1
|
Sutter L, Hall DJ, Bischoff L, Dommann-Scherrer C, Schläppi M, Pourzal R, Hallab N, Meier C, Wahl P. How In Vivo Alteration of Hip Replacement Wear Mode Can Cause a Voluminous Inflammatory Reaction and an Excessive Titanium Exposure. J Clin Med 2025; 14:210. [PMID: 39797293 PMCID: PMC11722162 DOI: 10.3390/jcm14010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/19/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Wear particle reaction is present in every arthroplasty. Sometimes, this reaction may lead to formation of large pseudotumors. As illustrated in this case, the volume of the reaction may be out of proportion to the volume of the wear scar. This case also is the first description of elimination kinetics of systemic titanium exposure caused by wear of a hip arthroplasty. Methods: Case report. Results: A 85-year-old male required revision after total hip arthroplasty due to aseptic loosening of the cup. A massive local adverse reaction to metal and polyethylene debris developed before revision, much larger than the implant damage would intuitively suggest. In this case, in vivo transition in wear mode from edge loading to impingement wear resulted in excessive titanium and polyethylene wear and subsequently a voluminous macrophage reaction and an excessive systemic titanium exposure, with blood concentrations showing a very long elimination half-life of more than two years. Conclusions: The volume of the wear particle reaction is dictated by the volume of the inflammatory cells, not of the wear particles. To the best of our knowledge, this is the first description of elimination kinetics in case of systemic titanium exposure. While the tissue response is caused by a sudden increase of titanium and polyethylene debris, titanium is detectable through whole blood, not serum, analysis and thus be an indicator for risk of failure due to abnormal articulation of the joint replacement. Such measurement may be useful if changes in implant position are detected radiographically. Major elevations of titanium concentrations may require revision, as for any other metal ions.
Collapse
Affiliation(s)
- Luca Sutter
- Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, 8401 Winterthur, Switzerland; (L.S.); (L.B.); (M.S.); (C.M.)
| | - Deborah J. Hall
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (D.J.H.); (R.P.)
| | - Lydia Bischoff
- Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, 8401 Winterthur, Switzerland; (L.S.); (L.B.); (M.S.); (C.M.)
| | | | - Michel Schläppi
- Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, 8401 Winterthur, Switzerland; (L.S.); (L.B.); (M.S.); (C.M.)
| | - Robin Pourzal
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (D.J.H.); (R.P.)
| | - Nadim Hallab
- Department of Immunity and Emerging Pathogens, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Christoph Meier
- Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, 8401 Winterthur, Switzerland; (L.S.); (L.B.); (M.S.); (C.M.)
| | - Peter Wahl
- Division of Orthopaedics and Traumatology, Cantonal Hospital Winterthur, 8401 Winterthur, Switzerland; (L.S.); (L.B.); (M.S.); (C.M.)
- Faculty of Medicine, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
2
|
Paslı D, Gürbay A. Assessment of Protective Effects of DTPA, NAC, and Taurine on Possible Cytotoxicity Induced by Individual and Combined Zinc Oxide and Copper Oxide Nanoparticles in SH-SY5Y Cells. Biol Trace Elem Res 2025; 203:153-166. [PMID: 38683268 DOI: 10.1007/s12011-024-04161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024]
Abstract
The present study investigated the cytotoxic effects of ZnO, CuO, and mixed combinations of them on SH-SY5Y cells. For this purpose, the cells were exposed to various concentrations of these NPs alone for 24-96 h and as a mixture for 24 h. Variations in cell viability were noted. MTT results showed that ZnO and/or CuO NPs decreased cell survival by about 59% at 200 (ZnO, at 24 h) and 800 µg/ml (ZnO and/or CuO, at 72 and 96 h). When the NR assay was used, slight decreases were noted with ZnO NPs at 72 and 96 h. With CuO NPs alone and NPs in a mixture, only the highest concentrations caused 40 and 70% decreases in cell survival, respectively. Especially with NR assays, DTPA, NAC, or taurine provided marked protection. ROS levels were increased with the highest concentration of CuO NPs and with all concentrations of the mixture. The highest concentration of ZnO NPs and the lowest concentration of CuO NPs caused slight decreases in mitochondrial membrane potential levels. Additionally, increases were noted in caspase 3/7 levels with ZnO and CuO NPs alone or with a mixture of them. Intracellular calcium levels were decreased in this system. These findings demonstrated that ZnO and CuO NPs, either separately or in combination, had a modest cytotoxic effect on SH-SY5Y cells. Protection obtained with DTPA, NAC, or taurine against the cytotoxicity of these NPs and the ROS-inducing effect of CuO NPs and the NPs' mixture suggests that oxidative stress might be involved in the cytotoxicity mechanisms of these NPs.
Collapse
Affiliation(s)
- Duygu Paslı
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey
| | - Aylin Gürbay
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey.
| |
Collapse
|
3
|
Dai H, He S, Han J, Xing B. Mask Wearers at Risk of Inhaling Respirable Hazards from Leave-On Facial Cosmetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21464-21474. [PMID: 39602556 DOI: 10.1021/acs.est.4c07604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Previous research has widely overlooked the respiratory risks associated with cosmetic powder, a type of mixed particulate matter with intricate chemical compositions, especially in the context of wearing masks. This study investigated the inhalation risks posed by five face powders, focusing on both particulate matter (minerals and primary microplastics) and soluble components (preservatives and organic UV filters). Wearing masks significantly increased the inhalation risk of face powders, with exposure levels influenced by factors such as particle size, density, and composition. Additionally, different samples demonstrated irregular behavioral patterns when exposed to various human tissue environments. Soluble components analysis revealed that multiple additives dissolved in six body fluids, with a higher degree of release observed in the respiratory tract fluid compared to the digestive tract fluid. The alveoli may serve as a specific target for exposure to organic UV filters due to the solubilization effect of pulmonary surfactants. These findings revealed the importance of considering both particulate matter and soluble components when assessing respiratory and digestive exposure risks from cosmetic powders. Furthermore, understanding the interactions between cosmetic particles and body fluids, as well as potential synergistic toxic effects, is crucial for ensuring the safety of cosmetic products and safeguarding public health.
Collapse
Affiliation(s)
- Han Dai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shanshan He
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
4
|
Teixeira MI, Lopes CM, Amaral MH, Costa PC. Navigating Neurotoxicity and Safety Assessment of Nanocarriers for Brain Delivery: Strategies and Insights. Acta Biomater 2024; 189:25-56. [PMID: 39307261 DOI: 10.1016/j.actbio.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 10/11/2024]
Abstract
Nanomedicine, an area that uses nanomaterials for theragnostic purposes, is advancing rapidly, particularly in the detection and treatment of neurodegenerative diseases. The design of nanocarriers can be optimized to enhance drug bioavailability and targeting to specific organs, improving therapeutic outcomes. However, clinical translation hinges on biocompatibility and safety. Nanocarriers can cross the blood-brain barrier (BBB), potentially causing neurotoxic effects through mechanisms such as oxidative stress, DNA damage, and neuroinflammation. Concerns about their accumulation and persistence in the brain make it imperative to carry out a nanotoxicological risk assessment. Generally, this involves identifying exposure sources and routes, characterizing physicochemical properties, and conducting cytotoxicity assays both in vitro and in vivo. The lack of a specialized regulatory framework creates substantial gaps, making it challenging to translate findings across development stages. Additionally, there is a pressing need for innovative testing methods due to constraints on animal use and the demand for high-throughput screening. This review examines the mechanisms of nanocarrier-induced neurotoxicity and the challenges in risk assessment, highlighting the impact of physicochemical properties and the advantages and limitations of current neurotoxicity evaluation models. Future perspectives are also discussed. Additional guidance is crucial to improve the safety of nanomaterials and reduce associated uncertainty. STATEMENT OF SIGNIFICANCE: Nanocarriers show tremendous potential for theragnostic purposes in neurological diseases, enhancing drug targeting to the brain, and improving biodistribution and pharmacokinetics. However, their neurotoxicity is still a major field to be explored, with only 5% of nanotechnology-related publications addressing this matter. This review focuses on the issue of neurotoxicity and safety assessment of nanocarriers for brain delivery. Neurotoxicity-relevant exposure sources, routes, and molecular mechanisms, along with the impact of the physicochemical properties of nanomaterials, are comprehensively described. Moreover, the different experimental models used for neurotoxicity evaluation are explored at length, including their main advantages and limitations. To conclude, we discuss current challenges and future perspectives for a better understanding of risk assessment of nanocarriers for neurobiomedical applications.
Collapse
Affiliation(s)
- Maria Inês Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Carla M Lopes
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; FP-I3ID, FP-ENAS/CEBIMED, Fernando Pessoa Energy, Environment, and Health Research Unit/Biomedical Research Center, Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal.
| | - Maria Helena Amaral
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paulo C Costa
- UCIBIO - Applied Molecular Biosciences Unit, MedTech - Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Almeer R, Alyami NM. Effect of lycopene on TiO 2 nanoforms induced oxidative stress and neuroinflammation in SH-SY5Y cells: an in vitro study. Drug Chem Toxicol 2024:1-11. [PMID: 39227360 DOI: 10.1080/01480545.2024.2397429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
Due to its antioxidant action, the carotenoid lycopene has been demonstrated to have a protective effect in several disease models; however, its effect on the nanoform of titanium oxide (nano-TiO2)-induced neurotoxicity has not yet been determined. The purpose of this study was to evaluate how lycopene affects neuronal damage brought on by nano-TiO2 and the mechanisms involved. SH-SY5Y cells were treated with different concentrations of nano-TiO2 for 48 hours, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test was used after that to evaluate cell viability. IC50 of nano-TiO2 was determined and the results revealed that IC50 is equal 40 µM/mL, lycopene (10 µM) was applied to SH-SY5Y human neuroblastoma cells an hour before exposure to 40 µM nano-TiO2. Reactive oxygen species, lipid peroxidation, nitric oxide, glutathione, superoxide dismutase, and catalase, tumor necrosis factor-alpha, interleukin 1 beta, nuclear factor kappa B, and apoptotic markers (Bcl2, Bax, and caspase-3), were measured to determine the anti-oxidant effect of lycopene. In SH-SY5Y neuroblastoma cells, pretreatment with 10 µM lycopene significantly reduced the toxicity brought on by exposure to nano-TiO2, according to MTT assay findings and lactate dehydrogenase (LDH) cytotoxicity assessment. In cells exposed to nano-TiO2, lycopene pretreatment significantly boosted the activity of antioxidative enzymes and reduced oxidative stress. Furthermore, when SH-SY5Y cells were subjected to nano-TiO2, lycopene pretreatment stopped neuroinflammation and apoptosis. The findings of this study suggest that lycopene may be an effective neuroprotective against oxidative stress and neuroinflammation and may be used to stop neuronal death or injury in a variety of neurological illnesses.
Collapse
Affiliation(s)
- Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nouf M Alyami
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Lim JO, Kim WI, Pak SW, Lee SJ, Moon C, Shin IS, Kim SH, Kim JC. Pycnogenol-Assisted Alleviation of Titanium Dioxide Nanoparticle-Induced Lung Inflammation via Thioredoxin-Interacting Protein Downregulation. Antioxidants (Basel) 2024; 13:972. [PMID: 39199218 PMCID: PMC11351339 DOI: 10.3390/antiox13080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Titanium dioxide nanoparticles (TiO2NPs) are used in products that are applied to the human body, such as cosmetics and food, but their biocompatibility remains controversial. Pycnogenol (PYC), a natural extract of pine bark, exerts anti-inflammatory and antioxidant effects. In this study, we investigated whether PYC effectively alleviates pulmonary toxicity induced by airway exposure to TiO2NPs, and the beneficial effects of PYC were explained through the analysis of changes to the mechanism of cytotoxicity. TiO2NPs induced pulmonary inflammation and mucus production, increased the levels of malondialdehyde, and upregulated thioredoxin-interacting protein (TXNIP) and cleaved-caspase 3 (Cas3) in the lungs of mice. However, PYC treatment reduced the levels of all toxicity markers of TiO2NPs and restored glutathione levels. These antioxidant and anti-inflammatory effects of PYC were also demonstrated in TiO2NP-exposed human airway epithelial cells by increasing the mRNA levels of antioxidant enzymes and decreasing the expression of TXNIP, cleaved-Cas3, and inflammatory mediators. Taken together, our results showed that PYC attenuated TiO2NP-induced lung injury via TXNIP downregulation. Therefore, our results suggest the potential of PYC as an effective anti-inflammatory and antioxidant agent against TiO2NP-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Je-Oh Lim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju 58245, Republic of Korea
| | - Woong-Il Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - So-Won Pak
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - Se-Jin Lee
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - Changjong Moon
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - In-Sik Shin
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| | - Sung-Hwan Kim
- Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Jong-Choon Kim
- College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, Republic of Korea; (J.-O.L.); (W.-I.K.); (S.-W.P.); (S.-J.L.); (C.M.); (I.-S.S.)
| |
Collapse
|
7
|
Bokobza L. On the Use of Nanoparticles in Dental Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3191. [PMID: 38998274 PMCID: PMC11242106 DOI: 10.3390/ma17133191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Results obtained in physics, chemistry and materials science on nanoparticles have drawn significant interest in the use of nanostructures on dental implants. The main focus concerns nanoscale surface modifications of titanium-based dental implants in order to increase the surface roughness and provide a better bone-implant interfacial area. Surface coatings via the sol-gel process ensure the deposition of a homogeneous layer of nanoparticles or mixtures of nanoparticles on the titanium substrate. Nanotubular structures created on the titanium surface by anodic oxidation yield an interesting nanotopography for drug release. Carbon-based nanomaterials hold great promise in the field of dentistry on account of their outstanding mechanical properties and their structural characteristics. Carbon nanomaterials that include carbon nanotubes, graphene and its derivatives (graphene oxide and graphene quantum dots) can be used as coatings of the implant surface. Their antibacterial properties as well as their ability to be functionalized with adequate chemical groups make them particularly useful for improving biocompatibility and promoting osseointegration. Nevertheless, an evaluation of their possible toxicity is required before being exploited in clinical trials.
Collapse
Affiliation(s)
- Liliane Bokobza
- Independent Researcher, 194-196 Boulevard Bineau, 92200 Neuilly-sur-Seine, France
| |
Collapse
|
8
|
Sebastijanović A, Azzurra Camassa LM, Malmborg V, Kralj S, Pagels J, Vogel U, Zienolddiny-Narui S, Urbančič I, Koklič T, Štrancar J. Particulate matter constituents trigger the formation of extracellular amyloid β and Tau -containing plaques and neurite shortening in vitro. Nanotoxicology 2024; 18:335-353. [PMID: 38907733 DOI: 10.1080/17435390.2024.2362367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/24/2024]
Abstract
Air pollution is an environmental factor associated with an increased risk of neurodegenerative diseases, such as Alzheimer's and Parkinson's, characterized by decreased cognitive abilities and memory. The limited models of sporadic Alzheimer's disease fail to replicate all pathological hallmarks of the disease, making it challenging to uncover potential environmental causes. Environmentally driven models of Alzheimer's disease are thus timely and necessary. We used live-cell confocal fluorescent imaging combined with high-resolution stimulated emission depletion (STED) microscopy to follow the response of retinoic acid-differentiated human neuroblastoma SH-SY5Y cells to nanomaterial exposure. Here, we report that exposure of the cells to some particulate matter constituents reproduces a neurodegenerative phenotype, including extracellular amyloid beta-containing plaques and decreased neurite length. Consistent with the existing in vivo research, we observed detrimental effects, specifically a substantial reduction in neurite length and formation of amyloid beta plaques, after exposure to iron oxide and diesel exhaust particles. Conversely, after exposure to engineered cerium oxide nanoparticles, the lengths of neurites were maintained, and almost no extracellular amyloid beta plaques were formed. Although the exact mechanism behind this effect remains to be explained, the retinoic acid differentiated SH-SY5Y cell in vitro model could serve as an alternative, environmentally driven model of neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Aleksandar Sebastijanović
- Infinite LLC, Maribor, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | | | - Vilhelm Malmborg
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Slavko Kralj
- Material Synthesis Department, Jožef Stefan Institute, Slovenia
| | - Joakim Pagels
- Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- NanoLund, Lund University, Lund, Sweden
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | | | - Iztok Urbančič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Tilen Koklič
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janez Štrancar
- Infinite LLC, Maribor, Slovenia
- Laboratory of Biophysics, Condensed Matter Physics Department, Jožef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
9
|
Chauhan N, Pareek S, Rosario W, Rawal R, Jain U. An insight into the state of nanotechnology-based electrochemical biosensors for PCOS detection. Anal Biochem 2024; 687:115412. [PMID: 38040173 DOI: 10.1016/j.ab.2023.115412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/25/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders affecting many women of reproductive age all over the world. PCOS is associated with the onset of enduring health complications, notably diabetes and cardiovascular diseases. Furthermore, PCOS escalates the propensity for conditions such as obesity, insulin resistance, and dyslipidemia, which can potentially culminate in life-threatening scenarios. A pervasive predicament surrounding PCOS pertains to its underdiagnosis due to discrepancies in diagnostic criteria and the intricacy of available testing methodologies. Consequently, many women encounter substantial delays in diagnosis with traditional diagnostic approaches. Prompt identification is imperative, as any delay can precipitate severe consequences. The conventional techniques employed for PCOS detection typically suffer from suboptimal accuracy, protracted assay times, and inherent limitations, thereby constraining their widespread applicability and accessibility. In response to these challenges, various electrochemical methods leveraging nanotechnology have been documented. In this concise review, we endeavor to delineate the deficiencies associated with established conventional methodologies while accentuating the distinctive attributes and benefits inherent to contemporary biosensors. We place particular emphasis on elucidating the pivotal advancements and recent breakthroughs in the realm of nanotechnology-facilitated biosensors for the detection of PCOS.
Collapse
Affiliation(s)
- Nidhi Chauhan
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India.
| | - Sakshi Pareek
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida, 201313, India
| | - Warren Rosario
- School of Engineering, UPES, Dehradun, 248007, Uttarakhand, India
| | - Rachna Rawal
- Department of Physics & Astrophysics, University of Delhi, Delhi, 110007, India
| | - Utkarsh Jain
- School of Health Sciences and Technology, UPES, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
10
|
Zhang X, Song Y, Gong H, Wu C, Wang B, Chen W, Hu J, Xiang H, Zhang K, Sun M. Neurotoxicity of Titanium Dioxide Nanoparticles: A Comprehensive Review. Int J Nanomedicine 2023; 18:7183-7204. [PMID: 38076727 PMCID: PMC10710240 DOI: 10.2147/ijn.s442801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
The increasing use of titanium dioxide nanoparticles (TiO2 NPs) across various fields has led to a growing concern regarding their environmental contamination and inevitable human exposure. Consequently, significant research efforts have been directed toward understanding the effects of TiO2 NPs on both humans and the environment. Notably, TiO2 NPs exposure has been associated with multiple impairments of the nervous system. This review aims to provide an overview of the documented neurotoxic effects of TiO2 NPs in different species and in vitro models. Following exposure, TiO2 NPs can reach the brain, although the specific mechanism and quantity of particles that cross the blood-brain barrier (BBB) remain unclear. Exposure to TiO2 NPs has been shown to induce oxidative stress, promote neuroinflammation, disrupt brain biochemistry, and ultimately impair neuronal function and structure. Subsequent neuronal damage may contribute to various behavioral disorders and play a significant role in the onset and progression of neurodevelopmental or neurodegenerative diseases. Moreover, the neurotoxic potential of TiO2 NPs can be influenced by various factors, including exposure characteristics and the physicochemical properties of the TiO2 NPs. However, a systematic comparison of the neurotoxic effects of TiO2 NPs with different characteristics under various exposure conditions is still lacking. Additionally, our understanding of the underlying neurotoxic mechanisms exerted by TiO2 NPs remains incomplete and fragmented. Given these knowledge gaps, it is imperative to further investigate the neurotoxic hazards and risks associated with exposure to TiO2 NPs.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yuanyuan Song
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongyang Gong
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Chunyan Wu
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Binquan Wang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Wenxuan Chen
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiawei Hu
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Hanhui Xiang
- The Second Clinical Medical School, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ke Zhang
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Mingkuan Sun
- Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
11
|
Mohamed HRH, Behira LST, Diab A. Estimation of genomic and mitochondrial DNA integrity in the renal tissue of mice administered with acrylamide and titanium dioxide nanoparticles. Sci Rep 2023; 13:13523. [PMID: 37598254 PMCID: PMC10439890 DOI: 10.1038/s41598-023-40676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
The Kidneys remove toxins from the blood and move waste products into the urine. However, the accumulation of toxins and fluids in the body leads to kidney failure. For example, the overuse of acrylamide and titanium dioxide nanoparticles (TiO2NPs) in many food and consumer products increases human exposure and risks; however, there are almost no studies available on the effect of TiO2NPs coadministration with acrylamide on the integrity of genomic and mitochondrial DNA. Accordingly, this study was conducted to estimate the integrity of genomic and mitochondrial DNA in the renal tissue of mice given acrylamide and TiO2NPs. To achieve this goal, mice were administrated orally TiO2NPs or/and acrylamide at the exposure dose levels (5 mg/kg b.w) and (3 mg/kg b.w), respectively, five times per week for two consecutive weeks. Concurrent oral administration of TiO2NPs with acrylamide caused remarkable elevations in the tail length, %DNA in tail and tail moment with higher fragmentation incidence of genomic DNA compared to those detected in the renal tissue of mice given TiO2NPs alone. Simultaneous coadministration of TiO2NPs with acrylamide also caused markedly high elevations in the reactive oxygen species (ROS) production and p53 expression level along with a loss of mitochondrial membrane potential and high decreases in the number of mitochondrial DNA copies and expression level of β catenin gene. Therefore, from these findings, we concluded that concurrent coadministration of acrylamide with TiO2NPs augmented TiO2NPs induced genomic DNA damage and mitochondrial dysfunction through increasing intracellular ROS generation, decreasing mitochondrial DNA Copy, loss of mitochondrial membrane potential and altered p53 and β catenin genes expression. Therefore, further studies are recommended to understand the biological and toxic effects resulting from TiO2NPs with acrylamide coadministration.
Collapse
Affiliation(s)
- Hanan R H Mohamed
- Zoology Department Faculty of Science, Cairo University, Giza, Egypt.
| | - Loren S T Behira
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| | - Ayman Diab
- Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th of October City, Egypt
| |
Collapse
|
12
|
Behera A, Sa N, Pradhan SP, Swain S, Sahu PK. Metal Nanoparticles in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:791-810. [PMID: 37662608 PMCID: PMC10473155 DOI: 10.3233/adr-220112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Nanotechnology has emerged in different fields of biomedical application, including lifestyle diseases like diabetes, hypertension, and chronic kidney disease, neurodegenerative diseases like Alzheimer's disease (AD), Parkinson's disease, and different types of cancers. Metal nanoparticles are one of the most used drug delivery systems due to the benefits of their enhanced physicochemical properties as compared to bulk metals. Neurodegenerative diseases are the second most cause affecting mortality worldwide after cancer. Hence, they require the most specific and targeted drug delivery systems for maximum therapeutic benefits. Metal nanoparticles are the preferred drug delivery system, possessing greater blood-brain barrier permeability, biocompatibility, and enhanced bioavailability. But some metal nanoparticles exhibit neurotoxic activity owing to their shape, size, surface charge, or surface modification. This review article has discussed the pathophysiology of AD. The neuroprotective mechanism of gold, silver, selenium, ruthenium, cerium oxide, zinc oxide, and iron oxide nanoparticles are discussed. Again, the neurotoxic mechanisms of gold, iron oxide, titanium dioxide, and cobalt oxide are also included. The neuroprotective and neurotoxic effects of nanoparticles targeted for treating AD are discussed elaborately. The review also focusses on the biocompatibility of metal nanoparticles for targeting the brain in treating AD. The clinical trials and the requirement to develop new drug delivery systems are critically analyzed. This review can show a path for the researchers involved in the brain-targeted drug delivery for AD.
Collapse
Affiliation(s)
- Anindita Behera
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Sunsita Swain
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
13
|
Sagadevan S, Oh WC. Comprehensive utilization and biomedical application of MXenes - A systematic review of cytotoxicity and biocompatibility. J Drug Deliv Sci Technol 2023; 85:104569. [DOI: 10.1016/j.jddst.2023.104569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
14
|
Abegoda-Liyanage CS, Pathiratne A. Comparison of Toxicity of Nano and Bulk Titanium Dioxide on Nile Tilapia (Oreochromis niloticus): Acetylcholinesterase Activity Modulation and DNA Damage. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:101. [PMID: 37278734 DOI: 10.1007/s00128-023-03746-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023]
Abstract
This study compared effects of low concentrations (0.05 and 0.1 mg/L) of nano-TiO2 and bulk-TiO2 on brain, gill and liver acetylcholinesterase (AChE) and erythrocytic DNA of Nile tilapia over 7 and 14 days exposure. Both TiO2 forms did not affect brain AChE activities. Bulk-TiO2 induced elevation of gill AChE activities only after 7 days while nano-TiO2 had no effect. Liver AChE activities were increased by 0.1 mg/L bulk- and nano-TiO2 to similar extents. At 7 days, erythrocytic DNA damage was induced only by 0.1 mg/L nano- and bulk-TiO2 to similar extents, but damage was not repaired to control levels at 7 days recovery period. At 14 days continuous exposure, DNA damage was induced by 0.05, 0.1 mg/L nano-TiO2 and 0.1 mg/L of bulk-TiO2 to similar extents. Results show that both forms of TiO2 can pose genotoxic hazards to fish populations under sub-chronic exposure. However, their neurotoxic potential was not evident.
Collapse
Affiliation(s)
| | - Asoka Pathiratne
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, 11600, Sri Lanka.
| |
Collapse
|
15
|
Titanium Oxide Nanoparticles as Emerging Aquatic Pollutants: An Evaluation of the Nanotoxicity in the Freshwater Shrimp Larvae Atya lanipes. ECOLOGIES 2023. [DOI: 10.3390/ecologies4010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Nanoparticles are man-made materials defined as materials smaller than 100 nm in at least one dimension. Titanium oxide nanoparticles are of great interest because of their extensive use in self-care products. There is a lack of nanotoxicological studies of TiO2 NPs in benthic organisms to have evidence about the effects of these pollutants in freshwater ecosystems. Atya lanipes is a scraper/filter that can provide a good nanotoxicological model. This study aims to determine how the TiO2 NPs can develop a toxic effect in the larvae of the Atya lanipes shrimp and to document lethal and sublethal effects after acute exposures to TiO2 NP suspensions of: 0.0, 1.0, 10.0, 50.0, 100.0, and 150.0 mg/L. The results show that early exposure to TiO2 NPs in Atya lanipes creates an increase in mortality at 48 and 72 h exposures, hypoactivity in movements, and morphological changes, such as less pigmentation and the presence of edema in exposed larvae. In conclusion, TiO2 NPs are toxic contaminants in the larval stage of the Atya lanipes. It is necessary to regulate these nanoparticles for purposes of the conservation of aquatic biodiversity, especially for freshwater shrimp larvae and likely many other larvae of filter-feeding species.
Collapse
|
16
|
Lehotska Mikusova M, Busova M, Tulinska J, Masanova V, Liskova A, Uhnakova I, Dusinska M, Krivosikova Z, Rollerova E, Alacova R, Wsolova L, Horvathova M, Szabova M, Lukan N, Vecera Z, Coufalik P, Krumal K, Alexa L, Thon V, Piler P, Buchtova M, Vrlikova L, Moravec P, Galanda D, Mikuska P. Titanium Dioxide Nanoparticles Modulate Systemic Immune Response and Increase Levels of Reduced Glutathione in Mice after Seven-Week Inhalation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040767. [PMID: 36839135 PMCID: PMC9964099 DOI: 10.3390/nano13040767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 05/30/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are used in a wide range of applications. Although inhalation of NPs is one of the most important toxicologically relevant routes, experimental studies on potential harmful effects of TiO2 NPs using a whole-body inhalation chamber model are rare. In this study, the profile of lymphocyte markers, functional immunoassays, and antioxidant defense markers were analyzed to evaluate the potential adverse effects of seven-week inhalation exposure to two different concentrations of TiO2 NPs (0.00167 and 0.1308 mg TiO2/m3) in mice. A dose-dependent effect of TiO2 NPs on innate immunity was evident in the form of stimulated phagocytic activity of monocytes in low-dose mice and suppressed secretory function of monocytes (IL-18) in high-dose animals. The effect of TiO2 NPs on adaptive immunity, manifested in the spleen by a decrease in the percentage of T-cells, a reduction in T-helper cells, and a dose-dependent decrease in lymphocyte cytokine production, may indicate immunosuppression in exposed mice. The dose-dependent increase in GSH concentration and GSH/GSSG ratio in whole blood demonstrated stimulated antioxidant defense against oxidative stress induced by TiO2 NP exposure.
Collapse
Affiliation(s)
| | - Milena Busova
- Institute of Hygiene and Epidemiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Jana Tulinska
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Maria Dusinska
- Health Effects Laboratory, Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Zora Krivosikova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Radka Alacova
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Ladislava Wsolova
- Faculty of Public Health, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Michaela Szabova
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Norbert Lukan
- Faculty of Medicine, Slovak Medical University, 833 03 Bratislava, Slovakia
| | - Zbynek Vecera
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Pavel Coufalik
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Kamil Krumal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Lukas Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Lucie Vrlikova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 602 00 Brno, Czech Republic
| | - Pavel Moravec
- Aerosol Chemistry and Physics Research Group, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, 165 00 Prague, Czech Republic
| | - Dusan Galanda
- Public Health Authority of the Slovak Republic, Radiation Protection Department, 82645 Bratislava, Slovakia
| | - Pavel Mikuska
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry of the Czech Academy of Sciences, 602 00 Brno, Czech Republic
| |
Collapse
|
17
|
Ferrante M, Grasso A, Salemi R, Libra M, Tomasello B, Fiore M, Copat C. DNA Damage and Apoptosis as In-Vitro Effect Biomarkers of Titanium Dioxide Nanoparticles (TiO 2-NPs) and the Food Additive E171 Toxicity in Colon Cancer Cells: HCT-116 and Caco-2. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032002. [PMID: 36767368 PMCID: PMC9915631 DOI: 10.3390/ijerph20032002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 06/01/2023]
Abstract
This study investigated the DNA damage and apoptosis in colon cancer cells HCT-116 and Caco-2 induced by engineered titanium dioxide nanoparticles (TiO2-NPs) (60 nm) and titanium dioxide food additive E171. MTT assays showed that both chemical forms significantly reduced cancer cell viability in a dose-dependent manner. In particular the food additive E171 induced a pronounced inhibitory effect on the growth of HCT-116 and Caco-2 cell lines (E171 IC50: 3.45 mg/L for HTC-116 and 1.88 mg/L Caco-2; TiO2-NPs 60 nm IC50: 41.1 mg/L for HTC-116 and 14.3 mg/L for Caco-2). A low level of genotoxicity was observed in Caco-2 cells, especially when treated with TiO2 60 nm. Western blot analysis showed that HCT116 and Caco-2 treated cells did not overexpress apoptotic markers such as cleaved Caspase 3 and cleaved Parp. Moreover, further analysis by quantitative real-time PCR (qRT-PCR) showed that TiO2-NPs and E171 did not promote the expression of Bax or downregulation of Bcl-2, nor did they increase the Bax/Bcl-2 ratio. The assay data provide clear evidence that TiO2 can cause DNA damage but does not induce apoptosis or decrease long-term cell proliferation. In addition, the results show that E171 has a slightly higher level of cytotoxicity and genotoxicity. This suggests that exposure to E171 may be hazardous to health and that further research on biological effects is needed to promote safer practices in the use of this compound.
Collapse
Affiliation(s)
- Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Alfina Grasso
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 83, 95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 83, 95123 Catania, Italy
| | - Barbara Tomasello
- Section of Biochemistry, Department of Drug Science, University of Catania, 95125 Catania, Italy
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| | - Chiara Copat
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy
| |
Collapse
|
18
|
Jiang Y, Wei Y, Guo W, Du J, Jiang T, Ma H, Jin G, Chen T, Qin R, Tao S, Lu Q, Lv H, Han X, Zhou K, Xu B, Li Z, Li M, Lin Y, Xia Y, Hu Z. Prenatal titanium exposure and child neurodevelopment at 1 year of age: A longitudinal prospective birth cohort study. CHEMOSPHERE 2023; 311:137034. [PMID: 36342025 DOI: 10.1016/j.chemosphere.2022.137034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/25/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Previous animal studies provided the evidence that prenatal titanium exposure can cause neurotoxicity in their offspring, while human data is vacant. Our aim was to identify the associations of prenatal titanium exposure with the child neurodevelopment. Participants in present study were recruited during early pregnancy between 2014 and 2017. Urinary concentrations of titanium at first trimester were determined. We assessed child neurodevelopment using the Chinese version of Gesell Developmental Schedules at first year follow-up. The multivariable linear regressions and the robust modified Poisson regressions were used to estimate the associations of specific gravity corrected urinary titanium concentrations with the child neurodevelopment. In adjusted models, children's developmental quotient scores in the language domain were 2.03 points (95% CI: -3.66, -0.40) lower in the highest tertile of prenatal urinary titanium than in the lowest tertile. Also, children with prenatal urinary titanium in the highest tertile had 1.42 times (95% CI: 1.17, 1.72) increased risk of language development delay compared to those in the lowest tertile. No statistically significant associations were observed between titanium exposure and child development delay in motor, adaptive and social areas. The findings indicated that prenatal higher titanium exposure was associated with impaired language development, suggesting that titanium might act as developmental neurotoxicants.
Collapse
Affiliation(s)
- Yangqian Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yongyue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Wenhui Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Jiangbo Du
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Hongxia Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Guangfu Jin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Ting Chen
- Department of Science and Technology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu, China
| | - Rui Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Shiyao Tao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Qun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Hong Lv
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Kun Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Zhi Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Mei Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yuan Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China; Department of Maternal, Child and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu, China; Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, China; State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, Jiangsu, China
| |
Collapse
|
19
|
Sobhani S, Tehrani AA, Sobhani G, Fatima S, Ulloa L, Motaghinejad M, Atif A. Melatonin Protects Against Titanium Oxide-Induced Neurotoxicity: Neurochemical, Neurobehavioral, and Histopathological Evidences. Biol Trace Elem Res 2022:10.1007/s12011-022-03464-4. [PMID: 36378265 DOI: 10.1007/s12011-022-03464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
titania (titanium dioxide, TiO2) is known to induce neurotoxicity and CNS dysfunctions. Numerous studies have explored the neuroprotective effects of melatonin against neurotoxicity. This study evaluates the potential of melatonin to protect against titania-induced neurotoxicity and the role of the Keap1/Nrf2/ARE signaling pathway. One group of animals were treated with Titania (0.045 and 0.075 g/rat) alone while the other with added melatonin (1 mg/kg and 3 mg/kg) and behavioral alterations were assessed using OFT (open field test). Neurochemical and histopathological changes were also studied in the hippocampus by analyzing kelch ECH associating protein 1 (Keap1), nuclear factor erythroid 2-related factor 2 (Nrf2), and antioxidant response element (ARE). It was seen that the animals with added Melatonin had improved behavioral scores in the OFT, like anxiety and motor dysfunction triggered by TiO2. Melatonin also reduced lipid peroxidation, ROS, GSSG, IL1β, TNFα, Bax, and Keap1 levels, but boosted GSH, GPx, GR, SOD,IL10,IL4, Bcl2, Nrf2, and ARE levels and improved quadruple mitochondrial enzyme complex activity in titania-treated animals. Histopathological examination showed melatonin induced cytoprotection against vacuolization and necrosis in granular cells of DG and pyramidal cells of CA1 area of the hippocampus. In our study, pretreatment with melatonin reduced titania-induced neurotoxicity in the hippocampus through a mechanism potentially mediated by the Keap-1/Nrf2/ARE pathway.
Collapse
Affiliation(s)
- Sarvenaz Sobhani
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ali-Asghar Tehrani
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Golnar Sobhani
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Sulail Fatima
- Department of Physiology, Jinnah Medical & Dental College, Sohail University, Karachi, Pakistan
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Masih Daneshvari Hospital, Darabad Avenue, Shahid Bahonar roundabout, Tehran, Iran.
| | - Alina Atif
- Department of Physiology, Jinnah Medical & Dental College, Sohail University, Karachi, Pakistan
| |
Collapse
|
20
|
Safwat G, Mohamed AA, Mohamed HRH. Estimation of genotoxicity, apoptosis and oxidative stress induction by TiO 2 nanoparticles and acrylamide subacute oral coadministration in mice. Sci Rep 2022; 12:18648. [PMID: 36333451 PMCID: PMC9636418 DOI: 10.1038/s41598-022-23302-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Acrylamide is used in the industry and can be a by-product of high-temperature food processing which has toxic potential in various tissues, and titanium dioxide nanoparticles (TiO2NPs) are widely used in toothpaste, sweets, food perseveration, chewing gum and medicines. Consequently, humans are daily exposed to large amounts of acrylamide and TiO2NPs mainly through food intake. However, limited studies are available on the effect of simultaneously intake of acrylamide and TiO2NPs on the integrity of genomic DNA and the induction of apoptosis in brain tissues. Therefore, this study estimated the influence of acrylamide coadministration on TiO2NPs induced genomic instability and oxidative stress in the brain tissues of mice. To achieve this, mice were orally administrated acrylamide (3 mg/kg b.w) or/and TiO2NPs (5 mg/kg b.w) for two successive weeks (5 days per week). The comet assay results showed that concurrent oral administration of acrylamide and TiO2NPs strongly induced single- and double stranded DNA breaks, and that the level of reactive oxygen species (ROS) was also highly elevated within neural cells after simultaneous oral intake of acrylamide and TiO2NPs compared to those observed after administration of acrylamide or/TiO2NPs alone. Moreover, oral co-administration of acrylamide with TiO2NPs increased apoptotic DNA damage to neurons by upregulating the expression levels of P53, TNF-α, IL-6 and Presenillin-1 genes compared to groups administered TiO2NPs. Therefore, from these results, the present study concluded that coadministration of acrylamide renders TiO2NPs more genotoxic and motivates apoptotic DNA damage and oxidative stress induced by TiO2NPs in brain cells, and thus it is recommended to avoid concurrent oral acrylamide administration with TiO2NPs.
Collapse
Affiliation(s)
- Gehan Safwat
- grid.442760.30000 0004 0377 4079Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Amira A. Mohamed
- grid.442760.30000 0004 0377 4079Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza, Egypt
| | - Hanan R. H. Mohamed
- grid.7776.10000 0004 0639 9286Zoology Department Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
21
|
TiO 2 Nanoparticles and Their Effects on Eukaryotic Cells: A Double-Edged Sword. Int J Mol Sci 2022; 23:ijms232012353. [PMID: 36293217 PMCID: PMC9604286 DOI: 10.3390/ijms232012353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Nanoparticulate TiO2 (TiO2 NPs) is a widely used material, whose potential toxicity towards eukaryotic cells has been addressed by multiple studies. TiO2 NPs are considered toxic due to their production of reactive oxygen species (ROS), which can, among others, lead to cellular damage, inflammatory responses, and differences in gene expression. TiO2 NPs exhibited toxicity in multiple organs in animals, generating potential health risks also in humans, such as developing tumors or progress of preexisting cancer processes. On the other hand, the capability of TiO2 NPs to induce cell death has found application in photodynamic therapy of cancers. In aquatic environments, much has been done in understanding the impact of TiO2 on bivalves, in which an effect on hemocytes, among others, is reported. Adversities are also reported from other aquatic organisms, including primary producers. These are affected also on land and though some potential benefit might exist when it comes to agricultural plants, TiO2 can also lead to cellular damage and should be considered when it comes to transfer along the food chain towards human consumers. In general, much work still needs to be done to unravel the delicate balance between beneficial and detrimental effects of TiO2 NPs on eukaryotic cells.
Collapse
|
22
|
Mishra DK, Awasthi H, Srivastava D, Fatima Z. Phytochemical: a treatment option for heavy metal induced neurotoxicity. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:513-530. [PMID: 35749142 DOI: 10.1515/jcim-2020-0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals are known to be carcinogenic, mutagenic, and teratogenic. Some heavy metals are necessary while present in the growing medium in moderate concentrations known to be essential heavy metals as they required for the body functioning as a nutrient. But there are some unwanted metals and are also toxic to the environment and create a harmful impact on the body, which termed to be non-essential heavy metals. Upon exposure, the heavy metals decrease the major antioxidants of cells and enzymes with the thiol group and affect cell division, proliferation, and apoptosis. It interacts with the DNA repair mechanism and initiates the production of reactive oxygen species (ROS). It subsequently binds to the mitochondria and may inhibit respiratory and oxidative phosphorylation in even low concentrations. This mechanism leads to damage antioxidant repair mechanism of neuronal cells and turns into neurotoxicity. Now, phytochemicals have led to good practices in the health system. Phytochemicals that are present in the fruits and herbs can preserve upon free radical damage. Thus, this review paper summarized various phytochemicals which can be utilized as a treatment option to reverse the effect of the toxicity caused by the ingestion of heavy metals in our body through various environmental or lifestyles ways.
Collapse
Affiliation(s)
| | - Himani Awasthi
- Amity Institute of Pharmacy, Amity University, Lucknow, India
| | | | - Zeeshan Fatima
- Amity Institute of Pharmacy, Amity University, Lucknow, India
| |
Collapse
|
23
|
Chang H, Wang Q, Meng X, Chen X, Deng Y, Li L, Yang Y, Song G, Jia H. Effect of Titanium Dioxide Nanoparticles on Mammalian Cell Cycle In Vitro: A Systematic Review and Meta-Analysis. Chem Res Toxicol 2022; 35:1435-1456. [PMID: 35998370 DOI: 10.1021/acs.chemrestox.1c00402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although most studies that explore the cytotoxicity of titanium dioxide nanoparticles (nano-TiO2) have focused on cell viability and oxidative stress, the cell cycle, a basic process of cell life, can also be affected. However, the results on the effects of nano-TiO2 on mammalian cell cycle are still inconsistent. A systematic review and meta-analysis were therefore performed in this research based on the effects of nano-TiO2 on the mammalian cell cycle in vitro to explore whether nano-TiO2 can induce cell cycle arrest. Meanwhile, the impact of physicochemical properties of nano-TiO2 on the cell cycle in vitro was investigated, and the response of normal cells and cancer cells was compared. A total of 33 articles met the eligibility criteria after screening. We used Review Manager 5.4 and Stata 15.1 for analysis. The results showed an increased percentage of cells in the sub-G1 phase and an upregulation of the p53 gene after being exposed to nano-TiO2. Nevertheless, nano-TiO2 had no effect on cell percentage in other phases of the cell cycle. Furthermore, subgroup analysis revealed that the cell percentage in both the sub-G1 phase of normal cells and S phase of cancer cells were significantly increased under anatase-form nano-TiO2 treatment. Moreover, nano-TiO2 with a particle size <25 nm or exposure duration of nano-TiO2 more than 24 h induced an increased percentage of normal cells in the sub-G1 phase. In addition, the cell cycle of cancer cells was arrested in the S phase no matter if the exposure duration of nano-TiO2 was more than 24 h or the exposure concentration was over 50 μg/mL. In conclusion, this study demonstrated that nano-TiO2 disrupted the cell cycle in vitro. The cell cycle arrest induced by nano-TiO2 varies with cell status and physicochemical properties of nano-TiO2.
Collapse
Affiliation(s)
- Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xinyu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, 210019 Nanjing, China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Huaimiao Jia
- Department of Endemic Disease, Shihezi Center for Disease Control and Prevention, Shihezi 832003, Xinjiang, China
| |
Collapse
|
24
|
Pardridge WM. A Historical Review of Brain Drug Delivery. Pharmaceutics 2022; 14:1283. [PMID: 35745855 PMCID: PMC9229021 DOI: 10.3390/pharmaceutics14061283] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
The history of brain drug delivery is reviewed beginning with the first demonstration, in 1914, that a drug for syphilis, salvarsan, did not enter the brain, due to the presence of a blood-brain barrier (BBB). Owing to restricted transport across the BBB, FDA-approved drugs for the CNS have been generally limited to lipid-soluble small molecules. Drugs that do not cross the BBB can be re-engineered for transport on endogenous BBB carrier-mediated transport and receptor-mediated transport systems, which were identified during the 1970s-1980s. By the 1990s, a multitude of brain drug delivery technologies emerged, including trans-cranial delivery, CSF delivery, BBB disruption, lipid carriers, prodrugs, stem cells, exosomes, nanoparticles, gene therapy, and biologics. The advantages and limitations of each of these brain drug delivery technologies are critically reviewed.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
25
|
Li L, Dong R, Liu T, Yang Y, Chang H, Meng X, Deng Y, Wang Q, Zhao Y, Song G, Hu Y. Nano-titanium dioxide exposure and autophagy: a systematic review and meta-analysis. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2084419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Li Li
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Ruoyun Dong
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Tao Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, PR China
| | - Yaqian Yang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Hongmei Chang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Xiaojia Meng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yaxin Deng
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Qianqian Wang
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yiman Zhao
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Guanling Song
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| | - Yunhua Hu
- Department of Preventive Medicine/the Key Laboratories for Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, PR China
| |
Collapse
|
26
|
A New Look at the Effects of Engineered ZnO and TiO2 Nanoparticles: Evidence from Transcriptomics Studies. NANOMATERIALS 2022; 12:nano12081247. [PMID: 35457956 PMCID: PMC9031840 DOI: 10.3390/nano12081247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 01/16/2023]
Abstract
Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) have attracted a great deal of attention due to their excellent electrical, optical, whitening, UV-adsorbing and bactericidal properties. The extensive production and utilization of these NPs increases their chances of being released into the environment and conferring unintended biological effects upon exposure. With the increasingly prevalent use of the omics technique, new data are burgeoning which provide a global view on the overall changes induced by exposures to NPs. In this review, we provide an account of the biological effects of ZnO and TiO2 NPs arising from transcriptomics in in vivo and in vitro studies. In addition to studies on humans and mice, we also describe findings on ecotoxicology-related species, such as Danio rerio (zebrafish), Caenorhabditis elegans (nematode) or Arabidopsis thaliana (thale cress). Based on evidence from transcriptomics studies, we discuss particle-induced biological effects, including cytotoxicity, developmental alterations and immune responses, that are dependent on both material-intrinsic and acquired/transformed properties. This review seeks to provide a holistic insight into the global changes induced by ZnO and TiO2 NPs pertinent to human and ecotoxicology.
Collapse
|
27
|
Wiśniewski M, Roszek K. Underestimated Properties of Nanosized Amorphous Titanium Dioxide. Int J Mol Sci 2022; 23:ijms23052460. [PMID: 35269599 PMCID: PMC8910173 DOI: 10.3390/ijms23052460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/19/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Titanium dioxide is one of the best described photosensitive materials used in photocatalysis, solar cells, self-cleaning coatings, and sunscreens. The scientific and industrial attention has been focused on the highly photoactive crystalline phase of titanium dioxide (TiO2). It is commonly accepted that the smaller TiO2 particles, the higher photoactivity they present. Therefore, titanium dioxide nanoparticles are massively produced and widely used in everyday products. The amorphous phase of titanium dioxide has been treated with neglect, as the lack of its photocatalytic properties is assumed in advance. In this work, the complex experimental proof of the UV-protective properties of the nano-sized amorphous TiO2 phase is reported. Amorphous n-TiO2 is characterized by photocatalytic inactivity and, as a consequence, low cytotoxicity to fibroblast cells. When exposed to UV radiation, cells with amorphous TiO2 better survive under stress conditions. Thus, we postulate that amorphous n-TiO2 will be more beneficial and completely safe for cosmetic applications. Moreover, the results from in situ FTIR studies let us correlate the low toxicity of amorphous samples with low ability to form hydroperoxo surface species.
Collapse
Affiliation(s)
- Marek Wiśniewski
- Physicochemistry of Carbon Materials Research Group, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
- Correspondence: (M.W.); (K.R.)
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland
- Correspondence: (M.W.); (K.R.)
| |
Collapse
|
28
|
Romanos GE, Fischer GA, Rahman ZT, Delgado-Ruiz R. Spectrometric Analysis of the Wear from Metallic and Ceramic Dental Implants following Insertion: An In Vitro Study. MATERIALS 2022; 15:ma15031200. [PMID: 35161144 PMCID: PMC8838065 DOI: 10.3390/ma15031200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022]
Abstract
Titanium wear is a growing area of interest within dental implantology. This study aimed to investigate titanium and zirconium wear from dental implants at the time of insertion using X-ray-fluorescence spectrometry (XRF) and an in vitro protocol utilizing artificial bovine bone plates. Five groups were analyzed using XRF-spectrometry: groups 1–4 (titanium implants) and group 5 (zirconia implants). The implants were inserted into two bone blocks held together by a vice. The blocks were separated, and the insertion sites were analyzed for titanium (Ti) and zirconium (Zr). Statistical descriptive analyses of Ti and Zr concentrations in the coronal, middle and apical bone interface were performed. A comparative analysis confirmed differences between the implant’s surface stability and Ti accumulation within the insertion sites of the bone block. There was a direct relationship between implant length and the quantity of titanium found on the bone block. The data generally indicates greater quantities of titanium in the coronal thirds of the implants, and less in the apical thirds. The titanium and zirconium found in the bone samples where the group 5 implants were inserted was not of statistical significance when compared to control osteotomies. The results of this study confirm wear from metallic, but not ceramic, dental implants at the time of insertion.
Collapse
Affiliation(s)
- Georgios E. Romanos
- Laboratory for Periodontal-Implant-Phototherapy (LA-PIP), Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (G.A.F.); (Z.T.R.)
- Correspondence: ; Tel.: +1-(631)-632-8755; Fax: +1-(631)-632-8670
| | - Gerard A. Fischer
- Laboratory for Periodontal-Implant-Phototherapy (LA-PIP), Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (G.A.F.); (Z.T.R.)
| | - Zaid T. Rahman
- Laboratory for Periodontal-Implant-Phototherapy (LA-PIP), Department of Periodontology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA; (G.A.F.); (Z.T.R.)
| | - Rafael Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
29
|
Huang W, Tao Y, Zhang X, Zhang X. TGF-β1/SMADs signaling involved in alleviating inflammation induced by nanoparticulate titanium dioxide in BV2 cells. Toxicol In Vitro 2022; 80:105303. [PMID: 34990773 DOI: 10.1016/j.tiv.2021.105303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
There are increasing safety concerns accompanying the widespread use of nanoparticulate titanium dioxide (nano-TiO2). It has been demonstrated that nano-TiO2 can cross the blood-brain barrier and enter the brain, causing damage to the nervous system, consisting mainly of neuroinflammation and neuronal apoptosis. Several studies have linked the TGF-β1/SMADs signaling to the development of inflammatory response in various organs. However, no studies have connected the induction of microglial inflammation by nano-TiO2 to this signaling. Therefore, this study aimed to investigate the role of TGF-β1/SMADs signaling in microglia inflammatory response induced by nano-TiO2. The results showed that nano-TiO2 increased the secretions of pro-inflammatory cytokines (IL-1α, IL-6, and TNF-α) and decreased the expressions of TGF-β1 and SMAD1/2/3 proteins in BV2 cells. When TGF-β1/SMADs signaling was inhibited, the inflammatory effect induced by nano-TiO2 increased, suggesting a suppressive effect of this signaling on the inflammation. In addition, exogenous TGF-β1 upregulated the expressions of TGF-β1 and SMADs1/2/3 proteins as well as decreased the secretions of pro-inflammatory cytokines (IL-1α, IL-6, and TNF-α) compared to BV2 cells treated with only nano-TiO2. Our results suggest that nano-TiO2 may inhibit the TGF-β1/SMADs signaling by suppressing the intracellular secretion of active TGF-β1, leading to microglial activation and the induction or exacerbation of inflammatory responses.
Collapse
Affiliation(s)
- Wendi Huang
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yifan Tao
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiuwen Zhang
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiaoqiang Zhang
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
30
|
Naima R, Imen M, Mustapha J, Hafedh A, Kamel K, Mohsen S, Salem A. Acute titanium dioxide nanoparticles exposure impaired spatial cognitive performance through neurotoxic and oxidative mechanisms in Wistar rats. Biomarkers 2021; 26:760-769. [PMID: 34704879 DOI: 10.1080/1354750x.2021.1999501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/23/2021] [Indexed: 12/15/2022]
Abstract
CONTEXT Titanium dioxide nanoparticles (TiO2-NPs) are used in many commercial products. However, their effects on human and animal organism remained to be clarified. OBJECTIVE The present study aimed to investigate the effects of TiO2-NPs on the behavioural performance, monoamine neurotransmitters and oxidative stress in the rat brain. MATERIAL AND METHODS Rats were injected intravenously with a single dose of TiO2-NPs (20 mg/kg body weight) and were subjected to cognitive and emotional tests using Morris water maze and elevated plus maze. RESULTS Cognitive capacity as well as the emotional reactivity were significantly disrupted, in TiO2-NPs-administered rats compared to control group. These behavioural effects were correlated with changes in brain neurotransmitter contents reflected by a significant increase in dopamine and a decrease in serotonin levels. TiO2-NPs also induced oxidative stress in the brain manifested by increased levels of H2O2 and malondialdehyde, associated with antioxidant enzymes activities disturbance, in particular, superoxide dismutase and catalase activities. Moreover, TiO2-NPs administration caused histological damages in the brain tissue with abundant lymphocytic clusters, capillary dilations, vascular congestion and oedema. CONCLUSIONS Acute intravenous injection of TiO2-NPs impaired behaviour performances through brain biochemical and structural changes and precautions should be taken to their usage in food additive and medical applications.
Collapse
Affiliation(s)
- Rihane Naima
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
| | - Mrad Imen
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
| | - Jeljeli Mustapha
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
- Human Sciences Institute, University El Manar, Tunis, Tunisia
| | - Abdelmalek Hafedh
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
| | - Kacem Kamel
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
| | - Sakly Mohsen
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
| | - Amara Salem
- Laboratory of Integrated Physiology, Faculty of Sciences, University of Carthage, Bizerta, Tunisia
- Department of Natural and Applied Sciences, Faculty of Sciences and Humanities, Shaqra University, Afif, Saudi Arabia
| |
Collapse
|
31
|
Alshammari GM, Yagoub AEA, Subash-Babu P, Hassan AB, Al-Nouri DM, Mohammed MA, Yahya MA, Elsayim R. Inhibition of Lipid Accumulation and Adipokine Levels in Maturing Adipocytes by Bauhinia rufescens (Lam.) Stem Bark Extract Loaded Titanium Oxide Nanoparticles. Molecules 2021; 26:molecules26237238. [PMID: 34885819 PMCID: PMC8659042 DOI: 10.3390/molecules26237238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
The present study reports a cost-effective, environmentally friendly method to increase the bioavailability and bio-efficacy of B. rufescens stem bark extract in the biological system via functional modification as B. rufescens stem bark nanoparticles (BR-TO2-NPs). The biosynthesis of BR- -NPs was confirmed by UV-visible (UV-vis) and Fourier-transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction analyses. The shifts in FT-IR stretching vibrations of carboxylic and nitro groups (1615 cm-1), the O-H of phenolics or carboxylic acids (3405 cm-1), alkanes, and alkyne groups (2925 and 2224 cm-1) of the plant extract and lattice (455) indicated successful biosynthesis of BR- -NPs. Compared with the stem bark extract, 40 ng/dL dose of BR- -NPs led to a reduction in adipogenesis and an increase in mitochondrial biogenesis-related gene expressions, adiponectin-R1, PPARγC1α, UCP-1, and PRDM16, in maturing-adipocytes. This confirmed the intracellular uptake, bioavailability, and bio-efficiency of BR-TiO2-NPs. The lipid-lowering capacity of BR-TiO2-NPs effectively inhibited the metabolic inflammation-related gene markers, IL-6, TNF-α, LTB4-R, and Nf-κb. Further, BR-TiO2-NPs stimulating mitochondrial thermogenesis capacity was proven by the significantly enhanced CREB-1 and AMPK protein levels in adipocytes. In conclusion, BR-TiO2-NPs effectively inhibited lipid accumulation and proinflammatory adipokine levels in maturing adipocytes; it may help to overcome obesity-associated comorbidities.
Collapse
Affiliation(s)
- Ghedeir M. Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (G.M.A.); (P.S.-B.); (A.B.H.); (D.M.A.-N.); (M.A.M.); (M.A.Y.)
| | - Abu ElGasim A. Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (G.M.A.); (P.S.-B.); (A.B.H.); (D.M.A.-N.); (M.A.M.); (M.A.Y.)
- Correspondence:
| | - Pandurangan Subash-Babu
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (G.M.A.); (P.S.-B.); (A.B.H.); (D.M.A.-N.); (M.A.M.); (M.A.Y.)
| | - Amro B. Hassan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (G.M.A.); (P.S.-B.); (A.B.H.); (D.M.A.-N.); (M.A.M.); (M.A.Y.)
| | - Doha M. Al-Nouri
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (G.M.A.); (P.S.-B.); (A.B.H.); (D.M.A.-N.); (M.A.M.); (M.A.Y.)
| | - Mohammed A. Mohammed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (G.M.A.); (P.S.-B.); (A.B.H.); (D.M.A.-N.); (M.A.M.); (M.A.Y.)
| | - Mohammed A. Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (G.M.A.); (P.S.-B.); (A.B.H.); (D.M.A.-N.); (M.A.M.); (M.A.Y.)
| | - Rasha Elsayim
- Department of Microbiology, College of Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
32
|
Ilani M, Sajedianfard J, Tarlan M, Nazifi S, Fathi M. The effect of maternal exposure to titanium dioxide nanoparticles on the pain response in offspring mice using formalin test. Toxicol Ind Health 2021; 37:776-781. [PMID: 34794364 DOI: 10.1177/07482337211059701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study was conducted to evaluate the effect of maternal exposure to TiO2 nanoparticles on the pain response in offspring mice. 30 female mice with a mean ± SD weight of 30 ± 5 g were randomly divided into three groups: the control group (group 1) received only the basal diet; the sham group (group 2) received saline plus as a carrier (100 μL/mice) subcutaneously on days 3, 7, 10, and 14 post-mating; and the test group (group 3) received 100 μL/mice TNPs subcutaneously on days 3, 7, 10, and 14 post-mating. Offspring were divided into 6 groups 21 days after birth and underwent formalin test. Blood samples were taken to evaluate possible oxidative changes in total antioxidant capacity (TAC) and malondialdehyde (MDA). Exposure to TNPs significantly (p < 0.05) decreased pain perception. Except for a significant difference between the sham group and the control group, MDA and TAC were not significantly different among the studied groups. Injection of TNPs to pregnant mice would affect the pain perception in their offspring. This may be attributable to the ability of these particles to pass through the placenta to produce free radicals.
Collapse
Affiliation(s)
- Mojtaba Ilani
- Department of Basic Sciences, School of Veterinary Medicine, 37551Shiraz University, Shiraz, Iran
| | - Javad Sajedianfard
- Department of Basic Sciences, School of Veterinary Medicine, 37551Shiraz University, Shiraz, Iran
| | - Mitra Tarlan
- Department of Basic Sciences, School of Veterinary Medicine, 37551Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, 37551Shiraz University, Shiraz, Iran
| | - Mazyar Fathi
- Department of Basic Sciences, School of Veterinary Medicine, 37551Shiraz University, Shiraz, Iran
| |
Collapse
|
33
|
Oh HJ, Han TT, Mainelis G. Potential consumer exposure to respirable particles and TiO 2 due to the use of eyebrow powders. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:1032-1046. [PMID: 33208837 PMCID: PMC8128939 DOI: 10.1038/s41370-020-00278-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/14/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Cosmetic powders contain numerous components, including titanium dioxide (TiO2), which is classified as possibly carcinogenic to humans (Group 2B). However, little is known about potential inhalation exposures to particles that are released during cosmetic powder applications. METHODS We realistically simulated the application of five different eyebrow powders using a mannequin and then determined concentrations of total suspended particles (TSP), PM10, and PM4 fractions of particles that would be inhaled during powder application. We determined the size and shape of particles in the original powders and released particles, as well as their TiO2 concentrations and Ti content of individual particles. RESULTS The application of eyebrow powders resulted in the release and inhalation of airborne particles at concentrations ranging from 21.2 to 277.3 µg/m3, depending on the particle fraction and the powder. The concentrations of TiO2 in PM4 and PM10 samples reached 2.7 µg/m3 and 9.3 µg/m3, respectively. The concentration of TiO2 in airborne particle fractions was proportional to the presence of TiO2 in the bulk powder. CONCLUSION The application of eyebrow powders results in user exposures to respirable PM4 and PM10 particles, including those containing TiO2. This information should be of interest to stakeholders concerned about inhalation exposure to TiO2.
Collapse
Affiliation(s)
- Hyeon-Ju Oh
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Taewon T Han
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA
| | - Gediminas Mainelis
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
34
|
Al-Doaiss A, Jarrar B, Shati A, Al-Kahtani M, Alfaifi M. Cardiac and testicular alterations induced by acute exposure to titanium dioxide nanoparticles: Histopathological study. IET Nanobiotechnol 2021; 15:58-67. [PMID: 34694733 PMCID: PMC8675852 DOI: 10.1049/nbt2.12000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/09/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) have novel application and are used in many household application, nanomedicine, agriculture, industries and pharmaceutical products. These applications may be accompanied with potential risk in human health and the ecosystems. The current study was carried out to find out the acute damage that might be induced by TiO2 NPs in the heart and testis. Three groups of Wistar albino rats (Rattus norvegicus) were subjected to a single dose TiO2 NPs (126, 252, 378 mg/kg bw). Cardiac and testicular biopsies from each animal under study were handled for histological and histochemical examination. Rats exposed to TiO2 NPs demonstrated the following cardiac alterations: myofibres wavy appearance, myofibre disarray, partial cross striation, cardiomyocytes hydropic degeneration together with vacuolation and nuclear alterations. Moreover, acute exposure to TiO2 NPs induced the following testicular alterations: spermatocytes degeneration, spermatids sloughing and interstitial edema. The presented cardiac and testicular alterations were dose dependent. From the findings of the present study, it might be concluded that TiO2 nanomaterials are capable of inducing acute cardiac and testicular damage that is dose dependent and could adversely affect the function of the vital organs.
Collapse
Affiliation(s)
- Amin Al-Doaiss
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia.,Department of Anatomy and Histology, Faculty of Medicine, Sana'a University, Sana'a, Yemen
| | - Bashir Jarrar
- Department of Biology, Nanobiology Unit, Faculty of Science, Jerash University, Jerash, Jordan
| | - Ali Shati
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Al-Kahtani
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Alfaifi
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
35
|
Boukholda K, Gargouri B, Aouey B, Attaai A, Elkodous MA, Najimi M, Fiebich BL, Bouchard M, Fetoui H. Subacute silica nanoparticle exposure induced oxidative stress and inflammation in rat hippocampus combined with disruption of cholinergic system and behavioral functions. NANOIMPACT 2021; 24:100358. [PMID: 35559817 DOI: 10.1016/j.impact.2021.100358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 06/15/2023]
Abstract
Increasing environmental exposure to silica nanoparticles (SiNPs) and limited neurotoxicity studies pose a challenge for safety evaluation and management of these materials. This study aimed to explore the adverse effects and underlying mechanisms of subacute exposure to SiNPs by the intraperitoneal route on hippocampus function in rats. Data showed that SiNPs induced a significant increase in oxidative/nitrosative stress markers including reactive oxygen species (ROS), malondialdehyde (MDA), protein oxidation (PCO) and nitrite (NO) production accompanied by reduced antioxidant enzyme activity (catalase, superoxide dismutase, and glutathione peroxidase) and decreased glutathione (GSH). Phenotypically, SiNPs exhibited spatial learning and memory impairment in the Morris water maze (MWM) test, a decrease of the discrimination index in the novel object recognition test (NORT) and higher anxiety-like behavior. SiNPs affected the cholinergic system as reflected by reduced acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity. In addition, SiNPs significantly increased mRNA expression level of genes related to inflammation (TNF-α, IL-1β, IL-6, and COX-2) and decreased mRNA expression level of genes related to cholinergic system including choline acetyltransferase (ChAT), vesicular acetylcholine transporter (VAChT), AChE, muscarinic acetylcholine receptor M1 (m1AChR) and nicotinic acetylcholine receptors (nAChR). Histopathological results further showed an alteration in the hippocampus of treated animals associated with marked vacuolation in different hippocampus areas. These findings provide new insights into the molecular mechanism of SiNPs-induced hippocampal alterations leading to impairment of cognitive and behavioral functions, and implicating oxidative stress and inflammation in the hippocampus, as well as disruption of cholinergic system.
Collapse
Affiliation(s)
- Khadija Boukholda
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Brahim Gargouri
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia; Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany
| | - Bakhta Aouey
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia
| | - Abdelraheim Attaai
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Mohamed Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580, Japan
| | - Mohamed Najimi
- Bioengineering Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, 23000 Beni Mellal, Morocco
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104 Freiburg, Germany
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, Public Health Research Center (CReSP), University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, Quebec, Canada, H3C 3J7
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Faculty of Sciences of Sfax, University of Sfax, BP1171, 3000 Sfax, Tunisia.
| |
Collapse
|
36
|
Influence of Titanium Dioxide Nanoparticles on Human Health and the Environment. NANOMATERIALS 2021; 11:nano11092354. [PMID: 34578667 PMCID: PMC8465434 DOI: 10.3390/nano11092354] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/23/2023]
Abstract
Nanotechnology has enabled tremendous breakthroughs in the development of materials and, nowadays, is well established in various economic fields. Among the various nanomaterials, TiO2 nanoparticles (NPs) occupy a special position, as they are distinguished by their high availability, high photocatalytic activity, and favorable price, which make them useful in the production of paints, plastics, paper, cosmetics, food, furniture, etc. In textiles, TiO2 NPs are widely used in chemical finishing processes to impart various protective functional properties to the fibers for the production of high-tech textile products with high added value. Such applications contribute to the overall consumption of TiO2 NPs, which gives rise to reasonable considerations about the impact of TiO2 NPs on human health and the environment, and debates regarding whether the extent of the benefits gained from the use of TiO2 NPs justifies the potential risks. In this study, different TiO2 NPs exposure modes are discussed, and their toxicity mechanisms—evaluated in various in vitro and in vivo studies—are briefly described, considering the molecular interactions with human health and the environment. In addition, in the conclusion of this study, the toxicity and biocompatibility of TiO2 NPs are discussed, along with relevant risk management strategies.
Collapse
|
37
|
Wittenberg S, Schoon J, Jurmeister P, Perka C, Rakow A. Arthroprosthetic titanium and vanadium exposure - confounder or cause of multiorgan morbidity. Joint Bone Spine 2021; 89:105256. [PMID: 34325051 DOI: 10.1016/j.jbspin.2021.105256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Silvan Wittenberg
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Janosch Schoon
- Department of Orthopedics and Orthopedic Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Philipp Jurmeister
- Institute of Pathology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Carsten Perka
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anastasia Rakow
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Orthopedics and Orthopedic Surgery, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
38
|
Hong F, Mu X, Ze Y, Li W, Zhou Y, Ji J. Damage to the Blood Brain Barrier Structure and Function from Nano Titanium Dioxide Exposure Involves the Destruction of Key Tight Junction Proteins in the Mouse Brain. J Biomed Nanotechnol 2021; 17:1068-1078. [PMID: 34167621 DOI: 10.1166/jbn.2021.3083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Numerous studies have proven that nano titanium dioxide (nano TiO₂) can accumulate in animal brains, where it damages the blood brain barrier (BBB); however, whether this process involves destruction of tight junction proteins in the mouse brain has not been adequately investigated. In this study, mice were exposed to nano TiO₂ for 30 consecutive days, and then we used transmission electron microscopy to observe the BBB ultrastructure and the Evans blue assay to evaluate the permeability of the BBB. Our data suggested that nano TiO₂ damaged the BBB ultrastructure and increased BBB permeability. Furthermore, we used immunofluorescence and Western blotting to examine the expression of key tight junction proteins, including Occludin, ZO-1, and Claudin-5 in the mouse brain. Our data showed that nano TiO₂ reduced Occludin, ZO-1 and Claudin-5 expression. Taken together, nano TiO₂-induced damage to the BBB structure and function may involve the destruction of key tight junction proteins.
Collapse
Affiliation(s)
- Fashui Hong
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China
| | - Xu Mu
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yuguan Ze
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Wuyan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical and Biological Sciences, Soochow University, Suzhou, 215123, China
| | - Yingjun Zhou
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Jianhui Ji
- Jiangsu Key Laboratory for Food Safety & Nutrition Function Evaluation, Huaiyin Normal University, Huaian, 223300, China
| |
Collapse
|
39
|
Impact of Food Additive Titanium Dioxide on Gut Microbiota Composition, Microbiota-Associated Functions, and Gut Barrier: A Systematic Review of In Vivo Animal Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18042008. [PMID: 33669592 PMCID: PMC7922260 DOI: 10.3390/ijerph18042008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022]
Abstract
Background: Titanium dioxide (TiO2) is used as a food additive in pastries, sweets, and sauces. It is recognized as safe by food safety authorities, but in recent years, governments and scientists have raised concerns about its genotoxicity. This systematic review aims to assess the potential associations between food TiO2 exposure and microbiota composition and functions. Methods: A systematic literature search was performed up to December 2020 in PubMed, Web of Science, and Scopus databases. The PRISMA guidelines followed. The risk of bias was assessed from ARRIVE and SYRCLE tools. Results: A total of 18 animal studies were included (n = 10 mice, n = 5 rats, n = 2 fruit flies, n = 1 silkworm). Studies varied significantly in protocols and outcomes assessment. TiO2 exposure might cause variations in abundance in specific bacterial species and lead to gut dysfunctions such as a reduction in SCFAs levels, goblet cells and crypts, mucus production, and increased biomarkers of intestinal inflammation. Conclusions: Although the extrapolation of these results from animals to humans remains difficult, this review highlights the key role of gut microbiota in gut nanotoxicology and stimulates discussions on the safe TiO2 use in food and dietary supplements. This systematic review was registered at PROSPERO as CRD42020223968.
Collapse
|
40
|
Romanos GE, Fischer GA, Delgado-Ruiz R. Titanium Wear of Dental Implants from Placement, under Loading and Maintenance Protocols. Int J Mol Sci 2021; 22:1067. [PMID: 33494539 PMCID: PMC7865642 DOI: 10.3390/ijms22031067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
The objective of this review was to analyze the process of wear of implants leading to the shedding of titanium particles into the peri-implant hard and soft tissues. Titanium is considered highly biocompatible with low corrosion and toxicity, but recent studies indicate that this understanding may be misleading as the properties of the material change drastically when titanium nanoparticles (NPs) are shed from implant surfaces. These NPs are immunogenic and are associated with a macrophage-mediated inflammatory response by the host. The literature discussed in this review indicates that titanium NPs may be shed from implant surfaces at the time of implant placement, under loading conditions, and during implant maintenance procedures. We also discuss the significance of the micro-gap at the implant-abutment interface and the effect of size of the titanium particles on their toxicology. These findings are significant as the titanium particles can have adverse effects on local soft and hard tissues surrounding implants, implant health and prognosis, and even the health of systemic tissues and organs.
Collapse
Affiliation(s)
- Georgios E. Romanos
- Department of Periodontology, Laboratory for Periodontal-, Implant-, Phototherapy (LA-PIP), School of Dental Medicine, Stony Brook University, 106 Rockland Hall, Stony Brook, NY 11794-8700, USA;
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, Johann Wolfgang Goethe University, 60590 Frankfurt, Germany
| | - Gerard A. Fischer
- Department of Periodontology, Laboratory for Periodontal-, Implant-, Phototherapy (LA-PIP), School of Dental Medicine, Stony Brook University, 106 Rockland Hall, Stony Brook, NY 11794-8700, USA;
| | - Rafael Delgado-Ruiz
- Department of Prosthodontics and Digital Technology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794-8700, USA;
| |
Collapse
|
41
|
Tsoodol Z, Aikawa M, Ichinkhorloo D, Khishigjargal T, Norov E, Komori Y, Haba H, Takács S, Ditrói F, Szűcs Z. Production cross sections of 45Ti in the deuteron-induced reaction on 45Sc up to 24 MeV. Appl Radiat Isot 2020; 168:109448. [PMID: 33339701 DOI: 10.1016/j.apradiso.2020.109448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/16/2020] [Accepted: 09/24/2020] [Indexed: 11/18/2022]
Abstract
Activation cross sections of the medically interesting radionuclide 45Ti were investigated in the deuteron-induced reaction on 45Sc. 45Ti can be produced in a radioactive-contamination-free form in the 45Sc(d,2n)45Ti reaction below 15 MeV deuteron energy. The stacked foil activation technique and γ-ray spectrometry were used to determine the cross sections. The physical yield of 45Ti was deduced from the measured cross sections.
Collapse
Affiliation(s)
- Zolbadral Tsoodol
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, 060-8638, Japan; Nuclear Research Center, National University of Mongolia, Ulaanbaatar, 13330, Mongolia.
| | - Masayuki Aikawa
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, 060-8638, Japan; Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Dagvadorj Ichinkhorloo
- Nuclear Research Center, National University of Mongolia, Ulaanbaatar, 13330, Mongolia; Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Tegshjargal Khishigjargal
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Erdene Norov
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia
| | - Yukiko Komori
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, 351-0198, Japan
| | - Hiromitsu Haba
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, 351-0198, Japan
| | - Sándor Takács
- Institute for Nuclear Research (ATOMKI), Debrecen, 4026, Hungary
| | - Ferenc Ditrói
- Institute for Nuclear Research (ATOMKI), Debrecen, 4026, Hungary
| | - Zoltán Szűcs
- Institute for Nuclear Research (ATOMKI), Debrecen, 4026, Hungary
| |
Collapse
|
42
|
Papp A, Horváth T, Igaz N, Gopisetty MK, Kiricsi M, Berkesi DS, Kozma G, Kónya Z, Wilhelm I, Patai R, Polgár TF, Bellák T, Tiszlavicz L, Razga Z, Vezér T. Presence of Titanium and Toxic Effects Observed in Rat Lungs, Kidneys, and Central Nervous System in vivo and in Cultured Astrocytes in vitro on Exposure by Titanium Dioxide Nanorods. Int J Nanomedicine 2020; 15:9939-9960. [PMID: 33376320 PMCID: PMC7765755 DOI: 10.2147/ijn.s275937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Background Non-spherical titanium dioxide (TiO2) nanoparticles have been increasingly applied in various biomedical and technological fields. Their toxicological characterization is, however, less complete than that of roundish nanoparticles. Materials and Methods Anatase form TiO2 nanorods, ca. 15x65 nm in size, were applied to cultured astrocytes in vitro and to the airways of young adult Wistar rats in vivo in 5, 10, and 8 mg/kg BW dose for altogether 28 days. Presence of nanorods and cellular damage was investigated in the astrocytes and in rat lungs and kidneys. Functional damage of the nervous system was studied by electrophysiological methods. Results The treated astrocytes showed loss of viability without detectable apoptosis. In rats, TiO2 nanorods applied to the airways reached the blood and various organs including the lungs, kidneys, and the central nervous system. In lung and kidney samples, nanorods were observed within (partly damaged) phagolysosomes and attached to organelles, and apoptotic cell death was also detected. In cortical and peripheral electrophysiological activity, alterations corresponding to energy shortage (resulting possibly from mitochondrial damage) and astrocytic dysfunction were detected. Local titanium levels and relative weight of the investigated organs, apoptotic cell death in the lungs and kidneys, and changes in the central and peripheral nervous activity were mostly proportional to the applied doses, and viability loss of the cultured astrocytes was also dose-dependent, suggesting causal relationship of treatments and effects. Conclusion Based on localization of the visualized nanorods, on neuro-functional changes, and on literature data, the toxic mechanism involved mitochondrial damage, oxidative stress, and apoptotic cell death. These indicate potential human toxicity and occupational risk in case of exposure to rod-shaped TiO2 nanoparticles.
Collapse
Affiliation(s)
- András Papp
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tamara Horváth
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Nóra Igaz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mohana Krishna Gopisetty
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Dániel Simon Berkesi
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, Biological Research Centre, Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Szeged, Hungary
| | - Tamás Ferenc Polgár
- Institute of Biophysics, Biological Research Centre, Szeged, Szeged, Hungary
| | - Tamás Bellák
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Tiszlavicz
- Department of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Razga
- Department of Pathology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Tünde Vezér
- Department of Public Health, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
43
|
Marucco A, Prono M, Beal D, Alasonati E, Fisicaro P, Bergamaschi E, Carriere M, Fenoglio I. Biotransformation of Food-Grade and Nanometric TiO 2 in the Oral-Gastro-Intestinal Tract: Driving Forces and Effect on the Toxicity toward Intestinal Epithelial Cells. NANOMATERIALS 2020; 10:nano10112132. [PMID: 33120920 PMCID: PMC7692287 DOI: 10.3390/nano10112132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
Background: Oral exposure to titanium dioxide (TiO2) is common since it is widely used in food and pharmaceutical products. Concern on the safety of this substance has been recently raised, due to the presence of an ultrafine fraction in food-grade TiO2. Discrepancy exists among data reported in in vitro and in vivo studies on intestinal acute/chronic toxicity of TiO2. This might be due to the different biological identity of TiO2 in traditional in vitro test by respect in vivo conditions. Methods: One food-grade TiO2 and two nanometric TiO2 samples were treated with a simulated human digestive dystem (SHDS) in order to investigate the bio-transformation occurring to the particles once ingested in term of size distribution (Dynamic Light Scattering—DLS-, Flow Particle Imaging, Asymmetric Flow Field Flow Fractionation-AF4-) and surface modification (Electrophoretic Light Scattering—ELS-, Electron Paramagnetic Resonance Spectroscopy—EPR-). The effect of SHDS on the cyto-, genotoxicity and potential to induce oxidative stress towards human colorectal carcinoma HCT116 cells was also assessed. Results: Aggregation as a consequence of the high ionic strength of the gastric and intestinal simulated fluids was observed, together with the formation of a partially irreversible bio-corona containing phosphate ions and proteins. Such bio-corona led to a partial masking of the TiO2 particles surface and reactivity. Pristine and treated TiO2 nanoparticles showed comparable acute toxicity and genotoxicity toward HCT116 cells, whereas a small decrease of the induction of oxidative stress after treatment was observed. Conclusions: Overall the results underline the importance of SHDS as a tool to improve the predictive power of in vitro tests towards intestinal nanomaterial toxicity.
Collapse
Affiliation(s)
- Arianna Marucco
- Department of Chemistry, University of Torino, 10125 Torino, Italy;
| | - Marion Prono
- Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST), University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France; (M.P.); (D.B.)
| | - David Beal
- Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST), University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France; (M.P.); (D.B.)
| | - Enrica Alasonati
- Département Biomédicale et Chimie Inorganique, Laboratoire National de Métrologie et D’essais, F-75724 Paris, France; (E.A.); (P.F.)
| | - Paola Fisicaro
- Département Biomédicale et Chimie Inorganique, Laboratoire National de Métrologie et D’essais, F-75724 Paris, France; (E.A.); (P.F.)
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Torino, 10126 Torino, Italy;
| | - Marie Carriere
- Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST), University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France; (M.P.); (D.B.)
- Correspondence: (M.C.); (I.F.)
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, 10125 Torino, Italy;
- Correspondence: (M.C.); (I.F.)
| |
Collapse
|
44
|
Bhattacharjee S, Brayden DJ. Addressing the challenges to increase the efficiency of translating nanomedicine formulations to patients. Expert Opin Drug Discov 2020; 16:235-254. [PMID: 33108229 DOI: 10.1080/17460441.2021.1826434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nanotechnology is in a growth phase for drug delivery and medical imaging. Nanomaterials with unique properties present opportunities for encapsulation of therapeutics and imaging agents, along with conjugation to ligands for targeting. Favorable chemistry of nanomaterials can create formulations that address critical challenges for therapeutics, such as insolubility and a low capacity to cross the blood-brain-barrier (BBB) and intestinal wall. AREAS COVERED The authors investigate challenges faced during translation of nanomedicines while suggesting reasons as to why some nanoformulations have under-performed in clinical trials. They assess physiological barriers such as the BBB and gut mucus that nanomedicines must overcome to deliver cargos. They also provide an overview with examples of how nanomedicines can be designed to improve localization and site-specific delivery (e.g., encapsulation, bioconjugation, and triggered-release). EXPERT OPINION There are examples where nanomedicines have demonstrated improved efficacy of payload in humans; however, most of the advantages conferred were in improved pharmacokinetics and reduced toxicity. Problematic data show susceptibility of nanoformulations against natural protective mechanisms present in the body, including distribution impediment by physiological barriers and activation of the reticuloendothelial system. Further initiatives should address current challenges while expanding the scope of nanomedicine into advanced biomedical imaging and antibiotic delivery.
Collapse
Affiliation(s)
- Sourav Bhattacharjee
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland
| | - David J Brayden
- School of Veterinary Medicine, University College Dublin (UCD), Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin (UCD), Belfield, Dublin, Ireland
| |
Collapse
|
45
|
Chehbani F, Gallello G, Brahim T, Ouanes S, Douki W, Gaddour N, Cervera Sanz ML. The status of chemical elements in the blood plasma of children with autism spectrum disorder in Tunisia: a case-control study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35738-35749. [PMID: 32601867 DOI: 10.1007/s11356-020-09819-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopmental disorders defined by a deficit in social interactions and the presence of restricted and stereotypical behaviors or interests. The etiologies of autism remain mostly unknown. Many genetic and environmental factors have been suspected. Among these environmental factors, exposure to several chemical elements has been previously studied. The purpose of this study was to compare the levels of trace elements in the blood plasma of children with ASD with typically developed children (TDC). The participants in this study consisted of 89 children with ASD (14 girls and 74 boys) and 70 TD children (29 girls and 41 boys). The levels of 33 chemical elements have been analyzed by inductively coupled plasma spectrometry (ICP-MS). We detected significant differences in the levels of eight elements between the two groups, among which there were three rare earth elements (REEs): Eu, Pr, and Sc (p = 0.000, p = 0.023, and p < 0.001 respectively); four heavy metals: Bi, Tl, Ti, and V (p = 0.004, p < 0.001, p = 0.001, and p = 0.001 respectively); and one essential element: Cu (p = 0.043). Children with ASD had higher levels of Er, Pr, Sc, Bi, Tl, Ti, and V, and lower levels of Cu in comparison with the TD group. The children exposed to passive smoking had lower levels of lead (Pb) compared with children without exposure (p = 0.018). Four elements (Cr, Er, Dy, and Pr) were negatively correlated to the severity of ASD. The level of Cu was significantly associated with autistic children's behavior (p = 0.014). These results suggest that children with ASD might have abnormal plasma levels of certain chemical elements (including Er, Pr, Sc, Bi, Tl, Ti, and V, and Cu), and some of these elements might be associated with certain clinical features.
Collapse
Affiliation(s)
- Fethia Chehbani
- Department of Psychiatry, Research Laboratory "Vulnerability to Psychotic Disorders LR 05 ES 10", Monastir University Hospital, Monastir, Tunisia.
- Faculty of Pharmacy, University of Monastir, Monastir, Tunisia.
| | - Gianni Gallello
- Department of Analytical Chemistry, University of Valencia, Valencia, Spain
- Department of Prehistory, Archaeology and Ancient History, University of Valencia, Valencia, Spain
| | - Takoua Brahim
- Unite of Child psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia
| | - Sami Ouanes
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| | - Wahiba Douki
- Department of Psychiatry, Research Laboratory "Vulnerability to Psychotic Disorders LR 05 ES 10", Monastir University Hospital, Monastir, Tunisia
- Biochemistry-Toxicology Laboratory, University Hospital of Monastir, Monastir, Tunisia
| | - Naoufel Gaddour
- Unite of Child psychiatry, Monastir University Hospital, University of Monastir, Monastir, Tunisia
| | | |
Collapse
|
46
|
Rakow A, Schoon J. Systemic Effects of Metals Released from Arthroplasty Implants – a Brief Summary. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2020; 158:501-507. [DOI: 10.1055/a-1187-1751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractIn recent years, increasing concern has been raised regarding potential systemic toxicity of metals released from arthroplasty implants. A lack of valid metal thresholds for human (organ) toxicity and the prospect of multi-decade survival of modern hip and knee replacements pose special challenges. Indeed, evidence of systemic effects of metals released from such implants is largely missing. Systemic cobalt exposure has repeatedly been associated with cardiotoxic and neurotoxic effects, and also with thyroid dysfunction. The toxic potential of chromium is considered less pronounced. Yet, in arthroplasty there is usually a co-exposure to chromium and cobalt which complicates evaluation of element-specific effects. Toxicity of titanium dioxide nanoparticles has been subject to debate among international regulatory authorities. Their wide use in a variety of products in everyday life, such as toothpaste, cosmetics and food colorants, hampers the assessment of an
arthroplasty-induced systemic titanium exposure. To date there is no clear evidence for systemic complications due to titanium dioxide released from arthroplasty implants. Release of further metals such as tantalum, niobium, nickel, vanadium and zirconium from hip and knee replacement implants has been described occasionally, but systemic effects of respective long-term exposure scenarios are unknown. Generally, the characterization of all released metals regarding their chemical and physical specifications is critical for the evaluation of potential systemic risks. Systematic studies investigating the accumulation of metals relevant in arthroplasty in different organs/organ systems and the biological consequences of such accumulations are urgently needed.
Collapse
Affiliation(s)
- Anastasia Rakow
- Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Janosch Schoon
- Klinik und Poliklinik für Orthopädie und Orthopädische Chirurgie, Universitätsmedizin Greifswald, Germany
- Julius Wolff Institute, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
47
|
Zhang J, Jiang L, Wu D, Yin Y, Guo H. Effects of environmental factors on the growth and microcystin production of Microcystis aeruginosa under TiO 2 nanoparticles stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139443. [PMID: 32454338 DOI: 10.1016/j.scitotenv.2020.139443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Due to the growing use and release of nanomaterials, their toxic impacts on aquatic ecosystems have drawn widespread attention in recent years. In this study, we exposed Microcystis aeruginosa to 5 mg/L titanium dioxide nanoparticles (nTiO2) under different culture conditions (pH 6, 7, 8, 9; 20 °C, 25 °C, 30 °C). The results showed that algae had the worst growth status with lowest biomass, lowest photosynthetic activity and highest reactive oxygen species (ROS) generation under 5 mg/L nTiO2 at pH 6 and 20 °C. Images by scanning electron microscopy (SEM) revealed that nTiO2 hindered light absorption by algal cells by wrapping the algal surface, which led to obvious cell surface deformation at pH 6 or 20 °C. In addition, microcystin-LR (MC-LR) production increased as temperature or pH decreased when exposed to nTiO2 at 5 mg/L, demonstrating that falling pH or temperature enhanced the adverse effects toward algal cells under nTiO2 stress and the potential risk of algae to the environment.
Collapse
Affiliation(s)
- Jingxian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Lijuan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210046, China
| |
Collapse
|
48
|
Luo Z, Li Z, Xie Z, Sokolova IM, Song L, Peijnenburg WJGM, Hu M, Wang Y. Rethinking Nano-TiO 2 Safety: Overview of Toxic Effects in Humans and Aquatic Animals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002019. [PMID: 32761797 DOI: 10.1002/smll.202002019] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Titanium dioxide nanoparticles (nano-TiO2 ) are widely used in consumer products, raising environmental and health concerns. An overview of the toxic effects of nano-TiO2 on human and environmental health is provided. A meta-analysis is conducted to analyze the toxicity of nano-TiO2 to the liver, circulatory system, and DNA in humans. To assess the environmental impacts of nano-TiO2 , aquatic environments that receive high nano-TiO2 inputs are focused on, and the toxicity of nano-TiO2 to aquatic organisms is discussed with regard to the present and predicted environmental concentrations. Genotoxicity, damage to membranes, inflammation and oxidative stress emerge as the main mechanisms of nano-TiO2 toxicity. Furthermore, nano-TiO2 can bind with free radicals and signal molecules, and interfere with the biochemical reactions on plasmalemma. At the higher organizational level, nano-TiO2 toxicity is manifested as the negative effects on fitness-related organismal traits including feeding, reproduction and immunity in aquatic organisms. Bibliometric analysis reveals two major research hot spots including the molecular mechanisms of toxicity of nano-TiO2 and the combined effects of nano-TiO2 and other environmental factors such as light and pH. The possible measures to reduce the harmful effects of nano-TiO2 on humans and non-target organisms has emerged as an underexplored topic requiring further investigation.
Collapse
Affiliation(s)
- Zhen Luo
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhuoqing Li
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhe Xie
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, 18051, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, 18051, Germany
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, Leiden, RA, 2300, The Netherlands
- National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, BA, 3720, The Netherlands
| | - Menghong Hu
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, 201306, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| |
Collapse
|
49
|
Kandeil MA, Mohammed ET, Hashem KS, Aleya L, Abdel-Daim MM. Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs)-induced cerebral oxidative damage, and increases cerebral mitochondrial viability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:19169-19184. [PMID: 31286372 DOI: 10.1007/s11356-019-05514-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
To investigate the influence of Moringa seed extract (MSE) on the cerebral Nrf2/NQO1 signaling in TiO2-NPs-induced brain damage, 80 male albino rats were divided into four groups (n = 20); group I was used as a control, group II received TiO2-NPs (500 mg/kg b.w/day orally) for 14 days, group III received MSE (100 mg/kg b.w/day orally) for 30 days, and group IV received MSE an hour before TiO2-NPs administration with the same doses as before. Administration of TiO2-NPs was started on the 17th day for both groups (II) and (IV). Administration of MSE significantly increased the cerebral mitochondrial viability and Nrf2 level with a simultaneous increase of NQO1 mRNA expression. This designates a powerful antioxidant effect of MSE which is indicated by a significant reduction of INOS expression, MDA, TOS, OSI levels, and DNA fragmentation % with a significant increase of GSH concentration, SOD activities, and TAC. MSE possesses an anti-inflammatory effect by a significant reduction of IL-1β and TNF-α levels, and anti-apoptotic effect manifested by a significant reduction of caspase-3 and Fas levels. In harmonization, dopamine, serotonin concentrations, and acetylcholinesterase activities return back to normal as compared to control group. These results were confirmed by the histopathological features which were alleviated with MSE administration. In conclusion, Nrf2 plays a pivotal role in the mechanism of TiO2-NPs cerebral toxicity and MSE as a Nrf2 activator can provide a powerful cerebroprotective effect, whereas MSE increased the Nrf2 expression and consequently restore the antioxidant activity of brain cells by increasing NQO1 gene expression and cerebral mitochondrial viability as well as inhibition of pro-inflammatory and apoptotic mediators.
Collapse
Affiliation(s)
- Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Eman T Mohammed
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Khalid S Hashem
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon Cedex, France
| | - Mohamed M Abdel-Daim
- Department of Zoology, Science College, King Saud University, Riyadh, 11451, Saudi Arabia.
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
50
|
Zhou T, Huang WK, Xu QY, Zhou X, Wang Y, Yue ZH, Song B. Nec-1 Attenuates Neurotoxicity Induced by Titanium Dioxide Nanomaterials on Sh-Sy5y Cells Through RIP1. NANOSCALE RESEARCH LETTERS 2020; 15:65. [PMID: 32221753 PMCID: PMC7099541 DOI: 10.1186/s11671-020-03300-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/17/2020] [Indexed: 05/27/2023]
Abstract
Titanium dioxide nanomaterials are applied in numerous fields due to their splendid physicochemical characteristics, which in turn poses a potential threat to human health. Recently, numerous in vivo studies have revealed that titanium dioxide nanoparticles (TNPs) can be transported into animal brains after exposure through various routes. Absorbed TNPs can accumulate in the brain and may disturb neuronal cells, leading to brain dysfunction. In vitro studies verified the neurotoxicity of TNPs. The mechanisms underlying the neurotoxicity of TNPs remains unclear. Whether necroptosis is involved in the neurotoxicity of TNPs is unknown. Therefore, we performed an in vitro study and found that TNPs induced inflammatory injury in SH-SY5Y cells in a dose-dependent way, which was mitigated by necrostatin-1 (Nec-1) pretreatment. Since receptor-interacting protein kinase 1 (RIP1) is reported to be the target of Nec-1, we silenced it by siRNA. We exposed mutant and wild-type cells to TNPs and assessed inflammatory injury. Silencing RIP1 expression inhibited inflammatory injury induced by TNPs exposure. Taken together, Nec-1 ameliorates the neurotoxicity of TNPs through RIP1. However, more studies should be performed to comprehensively assess the correlation between the neurotoxicity of TNPs and RIP1.
Collapse
Affiliation(s)
- Ting Zhou
- Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Wei-kun Huang
- Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Qiu-yan Xu
- Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Xue Zhou
- Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Yue Wang
- Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Zhao-hui Yue
- Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| | - Bin Song
- Guizhou Provincial People’s Hospital, Guiyang, 550002 China
| |
Collapse
|