1
|
Wang L, Hou J, Xu H, Cai Q, Tian L, Li X, Zhang J, Yang H. Angong Niuhuang Pill pretreatment alleviates cerebral ischemia-reperfusion injury by inhibiting excessive autophagy through the SIRT1-H4K16ac axis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119214. [PMID: 39643020 DOI: 10.1016/j.jep.2024.119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral ischemia-reperfusion injury (CIRI) is an important pathological process in stroke treatment. Angong Niuhuang Pill (ANP), originating from Wenbing Tiaobian, has been shown to have neuroprotective effects, but its mechanism in alleviating CIRI remains unclear. AIM OF THE STUDY This study aimed to elucidate the mechanism by which ANP alleviates CIRI using acetylomics and proteomics. MATERIALS AND METHODS The CIRI model was established using middle cerebral artery occlusion (MCAO). Neurological deficit scoring, TTC staining, regional cerebral blood flow (rCBF) measurement, and TUNEL staining were used to assess the neuroprotective effects of ANP pretreatment on CIRI. Acetylomics and proteomics analyses were performed to identify the potential mechanisms by which ANP reduces CIRI. Finally, the role of SIRT1-H4K16ac-mediated autophagy in the neuroprotective effects of ANP was validated by using a SIRT1 inhibitor, EX527. RESULTS ANP pretreatment markedly lowered neurological deficit scores and cerebral infarct volumes, increased rCBF, and reduced apoptosis. Acetylomics and proteomics results suggested that ANP regulated autophagy at the transcriptional level by modulating H4K16ac. Immunofluorescence and Western blot analyses confirmed that ANP promoted the accumulation of sirtuin 1 (SIRT1). Specifically, ANP pretreatment reduced H4K16ac levels, decreased LC3B-II/I ratios, upregulated SQSTM1/p62, and suppressed the expression of ATG5 and ATG7. The ability of EX527 to counteract these effects underscored the importance of the SIRT1-H4K16ac pathway in mediating the protective action of ANP against CIRI. CONCLUSIONS ANP provides neuroprotection by modulating the SIRT1-H4K16ac pathway, thereby preventing the excessive autophagy triggered by CIRI.
Collapse
Affiliation(s)
- Lihan Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingyi Hou
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - He Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Qingqing Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Liangliang Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Xueli Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jingjing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Zeng M, Zhu Z, Yuan W, Tang Z, Qing Z, Lu Q, Wu X, He J, Li Y, Li Z. Verapamil inhibits inflammation and promotes autophagy to alleviate ureteral scar by regulation of CaMK IIδ/STAT3 axis. Ren Fail 2024; 46:2387432. [PMID: 39177245 PMCID: PMC11346332 DOI: 10.1080/0886022x.2024.2387432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Ureteral stricture (US) is a pathological stenosis in the urinary tract characterized by increased collagen synthesis and inflammation. Autophagy activation has been shown to ameliorate tissue fibrosis and protect against fibrotic diseases. Verapamil has beneficial therapeutic benefits on fibrotic disorders. The pharmacological effects of verapamil on fibroblast autophagy in US and the underlying mechanism need to be investigated further. METHODS US patients were recruited to isolate scar tissues, hematoxylin-eosin (HE) and Masson trichrome staining were performed to analyze histopathological changes. The US animal model was established and administered with verapamil (0.05 mg/kg) in the drinking water. Transforming growth factor (TGF)-β1 was adopted to facilitate collagen synthesis in fibroblasts. The mRNA and protein expressions were examined by qRT-PCR, western blot, immunofluorescence and immunohistochemistry. ELISA was adopted to measure interleukin (IL)-1β and IL-6 levels. Molecular interaction experiments like dual luciferase reporter and chromatin immunoprecipitation (ChIP) assays were performed to analyze the interaction between signal transducers and activators of transcription 3 (STAT3) and RNA polymerase II associated factor 1 (PAF1). RESULTS Herein, our results revealed that verapamil activated TGF-β1-treated fibroblast autophagy and inhibited inflammation and fibrosis by repressing Ca2+⁄calmodulin-dependent protein kinase II (CaMK II) δ-mediated STAT3 activation. Our following tests revealed that STAT3 activated PAF1 transcription. PAF1 upregulation abrogated the regulatory effect of verapamil on fibroblast autophagy and fibrosis during US progression. Finally, verapamil mitigated US in vivo by activating fibroblast autophagy. CONCLUSION Taken together, verapamil activated TGF-β1-treated fibroblast autophagy and inhibited fibrosis by repressing the CaMK IIδ/STAT3/PAF1 axis.
Collapse
Affiliation(s)
- Mingqiang Zeng
- Department of Urology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, P.R. China
- Hunan Provincial Institute of Geriatrics, Research Center for Lower Urinary Tract and Pelvic Floor Functional Diseases, Changsha, Hunan Province, P.R. China
| | - Zhiwei Zhu
- Department of Urology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, P.R. China
| | - Wuxiong Yuan
- Department of Urology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, P.R. China
| | - Zhengyan Tang
- Provincial Laboratory for Diagnosis and Treatment of Genitourinary System Disease, Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Zhibiao Qing
- Department of Urology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, P.R. China
| | - Qiang Lu
- Department of Urology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, P.R. China
| | - Xuecheng Wu
- Department of Urology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, P.R. China
| | - Junhuan He
- Department of Urology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, P.R. China
| | - Yuanwei Li
- Department of Urology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, P.R. China
| | - Zhuo Li
- Department of Urology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, P.R. China
| |
Collapse
|
3
|
Zhang T, Yang M, Li S, Yan R, Dai K. Activation of AMPK in platelets promotes the production of offspring. Platelets 2024; 35:2334701. [PMID: 38630016 DOI: 10.1080/09537104.2024.2334701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/16/2024] [Indexed: 04/19/2024]
Abstract
Platelets are terminally differentiated anucleated cells, but they still have cell-like functions and can even produce progeny platelets. However, the mechanism of platelet sprouting has not been elucidated so far. Here, we show that when platelet-rich plasma(PRP) was cultured at 37°C, platelets showed a spore phenomenon. The number of platelets increased when given a specific shear force. It is found that AMP-related signaling pathways, such as PKA and AMPK are activated in platelets in the spore state. Meanwhile, the mRNA expression levels of genes, such as CNN3, CAPZB, DBNL, KRT19, and ESPN related to PLS1 skeleton proteins also changed. Moreover, when we use the AMPK activator AICAR(AI) to treat washed platelets, cultured platelets can still appear spore phenomenon. We further demonstrate that washed platelets treated with Forskolin, an activator of PKA, not only platelet sprouting after culture but also the AMPK is activated. Taken together, these data demonstrate that AMPK plays a key role in the process of platelet budding and proliferation, suggesting a novel strategy to solve the problem of clinical platelet shortage.
Collapse
Affiliation(s)
- Tong Zhang
- Suzhou Medical College, Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Soochow University, Suzhou, China
| | - Mengnan Yang
- Suzhou Medical College, Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Soochow University, Suzhou, China
| | - Shujun Li
- Suzhou Medical College, Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Soochow University, Suzhou, China
| | - Rong Yan
- Suzhou Medical College, Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Soochow University, Suzhou, China
| | - Kesheng Dai
- Suzhou Medical College, Jiangsu Institute of Hematology, Cyrus Tang Medical Institute, The First Affiliated Hospital and Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, National Clinical Research Center for Hematological Diseases, Soochow University, Suzhou, China
| |
Collapse
|
4
|
Shi Y, Zhong Y, Long J, Chen S, Wang C. Fuzi polysaccharide isolated from Aconitum carmichaeli protects against liquid nitrogen cryopreservation-induced damage in rat abdominal aorta by enhancing autophagy. Ann Vasc Surg 2024:S0890-5096(24)00679-4. [PMID: 39608450 DOI: 10.1016/j.avsg.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
OBJECTIVE To investigate the potential protective mechanisms of aconite polysaccharide (FZPS-1) during cryopreservation, with a particular emphasis on morphological changes in autophagy in rat abdominal aorta. METHODS Thirty-six male SD rats were divided into the control group, the cryopreserved model group, and the FZPS-1 intervention group treated with different concentrations of FZPS-1. The structural changes of the abdominal aortic wall were assessed via Masson staining, while cytolysosomes were identified using transmission electron microscopy (TEM). The expression of Beclin-1, LC3-II, and P62 was detected by immunohistochemistry (IHC) and western blot separately. Bcl-2 and Bax mRNA expression was measured by RT-qPCR. RESULTS Compared with the control group, the abdominal aortic wall in the model group was severely damaged. Contrarily, FZPS-1 10 mg/mL and 20 mg/mL groups had relatively normal structure of the blood vessel wall, higher cytolysosome counts, and increased Beclin-1 and LC3-II expression compared with the model group (all P<0.05); P62 expression also increased in the FZPS-1 20 mg/mL group (P<0.05). Compared with the control group, the mRNA expression of Bcl-2 in the cryopreservation model group was reduced (P<0.05), while Bax was increased (P<0.05). Compared with the cryopreservation model group, the mRNA expression of Bcl-2 was upregulated, while Bax was downregulated in the FPS 10 mg/L group (P<0.05). CONCLUSION During liquid nitrogen cryopreservation, autophagy is inhibited in the rat abdominal aorta, and the blood vessel wall structure is damaged. FZPS-1, as a cryoprotectant, can enhance autophagy and mitigate blood vessel wall damage in the rat abdominal aorta.
Collapse
Affiliation(s)
- Yehong Shi
- The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, Guangdong, 519100 China
| | - Yujia Zhong
- The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, Guangdong, 519100 China
| | - Jundong Long
- The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, Guangdong, 519100 China
| | - Shijiu Chen
- The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, Guangdong, 519100 China
| | - Cheng Wang
- The Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai, Guangdong, 519100 China.
| |
Collapse
|
5
|
Zheng H, Xiao X, Han Y, Wang P, Zang L, Wang L, Zhao Y, Shi P, Yang P, Guo C, Xue J, Zhao X. Research progress of propofol in alleviating cerebral ischemia/reperfusion injury. Pharmacol Rep 2024; 76:962-980. [PMID: 38954373 DOI: 10.1007/s43440-024-00620-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
Ischemic stroke is a leading cause of adult disability and death worldwide. The primary treatment for cerebral ischemia patients is to restore blood supply to the ischemic region as quickly as possible. However, in most cases, more severe tissue damage occurs, which is known as cerebral ischemia/reperfusion (I/R) injury. The pathological mechanisms of brain I/R injury include mitochondrial dysfunction, oxidative stress, excitotoxicity, calcium overload, neuroinflammation, programmed cell death and others. Propofol (2,6-diisopropylphenol), a short-acting intravenous anesthetic, possesses not only sedative and hypnotic effects but also immunomodulatory and neuroprotective effects. Numerous studies have reported the protective properties of propofol during brain I/R injury. In this review, we summarize the potential protective mechanisms of propofol to provide insights for its better clinical application in alleviating cerebral I/R injury.
Collapse
Affiliation(s)
- Haijing Zheng
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
- Zhengzhou Central Hospital, Zhengzhou, China
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Xian Xiao
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Yiming Han
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengwei Wang
- Department of Pharmacy, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, Henan, 453100, China
| | - Lili Zang
- Department of Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Lilin Wang
- Department of Pediatric Surgery, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, China
| | - Yinuo Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Peijie Shi
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China
| | - Pengfei Yang
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Chao Guo
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Jintao Xue
- College of Pharmacy, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| | - Xinghua Zhao
- Basic Medical College, Xinxiang Medical University, 601, Jin Sui Avenue, Xinxiang, Henan, China.
| |
Collapse
|
6
|
Ji Y, Ren J, Qian Y, Li J, Liu H, Yao Y, Sun J, Khanna R, Sun L. Aβ25-35-induced autophagy and apoptosis are prevented by the CRMP2-derived peptide ST2-104 (R9-CBD3) via a CaMKKβ/AMPK/mTOR signaling hub. PLoS One 2024; 19:e0309794. [PMID: 39325788 PMCID: PMC11426444 DOI: 10.1371/journal.pone.0309794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
We previously reported that the peptide ST2-104 (CBD3, for Ca2+ channel-binding domain 3), derived from the collapsin response mediator protein 2 (CRMP2)-a cytosolic phosphoprotein, protects neuroblastoma cells against β-amyloid (Aβ) peptide-mediated toxicity through engagement of a phosphorylated CRMP2/NMDAR pathway. Abnormal aggregation of Aβ peptides (e.g., Aβ25-35) leads to programmed cell death (apoptosis) as well autophagy-both of which contribute to Alzheimer's disease (AD) progression. Here, we asked if ST2-104 affects apoptosis and autophagy in SH-SY5Y neuroblastoma challenged with the toxic Aβ25-35 peptide and subsequently mapped the downstream signaling pathways involved. ST2-104 protected SH-SY5Y cells from death following Aβ25-35 peptide challenge by reducing apoptosis and autophagy as well as limiting excessive calcium entry. Cytotoxicity of SHY-SY5Y cells challenged with Aβ25-35 peptide was blunted by ST2-104. The autophagy activator Rapamycin blunted the anti-apoptotic activity of ST2-104. ST2-104 reversed Aβ25-35-induced apoptosis via inhibiting Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ)-mediated autophagy, which was partly enhanced by STO-609 (an inhibitor of CaMKKβ). ST2-104 attenuated neuronal apoptosis by inhibiting autophagy through a CaMKKβ/AMPK/mTOR signaling hub. These findings identify a mechanism whereby, in the face of Aβ25-35, the concerted actions of ST2-104 leads to a reduction in intracellular calcium overload and inhibition of the CaMKKβ/AMPK/mTOR pathway resulting in attenuation of autophagy and cellular apoptosis. These findings define a mechanistic framework for how ST2-104 transduces "outside" (calcium channels) to "inside" signaling (CaMKKβ/AMPK/mTOR) to confer neuroprotection in AD.
Collapse
Affiliation(s)
- Yingshi Ji
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Jinghong Ren
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Yuan Qian
- Beijing Jishuitan Hospital, Peking University Fourth School of Clinical Medicine, Beijing, PR China
| | - Jiaxin Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Huanyu Liu
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Yuan Yao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, PR China
| | - Jianfeng Sun
- Department of Physiology, Jilin University, Changchun, Jilin, PR China
| | - Rajesh Khanna
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
- Pain and Addiction Therapeutics (PATH) Collaboratory, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital, Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
7
|
Wang K, Wang Y, Zhang T, Chang B, Fu D, Chen X. The Role of Intravenous Anesthetics for Neuro: Protection or Toxicity? Neurosci Bull 2024:10.1007/s12264-024-01265-4. [PMID: 39153174 DOI: 10.1007/s12264-024-01265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/15/2024] [Indexed: 08/19/2024] Open
Abstract
The primary intravenous anesthetics employed in clinical practice encompass dexmedetomidine (Dex), propofol, ketamine, etomidate, midazolam, and remimazolam. Apart from their established sedative, analgesic, and anxiolytic properties, an increasing body of research has uncovered neuroprotective effects of intravenous anesthetics in various animal and cellular models, as well as in clinical studies. However, there also exists conflicting evidence pointing to the potential neurotoxic effects of these intravenous anesthetics. The role of intravenous anesthetics for neuro on both sides of protection or toxicity has been rarely summarized. Considering the mentioned above, this work aims to offer a comprehensive understanding of the underlying mechanisms involved both in the central nerve system (CNS) and the peripheral nerve system (PNS) and provide valuable insights into the potential safety and risk associated with the clinical use of intravenous anesthetics.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China
| | - Bingcheng Chang
- The Second Affiliated Hospital of Guizhou, University of Traditional Chinese Medicine, Guiyang, 550003, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
8
|
Jiang Y, Zhou R, Wu Y, Kong G, Zeng J, Li X, Wang B, Gu C, Liao F, Qi F, Zhu Q, Gu L, Zheng C. In vitro modeling of skeletal muscle ischemia-reperfusion injury based on sphere differentiation culture from human pluripotent stem cells. Exp Cell Res 2024; 439:114111. [PMID: 38823471 DOI: 10.1016/j.yexcr.2024.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/14/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Skeletal muscle ischemia-reperfusion (IR) injury poses significant challenges due to its local and systemic complications. Traditional studies relying on two-dimensional (2D) cell culture or animal models often fall short of faithfully replicating the human in vivo environment, thereby impeding the translational process from animal research to clinical applications. Three-dimensional (3D) constructs, such as skeletal muscle spheroids with enhanced cell-cell interactions from human pluripotent stem cells (hPSCs) offer a promising alternative by partially mimicking human physiological cellular environment in vivo processes. This study aims to establish an innovative in vitro model, human skeletal muscle spheroids based on sphere differentiation from hPSCs, to investigate human skeletal muscle developmental processes and IR mechanisms within a controlled laboratory setting. By eticulously recapitulating embryonic myogenesis through paraxial mesodermal differentiation of neuro-mesodermal progenitors, we successfully established 3D skeletal muscle spheroids that mirror the dynamic colonization observed during human skeletal muscle development. Co-culturing human skeletal muscle spheroids with spinal cord spheroids facilitated the formation of neuromuscular junctions, providing functional relevance to skeletal muscle spheroids. Furthermore, through oxygen-glucose deprivation/re-oxygenation treatment, 3D skeletal muscle spheroids provide insights into the molecular events and pathogenesis of IR injury. The findings presented in this study significantly contribute to our understanding of skeletal muscle development and offer a robust platform for in vitro studies on skeletal muscle IR injury, holding potential applications in drug testing, therapeutic development, and personalized medicine within the realm of skeletal muscle-related pathologies.
Collapse
Affiliation(s)
- Yifei Jiang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Runtao Zhou
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Yixun Wu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Ganggang Kong
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China; Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingguang Zeng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Xubo Li
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Bo Wang
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Cheng Gu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China; Department of Joint Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fawei Liao
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Fangze Qi
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Qintang Zhu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Liqiang Gu
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China
| | - Canbin Zheng
- Department of Microsurgery, Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou, China; Guangdong Provincial Peripheral Nerve Tissue Engineering and Technology Research Center, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou, China.
| |
Collapse
|
9
|
Liu K, Yao X, Gao J, Wang J, Qi J. A study on the mechanism of Beclin-1 m6A modification mediated by catalpol in protection against neuronal injury and autophagy following cerebral ischemia. Mol Med 2024; 30:65. [PMID: 38773376 PMCID: PMC11107004 DOI: 10.1186/s10020-024-00818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
OBJECTIVE Catalpol (CAT) has various pharmacological activities and plays a protective role in cerebral ischemia. It has been reported that CAT played a protective role in cerebral ischemia by upregulaing NRF1 expression. Bioinformatics analysis reveals that NRF1 can be used as a transcription factor to bind to the histone acetyltransferase KAT2A. However, the role of KAT2A in cerebral ischemia remains to be studied. Therefore, we aimed to investigate the role of CAT in cerebral ischemia and its related mechanism. METHODS In vitro, a cell model of oxygen and glucose deprivation/reperfusion (OGD/R) was constructed, followed by evaluation of neuronal injury and the expression of METTL3, Beclin-1, NRF1, and KAT2A. In vivo, a MCAO rat model was prepared by means of focal cerebral ischemia, followed by assessment of neurological deficit and brain injury in MCAO rats. Neuronal autophagy was evaluated by observation of autophagosomes in neurons or brain tissues by TEM and detection of the expression of LC3 and p62. RESULTS In vivo, CAT reduced the neurological function deficit and infarct volume, inhibited neuronal apoptosis in the cerebral cortex, and significantly improved neuronal injury and excessive autophagy in MCAO rats. In vitro, CAT restored OGD/R-inhibited cell viability, inhibited cell apoptosis, LDH release, and neuronal autophagy. Mechanistically, CAT upregulated NRF1, NRF1 activated METTL3 via KAT2A transcription, and METTL3 inhibited Beclin-1 via m6A modification. CONCLUSION CAT activated the NRF1/KAT2A/METTL3 axis and downregulated Beclin-1 expression, thus relieving neuronal injury and excessive autophagy after cerebral ischemia.
Collapse
Affiliation(s)
- Kan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Xinyan Yao
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Jun Gao
- Department of Neurosurgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, People's Republic of China
| | - Jinxi Wang
- Center for Medical Research and Innovation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, People's Republic of China
| | - Jing Qi
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Cheng Y, Yan M, He S, Xie Y, Wei L, Xuan B, Shang Z, Wu M, Zheng H, Chen Y, Yuan M, Peng J, Shen A. Baicalin alleviates angiotensin II-induced cardiomyocyte apoptosis and autophagy and modulates the AMPK/mTOR pathway. J Cell Mol Med 2024; 28:e18321. [PMID: 38712979 PMCID: PMC11075640 DOI: 10.1111/jcmm.18321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/04/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
As a main extraction compound from Scutellaria baicalensis Georgi, Baicalin exhibits various biological activities. However, the underlying mechanism of Baicalin on hypertension-induced heart injury remains unclear. In vivo, mice were infused with angiotensin II (Ang II; 500 ng/kg/min) or saline using osmotic pumps, followed by intragastrically administrated with Baicalin (5 mg/kg/day) for 4 weeks. In vitro, H9C2 cells were stimulated with Ang II (1 μM) and treated with Baicalin (12.5, 25 and 50 μM). Baicalin treatment significantly attenuated the decrease in left ventricular ejection fraction and left ventricular fractional shortening, increase in left ventricular mass, left ventricular systolic volume and left ventricular diastolic volume of Ang II infused mice. Moreover, Baicalin treatment reversed 314 differentially expressed transcripts in the cardiac tissues of Ang II infused mice, and enriched multiple enriched signalling pathways (including apoptosis, autophagy, AMPK/mTOR signalling pathway). Consistently, Baicalin treatment significantly alleviated Ang II-induced cell apoptosis in vivo and in vitro. Baicalin treatment reversed the up-regulation of Bax, cleaved-caspase 3, cleaved-caspase 9, and the down-regulation of Bcl-2. Meanwhile, Baicalin treatment alleviated Ang II-induced increase of autophagosomes, restored autophagic flux, and down-regulated LC3II, Beclin 1, as well as up-regulated SQSTM1/p62 expression. Furthermore, autophagy inhibitor 3-methyladenine treatment alleviated the increase of autophagosomes and the up-regulation of Beclin 1, LC3II, Bax, cleaved-caspase 3, cleaved-caspase 9, down-regulation of SQSTM1/p62 and Bcl-2 expression after Ang II treated, which similar to co-treatment with Baicalin. Baicalin treatment reduced the ratio of p-AMPK/AMPK, while increased the ratio of p-mTOR/mTOR. Baicalin alleviated Ang II-induced cardiomyocyte apoptosis and autophagy, which might be related to the inhibition of the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Ying Cheng
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Mengchao Yan
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Shuyu He
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Yi Xie
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Lihui Wei
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
- Innovation and Transformation CenterFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Bihan Xuan
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Zucheng Shang
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Meizhu Wu
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
| | - Huifang Zheng
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
- Innovation and Transformation CenterFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Youqin Chen
- Department of PediatricsRainbow Babies and Children's Hospital and Case Western Reserve University School of MedicineClevelandOhioUSA
| | - Meng Yuan
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
- Innovation and Transformation CenterFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Jun Peng
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
- Innovation and Transformation CenterFujian University of Traditional Chinese MedicineFuzhouFujianChina
| | - Aling Shen
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouFujianChina
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular DiseasesFuzhouFujianChina
- Innovation and Transformation CenterFujian University of Traditional Chinese MedicineFuzhouFujianChina
| |
Collapse
|
11
|
Wang Y, Wu N, Li J, Liang J, Zhou D, Cao Q, Li X, Jiang N. The interplay between autophagy and ferroptosis presents a novel conceptual therapeutic framework for neuroendocrine prostate cancer. Pharmacol Res 2024; 203:107162. [PMID: 38554788 DOI: 10.1016/j.phrs.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
In American men, the incidence of prostate cancer (PC) is the highest among all types of cancer, making it the second leading cause of mortality associated with cancer. For advanced or metastatic PC, antiandrogen therapies are standard treatment options. The administration of these treatments unfortunately carries the potential risk of inducing neuroendocrine prostate cancer (NEPC). Neuroendocrine differentiation (NED) serves as a crucial indicator of prostate cancer development, encompassing various factors such as phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), Yes-associated protein 1 (YAP1), AMP-activated protein kinase (AMPK), miRNA. The processes of autophagy and ferroptosis (an iron-dependent form of programmed cell death) play pivotal roles in the regulation of various types of cancers. Clinical trials and preclinical investigations have been conducted on many signaling pathways during the development of NEPC, with the deepening of research, autophagy and ferroptosis appear to be the potential target for regulating NEPC. Due to the dual nature of autophagy and ferroptosis in cancer, gaining a deeper understanding of the developmental programs associated with achieving autophagy and ferroptosis may enhance risk stratification and treatment efficacy for patients with NEPC.
Collapse
Affiliation(s)
- Youzhi Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Ning Wu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junbo Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Jiaming Liang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Diansheng Zhou
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Qian Cao
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institution of Urology, Peking University, Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, National Urological Cancer Center, Beijing 100034, China.
| | - Ning Jiang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| |
Collapse
|
12
|
Zhou J, Xia W, Chen J, Han K, Jiang Y, Zhang A, Zhou D, Liu D, Lin J, Cai Y, Chen G, Zhang L, Xu A, Xu Y, Han R, Xia Z. Propofol and salvianolic acid A synergistically attenuated cardiac ischemia-reperfusion injury in diabetic mice via modulating the CD36/AMPK pathway. BURNS & TRAUMA 2024; 12:tkad055. [PMID: 38601971 PMCID: PMC11003856 DOI: 10.1093/burnst/tkad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 10/14/2023] [Accepted: 10/14/2023] [Indexed: 04/12/2024]
Abstract
Background Prevention of diabetic heart myocardial ischemia-reperfusion (IR) injury (MIRI) is challenging. Propofol attenuates MIRI through its reactive oxygen species scavenging property at high doses, while its use at high doses causes hemodynamic instability. Salvianolic acid A (SAA) is a potent antioxidant that confers protection against MIRI. Both propofol and SAA affect metabolic profiles through regulating Adenosine 5'-monophosphate-activated protein kinase (AMPK). The aim of this study was to investigate the protective effects and underlying mechanisms of low doses of propofol combined with SAA against diabetic MIRI. Methods Diabetes was induced in mice by a high-fat diet followed by streptozotocin injection, and MIRI was induced by coronary artery occlusion and reperfusion. Mice were treated with propofol at 46 mg/kg/h without or with SAA at 10 mg/kg/h during IR. Cardiac origin H9c2 cells were exposed to high glucose (HG) and palmitic acid (PAL) for 24 h in the absence or presence of cluster of differentiation 36 (CD36) overexpression or AMPK gene knockdown, followed by hypoxia/reoxygenation (HR) for 6 and 12 h. Results Diabetes-exacerbated MIRI is evidenced as significant increases in post-ischemic infarction with reductions in phosphorylated (p)-AMPK and increases in CD36 and ferroptosis. Propofol moderately yet significantly attenuated all the abovementioned changes, while propofol plus SAA conferred superior protection against MIRI to that of propofol. In vitro, exposure of H9c2 cells under HG and PAL decreased cell viability and increased oxidative stress that was concomitant with increased levels of ferroptosis and a significant increase in CD36, while p-AMPK was significantly reduced. Co-administration of low concentrations of propofol and SAA at 12.5 μM in H9c2 cells significantly reduced oxidative stress, ferroptosis and CD36 expression, while increasing p-AMPK compared to the effects of propofol at 25 μM. Moreover, either CD36 overexpression or AMPK silence significantly exacerbated HR-induced cellular injuries and ferroptosis, and canceled propofol- and SAA-mediated protection. Notably, p-AMPK expression was downregulated after CD36 overexpression, while AMPK knockdown did not affect CD36 expression. Conclusions Combinational usage of propofol and SAA confers superior cellular protective effects to the use of high-dose propofol alone, and it does so through inhibiting HR-induced CD36 overexpression to upregulate p-AMPK.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang, 524000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, 999077, China
| | - Weiyi Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang, 524000, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, 999077, China
| | - Jiajia Chen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang, 524000, China
| | - Kaijia Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang, 524000, China
| | - Yuxin Jiang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang, 524000, China
| | - Anyuan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, No. 109 Xueyuan West Road, Wenzhou, Zhejiang, 325027, China
| | - Dongcheng Zhou
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang, 524000, China
| | - Danyong Liu
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang, 524000, China
| | - Jiefu Lin
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang, 524000, China
| | - Yin Cai
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang, 524000, China
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, No. 11 Yucai Road, hung hom, Kowloon, Hong Kong, 999077, China
| | - Guanghua Chen
- Spinal Division of Orthopedic and Traumatology Center, The Affiliated Hospital of Guangdong Medical University, No. 57 South Renmin Avenue, Zhanjiang 524000, China
| | - Liangqing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang, 524000, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, 999077, China
| | - Youhua Xu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macao, 999078, China
| | - Ronghui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang, 524000, China
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida WaiLong, Taipa, Macao, 999078, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang, 524000, China
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Medicine, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, 999077, China
| |
Collapse
|
13
|
Yan D, Shi Y, Nan C, Jin Q, Zhuo Y, Huo H, Kong S, Zhao Z. Exosomes derived from human umbilical cord mesenchymal stem cells pretreated by monosialoteterahexosyl ganglioside alleviate intracerebral hemorrhage by down-regulating autophagy. Exp Cell Res 2024; 436:113960. [PMID: 38311048 DOI: 10.1016/j.yexcr.2024.113960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
PURPOSE Intracerebral hemorrhage (ICH) results in substantial morbidity, mortality, and disability. Depleting neural cells in advanced stages of ICH poses a significant challenge to recovery. The objective of our research is to investigate the potential advantages and underlying mechanism of exosomes obtained from human umbilical cord mesenchymal stem cells (hUMSCs) pretreated with monosialoteterahexosyl ganglioside (GM1) in the prevention of secondary brain injury (SBI) resulting from ICH. PATIENTS AND METHODS In vitro, hUMSCs were cultured and induced to differentiate into neuron-like cells after they were pretreated with 150 μg/mL GM1. The exosomes extracted from the culture medium following a 6-h pretreatment with 150 μg/mL GM1 were used as the treatment group. Striatal infusion of collagenase and hemoglobin (Hemin) was used to establish in vivo and in vitro models of ICH. RESULTS After being exposed to 150 μg/mL GM1 for 6 h, specific cells displayed typical neuron-like cell morphology and expressed neuron-specific enolase (NSE). The rate of differentiation into neuron-like cells was up to (15.9 ± 5.8) %, and the synthesis of N-Acetylgalactosaminyltransferase (GalNAcT), which is upstream of GM1, was detected by Western blot. This study presented an increase in the synthesis of GalNAcT. Compared with the ICH group, apoptosis in the treatment group was remarkably reduced, as detected by TUNEL, and mitochondrial membrane potential was restored by JC-1. Additionally, Western blot revealed the restoration of up-regulated autophagy markers Beclin-1 and LC3 and the down-regulation of autophagy marker p62 after ICH. CONCLUSION These findings suggest that GM1 is an effective agent to induce the differentiation of hUMSCs into neuron-like cells. GM1 can potentially increase GalNAcT production through "positive feedback", which generates more GM1 and promotes the differentiation of hUMSCs. After pretreatment with GM1, exosomes derived from hUMSCs (hUMSCs-Exos) demonstrate a neuroprotective effect by inhibiting autophagy in the ICH model. This study reveals the potential mechanism by which GM1 induces differentiation of hUMSCs into neuron-like cells and confirms the therapeutic effect of hUMSCs-Exos pretreated by GM1 (GM1-Exos) on an ICH model, potentially offering a new direction for stem cell therapy in ICH.
Collapse
Affiliation(s)
- Dongdong Yan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yunpeng Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qianxu Jin
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yayu Zhuo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haoran Huo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shiqi Kong
- Department of Neurosurgery, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
14
|
Zhang L, Guo Q, An R, Shen S, Yin L. In vitro ischemic preconditioning mediates the Ca 2+/CaN/NFAT pathway to protect against oxygen-glucose deprivation-induced cellular damage and inflammatory responses. Brain Res 2024; 1826:148736. [PMID: 38141801 DOI: 10.1016/j.brainres.2023.148736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Oxygen-glucose deprivation (OGD) is a critical model for studying hypoxic-ischemic cerebrovascular disease in vitro. This paper is to investigate the protection of OGD-induced cellular damage and inflammatory responses by OGD preconditioning in vitro, to provide a theoretical basis for OGD preconditioning to improve the prevention and prognosis of ischemic stroke. OGD or OGD preconditioning model was established by culturing the PC12 cell line in vitro, followed by further adding A23187 (calcium ion carrier) or CsA (calcium ion antagonist). Cell viability was detected by MTT, apoptosis by Hoechst 33,258 staining, the levels of TNF-α and IL-1β mRNA by RT-qPCR and ELISA, and the levels of CaN, NFAT, COX-2 by RT-qPCR and Western blot. Cell viability was decreased, and apoptosis, inflammatory cytokines, and CaN, NFAT, and COX-2 levels were notably increased upon OGD, while OGD pretreatment significantly increased cell viability and decreased apoptosis, inflammation, and the Ca2+/CaN/NFAT pathway. Treatment with A23187 decreased cell viability, promoted apoptosis, and significantly increased TNF-α, IL-1β, CaN, NFAT, and COX-2 levels, while CsA treatment reduced the opposite results. In vitro OGD preconditioning mediates the Ca2+/CaN/NFAT pathway to protect against OGD-induced cellular damage and inflammatory responses.
Collapse
Affiliation(s)
- Lihong Zhang
- Department of Neurointervention and Neurocritical Care, Dalian Central Hospital, Affiliated to Dalian University of Technology, Dalian, China; Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian 116023, Liaoning, China
| | - Qingzi Guo
- Deprtment of Cardiothoracic Surgery, Royal Stoke University Hospital, Stoke-on-Trent ST4 6QG, UK
| | - Ran An
- Department of Neurology, Taihe Hospital, Shiyan 442099, Hubei, China
| | - Shuhan Shen
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121012, Liaoning, China
| | - Lin Yin
- Department of Neurology, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian 116023, Liaoning, China.
| |
Collapse
|
15
|
Zhang Y, Gong X. Fat mass and obesity associated protein inhibits neuronal ferroptosis via the FYN/Drp1 axis and alleviate cerebral ischemia/reperfusion injury. CNS Neurosci Ther 2024; 30:e14636. [PMID: 38430221 PMCID: PMC10908355 DOI: 10.1111/cns.14636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVES FTO is known to be involved in cerebral ischemia/reperfusion (I/R) injury. However, its related specific mechanisms during this condition warrant further investigations. This study aimed at exploring the impacts of FTO and the FYN/DRP1 axis on mitochondrial fission, oxidative stress (OS), and ferroptosis in cerebral I/R injury and the underlying mechanisms. METHODS The cerebral I/R models were established in mice via the temporary middle cerebral artery occlusion/reperfusion (tMCAO/R) and hypoxia/reoxygenation models were induced in mouse hippocampal neurons via oxygen-glucose deprivation/reoxygenation (OGD/R). After the gain- and loss-of-function assays, related gene expression was detected, along with the examination of mitochondrial fission, OS- and ferroptosis-related marker levels, neuronal degeneration and cerebral infarction, and cell viability and apoptosis. The binding of FTO to FYN, m6A modification levels of FYN, and the interaction between FYN and Drp1 were evaluated. RESULTS FTO was downregulated and FYN was upregulated in tMCAO/R mouse models and OGD/R cell models. FTO overexpression inhibited mitochondrial fission, OS, and ferroptosis to suppress cerebral I/R injury in mice, which was reversed by further overexpressing FYN. FTO overexpression also suppressed mitochondrial fission and ferroptosis to increase cell survival and inhibit cell apoptosis in OGD/R cell models, which was aggravated by additionally inhibiting DRP1. FTO overexpression inhibited FYN expression via the m6A modification to inactive Drp1 signaling, thus reducing mitochondrial fission and ferroptosis and enhancing cell viability in cells. CONCLUSIONS FTO overexpression suppressed FYN expression through m6A modification, thereby subduing Drp1 activity and relieving cerebral I/R injury.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Emergency, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanChina
| | - Xin Gong
- Department of Neurosurgery, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanChina
| |
Collapse
|
16
|
Chen Y, Guan W, Wang ML, Lin XY. PI3K-AKT/mTOR Signaling in Psychiatric Disorders: A Valuable Target to Stimulate or Suppress? Int J Neuropsychopharmacol 2024; 27:pyae010. [PMID: 38365306 PMCID: PMC10888523 DOI: 10.1093/ijnp/pyae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Economic development and increased stress have considerably increased the prevalence of psychiatric disorders in recent years, which rank as some of the most prevalent diseases globally. Several factors, including chronic social stress, genetic inheritance, and autogenous diseases, lead to the development and progression of psychiatric disorders. Clinical treatments for psychiatric disorders include psychotherapy, chemotherapy, and electric shock therapy. Although various achievements have been made researching psychiatric disorders, the pathogenesis of these diseases has not been fully understood yet, and serious adverse effects and resistance to antipsychotics are major obstacles to treating patients with psychiatric disorders. Recent studies have shown that the mammalian target of rapamycin (mTOR) is a central signaling hub that functions in nerve growth, synapse formation, and plasticity. The PI3K-AKT/mTOR pathway is a critical target for mediating the rapid antidepressant effects of these pharmacological agents in clinical and preclinical research. Abnormal PI3K-AKT/mTOR signaling is closely associated with the pathogenesis of several neurodevelopmental disorders. In this review, we focused on the role of mTOR signaling and the related aberrant neurogenesis in psychiatric disorders. Elucidating the neurobiology of the PI3K-AKT/mTOR signaling pathway in psychiatric disorders and its actions in response to antidepressants will help us better understand brain development and quickly identify new therapeutic targets for the treatment of these mental illnesses.
Collapse
Affiliation(s)
- Yan Chen
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu, China
| | - Mei-Lan Wang
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xiao-Yun Lin
- Department of Neurology, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
17
|
He Z, Zhao C, He Y, Liu Z, Fan G, Zhu K, Wang Y, Zhang N, Fu Y, Hu X. Enterogenic Stenotrophomonas maltophilia migrates to the mammary gland to induce mastitis by activating the calcium-ROS-AMPK-mTOR-autophagy pathway. J Anim Sci Biotechnol 2023; 14:157. [PMID: 38124149 PMCID: PMC10731779 DOI: 10.1186/s40104-023-00952-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/16/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Mastitis is an inflammatory disease of the mammary gland that has serious economic impacts on the dairy industry and endangers food safety. Our previous study found that the body has a gut/rumen-mammary gland axis and that disturbance of the gut/rumen microbiota could result in 'gastroenterogenic mastitis'. However, the mechanism has not been fully clarified. Recently, we found that long-term feeding of a high-concentrate diet induced mastitis in dairy cows, and the abundance of Stenotrophomonas maltophilia (S. maltophilia) was significantly increased in both the rumen and milk microbiota. Accordingly, we hypothesized that 'gastroenterogenic mastitis' can be induced by the migration of endogenous gut bacteria to the mammary gland. Therefore, this study investigated the mechanism by which enterogenic S. maltophilia induces mastitis. RESULTS First, S. maltophilia was labelled with superfolder GFP and administered to mice via gavage. The results showed that treatment with S. maltophilia promoted the occurrence of mastitis and increased the permeability of the blood-milk barrier, leading to intestinal inflammation and intestinal leakage. Furthermore, tracking of ingested S. maltophilia revealed that S. maltophilia could migrate from the gut to the mammary gland and induce mastitis. Subsequently, mammary gland transcriptome analysis showed that the calcium and AMPK signalling pathways were significantly upregulated in mice treated with S. maltophilia. Then, using mouse mammary epithelial cells (MMECs), we verified that S. maltophilia induces mastitis through activation of the calcium-ROS-AMPK-mTOR-autophagy pathway. CONCLUSIONS In conclusion, the results showed that enterogenic S. maltophilia could migrate from the gut to the mammary gland via the gut-mammary axis and activate the calcium-ROS-AMPK-mTOR-autophagy pathway to induce mastitis. Targeting the gut-mammary gland axis may also be an effective method to treat mastitis.
Collapse
Affiliation(s)
- Zhaoqi He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Zhuoyu Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Guyue Fan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Kun Zhu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yiqi Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China.
| |
Collapse
|
18
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
19
|
Shen J, Zhang C, Liu Y, Zhao M, Wang Q, Li P, Liu R, Wai Wong VK, Zhang C, Sun X. L-type calcium ion channel-mediated activation of autophagy in vascular smooth muscle cells via thonningianin A (TA) alleviates vascular calcification in type 2 diabetes mellitus. Eur J Pharmacol 2023; 959:176084. [PMID: 37806540 DOI: 10.1016/j.ejphar.2023.176084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Vascular calcification (VC) is associated with increased morbidity and mortality, especially among people with type 2 diabetes mellitus (T2DM). The pathogenesis of vascular calcification is incompletely understood, and until now, there have been no effective therapeutics for vascular calcification. The L-type calcium ion channel in the cell membrane is vital for Ca2+ influx. The effect of L-type calcium ion channels on autophagy remains to be elucidated. Here, the natural compound thonningianin A (TA) was found to ameliorate vascular calcification in T2DM via the activation of L-type calcium ion channels. The results showed that TA had a concentration-dependent ability to decrease the transcriptional and translational expression of the calcification-related proteins runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2) and osteopontin (OPN) (P < 0.01) via ATG7-dependent autophagy in β-glycerophosphate (β-GP)- and high glucose (HG)-stimulated primary mouse aortic smooth muscle cells (MASMCs) and alleviate aortic vascular calcification in VitD3-stimulated T2DM mice. However, nifedipine, an inhibitor of L-type calcium ion channels, reversed TA-induced autophagy and Ca2+ influx in MASMCs. Molecular docking analysis revealed that TA was located in the hydrophobic pocket of Cav1.2 α1C and was mainly composed of the residues Ile, Phe, Ala and Met, which confirmed the efficacy of TA in targeting the L-type calcium channel of Cav1.2 on the cell membrane. Moreover, in an in vivo model of vascular calcification in T2DM mice, nifedipine reversed the protective effects of TA on aortic calcification and the expression of the calcification-related proteins RUNX2, BMP2 and OPN (P < 0.01). Collectively, the present results reveal that the activation of cell membrane L-type calcium ion channels can induce autophagy and ameliorate vascular calcification in T2DM. Thonningianin A (TA) can target and act as a potent activator of L-type calcium ion channels. Thus, this research revealed a novel mechanism for autophagy induction via L-type calcium ion channels and provided a potential therapeutic for vascular calcification in T2DM.
Collapse
Affiliation(s)
- Jialing Shen
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Department of Vascular Surgery, The First People's Hospital of Yibin, Yibin, 644000, China
| | - Cheng Zhang
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yong Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ming Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, PR China
| | - Qianqian Wang
- Medical College, Dalian University, Dalian, 116622, China
| | - Pengyun Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Runyu Liu
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chunxiang Zhang
- Laboratory of Nucleic Acids in Medicine for National High-level Talents, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Xiaolei Sun
- Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Department of Interventional Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Laboratory of Nucleic Acids in Medicine for National High-level Talents, Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China; Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, China; School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, Faculty of Life Science and Medicine, King's College London, London, SE5 9NU, United Kingdom.
| |
Collapse
|
20
|
Feng Y, Hu C, Cui K, Fan M, Xiang W, Ye D, Shi Y, Ye H, Bai X, Wei Y, Xu Y, Huang J. GSK840 Alleviates Retinal Neuronal Injury by Inhibiting RIPK3/MLKL-Mediated RGC Necroptosis After Ischemia/Reperfusion. Invest Ophthalmol Vis Sci 2023; 64:42. [PMID: 38015174 PMCID: PMC10691386 DOI: 10.1167/iovs.64.14.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Purpose This study aimed to explore the impact of GSK840 on retinal neuronal injury after retinal ischemia/reperfusion (IR) and its associated mechanism. Methods We established an in vivo mouse model of IR and an in vitro model of oxygen and glucose deprivation/reoxygenation (OGDR) in primary mouse retinal ganglion cells (RGCs). GSK840, a small-molecule compound, was used to specifically inhibit RIPK3/MLKL-dependent necroptosis. Retinal structure and function evaluation was performed by using hematoxylin and eosin staining, optical coherence tomography, and electroretinography. Propidium Iodide (PI) staining was used for detection of necroptotic cell death, whereas Western blot analysis and immunofluorescence were used to assess necroptosis-related proteins and inner retinal neurons. Results RIPK3/MLKL-dependent necroptosis was rapidly activated in RGCs following retinal IR or OGDR. GSK840 helped maintain relatively normal inner retinal structure and thickness by preserving inner retinal neurons, particularly RGCs. Meanwhile, GSK840 ameliorated IR-induced visual dysfunction, as evidenced by the improved amplitudes of photopic negative response, a-wave, b-wave, and oscillatory potentials. And GSK840 treatment significantly reduced the population of PI+ RGCs after injury. Mechanistically, GSK840 ameliorated RGC necroptosis by inhibiting the RIPK3/MLKL pathway. Conclusions GSK840 exerts protective effects against retinal neuronal injury after IR by inhibiting RIPK3/MLKL-mediated RGC necroptosis. GSK840 may represent a protective strategy for RGC degeneration in ischemic retinopathy.
Collapse
Affiliation(s)
- Yanlin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chenyang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kaixuan Cui
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Matthew Fan
- Yale College, Yale University, New Haven, Connecticut, United States
| | - Wu Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huiwen Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yantao Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
21
|
Yu S, Liao J, Lin X, Luo Y, Lu G. Crucial role of autophagy in propofol-treated neurological diseases: a comprehensive review. Front Cell Neurosci 2023; 17:1274727. [PMID: 37946715 PMCID: PMC10631783 DOI: 10.3389/fncel.2023.1274727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Neurological disorders are the leading cause of disability and death globally. Currently, there is a significant concern about the therapeutic strategies that can offer reliable and cost-effective treatment for neurological diseases. Propofol is a widely used general intravenous anesthetic in the clinic. Emerging studies demonstrate that propofol exerts neuroprotective effects on neurological diseases and disorders, while its underlying pathogenic mechanism is not well understood. Autophagy, an important process of cell turnover in eukaryotes, has been suggested to involve in the neuroprotective properties developed by propofol. In this narrative review, we summarized the current evidence on the roles of autophagy in propofol-associated neurological diseases. This study highlighted the effect of propofol on the nervous system and the crucial roles of autophagy. According to the 21 included studies, we found that propofol was a double-edged sword for neurological disorders. Several eligible studies reported that propofol caused neuronal cell damage by regulating autophagy, leading to cognitive dysfunction and other neurological diseases, especially high concentration and dose of propofol. However, some of them have shown that in the model of existing nervous system diseases (e.g., cerebral ischemia-reperfusion injury, electroconvulsive therapy injury, cobalt chloride-induced injury, TNF-α-induced injury, and sleep deprivation-induced injury), propofol might play a neuroprotective role by regulating autophagy, thus improving the degree of nerve damage. Autophagy plays a pivotal role in the neurological system by regulating oxidative stress, inflammatory response, calcium release, and other mechanisms, which may be associated with the interaction of a variety of related proteins and signal cascades. With extensive in-depth research in the future, the autophagic mechanism mediated by propofol will be fully understood, which may facilitate the feasibility of propofol in the prevention and treatment of neurological disorders.
Collapse
Affiliation(s)
- Sicong Yu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Xuezheng Lin
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yu Luo
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Guangtao Lu
- Department of Anesthesiology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
22
|
Soltani M, Rahmati M, Nikravesh MR, Saeedi Nejat S, Jalali M. Inhibition of Autophagy in Heat-Stressed Sperm of Adult Mice: A Possible Role of Catsper1, 2 Channel Proteins. J Trop Med 2023; 2023:6890815. [PMID: 37850157 PMCID: PMC10578978 DOI: 10.1155/2023/6890815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/19/2023] Open
Abstract
Objective Various phenomena guarantee gamete maturation and formation at all stages of evolution, one of which is autophagy playing a critical role in the final morphology of gametes, particularly sperms. Autophagy is influenced by oxidative stress, disturbances of calcium homeostasis, and hyperthermia conditions. The current study aimed to assess the autophagy-related proteins along with the activity of sperm calcium channel (CatSper) proteins following the induction of heat stress (HS). Methods The study sample includes two groups of adult mice: sham and HS groups. In the HS group, the right testis was transferred to the abdominal cavity for 120 hours and then returned to the scrotum where it remained for 7 days. After 7 days, the testis and epididymis were removed to conduct real-time, immunohistochemical studies, sperm parameter evaluation, and seminiferous tubule assessment. In this study, the expression and distribution of autophagy proteins were measured. Plus, CatSper1 and CatSper2 were evaluated as proteins of calcium channels. Results The results of the present study demonstrated that the expression intensity of autophagy indices in seminiferous tubules decreased significantly after HS induction, which was associated with a decrease in the distribution of CatSper proteins in the sperms. HS led to morphological changes in sperm, reduced motility and viability of sperm, and decreased spermatogenesis indices. Conclusion In this study, following heat stress, the decrease in CatSper protein distribution may lead to the structural disorder of CatSper channels, which could strongly affect autophagic activity. Also, disruption of spermatogenesis and sperm parameters may be the consequence of decreased autophagy activity.
Collapse
Affiliation(s)
- Malihe Soltani
- Department of Anatomy, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, IR, Iran
| | - Majid Rahmati
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, IR, Iran
| | - Mohammad Reza Nikravesh
- Departments of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Shahin Saeedi Nejat
- Schools of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| | - Mahdi Jalali
- Departments of Anatomy and Cell Biology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR, Iran
| |
Collapse
|
23
|
Wang M, Xie K, Zhao S, Jia N, Zong Y, Gu W, Cai Y. Aerobic exercise improves cognitive impairment in mice with type 2 diabetes by regulating the MALAT1/miR-382-3p/BDNF signaling pathway in serum-exosomes. Mol Med 2023; 29:130. [PMID: 37740187 PMCID: PMC10517522 DOI: 10.1186/s10020-023-00727-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND It has been documented that aerobic exercise (AE) has a positive effect on improving cognitive function in type 2 diabetes (T2DM) patients. Here, we tried to explore how AE regulates the expression of long non-coding RNA in serum-exosomes (Exos), thereby affecting cognitive impairment in T2DM mice as well as its potential molecular mechanism. METHODS T2DM mouse models were constructed, and serum-Exos were isolated for whole transcriptome sequencing to screen differentially expressed lncRNA and mRNA, followed by prediction of downstream target genes. The binding ability of miR-382-3p with a long non-coding RNA MALAT1 and brain-derived neurotrophic factor (BDNF) was explored. Then, primary mouse hippocampal neurons were collected for in vitro mechanism verification, as evidenced by the detection of hippocampal neurons' vitality, proliferation, and apoptosis capabilities, and insulin resistance. Finally, in vivo mechanism verification was performed to assess the effect of AE on insulin resistance and cognitive disorder. RESULTS Transcriptome sequencing analysis showed that MALAT1 was lowly expressed and miR-382-3p was highly expressed in serum-Exos samples of T2DM mice. There were targeted binding sites between MALAT1 and miR-382-3p and between miR-382-3p and BDNF. In vitro experiments showed that MALAT1 upregulated BDNF expression by inhibiting miR-382-3p. Silencing MALAT1 or overexpressing miR-382-3p could reduce the expression of INSR, IRS-1, IRS-2, PI3K/AKT, and Ras/MAPK, inhibit neuronal proliferation, and promote apoptosis. In vivo experiments further confirmed that AE could increase the expression of MALAT1 in serum-Exos to competitively inhibit miR-382-3p and upregulate BDNF expression, thereby improving cognitive impairment in T2DM mice. CONCLUSION AE may upregulate the expression of MALAT1 in serum-Exos to competitively inhibit miR-382-3p and upregulate BDNF expression, thus improving cognitive impairment in T2DM mice.
Collapse
Affiliation(s)
- Mingzhu Wang
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Kangling Xie
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Shengnan Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Nan Jia
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Yujiao Zong
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
| | - Wenping Gu
- National Clinical Research Center for Geriatric Disorders, Department of Neurology, Xiangya Hospital Central South University, Changsha, 410008, China
| | - Ying Cai
- National Clinical Research Center for Geriatric Disorders, Department of Rehabilitation, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
24
|
Ma H, Ye D, Liu Y, Wu P, Yu L, Guo L, Gao Y, Liu Y, Yan H, Shi J. Propofol suppresses OGD/R-induced ferroptosis in neurons by inhibiting the HIF-1α/YTHDF1/BECN1 axis. Brain Inj 2023; 37:1285-1293. [PMID: 37614036 DOI: 10.1080/02699052.2023.2237881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) is a pathological process that causes severe damage. Propofol is known to alleviate I/R-related injury; however, the exact function and underlying mechanisms are not fully understood. METHODS Using an oxygen glucose deprivation/re-oxygenation (OGD/R) method, an in vitro I/R injury model was induced. The cell viability and the level of Fe2+, glutathione synthetase (GSH), and malondialdehyde (MDA) were evaluated using kits. Luciferase reporter gene assay, chromatin immunoprecipitation, and RNA immunoprecipitation (RIP) were used to verify the interaction between molecules. The m6A level of BECN1 mRNA was determined through methylated RIP. RESULTS Propofol-treated OGD/R models showed reduced levels of Fe2+ and MDA, while the cell viability and the level of GSH increased. Propofol inhibited ferroptosis by down-regulating HIF-1α in OGD/R-treated HT22 cells. HIF-1α is bound to the promoter region of YTHDF1 to promote its transcription, and YTHDF1 promoted ferroptosis by stabilizing the mRNA of BECN1. The suppressive effect of propofol on OGD/R-induced ferroptosis was reversed by the overexpression of YTHDF1. CONCLUSIONS Our study revealed that the HIF-1α/YTHDF1/BECN1 axis in OGD/R-treated HT22 cells promotes ferroptosis, and administration of propofol can inhibit this axis to avoid cell death. This study provides a novel insight for the neuroprotective function of propofol.
Collapse
Affiliation(s)
- Hongyan Ma
- Department of Anesthesiology (Qunli Campus), The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R China
| | - Dongxue Ye
- Department of Anesthesiology (Qunli Campus), The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R China
| | - Yuqing Liu
- Department of Anesthesiology (Qunli Campus), The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R China
| | - Pei Wu
- Department of Neurosrugery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R China
| | - Lu Yu
- Department of Anesthesiology (Qunli Campus), The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R China
| | - Libo Guo
- Department of Anesthesiology (Qunli Campus), The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R China
| | - Yang Gao
- Department of Anesthesiology (Qunli Campus), The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R China
| | - Ying Liu
- Department of Anesthesiology (Qunli Campus), The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R China
| | - Haiyan Yan
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R China
| | - Jinghui Shi
- Department of Anesthesiology (Qunli Campus), The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P.R China
| |
Collapse
|
25
|
Pluta R. The Dual Role of Autophagy in Postischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy. Int J Mol Sci 2023; 24:13793. [PMID: 37762096 PMCID: PMC10530906 DOI: 10.3390/ijms241813793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy is a self-defense and self-degrading intracellular system involved in the recycling and elimination of the payload of cytoplasmic redundant components, aggregated or misfolded proteins and intracellular pathogens to maintain cell homeostasis and physiological function. Autophagy is activated in response to metabolic stress or starvation to maintain homeostasis in cells by updating organelles and dysfunctional proteins. In neurodegenerative diseases, such as cerebral ischemia, autophagy is disturbed, e.g., as a result of the pathological accumulation of proteins associated with Alzheimer's disease and their structural changes. Postischemic brain neurodegeneration, such as Alzheimer's disease, is characterized by the accumulation of amyloid and tau protein. After cerebral ischemia, autophagy was found to be activated in neuronal, glial and vascular cells. Some studies have shown the protective properties of autophagy in postischemic brain, while other studies have shown completely opposite properties. Thus, autophagy is now presented as a double-edged sword with possible therapeutic potential in brain ischemia. The exact role and regulatory pathways of autophagy that are involved in cerebral ischemia have not been conclusively elucidated. This review aims to provide a comprehensive look at the advances in the study of autophagy behavior in neuronal, glial and vascular cells for ischemic brain injury. In addition, the importance of autophagy in neurodegeneration after cerebral ischemia has been highlighted. The review also presents the possibility of modulating the autophagy machinery through various compounds on the development of neurodegeneration after cerebral ischemia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
26
|
Qiao W, Zang Z, Li D, Shao S, Li Q, Liu Z. Liensinine ameliorates ischemia-reperfusion-induced brain injury by inhibiting autophagy via PI3K/AKT signaling. Funct Integr Genomics 2023; 23:140. [PMID: 37118322 DOI: 10.1007/s10142-023-01063-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
The current study aimed to explore the role of autophagy in cerebral ischemia-reperfusion injuries (CIRI) and elucidate the efficacy of liensinine treatment. An in vitro ischemia-reperfusion (I/R) neuronal cell model was established and pretreated with liensinine or rapamycin (RAPA). Cell proliferation and survival were detected using a cell counting kit-8 (CCK-8) assay, while cell damage and apoptosis were detected using the lactate dehydrogenase (LDH) leakage rate and flow cytometry. Autophagy activity was detected using monodansylcadaverine (MDC) staining. Thereafter, I/R models were established in vivo in rats and the presence of neurological deficits was examined. Hematoxylin-eosin (HE) and triphenyl tetrazolium chloride (TTC) staining was used to detect pathological damage in brain tissue and the volume ratio of the cerebral infarction. The levels of PI3K/AKT pathway-related proteins and autophagy-related proteins (mTOR, LC3, P62, and TSC2) were detected using Western blot. The findings showed that liensinine treatment increased cell viability, decreased cell injury and apoptosis, and inhibited autophagy. The addition of RAPA to promote autophagy inhibited cell viability and enhanced cell injury and apoptosis. The I/R rats in the model group exhibited deficient neurological function, while those in the liensinine treatment group showed restoration of normal neural function and reduction of the necrotic area and infarct volume ratio in the brain tissue. Furthermore, liensinine treatment also inhibited the PI3K/Akt pathway activity and autophagy. However, addition of RAPA reversed the effects of liensinine treatment and aggravated brain tissue injury. Therefore, liensinine can play a neuroprotective role in CIRI by inhibiting autophagy through regulation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Wanchen Qiao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoxia Zang
- Department of Neurology, Heilongjiang Province Hospital, Harbin, China
| | - Dawei Li
- Department of Neurology, Shenzhen Sami Medical Center, Shenzhen, China
| | - Shuai Shao
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingla Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiqiang Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
27
|
Li X, Zhang H, Yang L, Dong X, Han Y, Su Y, Li W, Li W. Inhibition of NLRP1 inflammasome improves autophagy dysfunction and Aβ disposition in APP/PS1 mice. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:7. [PMID: 37055801 PMCID: PMC10100229 DOI: 10.1186/s12993-023-00209-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
Increasing evidence has shown that the NOD-like receptor protein 1 (NLRP1) inflammasome is associated with Aβ generation and deposition, which contributes to neuronal damage and neuronal-inflammation in Alzheimer's disease (AD). However, the specific mechanism of NLRP1 inflammasome in the pathogenesis of AD is still unclear. It has been reported that autophagy dysfunction can aggravate the pathological symptoms of AD and plays an important role in regulating Aβ generation and clearance. We hypothesized that NLRP1 inflammasome activation may induce autophagy dysfunction contributing to the progression of AD. In the present study, we observed the relationship between Aβ generation and NLRP1 inflammasome activation, as well as AMPK/mTOR mediated-autophagy dysfunction in WT 9-month-old (M) mice, APP/PS1 6 M and APP/PS1 9 M mice. Additionally, we further studied the effect of NLRP1 knockdown on cognitive function, Aβ generation, neuroinflammation and AMPK/mTOR mediated autophagy in APP/PS1 9 M mice. Our results indicated that NLRP1 inflammasome activation and AMPK/mTOR mediated-autophagy dysfunction are closely implicated in Aβ generation and deposition in APP/PS1 9 M mice, but not in APP/PS1 6 M mice. Meanwhile, we found that knockdown of NLRP1 significantly improved learning and memory impairments, decreased the expressions of NLRP1, ASC, caspase-1, p-NF-κB, IL-1β, APP, CTF-β, BACE1 and Aβ1-42, and decreased the level of p-AMPK, Beclin 1 and LC3 II, and increased the level of p-mTOR and P62 in APP/PS1 9 M mice. Our study suggested that inhibition of NLRP1 inflammasome activation improves AMPK/mTOR mediated-autophagy dysfunction, resulting in the decrease of Aβ generation, and NLRP1 and autophagy might be important targets to delay the progression of AD.
Collapse
Affiliation(s)
- Xuewang Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Han Zhang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liu Yang
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xianan Dong
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yuli Han
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yong Su
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Weiping Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
- Anqing Medical and Pharmaceutical College, Anqing, 246052, Anhui, China.
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
28
|
Huang A, Ji L, Li Y, Li Y, Yu Q. Gut microbiome plays a vital role in post-stroke injury repair by mediating neuroinflammation. Int Immunopharmacol 2023; 118:110126. [PMID: 37031605 DOI: 10.1016/j.intimp.2023.110126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/18/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
Cerebral stroke is a common neurological disease and often causes severe neurological deficits. With high morbidity, mortality, and disability rates, stroke threatens patients' life quality and brings a heavy economic burden on society. Ischemic cerebral lesions incur pathological changes as well as spontaneous nerve repair following stroke. Strategies such as drug therapy, physical therapy, and surgical treatment, can ameliorate blood and oxygen supply in the brain, hamper the inflammatory responses and maintain the structural and functional integrity of the brain. The gut microbiome, referred to as the "second genome" of the human body, participates in the regulation of multiple physiological functions including metabolism, digestion, inflammation, and immunity. The gut microbiome is not only inextricably associated with dangerous factors pertaining to stroke, including high blood pressure, diabetes, obesity, and atherosclerosis, but also influences stroke occurrence and prognosis. AMPK functions as a hub of metabolic control and is responsible for the regulation of metabolic events under physiological and pathological conditions. The AMPK mediators have been found to exert dual roles in regulating gut microbiota and neuroinflammation/neuronal apoptosis in stroke. In this study, we reviewed the role of the gut microbiome in cerebral stroke and the underlying mechanism of the AMPK signaling pathway in stroke. AMPK mediators in nerve repair and the regulation of intestinal microbial balance were also summarized.
Collapse
Affiliation(s)
- Airu Huang
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Ling Ji
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yamei Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Yufeng Li
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| | - Qian Yu
- Department of Rehabilitation Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| |
Collapse
|
29
|
Ning K, Gao R. Icariin protects cerebral neural cells from ischemia‑reperfusion injury in an in vitro model by lowering ROS production and intracellular calcium concentration. Exp Ther Med 2023; 25:151. [PMID: 36911386 PMCID: PMC9995791 DOI: 10.3892/etm.2023.11849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Ischemia is one of the major causes of stroke. The present study investigated the protection of cultured neural cells by icariin (ICA) against ischemia-reperfusion (I/R) injury and possible mechanisms underlying the protection. Neural cells were isolated from neonatal rats and cultured in vitro. The cells were subjected to oxygen-glucose deprivation and reoxygenation (OGD-R) as an I/R mimic to generate I/R injury, and were post-OGD-R treated with ICA. Following the treatments, cell viability, apoptosis, reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD) and Ca2+ concentration were assessed using Cell Counting Kit-8 assay, flow cytometry, CyQUANT™ LDH Cytotoxicity Assay, H2DCFDA and SOD colorimetric activity kit. After OGD-R, considerable I/R injury was observed in the neural cells, as indicated by reduced cell viability, increased apoptosis and increased production of ROS and LDH (P<0.05). Cellular Ca2+ concentration was also increased, while SOD activity remained unchanged. Post-OGD-R ICA treatments increased cell viability up to 87.1% (P<0.05) and reduced apoptosis as low as 6.6% (P<0.05) in a concentration-dependent manner. The treatments also resulted in fewer ROS (P<0.05), lower extracellular LDH content (440.5 vs. 230.3 U/l; P<0.05) and reduced Ca2+ increase (P<0.05). These data suggest that ICA protects the neural cells from I/R injury in an in vitro model through antioxidation activity and maintaining cellular Ca2+ homeostasis. This function may be explored as a potential therapeutic strategy for ischemia-related diseases after further in vivo studies.
Collapse
Affiliation(s)
- Ke Ning
- Department of International Medicine, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| | - Rong Gao
- Surgical Intensive Care Unit, Affiliated Zhongshan Hospital, Dalian University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
30
|
He C, Xu Y, Sun J, Li L, Zhang JH, Wang Y. Autophagy and Apoptosis in Acute Brain Injuries: From Mechanism to Treatment. Antioxid Redox Signal 2023; 38:234-257. [PMID: 35579958 DOI: 10.1089/ars.2021.0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Autophagy and apoptosis are two important cellular mechanisms behind brain injuries, which are severe clinical situations with increasing incidences worldwide. To search for more and better treatments for brain injuries, it is essential to deepen the understanding of autophagy, apoptosis, and their interactions in brain injuries. This article first analyzes how autophagy and apoptosis participate in the pathogenetic processes of brain injuries respectively and mutually, then summarizes some promising treatments targeting autophagy and apoptosis to show the potential clinical applications in personalized medicine and precision medicine in the future. Recent Advances: Most current studies suggest that apoptosis is detrimental to brain recovery. Several studies indicate that autophagy can cause unnecessary death of neurons after brain injuries, while others show that autophagy is beneficial for acute brain injuries (ABIs) by facilitating the removal of damaged proteins and organelles. Whether autophagy is beneficial or detrimental in ABIs depends on many factors, and the results from different research groups are diverse or even controversial, making this topic more appealing to be explored further. Critical Issues: Neuronal autophagy and apoptosis are two primary pathological processes in ABIs. How they interact with each other and how their regulations affect the outcome and prognosis of brain injuries remain uncertain, making these answers more critical. Future Directions: Insights into the interplay between autophagy and apoptosis and the accurate regulations of their balance in ABIs may promote personalized and precise treatments in the field of brain injuries. Antioxid. Redox Signal. 38, 234-257.
Collapse
Affiliation(s)
- Chuyu He
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Yanjun Xu
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Jing Sun
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Layla Li
- Faculty of Medicine, International School, Jinan University, Guangzhou, China
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, California, USA.,Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Yuechun Wang
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| |
Collapse
|
31
|
Cui T, Wang X, Hu J, Lin T, Hu Z, Guo H, Huang G, Hu G, Zhang C. Molybdenum and cadmium co-exposure induces CaMKKβ/AMPK/mTOR pathway mediated-autophagy by subcellular calcium redistribution in duck renal tubular epithelial cells. J Inorg Biochem 2022; 236:111974. [PMID: 36027844 DOI: 10.1016/j.jinorgbio.2022.111974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022]
Abstract
Excessive molybdenum (Mo) and cadmium (Cd) are toxic environmental pollutants. Our previous research confirmed excessive Mo and Cd co-induced calcium homeostasis disorder and autophagy in duck kidneys, but how calcium ion (Ca2+) regulates autophagy is unclear. The results revealed that the Mo- and/or Cd-induced cytosolic Ca2+ concentration ([Ca2+]c) increase mainly came from intracellular calcium stores. Mo and/or Cd caused mitochondrial Ca2+ content ([Ca2+]mit) and [Ca2+]c increase with endoplasmic reticulum (ER) Ca2+ content ([Ca2+]ER) decrease and upregulated calcium homeostasis-related factor expression levels, but 2-Aminoethoxydiphenyl borate (2-APB) reversed subcellular Ca2+ redistribution. Increased Phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP3) activities and inositol 1,4,5-trisphosphate receptor (IP3R) expression level were observed in Mo- and/or Cd-treated cells, which was reversed by the PLC inhibitor U-73122. 2-APB and 1,2-Bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) addition mitigated [Ca2+]c and autophagy (variations in microtubule-associated protein light chain 3 (LC3), LC3B-II/LC3B-I, autophagy related 5 (ATG5), sequestosome-1(P62), programmed cell death-1 (Beclin-1) and Dynein expression levels, LC3 puncta, autophagosomes and acid vesicle organelles) under Mo and/or Cd treatment, respectively, while thapsigargin (TG) had the opposite impacts. Additionally, the calmodulin-dependent protein kinase kinase β (CaMKKβ) inhibitor STO-609 reversed the increased CaMKKβ, adenosine 5'-monophosphate-activated protein kinase (AMPK), Beclin-1, and LC3B-II/LC3B-I protein expression levels and reduced mammalian target of rapamycin (mTOR) and P62 protein expression levels in Mo- and/or Cd-exposed cells. Collectively, the results confirmed that [Ca2+]c overload resulted from PLC/IP3/IP3R pathway-mediated ER Ca2+ release, and then activated autophagy by the CaMKKβ/AMPK/mTOR pathway in Mo- and/or Cd-treated duck renal tubular epithelial cells.
Collapse
Affiliation(s)
- Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueru Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Junyu Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Tianjin Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhisheng Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China..
| |
Collapse
|
32
|
Liu X, Yang B, Tan YF, Feng JG, Jia J, Yang CJ, Chen Y, Wang MH, Zhou J. The role of AMPK-Sirt1-autophagy pathway in the intestinal protection process by propofol against regional ischemia/reperfusion injury in rats. Int Immunopharmacol 2022; 111:109114. [PMID: 35933747 DOI: 10.1016/j.intimp.2022.109114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/05/2022]
Abstract
Intestinal ischemia/reperfusion (II/R) is a clinical event associated with high morbidity and mortality. AMP-activated protein kinase (AMPK), a central cellular energy sensor, is associated with oxidative stress and inflammation. However, whether the AMPK is involved in the II/R-induced intestinal injury and the underlying mechanism is yet to be elucidated. Propofol has a protective effect on organs; yet, its specific mechanism of action remains unclear. This study explored the role of the AMPK-Sirt1-autophagy pathway in intestinal injury, and whether propofol could reduce intestinal injury and investigated the mechanisms in a rat model of II/R injury as well as a cell model (IEC-6 cells) of hypoxia/reoxygenation (H/R). Propofol, AMPK agonist (AICAR) and AMPK inhibitor (Compound C) were then administered, respectively. The histopathological changes, cell viability and apoptosis were detected. Furthermore, the levels of proinflammatory factors, the activities of oxidative stress, diamine oxidase, and signaling pathway were also analyzed. The results demonstrated that the AMPK-Sirt1-autophagy pathway of intestine was activated after II/R or H/R. Propofol could further activate the pathway, which reduced intestinal injury, inhibited apoptosis, reversed inflammation and oxidative stress, and improved the 24-hour survival rate in II/R rats in vivo, and attenuated H/R-induced IEC-6 cell injury, oxidative stress, and apoptosis in vitro, as fine as changes in AICAR treatment. Compound C abrogated the protective effect of propofol on II/R and H/R-induced injury. These results suggested a crucial effect of AMPK on the mechanism of intestinal injury and might provide a new insight into the mechanism of propofol reducing II/R injury.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, PR China
| | - Bo Yang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, PR China
| | - Ya-Fang Tan
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, PR China
| | - Jian-Guo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, PR China
| | - Jing Jia
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, PR China
| | - Cheng-Jie Yang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, PR China
| | - Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, PR China
| | - Mao-Hua Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, PR China.
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, PR China.
| |
Collapse
|
33
|
Guo Z, Zhang Y. Allicin promotes autophagy and ferroptosis in esophageal squamous cell carcinoma by activating AMPK/mTOR signaling. Heliyon 2022; 8:e11005. [PMID: 36311361 PMCID: PMC9615361 DOI: 10.1016/j.heliyon.2022.e11005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
The antitumor effects of allicin have been demonstrated in various cancers. However, whether allicin improves esophageal squamous cell carcinoma (ESCC) has not yet been explored. The present study aimed to explore the function and underlying mechanism of action of allicin in ESCC treatment. Our data showed that allicin significantly suppressed ESCC cell proliferation in a dose- and time-dependent manner. A green fluorescent protein-light chain 3 (LC3) transfection assay showed that autophagosomes were elevated in ESCC cells treated with allicin compared with control ESCC cells and that 3-methyladenine (an autophagy inhibitor) reversed allicin-induced LC3 puncta. Furthermore, allicin significantly elevated the ratio of LC3II/LC3I but decreased p62 expression in ESCC cells. Allicin also increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation but decreased that of the mechanistic target of rapamycin kinase (mTOR), which then induced the elevation of autophagy-related 5 and autophagy-related 7 proteins in ESCC cells. Furthermore, allicin treatment increased the expression of nuclear receptor coactivator 4 (a selective cargo receptor) but suppressed the expression of ferritin heavy chain 1 (the major intracellular iron-storage protein) in ESCC cells and elevated malondialdehyde and Fe2+ production levels. In vivo assays showed that allicin significantly decreased tumor weight and volume. In summary, allicin may induce cell death in ESCC cells by activating AMPK/mTOR-mediated autophagy and ferroptosis. Therefore, allicin may have excellent potential for use in the treatment of ESCC.
Collapse
Affiliation(s)
- Zhanfang Guo
- Department of Gastroenterology, Dalian Municipal Central Hospital, No. 826, Southwest Road, Hekou District, Dalian City, 116023, Liaoning Province, China
| | - Yanjiao Zhang
- The Third Department of Cadres, 967 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, No. 80 Shengli Road, Xigang District, Dalian, 116000, Liaoning Province, China
| |
Collapse
|
34
|
Dai L, Li S, Li X, Jiang B. Propofol inhibits the malignant development of osteosarcoma U2OS cells via AMPK/FΟΧO1‑mediated autophagy. Oncol Lett 2022; 24:310. [PMID: 35949604 PMCID: PMC9353775 DOI: 10.3892/ol.2022.13430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/04/2022] [Indexed: 11/06/2022] Open
Abstract
It has previously been reported that propofol regulates the development of human osteosarcoma (OS). However, the specific molecular mechanisms underlying the effect of propofol on OS remain poorly understood. Therefore, the aim of the present study was to explore the effects of propofol on OS U2OS cells and the potential underlying mechanism. The Cell Counting Kit-8 and colony formation assays were performed to assess cell viability and proliferation. Furthermore, cell apoptosis was assessed using the TUNEL assay and western blotting. Wound healing and Transwell assays were performed to evaluate OS cell migration and invasion abilities, respectively. The protein expression levels of epithelial-mesenchymal transition (EMT)-, autophagy- and adenosine monophosphate-activated protein kinase (AMPK)/FOXO1 signaling pathway-related proteins were also determined using western blotting. The results demonstrated that propofol significantly reduced the viability of OS cells and promoted autophagy in a dose-dependent manner. Moreover, cell treatment with propofol significantly enhanced the protein expression levels of phosphorylated (p)-AMPK and FOXO1, while decreasing the protein levels of p-FOXO1. Furthermore, treatment with propofol significantly suppressed cell viability, migration and invasion abilities and the EMT of OS cells, and potentially promoted cell apoptosis via inducing autophagy via the AMPK/FOXO1 signaling pathway. In summary, the present study indicated that propofol potentially had an inhibitory effect on the development of OS cells via AMPK/FOXO1-mediated autophagy. These results have therefore provided an experimental basis for further studies into the therapeutic effect of propofol on OS.
Collapse
Affiliation(s)
- Lina Dai
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Shimei Li
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Xi Li
- Department of Anesthesiology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, P.R. China
| | - Bo Jiang
- Department of Orthopedic and Sports Medicine, Ningbo First Hospital, Ningbo, Zhejiang 315000, P.R. China
| |
Collapse
|
35
|
Zhao X, Shi X, Yao Y, Li X, Xu S. Autophagy flux inhibition mediated by lysosomal dysfunction participates in the cadmium exposure-induced cardiotoxicity in swine. Biofactors 2022; 48:946-958. [PMID: 35286732 DOI: 10.1002/biof.1834] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/25/2022] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd), a common toxic heavy metal, is believed as a risk factor for the induction and progression of cardiovascular disease. Autophagy is a highly ordered intracellular lysosomal-mediated degradation pathway that is crucial for protein and organelle quality control. Autophagy dysfunction could develop exacerbated cardiac dysfunction. However, the role of autophagy in Cd exposure-induced cardiotoxicity remains largely unknown. In this study, the Cd-induced swine cardiotoxicity model was established by feeding with a CdCl2 suppled diet (20 mg Cd/kg diet). The results showed that Cd exposure increased the expression of endoplasmic reticulum stress-related genes (GRP78, GRP94, IRE1, XBP1, PERK, ATF4, and ATF6), increased the expression of Ca2+ release channels IP3R and RYR1 and decreased the expression of Ca2+ uptake pump SERCA1. Cd exposure upregulated the expression of autophagy-related genes (CAMKKII, AMPK, ATG5, ATG7, ATG12, Beclin1, LC3-II, and P62) and downregulated mTOR expression. Cd exposure inhibited the expression of V-ATPase and cathepsins (CTSB and CTSD), and increased the expression of cathepsins in cytoplasm. Cd exposure decreased the colocalization of autophagosome and lysosome. This study revealed that autophagy flux inhibition caused by lysosomal dysfunction participates in the cardiotoxicity induced by Cd exposure in swine.
Collapse
Affiliation(s)
- Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaojing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
36
|
Novel Therapeutic Strategies for Ischemic Stroke: Recent Insights into Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3450207. [PMID: 35720192 PMCID: PMC9200548 DOI: 10.1155/2022/3450207] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022]
Abstract
Stroke is one of the leading causes of death and disability worldwide. Autophagy is a conserved cellular catabolic pathway that maintains cellular homeostasis by removal of damaged proteins and organelles, which is critical for the maintenance of energy and function homeostasis of cells. Accumulating evidence demonstrates that autophagy plays important roles in pathophysiological mechanisms under ischemic stroke. Previous investigations show that autophagy serves as a “double-edged sword” in ischemic stroke as it can either promote the survival of neuronal cells or induce cell death in special conditions. Following ischemic stroke, autophagy is activated or inhibited in several cell types in brain, including neurons, astrocytes, and microglia, as well as microvascular endothelial cells, which involves in inflammatory activation, modulation of microglial phenotypes, and blood-brain barrier permeability. However, the exact mechanisms of underlying the role of autophagy in ischemic stroke are not fully understood. This review focuses on the recent advances regarding potential molecular mechanisms of autophagy in different cell types. The focus is also on discussing the “double-edged sword” effect of autophagy in ischemic stroke and its possible underlying mechanisms. In addition, potential therapeutic strategies for ischemic stroke targeting autophagy are also reviewed.
Collapse
|
37
|
Liu P, Zhao S, Qiao H, Li T, Mi W, Xu Z, Xue X. Does propofol definitely improve postoperative cognitive dysfunction?-a review of propofol-related cognitive impairment. Acta Biochim Biophys Sin (Shanghai) 2022; 54:875-881. [PMID: 35713318 PMCID: PMC9828335 DOI: 10.3724/abbs.2022067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common brain function-related complication after surgery. In addition to old age being an independent risk factor, anesthetics are also important predisposing factors. Among them, propofol is the most commonly used intravenous anesthetic in clinical practice. It has a rapid onset, short half-life, and high recovery quality. Many studies report that propofol can attenuate surgery-induced cognitive impairment, however, some other studies reveal that propofol also induces cognitive dysfunction. Therefore, this review summarizes the effects of propofol on the cognition, and discusses possible related mechanisms, which aims to provide some evidence for the follow-up studies.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China,Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China
| | - Sheng Zhao
- Department of CardiologyFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100037China
| | - Hui Qiao
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China
| | - Tianzuo Li
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China
| | - Weidong Mi
- Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| | - Zhipeng Xu
- Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| | - Xinying Xue
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| |
Collapse
|
38
|
Tang J, Hu P, Zhou S, Zhou T, Li X, Zhang L. Lymphoma cell-derived extracellular vesicles inhibit autophagy and apoptosis to promote lymphoma cell growth via the microRNA-106a/Beclin1 axis. Cell Cycle 2022; 21:1280-1293. [PMID: 35285412 PMCID: PMC9132475 DOI: 10.1080/15384101.2022.2047335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Lymphoma is a common malignant tumor globally. Tumor-derived extracellular vesicles (Evs) participate in genetic information exchange between tumor cells. We investigated the role and mechanism of human Burkitt lymphoma cells Raji-derived Evs (Raji-Evs) in lymphoma cells. Effects of Evs on lymphoma cell proliferation, invasion, autophagy, and apoptosis were assessed using Cell Counting Kit-8 method, Transwell assay, laser confocal microscopy, Western blotting, and flow cytometry. microRNA (miR)-106a expression in lymphoma cells was determined using reverse transcription-quantitative polymerase chain reaction and then downregulated in Raji cells and then Evs were isolated (Evs-in-miR-106a) to evaluate its role in lymphoma cell growth. The binding relationship between miR-106a and Beclin1 was verified using RNA pull-down and dual-luciferase assays. Beclin1 was overexpressed in SU-DHL-4 and Farage cells and SU-DHL-4 cell autophagy and apoptosis were detected. The levels of miR-106a and Beclin1 in SU-DHL-4 cells were detected after adding autophagy inhibitors. The tumorigenicity assay in nude mice was performed to validate the effects of Raji-Evs in vivo. Raji-Evs promoted lymphoma cell proliferation and invasion and increased miR-106a. miR-106a knockdown reversed Evs-promoted lymphoma cell proliferation and invasion. miR-106a carried by Raji-Evs targeted Beclin1 expression. Beclin1 overexpression or miR-106a inhibitor reversed the effects of Evs on lymphoma cell autophagy and apoptosis. Autophagy inhibitors elevated miR-106a expression and lowered Beclin1 expression. Raji-Evs-carried miR-106a inhibited Beclin1-dependent autophagy and apoptosis in lymphoma cells, which were further verified in vivo, together with promoted tumor growth. We proved that Raji-Evs inhibited lymphoma cell autophagy and apoptosis and promoted cell growth via the miR-106a/Beclin1 axis.
Collapse
Affiliation(s)
- Junling Tang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Peng Hu
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shixia Zhou
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoming Li
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Stem Cell Laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Zhang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Orofacial Reconstruction and Regeneration Laboratory, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China.,Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
39
|
He F, Wang M, Zhao H, Xie D, Lv J, Liu W, Yu W, Wang Q, Chen B, Xu C, Yamamoto T, Koyama H, Cheng J. Autophagy protects against high uric acid-induced hepatic insulin resistance. Mol Cell Endocrinol 2022; 547:111599. [PMID: 35181437 DOI: 10.1016/j.mce.2022.111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Uric acid (UA), the end-product of purine metabolism, is closely related to hepatic insulin resistance (IR). Autophagy is a conserved intracellular degradation process maintaining cellular homeostasis. Autophagy plays a protective role in obesity-related hepatic IR, but whether it occurs in high uric acid (HUA)-induced hepatic IR is unclear. In this study, spontaneously elevated UA level induced hepatic IR and facilitated hepatic autophagy degradation in uricase knockout (Uox-/-) mice. In vitro, HepG2 cells stimulated with HUA medium showed decreased glucose uptake and inhibition of insulin signaling pathways, concomitant with activation of autophagy, as manifested by increased conversion of LC3B-I to -II. Rapamycin, the autophagy activator, alleviated but the autophagy inhibitor trimethyl adenine (3-MA) aggravated HUA-induced IR in HepG2 cells. Similarly, rapamycin ameliorated and 3-MA worsened HUA-induced blood glucose level and hepatic IR in Uox-/- mice. Mechanistically, HUA enhanced AMPKα phosphorylation (p-AMPKα) and inhibited mammalian target of rapamycin phosphorylation (p-mTOR) in HepG2 cells. The levels of p-AMPKα and LC3B-II/I were downregulated in HepG2 cells transfected with small interfering RNA (siRNA) against AMPKα, which suggests that the AMPKα-mTOR pathway was involved in HUA-induced autophagy. Antioxidant N-acetyl-L-cysteine reversed elevated reactive oxygen species levels induced by HUA in HepG2 cells, and AMPKα level was also inhibited, which suggests that AMPKα activation may be derived from reactive oxygen species. Collectively, these findings demonstrate that HUA increased hepatic autophagy, and autophagy activation plays a protective role in hepatic IR, which may suggest a potential therapeutic target for hepatic IR derived from HUA.
Collapse
Affiliation(s)
- Furong He
- Department of Endocrinology, Xiang'an Hospital of Xiamen University. Xiamen, Fujian, China
| | - Mei Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Hairong Zhao
- Department of Endocrinology, Xiang'an Hospital of Xiamen University. Xiamen, Fujian, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University. Xiamen, Fujian, China
| | - Jiaming Lv
- Department of Endocrinology, Xiang'an Hospital of Xiamen University. Xiamen, Fujian, China
| | - Weidong Liu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University. Xiamen, Fujian, China
| | - Wei Yu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University. Xiamen, Fujian, China
| | - Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University. Xiamen, Fujian, China
| | - Binyang Chen
- Department of Endocrinology, Xiang'an Hospital of Xiamen University. Xiamen, Fujian, China
| | - Chenxi Xu
- Department of Endocrinology, Xiang'an Hospital of Xiamen University. Xiamen, Fujian, China
| | - Tetsuya Yamamoto
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University. Xiamen, Fujian, China; Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| |
Collapse
|
40
|
Zhang F, Wang Z, Sun B, Huang Y, Chen C, Hu J, Li L, Xia P, Ye Z. Propofol rescued astrocytes from LPS-induced inflammatory response via blocking LncRNA-MEG3/NF-κB axis. Curr Neurovasc Res 2022; 19:5-18. [PMID: 35297349 DOI: 10.2174/1567202619666220316112509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Evidences had demonstrated that propofol attenuated neuro-inflammation following brain ischemia. Moreover, LncRNA-MEG3 was identified as an independent prognostic marker for ischemic stroke patients, and was found to be correlated with cerebral ischemia in animal models. Therefore, the current study explored the role of propofol on lipopolysaccharide (LPS)-mediated inflammation in cultured astrocytes, along with the molecular mechanism involved in LncRNA-MEG3/NF-κB axis. METHODS The primary cultured astrocytes isolated from rats were used to establish an inflammatory model, which were treated with LPS. Propofol was administrated to the primary cultured astrocytes during LPS treatment. The effect of propofol on pro-inflammatory cytokines and the LncRNA-MEG3/NF-κB pathway were detected by ELISA, qRT-PCR and Western Blot assay, respectively. Then, dual-luciferase assay, chromatin immunoprecipitation and RNA immunoprecipitation were used to determine the interaction between LncRNA-MEG3 and NF-κB. RESULTS Our study found that propofol significantly reduced LncRNA-MEG3 expression, which was elevated in LPS-stimulated astrocytes. Moreover, both propofol and LncRNA-MEG3 knockdown remarkably alleviated LPS-induced cytotoxicity by suppressing expressions and release of pro-inflammatory cytokines. Loss of LncRNA-MEG3 notably suppressed the NF-κB activity and its phosphorylated activation. Additionally, it was also observed that LncRNA-MEG3 could bind nuclear p65/p50, and promote the binding of NF-κB to IL-6 and TNF-α promoters in the nucleus, subsequently stimulating the production of inflammatory cytokines in LPS-treated astrocytes. Furthermore, a specific inhibitor of NF-κB, PDTC rescued astrocytes from LPS exposure without affecting LncRNA-MEG3 expression. CONCLUSION These findings demonstrated that LncRNA-MEG3 acted as a positive regulator of NF-κB, mediated the neuroprotection of propofol in LPS-triggered astrocytes injury.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Zhihua Wang
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan Province, China
| | - Bei Sun
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Yan Huang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Cheng Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Jie Hu
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Longyan Li
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Pingping Xia
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| | - Zhi Ye
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
41
|
Chen M, Peng L, Gong P, Zheng X, Sun T, Zhang X, Huo J. Baicalein Induces Mitochondrial Autophagy to Prevent Parkinson's Disease in Rats via miR-30b and the SIRT1/AMPK/mTOR Pathway. Front Neurol 2022; 12:646817. [PMID: 35237220 PMCID: PMC8883053 DOI: 10.3389/fneur.2021.646817] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson's disease (PD) is a prevailing neurodegenerative disorder. Baicalein has neuroprotective effects on PD animals, but its mechanism is not clarified. We explored baicalein effects on PD rats. PD rat models were established by injecting 6-hydroxydopamine into the striatum of substantia nigra on the left side of the rat brain and treated with baicalein. Dopamine (DA) content, neuronal apoptosis, neuronal injury, neuronal mitochondria, and autophagy were assessed. Baicalein-treated PD rats were treated with autophagy inhibitor 3-methyladenine to identify the role of autophagy in PD. PD rats were injected with AgomiR-30b-5p or sh-SIRT1 plasmids and treated with baicalein. PD rats elicited decreased neurological score and DA secretion of the striatum, increased neuronal apoptosis, and injury, and reduced number of mitochondria and autophagy, whereas baicalein alleviated neuronal injury and partly recovered mitochondrial dysfunction, 3-methyladenine inhibited the protection of baicalein. miR-30b-5p was elevated and SIRT1 was diminished in PD rats and inhibited by baicalein. miR-30b-5p targeted SIRT1. miR-30b-5p overexpression or SIRT1 silencing annulled the protection of baicalein. The phosphorylation level of AMPK in the substantia nigra of PD rats was decreased and mTOR was increased, whereas baicalein annulled these trends. Briefly, baicalein activated mitochondrial autophagy via miR-30b-5p and the SIRT1/AMPK/mTOR pathway, thus protecting PD rats.
Collapse
Affiliation(s)
- Min Chen
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Li Peng
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Ping Gong
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xiaoli Zheng
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Tao Sun
- Department of Surgery, Traditional Chinese Medicine Hospital, Guizhou, China
| | - Xiaoqiao Zhang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Jiangtao Huo
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Hubei, China
- *Correspondence: Jiangtao Huo
| |
Collapse
|
42
|
Su L, Liu Y, Ma H, Zheng F, Daia Y, Wang T, Wang G, Li F, Zhang Y, Yu B, Gong S, Kou J. YiQiFuMai lyophilized injection attenuates cerebral ischemic injury with inhibition of neuronal autophagy through intervention in the NMMHC IIA-actin-ATG9A interaction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 95:153882. [PMID: 34968897 DOI: 10.1016/j.phymed.2021.153882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND YiQiFuMai lyophilized injection (YQFM) is derived from a traditional Chinese medicine prescription termed Shengmai San.YQFM is clinically applied to the treatment of cardiovascular and cerebrovascular diseases. It has been found that critical components of YQFM affect non-muscle myosin heavy chain IIA (NMMHC IIA), but its regulation in the excessive autophagy and the underlying mechanism has yet to be clarified. PURPOSE To evaluate whether YQFM has neuroprotective effects on cerebral ischemia/reperfusion-induced injury by inhibiting NMMHC IIA-actin-ATG9A interaction for autophagosome formation. METHODS The neuroprotective effects of YQFM were investigated in vivo in mice with middle cerebral artery occlusion/reperfusion (MCAO/R) (n = 6) by detecting neurological deficits, infarct volume, and histopathological changes. The NMMHC IIA-actin-ATG9A interaction was determined using immunofluorescence co-localization, co-immunoprecipitation, and proximity ligation assay. Rat pheochromocytoma (PC12) cells subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) were used to mimic neurons in in vitro experiments. RESULTS In MCAO/R model mice, YQFM (1.342 g/kg) attenuated brain ischemia/reperfusion-induced injury by regulating NMMHC IIA-actin-mediated ATG9A trafficking. YQFM (400 μg/ml) also exerted similar effects on OGD/R-induced PC12 cells. Furthermore, RNAi of NMMHC IIA weakened the NMMHC IIA-F-actin-dependent ATG9A trafficking and, therefore, attenuated the neuroprotective activities of YQFM in vitro. CONCLUSION These findings demonstrated that YQFM exerted neuroprotective effects by regulating the NMMHC IIA-actin-ATG9A interaction for autophagosome formation. This evidence sheds new light on the potential mechanism of YQFM in the treatment of cerebral ischemia/reperfusion.
Collapse
Affiliation(s)
- Linjie Su
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Yining Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Huifen Ma
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Fan Zheng
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Yujie Daia
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Tiezheng Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Guangyun Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Fang Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Resource and Developmemt of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China
| | - Shuaishuai Gong
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China.
| | - Junping Kou
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198 China.
| |
Collapse
|
43
|
Ju H, Liu C, Zhang G, Xu C, Wang H, Fan H. Neuroprotective potential of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element signaling modulator cucurbitacin I upon glucose and oxygen deprivation/reperfusion (OGD/RP). Hum Exp Toxicol 2022; 41:9603271221104450. [PMID: 35632987 DOI: 10.1177/09603271221104450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to investigate the inhibitory effect and mechanism of Cucurbitacin I (Cu I) on apoptosis, oxidative stress, and mitophagy in PC12 cells with glucose and oxygen deprivation/reperfusion (OGD/RP) injury. OGD/RP cell injury model was established by gas anoxic cell incubator and glucose-free medium. The cells were divided into the control group, OGD/RP group, OGD/RP + Cu I group, and OGD/RP + Cu I + 2 µM nuclear factor erythroid 2-related factor 2 (Nrf2) inhibitor ML385 group. The results showed that apoptotic rate and reactive oxygen species (ROS) production were significantly increased in OGD/RP group, which were reversed by Cu I pretreatment. Meanwhile, western blot analysis proved that Cu I inhibited OGD/RP-induced mitophagy, manifested as the decreased expression of PTEN-induced kinase 1 (PINK1) and parkin RBR E3 ubiquitin-protein ligase (Parkin), and light chain 3 (LC3) Ⅱ∕LC3 I, as well as the increased expression of P62. Furthermore, immunofluorescence (IF) staining showed that Cu I reduced the co-localized puncta of LC3 with TOM20 in OGD/RP-induced PC12 cells. Similarly, transmission electron microscope finding is consistent with the IF results. Mechanically, after Cu I and OGD/RP treatments, nuclear Nrf2 expression and the levels of downstream target genes were significantly upregulated compared with OGD/RP alone treatment. Nrf2 inhibition reversed the protective effects of Cu I on OGD/RP-induced injury in PC12 cells. The present study provides evidence of the neuroprotective effect of Cu I unraveling its potential as a potential therapeutic candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Hu Ju
- Department of Neurosurgery, Qinghai University Affiliated Hospital, Chengxi District, Xining, Qinghai, China
| | - Chuanchuan Liu
- Key Laboratory of Hydatid Research, Qinghai University Affiliated Hospital, Qinghai Province Key Laboratory of Hydatid Disease Research, Chengxi District, Xining, Qinghai, China
| | - Guanghua Zhang
- Department of Neurosurgery, Qinghai University Affiliated Hospital, Chengxi District, Xining, Qinghai, China
| | - Changlin Xu
- Department of Neurosurgery, Qinghai University Affiliated Hospital, Chengxi District, Xining, Qinghai, China
| | - Hu Wang
- 599265Health Commission of Qinghai Province, Chengxi District, Xining, Qinghai, China
| | - Haining Fan
- Department of Hepatopancreatobiliary Surgery, Qinghai University Affiliated Hospital, Qinghai Province Key Laboratory of Hydatid Disease Research, Chengxi District, Xining, Qinghai, China
| |
Collapse
|
44
|
Protective Effect of Buyang Huanwu Decoction on Cerebral Ischemia Reperfusion Injury by Alleviating Autophagy in the Ischemic Penumbra. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9937264. [PMID: 34917161 PMCID: PMC8670924 DOI: 10.1155/2021/9937264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022]
Abstract
Objectives To evaluate the protective effect of Buyang Huanwu Decoction (BHD) against cerebral ischemia reperfusion and investigate whether autophagy is involved in its mechanism of action. Methods Adult male Sprague Dawley rats were randomly divided into three groups: the sham, cerebral ischemia reperfusion (I/R), and I/R + BHD groups. A rat model of cerebral I/R injury was established via middle cerebral artery occlusion (MCAO) for 2 h, followed by 1, 3, and 7 d of reperfusion. Neurological scores and regional cerebral blood flow were assessed to determine whether the model was successfully established. Brain infarct volume was determined by 2,3,5-triphenyl tetrazolium chloride (TTC) staining. The apoptosis rate was detected using TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, and neuronal damage was evaluated by Nissl staining. The Beclin-1 and LC3 protein levels in the ischemic core, penumbra, and contralateral area were analysed by Western blotting. The occurrence of autophagy in the penumbra was observed by transmission electron microscopy (TEM). Results BHD treatment alleviated the cerebral infarct volume, neuronal apoptosis rate, and neuronal damage 3 and 7 d after cerebral I/R injury. Furthermore, 3 d after reperfusion, we observed that the Beclin-1 levels were significantly decreased in the core in the I/R group, whereas transformation of LC3 I to LC3 II exhibited no obvious differences between the sham and I/R groups. In the penumbra, the Beclin-1 levels and transformation of LC3 I to LC3 II in the I/R group were significantly increased compared with that in the sham group. However, no significant difference in the contralateral area was noted between the two groups. BHD significantly inhibited the expression of Beclin-1 and the transformation of LC3 I to LC3 II in the penumbra after cerebral I/R injury but yielded no significant changes in the core and contralateral area. Conclusions BHD exerts a neuroprotective effect by inhibiting autophagy in neurons in the penumbra after cerebral I/R injury.
Collapse
|
45
|
Gupta R, Ambasta RK, Pravir Kumar. Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 2021; 78:8001-8047. [PMID: 34741624 PMCID: PMC11072037 DOI: 10.1007/s00018-021-04004-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are two crucial self-destructive processes that maintain cellular homeostasis, which are characterized by their morphology and regulated through signal transduction mechanisms. These pathways determine the fate of cellular organelle and protein involved in human health and disease such as neurodegeneration, cancer, and cardiovascular disease. Cell death pathways share common molecular mechanisms, such as mitochondrial dysfunction, oxidative stress, calcium ion concentration, reactive oxygen species, and endoplasmic reticulum stress. Some key signaling molecules such as p53 and VEGF mediated angiogenic pathway exhibit cellular and molecular responses resulting in the triggering of apoptotic and autophagic pathways. Herein, based on previous studies, we describe the intricate relation between cell death pathways through their common genes and the role of various stress-causing agents. Further, extensive research on autophagy and apoptotic machinery excavates the implementation of selective biomarkers, for instance, mTOR, Bcl-2, BH3 family members, caspases, AMPK, PI3K/Akt/GSK3β, and p38/JNK/MAPK, in the pathogenesis and progression of neurodegenerative diseases. This molecular phenomenon will lead to the discovery of possible therapeutic biomolecules as a pharmacological intervention that are involved in the modulation of apoptosis and autophagy pathways. Moreover, we describe the potential role of micro-RNAs, long non-coding RNAs, and biomolecules as therapeutic agents that regulate cell death machinery to treat neurodegenerative diseases. Mounting evidence demonstrated that under stress conditions, such as calcium efflux, endoplasmic reticulum stress, the ubiquitin-proteasome system, and oxidative stress intermediate molecules, namely p53 and VEGF, activate and cause cell death. Further, activation of p53 and VEGF cause alteration in gene expression and dysregulated signaling pathways through the involvement of signaling molecules, namely mTOR, Bcl-2, BH3, AMPK, MAPK, JNK, and PI3K/Akt, and caspases. Alteration in gene expression and signaling cascades cause neurotoxicity and misfolded protein aggregates, which are characteristics features of neurodegenerative diseases. Excessive neurotoxicity and misfolded protein aggregates lead to neuronal cell death by activating death pathways like autophagy and apoptosis. However, autophagy has a dual role in the apoptosis pathways, i.e., activation and inhibition of the apoptosis signaling. Further, micro-RNAs and LncRNAs act as pharmacological regulators of autophagy and apoptosis cascade, whereas, natural compounds and chemical compounds act as pharmacological inhibitors that rescue neuronal cell death through inhibition of apoptosis and autophagic cell death.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Mechanical Engineering Building, Delhi Technological University (Formerly Delhi College of Engineering), Room# FW4TF3, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
- , Delhi, India.
| |
Collapse
|
46
|
Abstract
The integrity of the blood-brain barrier (BBB) is mainly maintained by the brain vascular endothelial cells and the tight junctions amongst them. Pimavanserin is a novel agent approved for the treatment of Parkinson’s disease and exerts neuroprotective properties. The present study aims to explore the possibility that Pimavanserin might be an effective agent used for the treatment of cerebral ischemia stroke. Middle cerebral artery occlusion (MCAO) was established in mice, and oxygen-glucose deprivation/reoxygenation (OGD/R) was established in brain bEND.3 endothelial cells. Mice were randomly divided into four groups: (1) Sham operation group; (2). Pimavanserin (1 mg/kg); (3). MCAO; (4). Pimavanserin+ MCAO. We found that compared to the Sham group, the elevated neurological deficit score and brain water content increased production of inflammatory factors, increased BBB permeability, and downregulated Claudin 5 expression were observed in the MCAO group and were all dramatically reversed by the administration of Pimavanserin. Brain bEND.3 endothelial cells were treated with Pimavanserin before the exposure to OGD/R. The significantly increased lactate dehydrogenase (LDH) release, declined cell viability, increased endothelial permeability, downregulated Claudin 5 and Krüppel-like factors 6 (KLF6) were observed in the OGD/R group and were all reversed by the introduction of Pimavanserin. Lastly, the effects of Pimavanserin on the expression level of Claudin 5 and endothelial permeability in OGD/R-challenged endothelial cells were both abolished by the knockdown of KLF6. Taken together, our data revealed that Pimavanserin protected against cerebral ischemia injury by regulating the BBB integrity in a KLF6-dependent manner.
Collapse
Affiliation(s)
- Xiang Li
- Department of General Practice, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, HL, China
| | - Xiaoyan Tian
- Department of General Practice, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, HL, China
| |
Collapse
|
47
|
Ajoolabady A, Wang S, Kroemer G, Penninger JM, Uversky VN, Pratico D, Henninger N, Reiter RJ, Bruno A, Joshipura K, Aslkhodapasandhokmabad H, Klionsky DJ, Ren J. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics. Pharmacol Ther 2021; 225:107848. [PMID: 33823204 PMCID: PMC8263472 DOI: 10.1016/j.pharmthera.2021.107848] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Stroke constitutes the second leading cause of death and a major cause of disability worldwide. Stroke is normally classified as either ischemic or hemorrhagic stroke (HS) although 87% of cases belong to ischemic nature. Approximately 700,000 individuals suffer an ischemic stroke (IS) in the US each year. Recent evidence has denoted a rather pivotal role for defective macroautophagy/autophagy in the pathogenesis of IS. Cellular response to stroke includes autophagy as an adaptive mechanism that alleviates cellular stresses by removing long-lived or damaged organelles, protein aggregates, and surplus cellular components via the autophagosome-lysosomal degradation process. In this context, autophagy functions as an essential cellular process to maintain cellular homeostasis and organismal survival. However, unchecked or excessive induction of autophagy has been perceived to be detrimental and its contribution to neuronal cell death remains largely unknown. In this review, we will summarize the role of autophagy in IS, and discuss potential strategies, particularly, employment of natural compounds for IS treatment through manipulation of autophagy.
Collapse
Affiliation(s)
- Amir Ajoolabady
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Shuyi Wang
- University of Wyoming College of Health Sciences, Laramie, WY 82071, USA; School of Medicine Shanghai University, Shanghai 200444, China
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow region 142290, Russia
| | - Domenico Pratico
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts, Worcester, Massachusetts, USA; Department of Psychiatry, University of Massachusetts, Worcester, Massachusetts, USA
| | - Russel J Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Askiel Bruno
- Department of Neurology, Medical College of Georgia, Augusta University, GA 30912, USA
| | - Kaumudi Joshipura
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Center for Clinical Research and Health Promotion, University of Puerto Rico Medical Sciences Campus, San Juan, PR 00936-5067, Puerto Rico
| | | | - Daniel J Klionsky
- Life Sciences Institute and Departments of Molecular, Cellular and Developmental Biology and Biological Chemistry, University of Michigan, Ann Arbor 48109, USA.
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington Seattle, Seattle, WA 98195, USA; Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
48
|
Baicalein Mediates Mitochondrial Autophagy via miR-30b and the NIX/BNIP3 Signaling Pathway in Parkinson's Disease. Biochem Res Int 2021; 2021:2319412. [PMID: 34457363 PMCID: PMC8390153 DOI: 10.1155/2021/2319412] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/02/2021] [Accepted: 07/24/2021] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) is regarded as a severe neurodegenerative disorder. Baicalein is involved in the treatment of PD. This study explored the mechanism of baicalein in PD. The PD rat model was established using 6-hydroxydopamine. The neurologic score, dopamine (DA) content, apoptotic cells, and neuronal damage were evaluated after rats were treated with baicalein. Autophagy in PD rats was inhibited using 3-methyladenine (3-MA). The mitochondrial membrane potential (MMP) and autophagy-related proteins (LC3, P62) were detected. Next, agomiR-30b was transfected into PD rats. The targeting relation between miR-30b and NIX was predicted and verified. Then, sh-NIX was transfected into PD rats, and the effects of miR-30b and NIX on MMP, LC3, and P62 were assessed. When miR-30b was overexpressed using agomiR-30b, the NIX and BNIP3 levels were detected. Baicalein increased the neurological score and restored DA content, neurons, MMP, and mitochondrial autophagy protein levels. Baicalein inhibited miR-30b expression and miR-30b targeted NIX. miR-30b upregulation or NIX silencing reversed the effect of baicalein on MMP and mitochondrial autophagy. Baicalein upregulated NIX and BNIP3 expressions, while miR-30b overexpression inhibited NIX and BNIP3 expressions. In summary, baicalein mediated mitochondrial autophagy and restored neuronal activity by downregulating miR-30b and activating the NIX/BNIP3 pathway, thus protecting against PD.
Collapse
|
49
|
Hu Y, Ye C, Cheng S, Chen J. Propofol Downregulates lncRNA MALAT1 to Alleviate Cerebral Ischemia-Reperfusion Injury. Inflammation 2021; 44:2580-2591. [PMID: 34427851 DOI: 10.1007/s10753-021-01525-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Propofol (PPF) is reported to play a protective role in ischemia/reperfusion (I/R) injury, including cerebral ischemia-reperfusion injury (CIRI). This study aims to investigate the mechanism by which PPF ameliorates CIRI. Kunming mice were used to establish the middle cerebral artery occlusion (MCAO)/reperfusion mouse model in vivo. PPF pre-treatment was performed before CIRI. Lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) levels were detected to evaluate the tissue injury. PC12 cells were exposed to hypoxia/reoxygenation (H/R) to construct the in vitro CIRI model, and PC12 cells were pre-treated with PPF before H/R. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to detect the expression of lncRNA MALAT1 and miR-182-5p. Flow cytometry was used to detect the apoptosis of PC12 cells. Bioinformatics analysis, qRT-PCR, dual-luciferase reporter gene experiments, and RNA immunoprecipitation (RIP) experiments were performed to predict and validate the targeting relationship between MALAT1 and miR-182-5p. Western blot was used to detect Toll-like receptor 4 (TLR4) expression at protein level. PPF pre-treatment remarkably inhibited LDH and CPK levels in the serum of the mice with CIRI, and reduced the apoptosis of PC12 cells exposed to H/R. Besides, PPF pre-treatment markedly suppressed MALAT1 expression in both in vivo and in vitro models and upregulated miR-182-5p expression. MiR-182-5p was validated to be a downstream target gene of MALAT1, and MALAT1 could increase the expression of TLR4 by suppressing miR-182-5p. The effects of PPF on the injury of the mice brain and PC12 cells were partly counteracted by the restoration of MALAT1. PPF protects the brain against I/R-induced injury by regulating MALAT1/miR-182-5p/TLR4 axis.
Collapse
Affiliation(s)
- Yubo Hu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province, 130033, China
| | - Cong Ye
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Shuang Cheng
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province, 130033, China
| | - Junyang Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province, 130033, China. .,Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province, 130033, China.
| |
Collapse
|
50
|
Sun B, Ou H, Ren F, Guan Y, Huan Y, Cai H. Propofol Protects against Cerebral Ischemia/Reperfusion Injury by Down-Regulating Long Noncoding RNA SNHG14. ACS Chem Neurosci 2021; 12:3002-3014. [PMID: 34369750 DOI: 10.1021/acschemneuro.1c00059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia-reperfusion (CI/R) injury is a serious central nervous system disease. Propofol (PPF) exerts a neuroprotective effect in CI/R injury; the underlying cause is still unclear. Here, we cultured mouse hippocampal neuron (HT22 cells) in oxygen-glucose deprivation/reoxygenation (OGD/R) conditions to mimic CI/R injury in vitro. PPF treatment promoted cell viability and reduced apoptotic cells in the OGD/R-treated HT22 cells, which was effectively abrogated by SNHG14 overexpression. Moreover, we constructed a CI/R injury mouse model on C57BL/6J mice by middle cerebral artery occlusion/reperfusion (MCAO/R), followed by administration of PPF. PPF reduced neuronal damage and loss, enhanced glial cell hyperplasia, and ameliorated cerebral cortex tissue damage and brain infarct in MCAO/R-induced mice. SNHG14 overexpression aggravated MCAO/R-induced CI/R injury in mice. Furthermore, SNHG14 promoted the expression of Atg5 and Beclin 1 via competitively binding miR-30b-5p, which contributed to activate autophagy and apoptosis in HT22 cells. In addition, the levels of p-p38 and p-SP1 were reduced in the OGD/R-treated HT22 cells in the presence of PPF. SP1 interacted with the promoter of SNHG14 and elevated the expression of SNHG14. PPF treatment inhibited the SP1-mediated up-regulation of SNHG14. In conclusion, this work demonstrates that PPF inhibits SNHG14 expression though the p38 MAPK signaling pathway. SNHG14 promotes Atg5 and Beclin 1 expression by sponging miR-30b-5p and thus activates autophagy and aggravates CI/R injury.
Collapse
Affiliation(s)
- Bei Sun
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hao Ou
- Department of Emergency and Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Fei Ren
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yujiao Guan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ye Huan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hongwei Cai
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|