kelly
- School of Psychology, Trinity College, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Louise Gallagher
- Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin; Linn Dara Regional CAMHS Network, Cherry Orchard Hospital, Dublin 10, Ballyfermot; Children Health Ireland at Tallaght Hospital, Dublin 24
| |
Collapse
|
17
|
Abstract
Gains and losses of large segments of genomic DNA, known as copy number variants (CNVs) gained considerable interest in clinical diagnostics lately, as particular forms may lead to inherited genetic diseases. In recent decades, researchers developed a wide variety of cytogenetic and molecular methods with different detection capabilities to detect clinically relevant CNVs. In this review, we summarize methodological progress from conventional approaches to current state of the art techniques capable of detecting CNVs from a few bases up to several megabases. Although the recent rapid progress of sequencing methods has enabled precise detection of CNVs, determining their functional effect on cellular and whole-body physiology remains a challenge. Here, we provide a comprehensive list of databases and bioinformatics tools that may serve as useful assets for researchers, laboratory diagnosticians, and clinical geneticists facing the challenge of CNV detection and interpretation.
Collapse
|
18
|
Dong X, Liu B, Yang L, Wang H, Wu B, Liu R, Chen H, Chen X, Yu S, Chen B, Wang S, Xu X, Zhou W, Lu Y. Clinical exome sequencing as the first-tier test for diagnosing developmental disorders covering both CNV and SNV: a Chinese cohort. J Med Genet 2020; 57:558-566. [PMID: 32005694 PMCID: PMC7418612 DOI: 10.1136/jmedgenet-2019-106377] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
Abstract
Background Developmental disorders (DDs) are early onset disorders affecting 5%–10% of children worldwide. Chromosomal microarray analysis detecting CNVs is currently recommended as the first-tier test for DD diagnosis. However, this analysis omits a high percentage of disease-causing single nucleotide variations (SNVs) that warrant further sequencing. Currently, next-generation sequencing can be used in clinical scenarios detecting CNVs, and the use of exome sequencing in the DD cohort ahead of the microarray test has not been evaluated. Methods Clinical exome sequencing (CES) was performed on 1090 unrelated Chinese DD patients who were classified into five phenotype subgroups. CNVs and SNVs were both detected and analysed based on sequencing data. Results An overall diagnostic rate of 41.38% was achieved with the combinational analysis of CNV and SNV. Over 12.02% of patients were diagnosed based on CNV, which was comparable with the published CMA diagnostic rate, while 0.74% were traditionally elusive cases who had dual diagnosis or apparently homozygous mutations that were clarified. The diagnostic rates among subgroups ranged from 21.82% to 50.32%. The top three recurrent cytobands with diagnostic CNVs were 15q11.2-q13.1, 22q11.21 and 7q11.23. The top three genes with diagnostic SNVs were: MECP2, SCN1A and SCN2A. Both the diagnostic rate and spectrums of CNVs and SNVs showed differences among the phenotype subgroups. Conclusion With a higher diagnostic rate, more comprehensive observation of variations and lower cost compared with conventional strategies, simultaneous analysis of CNVs and SNVs based on CES showed potential as a new first-tier choice to diagnose DD.
Collapse
Affiliation(s)
- Xinran Dong
- Center for Molecular Medicine of Children's Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Bo Liu
- Center for Molecular Medicine of Children's Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lin Yang
- Shanghai Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Huijun Wang
- Shanghai Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Bingbing Wu
- Shanghai Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China.,Clinical Genetic Center, Children's Hospital of Fudan University, Shanghai, China
| | - Renchao Liu
- Shanghai Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Hongbo Chen
- Shanghai Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Xiang Chen
- Shanghai Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Sha Yu
- Shanghai Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Bin Chen
- Shanghai Key Laboratory of Birth Defects, Pediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, China
| | - Sujuan Wang
- Department of Rehabilitation, Children's Hospital of Fudan University, Shanghai, China
| | - Xiu Xu
- Division of Child Health Care, Children's Hospital of Fudan University, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine of Children's Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine of Children's Hospital of Fudan University, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Jenko Bizjan B, Katsila T, Tesovnik T, Šket R, Debeljak M, Matsoukas MT, Kovač J. Challenges in identifying large germline structural variants for clinical use by long read sequencing. Comput Struct Biotechnol J 2019; 18:83-92. [PMID: 32099591 PMCID: PMC7026727 DOI: 10.1016/j.csbj.2019.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
Genomic structural variations, previously considered rare events, are widely recognized as a major source of inter-individual variability and hence, a major hurdle in optimum patient stratification and disease management. Herein, we focus on large complex germline structural variations and present challenges towards target treatment via the synergy of state-of-the-art approaches and information technology tools. A complex structural variation detection remains challenging, as there is no gold standard for identifying such genomic variations with long reads, especially when the chromosomal rearrangement in question is a few Mb in length. A clinical case with a large complex chromosomal rearrangement serves as a paradigm. We feel that functional validation and data interpretation are of outmost importance for information growth to be translated into knowledge growth and hence, new working practices are highlighted.
Collapse
Affiliation(s)
- Barbara Jenko Bizjan
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Centre, Athens, Greece
| | - Tine Tesovnik
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | - Robert Šket
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | - Maruša Debeljak
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| | | | - Jernej Kovač
- Clinical Institute of Special Laboratory Diagnostics, University Children’s Hospital, UMC, Ljubljana, Slovenia
| |
Collapse
|
20
|
Pös O, Budis J, Kubiritova Z, Kucharik M, Duris F, Radvanszky J, Szemes T. Identification of Structural Variation from NGS-Based Non-Invasive Prenatal Testing. Int J Mol Sci 2019; 20:E4403. [PMID: 31500242 PMCID: PMC6769840 DOI: 10.3390/ijms20184403] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023] Open
Abstract
Copy number variants (CNVs) are an important type of human genome variation, which play a significant role in evolution contribute to population diversity and human genetic diseases. In recent years, next generation sequencing has become a valuable tool for clinical diagnostics and to provide sensitive and accurate approaches for detecting CNVs. In our previous work, we described a non-invasive prenatal test (NIPT) based on low-coverage massively parallel whole-genome sequencing of total plasma DNA for detection of CNV aberrations ≥600 kbp. We reanalyzed NIPT genomic data from 5018 patients to evaluate CNV aberrations in the Slovak population. Our analysis of autosomal chromosomes identified 225 maternal CNVs (47 deletions; 178 duplications) ranging from 600 to 7820 kbp. According to the ClinVar database, 137 CNVs (60.89%) were fully overlapping with previously annotated variants, 66 CNVs (29.33%) were in partial overlap, and 22 CNVs (9.78%) did not overlap with any previously described variant. Identified variants were further classified with the AnnotSV method. In summary, we identified 129 likely benign variants, 13 variants of uncertain significance, and 83 likely pathogenic variants. In this study, we use NIPT as a valuable source of population specific data. Our results suggest the utility of genomic data from commercial CNV analysis test as background for a population study.
Collapse
Affiliation(s)
- Ondrej Pös
- Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.
- Geneton Ltd., 841 04 Bratislava, Slovakia.
| | - Jaroslav Budis
- Geneton Ltd., 841 04 Bratislava, Slovakia.
- Comenius University Science Park, 841 04 Bratislava, Slovakia.
- Slovak Center of Scientific and Technical Information, 811 04 Bratislava, Slovakia.
| | - Zuzana Kubiritova
- Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | | | - Frantisek Duris
- Geneton Ltd., 841 04 Bratislava, Slovakia.
- Slovak Center of Scientific and Technical Information, 811 04 Bratislava, Slovakia.
| | - Jan Radvanszky
- Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia.
| | - Tomas Szemes
- Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia.
- Geneton Ltd., 841 04 Bratislava, Slovakia.
- Comenius University Science Park, 841 04 Bratislava, Slovakia.
| |
Collapse
|
21
|
Melouane A, Ghanemi A, Yoshioka M, St-Amand J. Functional genomics applications and therapeutic implications in sarcopenia. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:175-185. [PMID: 31416575 DOI: 10.1016/j.mrrev.2019.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/14/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
The human genome contains around 20,000-25,000 genes coding for 30,000 proteins. Some proteins and genes represent therapeutic targets for human diseases. RNA and protein expression profiling tools allow the study of the molecular basis of aging and drug discovery validation. Throughout the life, there is an age-related and disease-related muscle decline. Sarcopenia is defined as a loss of muscle mass and a decrease in functional properties such as muscle strength and physical performance. Yet, there is still no consensus on the evaluation methods of sarcopenia prognosis. The main challenge of this complex biological phenomena is its multifactorial etiology. Thus, functional genomics methods attempt to shape the related scientific approaches via an innovative in-depth view on sarcopenia. Gene and drug high throughput screening combined with functional genomics allow the generation and the interpretation of a large amount of data related to sarcopenia and therapeutic progress. This review focuses on the application of selected functional genomics techniques such as RNA interference, RNA silencing, proteomics, transgenic mice, metabolomics, genomics, and epigenomics to better understand sarcopenia mechanisms.
Collapse
Affiliation(s)
- Aicha Melouane
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada
| | - Abdelaziz Ghanemi
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada
| | - Mayumi Yoshioka
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada
| | - Jonny St-Amand
- CREMI, CHU de Québec Research Center, Quebec, Quebec, G1V 4G2, Canada; Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, Quebec, G1V 4G2, Canada.
| |
Collapse
|
22
|
Pounraja VK, Jayakar G, Jensen M, Kelkar N, Girirajan S. A machine-learning approach for accurate detection of copy number variants from exome sequencing. Genome Res 2019; 29:1134-1143. [PMID: 31171634 PMCID: PMC6633262 DOI: 10.1101/gr.245928.118] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 06/04/2019] [Indexed: 11/25/2022]
Abstract
Copy number variants (CNVs) are a major cause of several genetic disorders, making their detection an essential component of genetic analysis pipelines. Current methods for detecting CNVs from exome-sequencing data are limited by high false-positive rates and low concordance because of inherent biases of individual algorithms. To overcome these issues, calls generated by two or more algorithms are often intersected using Venn diagram approaches to identify "high-confidence" CNVs. However, this approach is inadequate, because it misses potentially true calls that do not have consensus from multiple callers. Here, we present CN-Learn, a machine-learning framework that integrates calls from multiple CNV detection algorithms and learns to accurately identify true CNVs using caller-specific and genomic features from a small subset of validated CNVs. Using CNVs predicted by four exome-based CNV callers (CANOES, CODEX, XHMM, and CLAMMS) from 503 samples, we demonstrate that CN-Learn identifies true CNVs at higher precision (∼90%) and recall (∼85%) rates while maintaining robust performance even when trained with minimal data (∼30 samples). CN-Learn recovers twice as many CNVs compared to individual callers or Venn diagram-based approaches, with features such as exome capture probe count, caller concordance, and GC content providing the most discriminatory power. In fact, ∼58% of all true CNVs recovered by CN-Learn were either singletons or calls that lacked support from at least one caller. Our study underscores the limitations of current approaches for CNV identification and provides an effective method that yields high-quality CNVs for application in clinical diagnostics.
Collapse
Affiliation(s)
- Vijay Kumar Pounraja
- Bioinformatics and Genomics Graduate Program of the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Gopal Jayakar
- The Schreyer Honors College, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Matthew Jensen
- Bioinformatics and Genomics Graduate Program of the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Neil Kelkar
- The Schreyer Honors College, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Santhosh Girirajan
- Bioinformatics and Genomics Graduate Program of the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
23
|
Park KB, Nam KE, Cho AR, Jang W, Kim M, Park JH. Effects of Copy Number Variations on Developmental Aspects of Children With Delayed Development. Ann Rehabil Med 2019; 43:215-223. [PMID: 31072088 PMCID: PMC6509583 DOI: 10.5535/arm.2019.43.2.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Objective To determine effects of copy number variations (CNV) on developmental aspects of children suspected of having delayed development. Methods A retrospective chart review was done for 65 children who underwent array-comparative genomic hybridization after visiting physical medicine & rehabilitation department of outpatient clinic with delayed development as chief complaints. Children were evaluated with Denver Developmental Screening Test II (DDST-II), Sequenced Language Scale for Infants (SELSI), or Preschool Receptive-Expressive Language Scale (PRES). A Mann-Whitney U test was conducted to determine statistical differences of developmental quotient (DQ), receptive language quotient (RLQ), and expressive language quotient (ELQ) between children with CNV (CNV(+) group, n=16) and children without CNV (CNV(–) group, n=37). Results Of these subjects, the average age was 35.1 months (mean age, 35.1±24.2 months). Sixteen (30.2%) patients had copy number variations. In the CNV(+) group, 14 children underwent DDST-II. In the CNV(–) group, 29 children underwent DDST-II. Among variables, gross motor scale was significantly (p=0.038) lower in the CNV(+) group compared with the CNV(–) group. In the CNV(+) group, 5 children underwent either SELSI or PRES. In the CNV(–) group, 27 children underwent above language assessment examination. Both RLQ and ELQ were similar between the two groups. Conclusion The gross motor domain in DQ was significantly lower in children with CNV compared to that in children without CNV. This result suggests that additional genetic factors contribute to this variability. Active detection of genomic imbalance could play a vital role when prominent gross motor delay is presented in children with delayed development.
Collapse
Affiliation(s)
- Kee-Boem Park
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung Eun Nam
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ah-Ra Cho
- Department of Rehabilitation Medicine, St. Paul's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woori Jang
- Department of Laboratory Medicine College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myungshin Kim
- Department of Laboratory Medicine College of Medicine, The Catholic University of Korea, Seoul, Korea.,Department of Catholic Genetic Laboratory Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joo Hyun Park
- Department of Rehabilitation Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
24
|
Yasuda J, Kinoshita K, Katsuoka F, Danjoh I, Sakurai-Yageta M, Motoike IN, Kuroki Y, Saito S, Kojima K, Shirota M, Saigusa D, Otsuki A, Kawashima J, Yamaguchi-Kabata Y, Tadaka S, Aoki Y, Mimori T, Kumada K, Inoue J, Makino S, Kuriki M, Fuse N, Koshiba S, Tanabe O, Nagasaki M, Tamiya G, Shimizu R, Takai-Igarashi T, Ogishima S, Hozawa A, Kuriyama S, Sugawara J, Tsuboi A, Kiyomoto H, Ishii T, Tomita H, Minegishi N, Suzuki Y, Suzuki K, Kawame H, Tanaka H, Taki Y, Yaegashi N, Kure S, Nagami F, Kosaki K, Sutoh Y, Hachiya T, Shimizu A, Sasaki M, Yamamoto M. Genome analyses for the Tohoku Medical Megabank Project towards establishment of personalized healthcare. J Biochem 2019; 165:139-158. [PMID: 30452759 DOI: 10.1093/jb/mvy096] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/10/2018] [Indexed: 12/29/2022] Open
Abstract
Personalized healthcare (PHC) based on an individual's genetic make-up is one of the most advanced, yet feasible, forms of medical care. The Tohoku Medical Megabank (TMM) Project aims to combine population genomics, medical genetics and prospective cohort studies to develop a critical infrastructure for the establishment of PHC. To date, a TMM CommCohort (adult general population) and a TMM BirThree Cohort (birth+three-generation families) have conducted recruitments and baseline surveys. Genome analyses as part of the TMM Project will aid in the development of a high-fidelity whole-genome Japanese reference panel, in designing custom single-nucleotide polymorphism (SNP) arrays specific to Japanese, and in estimation of the biological significance of genetic variations through linked investigations of the cohorts. Whole-genome sequencing from >3,500 unrelated Japanese and establishment of a Japanese reference genome sequence from long-read data have been done. We next aim to obtain genotype data for all TMM cohort participants (>150,000) using our custom SNP arrays. These data will help identify disease-associated genomic signatures in the Japanese population, while genomic data from TMM BirThree Cohort participants will be used to improve the reference genome panel. Follow-up of the cohort participants will allow us to test the genetic markers and, consequently, contribute to the realization of PHC.
Collapse
Affiliation(s)
- Jun Yasuda
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan.,Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, 6-6-05 Aramaki Aza Aoba, Aoba-ku, Sendai, Japan.,Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Fumiki Katsuoka
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Inaho Danjoh
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Mika Sakurai-Yageta
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Ikuko N Motoike
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Yoko Kuroki
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Sakae Saito
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Kaname Kojima
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Matsuyuki Shirota
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan.,United Centers for Advanced Research and Translational Medicine
| | - Daisuke Saigusa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Akihito Otsuki
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Junko Kawashima
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Yumi Yamaguchi-Kabata
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Takahiro Mimori
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Kazuki Kumada
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Jin Inoue
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Satoshi Makino
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Miho Kuriki
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Nobuo Fuse
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Seizo Koshiba
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Osamu Tanabe
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Masao Nagasaki
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Gen Tamiya
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Ritsuko Shimizu
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan.,Department of Molecular Hematology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Takako Takai-Igarashi
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Soichi Ogishima
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Atsushi Hozawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Shinichi Kuriyama
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan.,International Research Institute of Disaster Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai, Japan
| | - Junichi Sugawara
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Akito Tsuboi
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Hideyasu Kiyomoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Tadashi Ishii
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan.,Department of Education and Support for Community Medicine, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Hiroaki Tomita
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan.,International Research Institute of Disaster Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai, Japan
| | - Naoko Minegishi
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Yoichi Suzuki
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Kichiya Suzuki
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Hiroshi Kawame
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Hiroshi Tanaka
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan.,Medical Data Science Promotion Office, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, Japan
| | - Yasuyuki Taki
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan.,Institute of Development, Aging, and Cancer, Tohoku University, 4-1, Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Nobuo Yaegashi
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan.,Department of Obstetrics and Gynecology
| | - Shigeo Kure
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan.,Department of Pediatrics, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | - Fuji Nagami
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| | | | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Yoichi Sutoh
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center
| | - Tsuyoshi Hachiya
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center
| | - Atsushi Shimizu
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center
| | - Makoto Sasaki
- Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center.,Division of Ultrahigh Field MRI, Institute for Biomedical Sciences Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa, Iwate, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Japan
| |
Collapse
|
25
|
Kang HJ, Haq F, Sung CO, Choi J, Hong SM, Eo SH, Jeong HJ, Shin J, Shim JH, Lee HC, An J, Kim MJ, Kim KP, Ahn SM, Yu E. Characterization of Hepatocellular Carcinoma Patients with FGF19 Amplification Assessed by Fluorescence in situ Hybridization: A Large Cohort Study. Liver Cancer 2019; 8:12-23. [PMID: 30815392 PMCID: PMC6388559 DOI: 10.1159/000488541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND FGF19 amplification is a relatively novel type of genetic aberration that has been proposed to be a driver of hepatocarcinogenesis. Selective inhibitors of FGFR4, a receptor of FGF19, have been developed as targeted therapies for hepatocellular carcinoma (HCC). Despite the role of FGF19 in mediating HCC progression, the clinicopathological characterization of patients exhibiting FGF19 amplification remains unclear. Immunohistochemical staining is the simplest and most widely used method of identifying aberrations in the FGF19 gene, although its specificity is very low. METHODS This study investigated the prognostic significance of FGF19 amplification in a large cohort of 989 HCC patients using fluorescence in situ hybridization (FISH), which has a high degree of specificity. In addition, FISH data from formalin-fixed, paraffin-embedded sections were compared with copy number variation (CNV) data obtained from fresh frozen sections to validate the use of FISH as a diagnostic tool. RESULTS FGF19 amplifications were detected by FISH in 51 (5.15%) of the 989 patients, and were independently associated with poor survival and a higher risk of tumor recurrence, as well as with poor prognostic factors such as a high α-fetoprotein level, hepatitis B or C virus infection, a large tumor size, microvascular invasion, and necrosis. In addition, FGF19 amplification was associated with TP53 mutation, and was mutually exclusive with CTNNB1 mutation. The results of the FISH and CNV analyses exhibited a significant concordance rate of 96% (κ = 0.618, p < 0.001). CONCLUSIONS These data indicate that FGF19 amplification represents a unique molecular subtype associated with poor prognostic characteristics, which supports the hypothesis that the FGF19-FGFR4 signaling pathway plays an important role in hepatocarcinogenesis. We have also demonstrated that FISH is a viable alternative to CNV analysis, offering a number of advantages in the clinical setting.
Collapse
Affiliation(s)
- Hyo Jeong Kang
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Farhan Haq
- Department of Biosciences, COMSATS Institute of Information and Technology, Islamabad, Pakistan
| | - Chang Ohk Sung
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jene Choi
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Soo-Heang Eo
- Department of Statistics, Korea University, Seoul, Republic of Korea
| | - Hui Jeong Jeong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jinho Shin
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ju Hyun Shim
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Han Chu Lee
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jihyun An
- Department of Gastroenterology, Asan Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Mi-Ju Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyu-pyo Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung-Min Ahn
- Department of Hematology-Oncology, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Incheon, Republic of Korea,*Sung-Min Ahn, Department of Hematology-Oncology, Gachon University Gil Medical Center, Namdong-daero, Namdong-gu, Incheon 21565 (Republic of Korea), E-Mail , Eunsil Yu, Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43 gil, Songpa-gu, Seoul 05505 (Republic of Korea), E-Mail
| | - Eunsil Yu
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
26
|
Belmont JW. Molecular Methods. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00096-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Kishore MT, Udipi GA, Seshadri SP. Clinical Practice Guidelines for Assessment and Management of intellectual disability. Indian J Psychiatry 2019; 61:194-210. [PMID: 30745696 PMCID: PMC6345136 DOI: 10.4103/psychiatry.indianjpsychiatry_507_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- M Thomas Kishore
- Clinical Psychology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Gautham Arunachal Udipi
- Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Shekhar P Seshadri
- Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
28
|
Kozareva V, Stroff C, Silver M, Freidin JF, Delaney NF. Clinical analysis of germline copy number variation in DMD using a non-conjugate hierarchical Bayesian model. BMC Med Genomics 2018; 11:91. [PMID: 30342520 PMCID: PMC6195989 DOI: 10.1186/s12920-018-0404-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022] Open
Abstract
Background Detection of copy number variants (CNVs) is an important aspect of clinical testing for several disorders, including Duchenne muscular dystrophy, and is often performed using multiplex ligation-dependent probe amplification (MLPA). However, since many genetic carrier screens depend instead on next-generation sequencing (NGS) for wider discovery of small variants, they often do not include CNV analysis. Moreover, most computational techniques developed to detect CNVs from exome sequencing data are not suitable for carrier screening, as they require matched normals, very large cohorts, or extensive gene panels. Methods We present a computational software package, geneCNV (http://github.com/vkozareva/geneCNV), which can identify exon-level CNVs using exome sequencing data from only a few genes. The tool relies on a hierarchical parametric model trained on a small cohort of reference samples. Results Using geneCNV, we accurately inferred heterozygous CNVs in the DMD gene across a cohort of 15 test subjects. These results were validated against MLPA, the current standard for clinical CNV analysis in DMD. We also benchmarked the tool’s performance against other computational techniques and found comparable or improved CNV detection in DMD using data from panels ranging from 4,000 genes to as few as 8 genes. Conclusions geneCNV allows for the creation of cost-effective screening panels by allowing NGS sequencing approaches to generate results equivalent to bespoke genotyping assays like MLPA. By using a parametric model to detect CNVs, it also fulfills regulatory requirements to define a reference range for a genetic test. It is freely available and can be incorporated into any Illumina sequencing pipeline to create clinical assays for detection of exon duplications and deletions. Electronic supplementary material The online version of this article (10.1186/s12920-018-0404-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Clayton Stroff
- GenePeeks, Inc., 2067 Massachusetts Ave, Cambridge, MA, US
| | - Maxwell Silver
- GenePeeks, Inc., 2067 Massachusetts Ave, Cambridge, MA, US
| | | | | |
Collapse
|
29
|
Gangodkar P, Ranade S, Anand S, Bapat A, Khatod K, Shah P, Agarwal M, Phadke N. Use of two complementary new molecular techniques, next-generation sequencing and droplet digital PCR, for diagnosis of an F8 gene deletion and subsequent carrier analysis in a family with haemophilia A: A Case Report. Haemophilia 2018; 24:e425-e427. [PMID: 30299569 DOI: 10.1111/hae.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/30/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Priyanka Gangodkar
- GenePath Dx, Causeway Healthcare Private Limited, Phadke Hospital, Pune, India.,I-SHARE Foundation, Pune, India
| | - Shatakshi Ranade
- GenePath Dx, Causeway Healthcare Private Limited, Phadke Hospital, Pune, India.,I-SHARE Foundation, Pune, India
| | - Siddharth Anand
- GenePath Dx, Causeway Healthcare Private Limited, Phadke Hospital, Pune, India.,I-SHARE Foundation, Pune, India
| | - Ashwini Bapat
- GenePath Dx, Causeway Healthcare Private Limited, Phadke Hospital, Pune, India.,I-SHARE Foundation, Pune, India
| | - Kavita Khatod
- GenePath Dx, Causeway Healthcare Private Limited, Phadke Hospital, Pune, India
| | - Parth Shah
- Supratech Micropath Laboratories, Ahmedabad, India
| | - Meenal Agarwal
- GenePath Dx, Causeway Healthcare Private Limited, Phadke Hospital, Pune, India.,I-SHARE Foundation, Pune, India
| | - Nikhil Phadke
- GenePath Dx, Causeway Healthcare Private Limited, Phadke Hospital, Pune, India.,I-SHARE Foundation, Pune, India
| |
Collapse
|
30
|
Singh N, Gupta DK, Sharma S, Sahu DK, Mishra A, Yadav DK, Rawat J, Singh AK. Single-nucleotide and copy-number variance related to severity of hypospadias. Pediatr Surg Int 2018; 34:991-1008. [PMID: 30078147 DOI: 10.1007/s00383-018-4330-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND The genetic association of hypospadias-risk studies has been conducted in Caucasians, Chinese-Han populations and few in Indian populations. However, no comprehensive approach has been followed to assess genetic involvement in the severity of the disorder. METHODS The study evaluated to establish the correlation between genotyped single nucleotide and copy number variants (SNPs/CNVs) and severity of hypospadias by an association in a total 30 SNPs in genes related to sex hormone-biosynthesis and metabolism; embryonic-development and phospholipase-D-signalling pathways on 138 surgery-confirmed hypospadias-cases from North India (84 penile and 28 cases of penoscrotal-hypospadias as compared with 31 cases of glanular + coronal), and analyzed and identified CNVs in four familial cases (18 members) and three paired-sporadic cases (6 members) using array-based comparative-genomic-hybridization and validated in 32 hypospadias samples by TaqMan assay. RESULTS Based on odds ratio at 95% CI, Z Statistic and Significance Levels, STS gene-rs17268974 was associated with Penile-Hypospadias and 9-SNPs [seven-SNPs (rs5934740; rs5934842; rs5934913; rs6639811; rs3923341; rs17268974; rs5934937)] of STS gene; rs7562326-SRD5A2 and rs1877031-STARD3 were associated with penoscrotal-hypospadias. On aggregate analysis with p < 0.001, we identified homozygous-loss of Ch7:q34 (PRSS3P2, PRSS2). On validation in previously CNV-characterized and new (32 hypospadias cases), we identified PRSS3P2-loss in most of the grade 3 and 4 hypospadias. Hence, Grade 1 and 2 (coronal and granular) show no-PRSS3P2-loss and no-association with SNPs in STS; SRD5A2; STARD3-gene but Grade 3 and 4 (Penile and Penoscrotal) show PRSS3P2-loss accompanied with the association of SNPs in STS; SRD5A2; STARD3. CONCLUSIONS Hence, homozygous-loss of PRSS3P2 accompanied with the association of STS; SRD5A2; STARD3 may link to the severity of the disease.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit (Center for Advance Research), King George's Medical University, Lucknow, Uttar Pradesh, 226 003, India.
| | - Devendra Kumar Gupta
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Shilpa Sharma
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Dinesh Kumar Sahu
- Molecular Biology Unit (Center for Advance Research), King George's Medical University, Lucknow, Uttar Pradesh, 226 003, India
| | - Archana Mishra
- Molecular Biology Unit (Center for Advance Research), King George's Medical University, Lucknow, Uttar Pradesh, 226 003, India
| | - Devendra Kumar Yadav
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jiledar Rawat
- Department of Pediatric Surgery, King George's Medical University, Lucknow, 226 003, India
| | - Arun Kumar Singh
- Department of Plastic Surgery, King George's Medical University, Lucknow, 226 003, India
| |
Collapse
|
31
|
Vona B, Hofrichter MAH, Schröder J, Shehata-Dieler W, Nanda I, Haaf T. Hereditary hearing loss SNP-microarray pilot study. BMC Res Notes 2018; 11:391. [PMID: 29903040 PMCID: PMC6003021 DOI: 10.1186/s13104-018-3466-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/01/2018] [Indexed: 02/08/2023] Open
Abstract
Objectives Despite recent advancements in diagnostic tools, the genomic landscape of hereditary hearing loss remains largely uncharacterized. One strategy to understand genome-wide aberrations includes the analysis of copy number variation that can be mapped using SNP-microarray technology. A growing collection of literature has begun to uncover the importance of copy number variation in hereditary hearing loss. This pilot study underpins a larger effort that involves the stage-wise analysis of hearing loss patients, many of whom have advanced to high-throughput sequencing analysis. Data description Our data originate from the Infinium HumanOmni1-Quad v1.0 SNP-microarrays (Illumina) that provide useful markers for genome-wide association studies and copy number variation analysis. This dataset comprises a cohort of 108 individuals (99 with hearing loss, 9 normal hearing family members) for the purpose of understanding the genetic contribution of copy number variations to hereditary hearing loss. These anonymized SNP-microarray data have been uploaded to the NCBI Gene Expression Omnibus and are intended to benefit other investigators interested in aggregating platform-matched array patient datasets or as part of a supporting reference tool for other laboratories to better understand recurring copy number variations in other genetic disorders.
Collapse
Affiliation(s)
- Barbara Vona
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany.
| | | | - Jörg Schröder
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Wafaa Shehata-Dieler
- Department of ORL, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, Comprehensive Hearing Center, Würzburg, Germany
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, Würzburg, Germany
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Copy number variation (CNV) disorders arise from the dosage imbalance of one or more gene(s), resulting from deletions, duplications or other genomic rearrangements that lead to the loss or gain of genetic material. Several disorders, characterized by multiple birth defects and neurodevelopmental abnormalities, have been associated with relatively large (>1 Mb) and often recurrent CNVs. CNVs have also been implicated in the etiology of neuropsychiatric disorders including autism and schizophrenia as well as other common complex diseases. Thus, CNVs have a significant impact on human health and disease. RECENT FINDINGS The use of increasingly higher resolution, genomewide analysis has greatly enhanced the detection of genetic variation, including CNVs. Furthermore, the availability of comprehensive genetic variation data from large cohorts of healthy controls has the potential to greatly improve the identification of disease associated genetic variants in patient samples. SUMMARY This review discusses the current knowledge about CNV disorders, including the mechanisms underlying their formation and phenotypic outcomes, and the advantages and limitations of current methods of detection and disease association.
Collapse
Affiliation(s)
- Tamim H. Shaikh
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
33
|
Qu S, Wang L, Cai A, Cui S, Bai N, Liu N, Kong X. Exploring the cause of early miscarriage with SNP-array analysis and karyotyping. J Matern Fetal Neonatal Med 2017; 32:1-10. [PMID: 29034762 DOI: 10.1080/14767058.2017.1367379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The aim of this study is to explore the cause of miscarriage, providing risk assessment to guide the next pregnancy. METHODS Four hundred eighty-four products-of-conception (POC) samples were analyzed by single nucleotide polymorphism (SNP) array, and peripheral blood samples of couples were collected for karyotyping or fluorescence in situ hybridization (FISH) analysis. RESULTS Four hundred sixty-eight of the 484 (96.7%) fresh POC samples were successfully analyzed using SNP-array. The rate of clinically significant chromosomal abnormalities were 58.3% (274/468), in which rates of aneuploidy, polyploidy, partial aneuploidy, uniparental isodisomy (isoUPD), and pathogenic microdeletion/microduplication were 43.4% (203/468), 8.8% (41/468), 3.6% (17/468), 1.9% (9/48), and 0.9% (4/468), respectively. The percentage of embryonic chromosomal abnormalities significantly increased with maternal age of patients older than 35 years old. Among 468 couples, 12 major chromosomal rearrangements were detected by G-banding, including nine reciprocal translocations, two Robertsonian translocations, and one superfemale. CONCLUSIONS Chromosome abnormality is the main causes of early miscarriage, and aneuploidies are the most common type of chromosomal abnormalities. Application of SNP array and karyotyping in early miscarriage can provide more genetic information about miscarriage, providing risk assessment to guide the next pregnancy.
Collapse
Affiliation(s)
- Suzhen Qu
- a Center for Genetics and Prenatal Diagnosis , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Li Wang
- a Center for Genetics and Prenatal Diagnosis , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Aojie Cai
- a Center for Genetics and Prenatal Diagnosis , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Siying Cui
- a Center for Genetics and Prenatal Diagnosis , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Nan Bai
- a Center for Genetics and Prenatal Diagnosis , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Ning Liu
- a Center for Genetics and Prenatal Diagnosis , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| | - Xiangdong Kong
- a Center for Genetics and Prenatal Diagnosis , the First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , China
| |
Collapse
|
34
|
Jung HS, Lefferts JA, Tsongalis GJ. Utilization of the oncoscan microarray assay in cancer diagnostics. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s41241-016-0007-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Butchbach MER. Applicability of digital PCR to the investigation of pediatric-onset genetic disorders. BIOMOLECULAR DETECTION AND QUANTIFICATION 2016; 10:9-14. [PMID: 27990344 PMCID: PMC5154671 DOI: 10.1016/j.bdq.2016.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/08/2016] [Accepted: 06/21/2016] [Indexed: 12/12/2022]
Abstract
Early-onset rare diseases have a strong impact on child healthcare even though the incidence of each of these diseases is relatively low. In order to better manage the care of these children, it is imperative to quickly diagnose the molecular bases for these disorders as well as to develop technologies with prognostic potential. Digital PCR (dPCR) is well suited for this role by providing an absolute quantification of the target DNA within a sample. This review illustrates how dPCR can be used to identify genes associated with pediatric-onset disorders, to identify copy number status of important disease-causing genes and variants and to quantify modifier genes. It is also a powerful technology to track changes in genomic biomarkers with disease progression. Based on its capability to accurately and reliably detect genomic alterations with high sensitivity and a large dynamic detection range, dPCR has the potential to become the tool of choice for the verification of pediatric disease-associated mutations identified by next generation sequencing, copy number determination and noninvasive prenatal screening.
Collapse
Affiliation(s)
- Matthew E R Butchbach
- Center for Applied Clinical Genomics, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Center for Pediatric Research, Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE, USA; Department of Biological Sciences, University of Delaware, Newark, DE, USA; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
36
|
Li J, Fung I, Glessner JT, Pandey R, Wei Z, Bakay M, Mentch FD, Pellegrino R, Wang T, Kim C, Hou C, Wang F, Chiavacci RM, Thomas KA, Spergel JM, Hakonarson H, Sleiman PMA. Copy Number Variations in CTNNA3 and RBFOX1 Associate with Pediatric Food Allergy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:1599-607. [PMID: 26188062 DOI: 10.4049/jimmunol.1402310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 05/20/2015] [Indexed: 11/19/2022]
Abstract
Food allergy is a significant public health concern, especially among children. Previous candidate gene studies suggested a few susceptibility loci for food allergy, but no study investigated the contribution of copy number variations (CNVs) to food allergy on a genome-wide scale. To investigate the genetics of food allergy, we performed CNV assessment using high-resolution genome-wide single nucleotide polymorphism arrays. CNV calls from a total of 357 cases with confirmed food allergy and 3980 controls were analyzed within a discovery cohort, followed by a replication analysis composed of 167 cases and 1573 controls. We identified that CNVs in CTNNA3 were significantly associated with food allergy in both the discovery cohort and the replication cohort. Of particular interest, CTNNA3 CNVs hit exons or intron regions rich in histone marker H3K4Me1. CNVs in a second gene (RBFOX1) showed a significant association (p = 7.35 × 10(-5)) with food allergy at the genome-wide level in our meta-analysis of the European ancestry cohorts. The presence of these CNVs was confirmed by quantitative PCR. Furthermore, knockdown of CTNNA3 resulted in upregulation of CD63 and CD203c in mononuclear cells upon PMA stimulation, suggesting a role in sensitization to allergen. We uncovered at least two plausible genes harboring CNV loci that are enriched in pediatric patients with food allergies. The novel gene candidates discovered in this study by genome-wide CNV analysis are compelling drug and diagnostic targets for food allergy.
Collapse
Affiliation(s)
- Jin Li
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Irene Fung
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Joseph T Glessner
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rahul Pandey
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 08540
| | - Marina Bakay
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Frank D Mentch
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Renata Pellegrino
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Tiancheng Wang
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Cecilia Kim
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Cuiping Hou
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Fengxiang Wang
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Rosetta M Chiavacci
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Kelly A Thomas
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Jonathan M Spergel
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Center for Pediatric Eosinophilic Disorders, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; and
| | - Hakon Hakonarson
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Patrick M A Sleiman
- Center for Applied Genomics, Abramson Research Center, The Children's Hospital of Philadelphia, Philadelphia, PA 19104; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
37
|
Pajusalu S, Žilina O, Yakoreva M, Tammur P, Kuuse K, Mölter-Väär T, Nõukas M, Reimand T, Õunap K. The Diagnostic Utility of Single Long Contiguous Stretches of Homozygosity in Patients without Parental Consanguinity. Mol Syndromol 2015; 6:135-40. [PMID: 26733775 DOI: 10.1159/000438776] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2015] [Indexed: 01/13/2023] Open
Abstract
We present data from our clinical department's experience with chromosomal microarray analysis (CMA) regarding the diagnostic utility of 1 or 2 long contiguous stretches of homozygosity (LCSHs) in an outbred population. The study group consisted of 2,110 consecutive patients from 2011 to 2014 for whom CMA was performed. The minimum cut-off size for defining a homozygous stretch was 5 Mb. To focus on cases with no parental consanguinity, we further studied only patients in whom the total length of homozygous stretches did not exceed 28 Mb or 1% of the autosomal genome length. We identified 6 chromosomal regions where homozygous stretches appeared in at least 3 patients and excluded these from further analysis. In 2 out of 120 patients with an isolated finding of 1 or 2 non-recurrent LCSHs, a plausible candidate gene associated with their phenotype was identified within the homozygous stretch. In both of these cases, a pathogenic mutation was detected, leading to diagnoses of pyruvate kinase deficiency and Marinesco-Sjögren syndrome. To clarify whether previously found homozygous stretches could be important for the interpretation of genome-wide sequencing data, we report 7 cases in which homozygous stretches not encompassing a clinically associated gene were first found on CMA, followed by the diagnostic whole-exome sequencing. The diagnostic utility of single LCSHs, unlikely to be caused by uniparental disomy, is discussed in detail.
Collapse
Affiliation(s)
- Sander Pajusalu
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia; Department of Biomedicine, Institute of Biomedicine and Translational Medicine, Tartu, Estonia
| | - Olga Žilina
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia; Institute of Molecular and Cell Biology, Tartu, Estonia
| | - Maria Yakoreva
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, University of Tartu, Tartu, Estonia
| | - Pille Tammur
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Kati Kuuse
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Triin Mölter-Väär
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
| | - Margit Nõukas
- Institute of Molecular and Cell Biology, Tartu, Estonia; Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Tiia Reimand
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia; Department of Biomedicine, Institute of Biomedicine and Translational Medicine, Tartu, Estonia; Department of Pediatrics, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia; Department of Pediatrics, University of Tartu, Tartu, Estonia
| |
Collapse
|
38
|
Kiedrowski LA, Owens KM, Yashar BM, Schuette JL. Parents' Perspectives on Variants of Uncertain Significance from Chromosome Microarray Analysis. J Genet Couns 2015; 25:101-11. [PMID: 25983052 DOI: 10.1007/s10897-015-9847-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 05/12/2015] [Indexed: 11/30/2022]
Abstract
Chromosomal microarray analysis (CMA) for unexplained anomalies and developmental delay has improved diagnosis rates, but results classified as variants of uncertain significance (VUS) may challenge both clinicians and families. We explored the impact of such results on families, including parental knowledge, understanding and interpretation. Semi-structured telephone interviews were conducted with parents (N = 14) who received genetic counseling for a VUS in their child. Transcripts were analyzed through an iterative coding process. Participants demonstrated a range of recall and personal interpretation regarding whether test results provided a causal explanation for their children's health issues. Participants maintained contradictory interpretations, describing results as answers while maintaining that little clarification of their child's condition had been provided. Reported benefits included obtaining medical services and personal validation. Parents described adaptation/coping processes similar to those occurring after positive test results. Recall of terminology, including "VUS" and precise CMA abnormalities, was poor. However, most demonstrated conceptual understanding of scientific uncertainty. All participants expressed intentions to return for recommended genetics follow-up but had misconceptions about how this would occur. These results provide insight into the patient-and-family experience when receiving uncertain genomic findings, emphasize the importance of exploring uncertainty during the communication process, and highlight areas for potential attention or improvement in the clinical encounter.
Collapse
Affiliation(s)
- Lesli A Kiedrowski
- Department of Cancer Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390-9323, USA. .,Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA.
| | - Kailey M Owens
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Beverly M Yashar
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Jane L Schuette
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
39
|
Escaramís G, Docampo E, Rabionet R. A decade of structural variants: description, history and methods to detect structural variation. Brief Funct Genomics 2015; 14:305-14. [PMID: 25877305 DOI: 10.1093/bfgp/elv014] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the past decade, the view on genomic structural variation (SV) has been changed completely. SVs, previously considered rare events, are now recognized as the largest source of interindividual genetic variation affecting more bases than single nucleotide polymorphisms, variable number of tandem repeats and other small genetic variants. They have also been shown to play a role in phenotypic variation and in disease. In this review, the authors will provide an introduction to SV; a short historical perspective on the research of this source of genomic variation; a description of the types of structural variants, and on how they may have arisen; and an overview on methods of detecting structural variants, focusing on the analysis of high-throughput sequencing data.
Collapse
|
40
|
Guida V, Sinibaldi L, Pagnoni M, Bernardini L, Loddo S, Margiotti K, Digilio MC, Fadda MT, Dallapiccola B, Iannetti G, Alessandro DL. A de novo proximal 3q29 chromosome microduplication in a patient with oculo auriculo vertebral spectrum. Am J Med Genet A 2015; 167A:797-801. [PMID: 25735547 DOI: 10.1002/ajmg.a.36951] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/21/2014] [Indexed: 01/18/2023]
Abstract
Oculo auriculo vertebral spectrum (OAVS; OMIM 164210) is a clinically and genetically heterogeneous disorder originating from an abnormal development of the first and second branchial arches. Main clinical characteristics include defects of the aural, oral, mandibular, and vertebral development. Anomalies of the cardiac, pulmonary, renal, skeletal, and central nervous systems have also been described. We report on a 25-year-old male showing a spectrum of clinical manifestations fitting the OAVS diagnosis: hemifacial microsomia, asymmetric mandibular hypoplasia, preauricular pits and tags, unilateral absence of the auditory meatus, dysgenesis of the inner ear and unilateral microphthalmia. A SNP-array analysis identified a de novo previously unreported microduplication spanning 723 Kb on chromosome 3q29. This rearrangement was proximal to the 3q29 microdeletion/microduplication syndrome region, and encompassed nine genes including ATP13A3 and XXYLT1, which are involved in the organogenesis and regulation of the Notch pathway, respectively. The present observation further expands the spectrum of genomic rearrangements associated to OAVS, underlying the value of array-based studies in patients manifesting OAVS features.
Collapse
Affiliation(s)
- Valentina Guida
- IRCCS-Casa Sollievo della Sofferenza, Mendel Institute, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Seiser EL, Innocenti F. Hidden Markov Model-Based CNV Detection Algorithms for Illumina Genotyping Microarrays. Cancer Inform 2015; 13:77-83. [PMID: 25657572 PMCID: PMC4310714 DOI: 10.4137/cin.s16345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 12/24/2022] Open
Abstract
Somatic alterations in DNA copy number have been well studied in numerous malignancies, yet the role of germline DNA copy number variation in cancer is still emerging. Genotyping microarrays generate allele-specific signal intensities to determine genotype, but may also be used to infer DNA copy number using additional computational approaches. Numerous tools have been developed to analyze Illumina genotype microarray data for copy number variant (CNV) discovery, although commonly utilized algorithms freely available to the public employ approaches based upon the use of hidden Markov models (HMMs). QuantiSNP, PennCNV, and GenoCN utilize HMMs with six copy number states but vary in how transition and emission probabilities are calculated. Performance of these CNV detection algorithms has been shown to be variable between both genotyping platforms and data sets, although HMM approaches generally outperform other current methods. Low sensitivity is prevalent with HMM-based algorithms, suggesting the need for continued improvement in CNV detection methodologies.
Collapse
Affiliation(s)
- Eric L Seiser
- Center for Pharmacogenomics and Individualized Therapy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Federico Innocenti
- Center for Pharmacogenomics and Individualized Therapy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. ; UNC Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
42
|
Saito K, Miyado M, Kobori Y, Tanaka Y, Ishikawa H, Yoshida A, Katsumi M, Saito H, Kubota T, Okada H, Ogata T, Fukami M. Copy-number variations in Y-chromosomal azoospermia factor regions identified by multiplex ligation-dependent probe amplification. J Hum Genet 2015; 60:127-31. [DOI: 10.1038/jhg.2014.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/01/2014] [Accepted: 12/06/2014] [Indexed: 11/09/2022]
|
43
|
Tan YT, McPherson GE, Peretz I, Berkovic SF, Wilson SJ. The genetic basis of music ability. Front Psychol 2014; 5:658. [PMID: 25018744 PMCID: PMC4073543 DOI: 10.3389/fpsyg.2014.00658] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 06/08/2014] [Indexed: 01/18/2023] Open
Abstract
Music is an integral part of the cultural heritage of all known human societies, with the capacity for music perception and production present in most people. Researchers generally agree that both genetic and environmental factors contribute to the broader realization of music ability, with the degree of music aptitude varying, not only from individual to individual, but across various components of music ability within the same individual. While environmental factors influencing music development and expertise have been well investigated in the psychological and music literature, the interrogation of possible genetic influences has not progressed at the same rate. Recent advances in genetic research offer fertile ground for exploring the genetic basis of music ability. This paper begins with a brief overview of behavioral and molecular genetic approaches commonly used in human genetic analyses, and then critically reviews the key findings of genetic investigations of the components of music ability. Some promising and converging findings have emerged, with several loci on chromosome 4 implicated in singing and music perception, and certain loci on chromosome 8q implicated in absolute pitch and music perception. The gene AVPR1A on chromosome 12q has also been implicated in music perception, music memory, and music listening, whereas SLC6A4 on chromosome 17q has been associated with music memory and choir participation. Replication of these results in alternate populations and with larger samples is warranted to confirm the findings. Through increased research efforts, a clearer picture of the genetic mechanisms underpinning music ability will hopefully emerge.
Collapse
Affiliation(s)
- Yi Ting Tan
- Melbourne Conservatorium of Music, University of Melbourne Parkville, VIC, Australia
| | - Gary E McPherson
- Melbourne Conservatorium of Music, University of Melbourne Parkville, VIC, Australia
| | - Isabelle Peretz
- International Laboratory for Brain, Music and Sound Research and Department of Psychology, Université de Montréal Montreal, QC, Canada
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, University of Melbourne Heidelberg, VIC, Australia
| | - Sarah J Wilson
- Department of Medicine, Epilepsy Research Centre, University of Melbourne Heidelberg, VIC, Australia ; Melbourne School of Psychological Sciences, University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
44
|
Parental expression is overvalued in the interpretation of rare inherited variants. Eur J Hum Genet 2014; 23:4-7. [PMID: 24755951 DOI: 10.1038/ejhg.2014.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
45
|
Žilina O, Teek R, Tammur P, Kuuse K, Yakoreva M, Vaidla E, Mölter-Väär T, Reimand T, Kurg A, Õunap K. Chromosomal microarray analysis as a first-tier clinical diagnostic test: Estonian experience. Mol Genet Genomic Med 2014; 2:166-75. [PMID: 24689080 PMCID: PMC3960059 DOI: 10.1002/mgg3.57] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/20/2013] [Accepted: 12/02/2013] [Indexed: 12/19/2022] Open
Abstract
Chromosomal microarray analysis (CMA) is now established as the first-tier cytogenetic diagnostic test for fast and accurate detection of chromosomal abnormalities in patients with developmental delay/intellectual disability (DD/ID), multiple congenital anomalies (MCA), and autism spectrum disorders (ASD). We present our experience with using CMA for postnatal and prenatal diagnosis in Estonian patients during 2009-2012. Since 2011, CMA is on the official service list of the Estonian Health Insurance Fund and is performed as the first-tier cytogenetic test for patients with DD/ID, MCA or ASD. A total of 1191 patients were analyzed, including postnatal (1072 [90%] patients and 59 [5%] family members) and prenatal referrals (60 [5%] fetuses). Abnormal results were reported in 298 (25%) patients, with a total of 351 findings (1-3 per individual): 147 (42%) deletions, 106 (30%) duplications, 89 (25%) long contiguous stretches of homozygosity (LCSH) events (>5 Mb), and nine (3%) aneuploidies. Of all findings, 143 (41%) were defined as pathogenic or likely pathogenic; for another 143 findings (41%), most of which were LCSH, the clinical significance remained unknown, while 61 (18%) reported findings can now be reclassified as benign or likely benign. Clinically relevant findings were detected in 126 (11%) patients. However, the proportion of variants of unknown clinical significance was quite high (41% of all findings). It seems that our ability to detect chromosomal abnormalities has far outpaced our ability to understand their role in disease. Thus, the interpretation of CMA findings remains a rather difficult task requiring a close collaboration between clinicians and cytogeneticists.
Collapse
Affiliation(s)
- Olga Žilina
- Department of Genetics, United Laboratories, Tartu University HospitalTartu, Estonia
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of TartuTartu, Estonia
- Correspondence Olga Žilina, Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, Tartu, Estonia. Tel: +3727375034; Fax: +3727420286; E-mail:
| | - Rita Teek
- Department of Genetics, United Laboratories, Tartu University HospitalTartu, Estonia
- Department of Pediatrics, University of TartuTartu, Estonia
| | - Pille Tammur
- Department of Genetics, United Laboratories, Tartu University HospitalTartu, Estonia
| | - Kati Kuuse
- Department of Genetics, United Laboratories, Tartu University HospitalTartu, Estonia
| | - Maria Yakoreva
- Department of Genetics, United Laboratories, Tartu University HospitalTartu, Estonia
- Department of Biomedicine, Institute of Biomedicine and Translation Medicine, University of TartuTartu, Estonia
| | - Eve Vaidla
- Department of Genetics, United Laboratories, Tartu University HospitalTartu, Estonia
| | - Triin Mölter-Väär
- Department of Genetics, United Laboratories, Tartu University HospitalTartu, Estonia
| | - Tiia Reimand
- Department of Genetics, United Laboratories, Tartu University HospitalTartu, Estonia
- Department of Pediatrics, University of TartuTartu, Estonia
- Department of Biomedicine, Institute of Biomedicine and Translation Medicine, University of TartuTartu, Estonia
| | - Ants Kurg
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of TartuTartu, Estonia
| | - Katrin Õunap
- Department of Genetics, United Laboratories, Tartu University HospitalTartu, Estonia
- Department of Pediatrics, University of TartuTartu, Estonia
| |
Collapse
|