1
|
Ashokkumar M, Palanisamy K, Ganesh Kumar A, Muthusamy C, Senthil Kumar KJ. Green synthesis of silver and copper nanoparticles and their composites using Ocimum sanctum leaf extract displayed enhanced antibacterial, antioxidant and anticancer potentials. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:438-448. [PMID: 39239690 DOI: 10.1080/21691401.2024.2399938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024]
Abstract
Green-synthesized silver and copper nanoparticles (NPs), along with their composites, exhibit various biological activities. Ocimum sanctum (Holy basil), traditionally used as medicine in South Asia, treats respiratory disorders, digestive issues, skin diseases and inflammatory conditions. Modern scientific studies support these bioactivities; however, no studies have investigated their bioactivity in combination with NPs. In this study, silver and copper NPs were synthesized using AgNO3 and CuSO4·5H2O solutions, respectively, with Ocimum sanctum leaf extract, and their antibacterial, antioxidant and anticancer properties were examined. Spectroscopic analyses, including Fourier transform infra-red (FTIR), transmission electron microscopy (TEM) and X-ray diffraction (XRD), elucidated the physicochemical characteristics of the green-synthesized nanoparticles (Os-AgNPs and Os-CuNPs), revealing sizes of 11.7 and 13.1 nm, respectively. The Os-AgNPs:Os-CuNPs nano-composite with a 1:2 ratio exhibited a zone of inhibition ranging from 8 to 12 mm against tested bacterial pathogens. Additionally, the NPs and their composites demonstrated potent antioxidant activity, with notable 2-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity observed in composites with ratios of 2:1 and 1:2. Furthermore, they displayed potential anticancer activity against human leukaemia (Jurkat) cancer cells. Although no distinct difference in anticancer property was observed among the NPs and their composites, our study highlights their well-defined nanostructure and significant biological activity, suggesting their potential as therapeutic agents in the pharmaceutical industry.
Collapse
Affiliation(s)
- M Ashokkumar
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, India
| | - K Palanisamy
- Department of Chemistry, Srinivasan College of Arts and Science(Affiliated to Bharathidasan University, Tiruchirappalli), Perambalur, India
| | - A Ganesh Kumar
- Department of Microbiology, Centre for Research and Development, Hindustan College of Arts & Science, Kelambakkam, India
| | - C Muthusamy
- Department of Biotechnology, Srinivasan College of Arts and Science (Affiliated to Bharathidasan University, Tiruchirappalli), Perambalur, India
| | - K J Senthil Kumar
- Center for General Education, National Chung Hsing University, Taichung, Taiwan
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Darwesh OM, Marzoog A, Matter IA, Okla MK, El-Tayeb MA, Aufy M, Dawoud TM, Abdel-Maksoud MA. Natural dyes developed by microbial-nanosilver to produce antimicrobial and anticancer textiles. Microb Cell Fact 2024; 23:189. [PMID: 38956629 PMCID: PMC11218209 DOI: 10.1186/s12934-024-02457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024] Open
Abstract
Developing special textiles (for patients in hospitals for example) properties, special antimicrobial and anticancer, was the main objective of the current work. The developed textiles were produced after dyeing by the novel formula of natural (non-environmental toxic) pigments (melanin amended by microbial-AgNPs). Streptomyces torulosus isolate OSh10 with accession number KX753680.1 was selected as a superior producer for brown natural pigment. By optimization processes, some different pigment colors were observed after growing the tested strain on the 3 media. Dextrose and malt extract enhanced the bacteria to produce a reddish-black color. However, glycerol as the main carbon source and NaNO3 and asparagine as a nitrogen source were noted as the best for the production of brown pigment. In another case, starch as a polysaccharide was the best carbon for the production of deep green pigment. Peptone and NaNO3 are the best nitrogen sources for the production of deep green pigment. Microbial-AgNPs were produced by Fusarium oxysporum with a size of 7-21 nm, and the shape was spherical. These nanoparticles were used to produce pigments-nanocomposite to improve their promising properties. The antimicrobial of nanoparticles and textiles dyeing by nanocomposites was recorded against multidrug-resistant pathogens. The new nanocomposite improved pigments' dyeing action and textile properties. The produced textiles had anticancer activity against skin cancer cells with non-cytotoxicity detectable action against normal skin cells. The obtained results indicate to application of these textiles in hospital patients' clothes.
Collapse
Affiliation(s)
- Osama M Darwesh
- Agricultural Microbiology Department, National Research Centre, Dokki, Cairo, 12622, Egypt.
| | - Ahmed Marzoog
- Department of Soil and Water Sciences, College of Agriculture, University of Anbar, Ramadi, Iraq
| | - Ibrahim A Matter
- Agricultural Microbiology Department, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A El-Tayeb
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Turki M Dawoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Anwar Y, Jaha HF, Ul-Islam M, Kamal T, Khan SB, Ullah I, Al-Maaqar SM, Ahmed S. Development of silver-doped copper oxide and chitosan nanocomposites for enhanced antimicrobial activities. Z NATURFORSCH C 2024; 79:137-148. [PMID: 38820053 DOI: 10.1515/znc-2023-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/10/2024] [Indexed: 06/02/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a significant and pressing public health concern, posing serious challenges to effectively preventing and treating persistent diseases. Despite various efforts made in recent years to address this problem, the global trends of AMR continue to escalate without any indication of decline. As AMR is well-known for antibiotics, developing new materials such as metal containing compounds with different mechanisms of action is crucial to effectively address this challenge. Copper, silver, and chitosan in various forms have demonstrated significant biological activities and hold promise for applications in medicine and biotechnology. Exploring the biological properties of these nanoparticles is essential for innovative therapeutic approaches in treating bacterial and fungal infections, cancer, and other diseases. To this end, the present study aimed to synthesize silver@copper oxide (Ag@CuO) nanoparticles and its chitosan nanocomposite (Chi-Ag@CuO) to investigate their antimicrobial efficacy. Various established spectroscopic and microscopic methods were employed for characterization purposes, encompassing scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Subsequently, the antimicrobial activity of the nanoparticles was assessed through MIC (minimum inhibitory concentration), MBC (minimum bactericidal concentration), and well-disk diffusion assays against Pseudomonas aeruginosa, Acinetobacter baumannii Staphylococcus aureus, Staphylococcus epidermidis, and Candida albicans. The size of the CuO-NPs, Ag@CuO, and Chi-Ag@CuO NPs was found to be 70-120 nm with a spherical shape and an almost uniform distribution. The nanocomposites were found to possess a minimum inhibitory concentration (MIC) of 5 μg/mL and a minimum bactericidal concentration (MBC) of 250 μg/mL. Moreover, these nanocomposites generated varying clear inhibition zones, with diameters ranging from a minimum of 9 ± 0.5 mm to a maximum of 25 ± 0.5 mm. Consequently, it is evident that the amalgamation of copper-silver-chitosan nanoparticles has exhibited noteworthy antimicrobial properties in the controlled laboratory environment, surpassing the performance of other types of nanoparticles.
Collapse
Affiliation(s)
- Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hisham Faiz Jaha
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazhar Ul-Islam
- Department of Chemical Engineering, Dhofar University, Şalālah 211, Oman
| | - Tahseen Kamal
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ihsan Ullah
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh M Al-Maaqar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biology, Faculty of Education, Albaydha University, Al-Baydha, Yemen
| | - Sameer Ahmed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Tang J, Zhang Y, Liu X, Lin Y, Liang L, Li X, Casals G, Zhou X, Casals E, Zeng M. Versatile Antibacterial and Antioxidant Bacterial Cellulose@Nanoceria Biotextile: Application in Reusable Antimicrobial Face Masks. Adv Healthc Mater 2024; 13:e2304156. [PMID: 38271691 DOI: 10.1002/adhm.202304156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Despite considerable interest in medical and pharmaceutical fields, there remains a notable absence of functional textiles that concurrently exhibit antibacterial and antioxidant properties. Herein, a new composite fabric constructed using nanostructured bacterial cellulose (BC) covalently-linked with cerium oxide nanoparticles (BC@CeO2NPs) is introduced. The synthesis of CeO2NPs on the BC is performed via a microwave-assisted, in situ chemical deposition technique, resulting in the formation of mixed valence Ce3+/Ce4+ CeO2NPs. This approach ensures the durability of the composite fabric subjected to multiple washing cycles. The Reactive oxygen species (ROS) scavenging activity of CeO2NPs and their rapid and efficient eradication of >99% model microbes, such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus remain unaltered in the composite. To demonstrate the feasibility of incorporating the fabric in marketable products, antimicrobial face masks are fabricated with filter layers made of BC@CeO2NPs cross-linked with propylene or cotton fibers. These masks exhibit complete inhibition of bacterial growth in the three bacterial strains, improved breathability compared to respirator masks and enhanced filtration efficiency compared to single-use surgical face masks. This study provides valuable insights into the development of functional BC@CeO2NPs biotextiles in which design can be extended to the fabrication of medical dressings and cosmetic products with combined antibiotic, antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Jie Tang
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Yuping Zhang
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Xingfei Liu
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Yichao Lin
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Lihua Liang
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Xiaofang Li
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Gregori Casals
- Service of Biochemistry and Molecular Genetics, Hospital Clinic Universitari and The August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Carrer de Villarroel, 170, Barcelona, 08036, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), Av. Monforte de Lemos, 3-5, Madrid, 28029, Spain
- Department of Fundamental Care and Medical-Surgical Nursing, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, 08007, Spain
| | - Xiangyu Zhou
- Obstetrics and Gynecology Hospital of Fudan University, Shanghai Medical College, State Key Lab of Genetic Engineering, Fudan University, Shanghai, 200011, China
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University, 99 Yingbing Middle Rd., Jiangmen, 529020, China
| |
Collapse
|
5
|
Sun L, Sun B, Zhang Y, Chen K. Kinetic properties of glucose 6-phosphate dehydrogenase and inhibition effects of several metal ions on enzymatic activity in vitro and cells. Sci Rep 2024; 14:5806. [PMID: 38461203 PMCID: PMC10924972 DOI: 10.1038/s41598-024-56503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Due to the non-degradable and persistent nature of metal ions in the environment, they are released into water bodies, where they accumulate in fish. In order to assess pollution in fish, the enzyme, glucose 6-phosphate dehydrogenase (G6PD), has been employed as a biomarker due to sensitivity to various ions. This study investigates the kinetic properties of the G6PD enzyme in yellow catfish (Pelteobagrus fulvidraco), and analyzes the effects of these metal ions on the G6PD enzyme activity in the ovarian cell line (CCO) of channel catfish (Ictalurus punctatus). IC50 values and inhibition types of G6PD were determined in the metal ions Cu2+, Al3+, Zn2+, and Cd2+. While, the inhibition types of Cu2+ and Al3+ were the competitive inhibition, Zn2+ and Cd2+ were the linear mixed noncompetitive and linear mixed competitive, respectively. In vitro experiments revealed an inverse correlation between G6PD activity and metal ion concentration, mRNA levels and enzyme activity of G6PD increased at the lower metal ion concentration and decreased at the higher concentration. Our findings suggest that metal ions pose a significant threat to G6PD activity even at low concentrations, potentially playing a crucial role in the toxicity mechanism of metal ion pollution. This information contributes to the development of a biomonitoring tool for assessing metal ion contamination in aquatic species.
Collapse
Affiliation(s)
- Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Yulei Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| |
Collapse
|
6
|
Rojas-Jaimes J, Asmat-Campos D. Cu 2O, ZnO, and Ag/ Cu 2O nanoparticles synthesized by biogenic and chemical route and their effect on Pseudomonas aeruginosa and Candida albicans. Sci Rep 2023; 13:21478. [PMID: 38052801 PMCID: PMC10697934 DOI: 10.1038/s41598-023-47917-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023] Open
Abstract
Pseudomonas aeruginosa and Candida albicans are two important pathogens in public health due to the infections they cause in immunocompromised patients and with hospital stay, increasing morbimortality rates. Three groups of Cu2O, ZnO, and Ag/Cu2O nanoparticles were synthesized and characterized physicochemically and confronted to P. aeruginosa and C. albicans to determine their antibacterial effect. Statistical analyses were performed using Analysis of Variance (ANOVA) (p < 0.001). The structures of Cu2O, ZnO, and Ag/Cu2O nanoparticles were spherical, sized 6 nm, 10 nm, and 50 nm for Ag, Cu2, and Zn metals, respectively. Furthermore, a 100% antibacterial and antifungal effect against Pseudomonas aeruginosa and Candida albicans was observed for Cu2O, ZnO, and Ag/Cu2O nanoparticles respectively. It is concluded from these findings that the nanoparticles synthesized by biogenic and chemical route had a good size between 6 and 50 nm and that Cu2O, ZnO, and Ag/Cu2O nanoparticles presented an excellent antibacterial (100% growth inhibition) effect against P. aeruginosa and C. albicans (p < 0.001) compared to the control.
Collapse
Affiliation(s)
- J Rojas-Jaimes
- Faculty of Health Sciences, Universidad Privada del Norte, Av. El Sol 461, San Juan de Lurigancho, Lima, 15434, Peru.
| | - David Asmat-Campos
- Department of Research, Innovation & Social Responsibility, Universidad Privada del Norte, Trujillo, Peru
- Applied Sciences and New Technologies Research Group, Universidad Privada del Norte, Trujillo, Peru
| |
Collapse
|
7
|
Li K, Zhong W, Li P, Ren J, Jiang K, Wu W. Antibacterial mechanism of lignin and lignin-based antimicrobial materials in different fields. Int J Biol Macromol 2023; 252:126281. [PMID: 37572815 DOI: 10.1016/j.ijbiomac.2023.126281] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The control of microbial infection transmission often relies on the utilization of synthetic and metal-based antimicrobial agents. However, their non-biodegradability and inadequate disposal practices lead to significant environmental contamination. To address this concern, the quest for natural alternatives has gained paramount importance. Lignin, a widely available renewable aromatic compound, emerges as a promising candidate owing to its inherent phenolic moiety, which lends itself well to acting as a natural antimicrobial agent either independently or in combination with other agents. This article provides a comprehensive account of the structure and primary classes of lignin. Additionally, it elucidates the antimicrobial mechanism of lignin, the factors influencing its efficacy, and the methods employed for its detection. Moreover, it describes the progress made in developing the antimicrobial capacity of lignin in different areas. In conclusion, this paper not only outlines the current state of research on the antimicrobial function of lignin, but also identifies challenges and future possibilities for enhancing its antimicrobial properties. This work holds great significance in the ongoing endeavor to contribute to high-impact research on natural alternatives for controlling infections and fostering environmentally conscious practices.
Collapse
Affiliation(s)
- Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kangjie Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
8
|
Binczarski MJ, Zuberek JZ, Samadi P, Cieslak M, Kaminska I, Berlowska J, Pawlaczyk A, Szynkowska-Jozwik MI, Witonska IA. Use of copper-functionalized cotton waste in combined chemical and biological processes for production of valuable chemical compounds. RSC Adv 2023; 13:34681-34692. [PMID: 38035250 PMCID: PMC10682913 DOI: 10.1039/d3ra06071c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
Cotton textiles modified with copper compounds have a documented mechanism of antimicrobial action against bacteria, fungi, and viruses. During the COVID-19 pandemic, there was pronounced interest in finding new solutions for textile engineering, using modifiers and bioactive methods of functionalization, including introducing copper nanoparticles and complexes into textile products (e.g. masks, special clothing, surface coverings, or tents). However, copper can be toxic, depending on its form and concentration. Functionalized waste may present a risk to the environment if not managed correctly. Here, we present a model for managing copper-modified cotton textile waste. The process includes pressure and temperature-assisted hydrolysis and use of the hydrolysates as a source of sugars for cultivating yeast and lactic acid bacteria biomass as valuable chemical compounds.
Collapse
Affiliation(s)
- Michal J Binczarski
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | - Justyna Z Zuberek
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | - Payam Samadi
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | - Malgorzata Cieslak
- Lukasiewicz Research Network - Lodz Institute of Technology, Department of Chemical Textile Technologies 19/27 Marii Sklodowska-Curie Street 90-570 Lodz Poland
| | - Irena Kaminska
- Lukasiewicz Research Network - Lodz Institute of Technology, Department of Chemical Textile Technologies 19/27 Marii Sklodowska-Curie Street 90-570 Lodz Poland
| | - Joanna Berlowska
- Lodz University of Technology, Department of Environmental Biotechnology 171/173 Wolczanska Street 90-924 Lodz Poland
| | - Aleksandra Pawlaczyk
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| | | | - Izabela A Witonska
- Lodz University of Technology, Institute of General and Ecological Chemistry 116 Zeromskiego Street 90-924 Lodz Poland
| |
Collapse
|
9
|
Mondal MS, Paul A, Rhaman M. Recycling of silver nanoparticles from electronic waste via green synthesis and application of AgNPs-chitosan based nanocomposite on textile material. Sci Rep 2023; 13:13798. [PMID: 37612338 PMCID: PMC10447510 DOI: 10.1038/s41598-023-40668-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023] Open
Abstract
The main thrust of this project is the fabrication of silver nanoparticles (AgNPs) from electronic waste (PCB board) and applying it on 100% cotton fabric as an antimicrobial agent. The nanoparticle formation of silver was done by green synthesis way using an aqueous leaf extract of Eichhornia crassipes. Furthermore, chitosan was also applied to the fabric with silver nanoparticles by coating. FTIR and SEM tests characterized the fabricated silver nanoparticles, and antimicrobial tests were followed by the disc diffusion method. The SEM analysis showed an average particle size of 76.91 nm. The FTIR analysis showed the successful reduction of silver nanoparticles and the bonding with chitosan and cellulose. Besides, the EDX reports confirmed the existence of AgNPs by indicating a strong signal in the silver region. In addition, SEM characteristics analysis confirmed the uniform deposition of silver nanoparticles. Finally, the antimicrobial property was tested against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The antimicrobial result was found satisfactory in the case of green-synthesized recycled AgNPs. However, the effectiveness was not observed to be higher than green-synthesized pure AgNPs. In this study, the zone of inhibition of AgNPs was also compared to the reference antibiotics Ciprofloxacin.
Collapse
Affiliation(s)
- Moni Sankar Mondal
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.
| | - Ayon Paul
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| | - Mukitur Rhaman
- Department of Textile Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
| |
Collapse
|
10
|
Asmat-Campos D, Rojas-Jaimes J, de Oca-Vásquez GM, Nazario-Naveda R, Delfín-Narciso D, Juárez-Cortijo L, Bayona DE, Diringer B, Pereira R, Menezes DB. Biogenic production of silver, zinc oxide, and cuprous oxide nanoparticles, and their impregnation into textiles with antiviral activity against SARS-CoV-2. Sci Rep 2023; 13:9772. [PMID: 37328549 PMCID: PMC10275893 DOI: 10.1038/s41598-023-36910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Nanotechnology is being used to fight off infections caused by viruses, and one of the most outstanding nanotechnological uses is the design of protective barriers made of textiles functionalized with antimicrobial agents, with the challenge of combating the SARS-CoV-2 virus, the causal agent of COVID-19. This research is framed within two fundamental aspects: the first one is linked to the proposal of new methods of biogenic synthesis of silver, cuprous oxide, and zinc oxide nanoparticles using organic extracts as reducing agents. The second one is the application of nanomaterials in the impregnation (functionalization) of textiles based on methods called "in situ" (within the synthesis), and "post-synthesis" (after the synthesis), with subsequent evaluation of their effectiveness in reducing the viral load of SARS-CoV-2. The results show that stable, monodisperse nanoparticles with defined geometry can be obtained. Likewise, the "in situ" impregnation method emerges as the best way to adhere nanoparticles. The results of viral load reduction show that 'in situ' textiles with Cu2O NP achieved a 99.79% load reduction of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- David Asmat-Campos
- Dirección de Investigación, Innovación y Responsabilidad Social, Universidad Privada del Norte (UPN), Trujillo, Peru.
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo, 13011, Peru.
| | - Jesús Rojas-Jaimes
- Dirección de Investigación, Innovación y Responsabilidad Social, Universidad Privada del Norte (UPN), Trujillo, Peru
| | | | - R Nazario-Naveda
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo, 13011, Peru
| | - D Delfín-Narciso
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo, 13011, Peru
| | - L Juárez-Cortijo
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo, 13011, Peru
| | | | - Benoit Diringer
- INCABIOTEC SAC, Tumbes, 24 000, Peru
- Programa de Maestría de Biotecnología Molecular, Universidad Nacional de Tumbes, Tumbes, 24 000, Peru
| | - Reinaldo Pereira
- National Laboratory of Nanotechnology, National Center for High Technology, Pavas, San José, 10109, Costa Rica
| | - Diego Batista Menezes
- National Laboratory of Nanotechnology, National Center for High Technology, Pavas, San José, 10109, Costa Rica
| |
Collapse
|
11
|
Nejad ST, Rahimi R, Rabbani M, Rostamnia S. Facile photosynthesis of novel porphyrin-derived nanocomposites containing Ag, Ag/Au, and Ag/Cu for photobactericidal study. Sci Rep 2023; 13:8580. [PMID: 37237037 DOI: 10.1038/s41598-023-34745-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
In this research, the one-step synthesis of novel porphyrin-based nanocomposites was performed easily using a photochemical under visible light illumination strategy. As a result, the focus of this research is on synthesizing and using decorated ZnTPP (zinc(II)tetrakis(4-phenyl)porphyrin) nanoparticles with Ag, Ag/AgCl/Cu, and Au/Ag/AgCl nanostructures as antibacterial agents. Initially, ZnTPP NPs were synthesized as a result of the self-assembly of ZnTPP. In the next step, in a visible-light irradiation photochemically process, the self-assembled ZnTPP nanoparticles were used to make ZnTPP/Ag NCs, ZnTPP/Ag/AgCl/Cu NCs, and ZnTPP/Au/Ag/AgCl NCs. A study on the antibacterial activity of nanocomposites was carried out for Escherichia coli, and Staphylococcus aureus as pathogen microorganisms by the plate count method, well diffusion tests, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) values determination. Thereafter, the reactive oxygen species (ROS) were determined by the flow cytometry method. All the antibacterial tests and the flow cytometry ROS measurements were carried out under LED light and in dark. The (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was applied to investigate the cytotoxicity of the ZnTPP/Ag/AgCl/Cu NCs, against Human foreskin fibroblast (HFF-1) normal cells. Due to the specific properties such as admissible photosensitizing properties of porphyrin, mild reaction conditions, high antibacterial properties in the presence of LED light, crystal structure, and green synthesis, these nanocomposites were recognized as kinds of antibacterial materials that are activated in visible light, got the potential for use in a broad range of medical applications, photodynamic therapy, and water treatment.
Collapse
Affiliation(s)
- Sajedeh Tehrani Nejad
- Inorganic Group, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Rahmatollah Rahimi
- Inorganic Group, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran.
| | - Mahboubeh Rabbani
- Inorganic Group, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO Box 16846-13114, Tehran, Iran.
| |
Collapse
|
12
|
Haider MK, Kharaghani D, Yoshiko Y, Kim IS. Lignin-facilitated growth of Ag/CuNPs on surface-activated polyacryloamidoxime nanofibers for superior antibacterial activity with improved biocompatibility. Int J Biol Macromol 2023; 242:124945. [PMID: 37211079 DOI: 10.1016/j.ijbiomac.2023.124945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
INTRODUCTION Nanofibers are one of the role-playing innovations of nanotechnology. Their high surface-to-volume ratio allows them to be actively functionalized with a wide range of materials for a variety of applications. The functionalization of nanofibers with different metal nanoparticles (NPs) has been studied widely to fabricate antibacterial substrates to battle antibiotic-resistant bacteria. However, metal NPs show cytotoxicity to living cells, thereby restricting their application in biomedicine. OBJECTIVES To minimize the cytotoxicity of NPs, biomacromolecule lignin was employed as both a reducing and capping agent to green synthesize silver (Ag) and copper (Cu) NPs on the surface of highly activated polyacryloamidoxime nanofibers. The activation of polyacrylonitrile (PAN) nanofibers via amidoximation was employed for enhanced loading of NPs to achieve superior antibacterial activity. METHODOLOGY At first, electrospun PAN nanofibers (PANNM) were activated to produce polyacryloamidoxime nanofibers (AO-PANNM) by immersing PANNM in a solution of Hydroxylamine hydrochloride (HH) and Na2CO3 under controlled conditions. Later, Ag and Cu ions were loaded by immersing AO-PANNM in different molar concentrations of AgNO3 and CuSO4 solutions in a stepwise manner. The reduction of Ag and Cu ions into NPs to fabricate bimetal-coated PANNM (BM-PANNM) was carried out via alkali lignin at 37 °C for 3 h in a shaking incubator with ultrasonication every 1 h. RESULTS AO-APNNM and BM-PANNM hold their nano-morphology except for some changes in fiber orientation. XRD analysis demonstrated the formation of Ag and CuNPs as evident from their respective spectral band. Maximum 8.46 ± 0.14 wt% and 0.98 ± 0.04 wt% Ag and Cu species were loaded on AO-PANNM, respectively as revealed by ICP spectrometric analysis. The hydrophobic PANNM turned into super hydrophilic, having WCA of 14 ± 3.32° after amidoximation which further reduced to 0° for BM-PANNM. However, the swelling ratio of PANNM reduced from 13.19 ± 0.18 g/g to 3.72 ± 0.20 g/g for AO-PANNM. Even at the third cycle test against S. aureus strains, 0.1Ag/Cu-PANNM, 0.3Ag/Cu-PANNM, and 0.5Ag/Cu-PANNM displayed bacterial reduction of 71.3 ± 1.64 %, 75.2 ± 1.91 %, and 77.24 ± 1.25 %, respectively. On 3rd cycle test against E. coli, above 82 % bacterial reduction was noticed for all BM-PANNM. Amidoximation increased COS-7 cell viability up to 82 %. The cell viability of 0.1Ag/Cu-PANNM, 0.3Ag/Cu-PANNM, and 0.5Ag/Cu-PANNM was found to be ~68 %, ~62, and 54 %, respectively. In LDH assay, almost no release of LDH was detected, suggesting the compatibility of the cell membrane in contact with BM-PANNM. The improved biocompatibility of BM-PANNM even at higher loading (%) of NPs must be ascribed to the controlled release of metal species in the early stage, antioxidant, and biocompatible lignin capping of NPs. CONCLUSIONS BM-PANNM displayed superior antibacterial activity against E. coli and S. aureus bacterial strains and acceptable biocompatibility of COS-7 cells even at higher loading (%) of Ag/CuNPs. Our findings suggest that BM-PANNM can be used as a potential antibacterial wound dressing and other antibacterial applications where sustained antibacterial activity is needed.
Collapse
Affiliation(s)
- Md Kaiser Haider
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan
| | - Davood Kharaghani
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
13
|
Asmat-Campos D, de Oca-Vásquez GM, Rojas-Jaimes J, Delfín-Narciso D, Juárez-Cortijo L, Nazario-Naveda R, Batista Menezes D, Pereira R, de la Cruz MS. Cu 2O nanoparticles synthesized by green and chemical routes, and evaluation of their antibacterial and antifungal effect on functionalized textiles. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 37:e00785. [PMID: 36785536 PMCID: PMC9918746 DOI: 10.1016/j.btre.2023.e00785] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
The potential for the application of metal-containing nanomaterials at the nanoscale promotes the opportunity to search for new methods for their elaboration, with special attention to those sustainable methods. In response to these challenges, we have investigated a new method for green synthesis of cuprous oxide nanoparticles (Cu2O NPs) using Myrciaria dubia juice as an organic reductant and, comparing it with chemical synthesis, evaluating in both cases the influence of the volume of the organic (juice) and chemical (ascorbic acid) reductants, for which a large number of techniques such as spectrophotometry, EDX spectrometry, TEM, SEM, DLS, FTIR spectroscopy have been used. Likewise, the nanomaterial with better morphological characteristics, stability, and size homogeneity has been applied in the functionalization of textiles by means of in situ and post-synthesis impregnation methods. The success of the synthesis process has been demonstrated by the antimicrobial activity (bacteria and fungi) of textiles impregnated with Cu2O NPs.
Collapse
Affiliation(s)
- David Asmat-Campos
- Universidad Privada del Norte, Dirección de Investigación, Innovación & Responsabilidad Social, Trujillo, Perú,Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Perú,Corresponding author.
| | | | - Jesús Rojas-Jaimes
- Universidad Privada del Norte, Dirección de Investigación, Innovación & Responsabilidad Social, Trujillo, Perú,Facultad de Ciencias de la Salud, Universidad Privada del Norte, Av. El Sol 461, San Juan de Lurigancho, Lima, 15434, Perú
| | - Daniel Delfín-Narciso
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Perú
| | - Luisa Juárez-Cortijo
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Perú
| | - Renny Nazario-Naveda
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte, Trujillo, Perú,Universidad Autónoma del Perú, Lima, Perú
| | - Diego Batista Menezes
- Laboratorio Nacional de Nanotecnología, Centro Nacional de Alta Tecnología, 10109 Pavas, San José, Costa Rica
| | - Reinaldo Pereira
- Laboratorio Nacional de Nanotecnología, Centro Nacional de Alta Tecnología, 10109 Pavas, San José, Costa Rica
| | | |
Collapse
|
14
|
Slavin YN, Bach H. Mechanisms of Antifungal Properties of Metal Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244470. [PMID: 36558323 PMCID: PMC9781740 DOI: 10.3390/nano12244470] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 05/13/2023]
Abstract
The appearance of resistant species of fungi to the existent antimycotics is challenging for the scientific community. One emergent technology is the application of nanotechnology to develop novel antifungal agents. Metal nanoparticles (NPs) have shown promising results as an alternative to classical antimycotics. This review summarizes and discusses the antifungal mechanisms of metal NPs, including combinations with other antimycotics, covering the period from 2005 to 2022. These mechanisms include but are not limited to the generation of toxic oxygen species and their cellular target, the effect of the cell wall damage and the hyphae and spores, and the mechanisms of defense implied by the fungal cell. Lastly, a description of the impact of NPs on the transcriptomic and proteomic profiles is discussed.
Collapse
|
15
|
Zou C, Xu Z, Nie F, Guan K, Li J. Application of hydroxyapatite-modified carbonized rice husk for the adsorption of Cr(VI) from aqueous solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Gurunathan S, Lee AR, Kim JH. Antifungal Effect of Nanoparticles against COVID-19 Linked Black Fungus: A Perspective on Biomedical Applications. Int J Mol Sci 2022; 23:12526. [PMID: 36293381 PMCID: PMC9604067 DOI: 10.3390/ijms232012526] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 08/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that has caused a 'coronavirus disease 2019' (COVID-19) pandemic in multiple waves, which threatens human health and public safety. During this pandemic, some patients with COVID-19 acquired secondary infections, such as mucormycosis, also known as black fungus disease. Mucormycosis is a serious, acute, and deadly fungal infection caused by Mucorales-related fungal species, and it spreads rapidly. Hence, prompt diagnosis and treatment are necessary to avoid high mortality and morbidity rates. Major risk factors for this disease include uncontrolled diabetes mellitus and immunosuppression that can also facilitate increases in mucormycosis infections. The extensive use of steroids to prevent the worsening of COVID-19 can lead to black fungus infection. Generally, antifungal agents dedicated to medical applications must be biocompatible, non-toxic, easily soluble, efficient, and hypoallergenic. They should also provide long-term protection against fungal growth. COVID-19-related black fungus infection causes a severe increase in fatalities. Therefore, there is a strong need for the development of novel and efficient antimicrobial agents. Recently, nanoparticle-containing products available in the market have been used as antimicrobial agents to prevent bacterial growth, but little is known about their efficacy with respect to preventing fungal growth, especially black fungus. The present review focuses on the effect of various types of metal nanoparticles, specifically those containing silver, zinc oxide, gold, copper, titanium, magnetic, iron, and carbon, on the growth of various types of fungi. We particularly focused on how these nanoparticles can impact the growth of black fungus. We also discussed black fungus co-infection in the context of the global COVID-19 outbreak, and management and guidelines to help control COVID-19-associated black fungus infection. Finally, this review aimed to elucidate the relationship between COVID-19 and mucormycosis.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ah Reum Lee
- CHA Advanced Research Institute, CHA Medical Center, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
17
|
Sathiyaseelan A, Saravanakumar K, Wang MH. Bimetallic silver-platinum (AgPt) nanoparticles and chitosan fabricated cotton gauze for enhanced antimicrobial and wound healing applications. Int J Biol Macromol 2022; 220:1556-1569. [PMID: 36100005 DOI: 10.1016/j.ijbiomac.2022.09.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
Wound healing is a significant clinical and socioeconomic problem that is often affected by microbial infection. Inappropriate monitoring leads to unfavorable concerns for surrounding tissues. Cotton gauzes have been used as low-cost wound dressing material but prolong healing owing to strong adherence and secondary microbial infections. Hence, we prepared the bimetallic (silver and platinum) nanoparticles (AgPt NPs) using citric acid (CA) as a reducing agent and then coated them on chitosan (CS) fabricated cotton gauze (CG) for enhanced antimicrobial and wound healing applications. The synthesis of AgPt NPs was evidenced UV-Visible spectroscopy, FE-TEM, and elemental mapping analysis. The average size of AgPt NPs was 21.48 ± 6.32 nm and spherical in structure. Besides, AgPt NPs showed a hydrodynamic size of 63.64 (d.nm) with a polydispersity index of 0.220 and a zeta potential of -28.1 mV. The FT-IR and XRD analysis demonstrated the functional changes and crystalline properties of AgPt NPs. The antimicrobial efficacy of AgPt NPs was significantly higher than standard antibiotic against bacteria, yeast, and filamentous fungi. Furthermore, the AgPt NPs-CS/CG exhibited a substantial hydrophobic nature with better antimicrobial and antioxidant activity. In addition, pH-dependent Ag and Pt release from the AgPt NPs-CS/CG was determined by ICP-MS analysis. The treatment of AgPt NPs-CS/CG augmented the in vitro wound healing in mouse embryonic fibroblast cells (NIH3T3). Hence, we concluded that AgPt NPs-CS/CG could be used to enhance antimicrobial and wound healing applications.
Collapse
Affiliation(s)
- Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
18
|
Cieślak M, Kowalczyk D, Krzyżowska M, Janicka M, Witczak E, Kamińska I. Effect of Cu Modified Textile Structures on Antibacterial and Antiviral Protection. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6164. [PMID: 36079542 PMCID: PMC9457927 DOI: 10.3390/ma15176164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Textile structures with various bioactive and functional properties are used in many areas of medicine, special clothing, interior textiles, technical goods, etc. We investigated the effect of two different textile woven structures made of 90% polyester with 10% polyamide (PET) and 100% cotton (CO) modified by magnetron sputtering with copper (Cu) on bioactive properties against Gram-positive and Gram-negative bacteria and four viruses and also on the some comfort parameters. PET/Cu and CO/Cu fabrics have strong antibacterial activity against Staphylococcus aureus and Klebsiella pneumonia. CO/Cu fabric has good antiviral activity in relation to vaccinia virus (VACV), herpes simplex virus type 1 (HSV-1) and influenza A virus H1N1 (IFV), while its antiviral activity against mouse coronavirus (MHV) is weak. PET/Cu fabric showed weak antiviral activity against HSV-1 and MHV. Both modified fabrics showed no significant toxicity in comparison to the control medium and pristine fabrics. After Cu sputtering, fabric surfaces became hydrophobic and the value of the surface free energy was over four times lower than for pristine fabrics. The modification improved thermal conductivity and thermal diffusivity, facilitated water vapour transport, and air permeability did not decrease.
Collapse
Affiliation(s)
- Małgorzata Cieślak
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| | - Dorota Kowalczyk
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| | - Małgorzata Krzyżowska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Martyna Janicka
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Ewa Witczak
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| | - Irena Kamińska
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| |
Collapse
|
19
|
Virucidal and Bactericidal Filtration Media from Electrospun Polylactic Acid Nanofibres Capable of Protecting against COVID-19. MEMBRANES 2022; 12:membranes12060571. [PMID: 35736278 PMCID: PMC9227935 DOI: 10.3390/membranes12060571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Electrospun nanofibres excel at air filtration owing to diverse filtration mechanisms, thereby outperforming meltblown fibres. In this work, we present an electrospun polylactide acid nanofibre filter media, FilterLayrTM Eco, displaying outstanding bactericidal and virucidal properties using Manuka oil. Given the existing COVID-19 pandemic, face masks are now a mandatory accessory in many countries, and at the same time, they have become a source of environmental pollution. Made by NanoLayr Ltd., FilterLayrTM Eco uses biobased renewable raw materials with products that have end-of-life options for being industrially compostable. Loaded with natural and non-toxic terpenoid from manuka oil, FilterLayr Eco can filter up to 99.9% of 0.1 µm particles and kill >99% of trapped airborne fungi, bacteria, and viruses, including SARS-CoV-2 (Delta variant). In addition, the antimicrobial activity, and the efficacy of the filter media to filtrate particles was shown to remain highly active following several washing cycles, making it a reusable and more environmentally friendly option. The new nanofibre filter media, FilterLayrTM Eco, met the particle filtration efficiency and breathability requirements of the following standards: N95 performance in accordance with NIOSH 42CFR84, level 2 performance in accordance with ASTM F2100, and level 2 filtration efficiency and level 1 breathability in accordance with ASTM F3502. These are globally recognized facemask and respirator standards.
Collapse
|
20
|
Waterborne Antifouling Paints Containing Nanometric Copper and Silver against Marine Bacillus Species. Bioinorg Chem Appl 2022; 2022:2435756. [PMID: 35211162 PMCID: PMC8863476 DOI: 10.1155/2022/2435756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/16/2021] [Accepted: 01/07/2022] [Indexed: 11/30/2022] Open
Abstract
Due to the concern to find an alternative to reduce the colonization (microfouling and macrofouling) or the biocorrosion of surfaces submerged for long periods in water, we evaluated the antifouling activity of a commercial paint added with silver nanoparticles (AgNP's) and copper nanoparticles (CuNP's), beside copper-soybean chelate, by electrolytic synthesis, using them in low concentrations (6.94E − 04 mg Ag g−1 paint, 9.07E − 03 mg Cu g−1 paint, and 1.14E − 02 mg Cu g−1 paint, respectively). The test for paint samples was carried out by JIS Z2801-ISO 22196 for periods of initial time, 6 months, and 12 months, against three bacterial strains of marine origin, Bacillus subtilis, Bacillus pumilus, and Bacillus altitudinis. It was possible to demonstrate, according to the standard, that the sample with the greatest antimicrobial activity was the copper-soybean chelate against two of the three strains studied (B. pumilus with R = 2.11 and B. subtilis with R = 2.41), which represents more than 99% of bacterial inhibition. Therefore, we considered a novel option for inhibiting bacterial growth with nanoparticles as antifouling additives.
Collapse
|
21
|
Bhandari V, Jose S, Badanayak P, Sankaran A, Anandan V. Antimicrobial Finishing of Metals, Metal Oxides, and Metal Composites on Textiles: A Systematic Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04203] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vandana Bhandari
- Department of Textile and Apparel Designing, I.C. College of Home Science, CCS Haryana Agricultural University, Hisar, India 125004
| | - Seiko Jose
- Textile Manufacturing and Textile Chemistry Division, ICAR- Central Sheep and Wool Research Institute, Avikanagar, Rajasthan, India 304501
| | - Pratikhya Badanayak
- Department of Textile and Apparel Designing, College of Community Science, University of Agricultural Sciences, Dharwad, India 580005
| | - Anuradha Sankaran
- Department of Chemistry, PSNA College of Engineering and Technology, Dindigul, Tamil Nadu India 624622
| | - Vysakh Anandan
- School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala India 686560
| |
Collapse
|
22
|
Choi YH, Kim MJ, Lee J, Pyun JC, Khang DY. Recyclable, Antibacterial, Isoporous Through-Hole Membrane Air Filters with Hydrothermally Grown ZnO Nanorods. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3381. [PMID: 34947729 PMCID: PMC8707457 DOI: 10.3390/nano11123381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/28/2022]
Abstract
Reusable, antibacterial, and photocatalytic isoporous through-hole air filtration membranes have been demonstrated based on hydrothermally grown ZnO nanorods (NRs). High-temperature (300~375 °C) stability of thermoset-based isoporous through-hole membranes has enabled concurrent control of porosity and seed formation via high-temperature annealing of the membranes. The following hydrothermal growth has led to densely populated ZnO NRs on both the membrane surface and pore sidewall. Thanks to the nanofibrous shape of the grown ZnO NRs on the pore sidewall, the membrane filters have shown a high (>97%) filtration efficiency for PM2.5 with a rather low-pressure (~80 Pa) drop. The membrane filters could easily be cleaned and reused many times by simple spray cleaning with a water/ethanol mixture solution. Further, the grown ZnO NRs have also endowed excellent bactericidal performance for both Gram-positive S. aureus and Gram-negative S. enteritidis bacteria. Owing to the wide bandgap semiconductor nature of ZnO NRs, organic decomposition by photocatalytic activity under UV illumination has been successfully demonstrated. The reusable, multifunctional membrane filters can find wide applications in air filtration and purification.
Collapse
Affiliation(s)
| | | | | | | | - Dahl-Young Khang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea; (Y.H.C.); (M.-J.K.); (J.L.); (J.-C.P.)
| |
Collapse
|
23
|
Huang C, Cai Y, Chen X, Ke Y. Silver-based nanocomposite for fabricating high performance value-added cotton. CELLULOSE (LONDON, ENGLAND) 2021; 29:723-750. [PMID: 34848932 PMCID: PMC8612115 DOI: 10.1007/s10570-021-04257-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Cotton is one of the most important cellulose fibers, but the absence of antimicrobial capacity along with the self-cleaning, UV protection and electric conductivity often frustrates its wider applications in many fields. Nanotechnology has provided new insights into the development of functional nanomaterials with unique chemical and physical properties. Silver has been effectively incorporated into the cotton fabrics as the antimicrobial agents due to the strong inhibitory and antimicrobial effects on a broad spectrum of bacteria, fungi and virus with low toxicity to human being. In this review, a variety of strategies have been summarized to load silver on cotton fabrics in situ or ex situ and to fabricate high performance value-added cotton fabrics with self-cleaning, UV protection, electric conductivity and antimicrobial capability depending on the synthesis of silver coating or silver-based nanocomposite coating.
Collapse
Affiliation(s)
- Chongjun Huang
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, 510632 Guangzhou, China
| | - Yurou Cai
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, 510632 Guangzhou, China
| | - Xi Chen
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, 510632 Guangzhou, China
| | - Yu Ke
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, 510632 Guangzhou, China
| |
Collapse
|
24
|
Zhu Y, Zhou F, Hu J, Yang L, Yang DQ, Sacher E. A facile route to prepare colorless Ag-Cu nanoparticle dispersions with elevated antibacterial effects. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
25
|
Pollard ZA, Karod M, Goldfarb JL. Metal leaching from antimicrobial cloth face masks intended to slow the spread of COVID-19. Sci Rep 2021; 11:19216. [PMID: 34584143 PMCID: PMC8479130 DOI: 10.1038/s41598-021-98577-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022] Open
Abstract
Global health organizations recommend the use of cloth face coverings to slow the spread of COVID-19. Seemingly overnight, companies whose primary business is in no way related to healthcare or personal protective equipment-from mattresses manufacturers to big box stores-transitioned into the "mask business." Many companies advertise antimicrobial masks containing silver, copper, or other antimicrobials. Often, the techniques used to load such antimicrobials onto mask fibers are undisclosed, and the potential for metal leaching from these masks is yet unknown. We exposed nine so-called "antimicrobial" face masks (and one 100% cotton control mask) to deionized water, laundry detergent, and artificial saliva to quantify the leachable silver and copper that may occur during mask washing and wearing. Leaching varied widely across manufacturer, metal, and leaching solution, but in some cases was as high as 100% of the metals contained in the as-received mask after 1 h of exposure.
Collapse
Affiliation(s)
- Zoe A Pollard
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Madeline Karod
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Jillian L Goldfarb
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
26
|
Bhattacharjee S, Joshi R, Yasir M, Adhikari A, Chughtai AA, Heslop D, Bull R, Willcox M, Macintyre CR. Graphene- and Nanoparticle-Embedded Antimicrobial and Biocompatible Cotton/Silk Fabrics for Protective Clothing. ACS APPLIED BIO MATERIALS 2021; 4:6175-6185. [PMID: 35006896 DOI: 10.1021/acsabm.1c00508] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protection against pathogens using personal protective equipment is essential yet challenging in healthcare settings. Concerns over emerging biothreats and outbreaks of infectious diseases underscore the need for antimicrobial and biocompatible protective clothing to protect patients and staff. Herein, we report the antimicrobial efficacy and cytotoxicity of cotton/silk fabrics containing embedded reduced graphene oxide (RGO) and Ag/Cu nanoparticles (NPs), prepared using a 3-glycidyloxypropyl trimethoxy silane coupling agent followed by chemical reduction and vacuum heat treatment. Embedding NPs on top of the RGO layer substantially increased the antimicrobial activity. All RGO-Ag NPs or RGO-Cu NPs embedded in cotton or silk fabrics reduced the viability of approximately 99% of the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. RGO-Ag NPs embedded into cotton or silk fabrics reduced the viability of the Gram-positive bacterium Staphylococcus aureus by 78-99%, which was higher than the growth inhibition by RGO-Cu NPs samples against S. aureus. Both silk and cotton containing RGO-Cu NPs produced a greater reduction in the viability of the yeast Candida albicans compared to RGO-Ag NPs fabrics. All RGO-Ag NPs or RGO-Cu NPs embedded in cotton or silk fabrics showed good washing durability by sustaining good bactericidal activity, even on washing up to 10 times. Moreover, none of the RGO-Ag or RGO-Cu fabrics reduced mammalian cells' (HEK293) viability by >30%, suggesting low cytotoxicity and good biocompatibility. These findings show that RGO-NPs embedded in cotton or silk fabrics have great potential for use in protective clothing and medical textiles.
Collapse
Affiliation(s)
- Shovon Bhattacharjee
- Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rakesh Joshi
- SMaRT Centre, School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anurag Adhikari
- Viral Immunology Systems Program, The Kirby Institute, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.,Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur 44700, Nepal
| | - Abrar Ahmad Chughtai
- School of Population Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - David Heslop
- School of Population Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rowena Bull
- Viral Immunology Systems Program, The Kirby Institute, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chandini Raina Macintyre
- Biosecurity Program, Kirby Institute, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.,College of Public Service and Community Solutions and College of Health Solutions, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
27
|
Andra S, Balu SK, Jeevanandam J, Muthalagu M. Emerging nanomaterials for antibacterial textile fabrication. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1355-1382. [PMID: 33710422 DOI: 10.1007/s00210-021-02064-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/08/2021] [Indexed: 12/16/2022]
Abstract
In recent times, the search for innovative material to fabricate smart textiles has been increasing to satisfy the expectation and needs of the consumers, as the textile material plays a key role in the evolution of human culture. Further, the textile materials provide an excellent environment for the microbes to grow, because of their large surface area and ability to retain moisture. In addition, the growth of harmful bacteria on the textile material not only damages them but also leads to intolerable foul odour and significant danger to public health. In particular, the pathogenic bacteria present in the fabric surface can cause severe skin infections such as skin allergy and irritation via direct human contact and even can lead to heart problems and pneumonia in certain cases. Recently, nanoparticles and nanomaterials play a significant role in textile industries for developing functional smart textiles with self-cleaning, UV-protection, insect repellent, waterproof, anti-static, flame-resistant and antimicrobial-resistant properties. Thus, this review is an overview of various textile fibres that favour bacterial growth and potential antibacterial nanoparticles that can inhibit the growth of bacteria on fabric surfaces. In addition, the probable antibacterial mechanism of nanoparticles and the significance of the fabric surface modification and fabric finishes in improving the long-term antibacterial efficacy of nanoparticle-coated fabrics were also discussed.
Collapse
Affiliation(s)
- Swetha Andra
- Department of Textile Technology, Anna University, Chennai, India
| | | | - Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | | |
Collapse
|
28
|
Lin HK, Huang CW, Lin YH, Chuang WS, Huang JC. Effects of Accumulated Energy on Nanoparticle Formation in Pulsed-Laser Dewetting of AgCu Thin Films. NANOSCALE RESEARCH LETTERS 2021; 16:110. [PMID: 34191148 PMCID: PMC8245639 DOI: 10.1186/s11671-021-03564-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Ag50Cu50 films were deposited on glass substrates by a sputtering system. Effects of accumulated energy on nanoparticle formation in pulse-laser dewetting of AgCu films were investigated. The results showed that the properties of the dewetted films were found to be dependent on the magnitude of the energy accumulated in the film. For a low energy accumulation, the two distinct nanoparticles had rice-shaped/Ag60Cu40 and hemispherical/Ag80Cu20. Moreover, the absorption spectra contained two peaks at 700 nm and 500 nm, respectively. By contrast, for a high energy accumulation, the nanoparticles had a consistent composition of Ag60Cu40, a mean diameter of 100 nm and a peak absorption wavelength of 550 nm. Overall, the results suggest that a higher Ag content of the induced nanoparticles causes a blue shift of the absorption spectrum, while a smaller particle size induces a red shift.
Collapse
Affiliation(s)
- H K Lin
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, 1, Hseuhfu Road, Pingtung 912, Taiwan, ROC.
| | - C W Huang
- Graduate Institute of Materials Engineering, National Pingtung University of Science and Technology, 1, Hseuhfu Road, Pingtung 912, Taiwan, ROC
- Department of Plant Medicine, National Pingtung University of Science and Technology, 1, Hseuhfu Road, Pingtung 912, Taiwan, ROC
| | - Y H Lin
- Department of Plant Medicine, National Pingtung University of Science and Technology, 1, Hseuhfu Road, Pingtung 912, Taiwan, ROC
| | - W S Chuang
- Department of Materials Science and Engineering, Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong.
| | - J C Huang
- Department of Materials Science and Engineering, Hong Kong Institute for Advanced Study, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
29
|
Recent Advances on Antimicrobial and Anti-Inflammatory Cotton Fabrics Containing Nanostructures. Molecules 2021; 26:molecules26103008. [PMID: 34070166 PMCID: PMC8158507 DOI: 10.3390/molecules26103008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 01/15/2023] Open
Abstract
Hydrophilic cotton textiles, used in hospitals and sportswear, are prone to the growth of microorganisms (bacteria, fungi) resulting in hygiene and health risks. Thus, healthcare concerns have motivated the interest for the development of multifunctional antimicrobial cotton fabrics. Moreover, cotton textiles are also used in medical applications such as wound dressings. Their functionalization with anti-inflammatory agents is desirable in order to accelerate cicatrisation in the treatment of chronic wounds. This review summarizes recent advances (from January 2016 to January 2021) on the modification and coating of cotton fabrics with nanostructures (mainly metal and metal oxide nanoparticles, functionalized silica nanoparticles) to provide them antimicrobial (antibacterial and antifungal) and anti-inflammatory properties.
Collapse
|
30
|
Balasubramaniam B, Prateek, Ranjan S, Saraf M, Kar P, Singh SP, Thakur VK, Singh A, Gupta RK. Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacol Transl Sci 2021; 4:8-54. [PMID: 33615160 PMCID: PMC7784665 DOI: 10.1021/acsptsci.0c00174] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The ongoing worldwide pandemic due to COVID-19 has created awareness toward ensuring best practices to avoid the spread of microorganisms. In this regard, the research on creating a surface which destroys or inhibits the adherence of microbial/viral entities has gained renewed interest. Although many research reports are available on the antibacterial materials or coatings, there is a relatively small amount of data available on the use of antiviral materials. However, with more research geared toward this area, new information is being added to the literature every day. The combination of antibacterial and antiviral chemical entities represents a potentially path-breaking intervention to mitigate the spread of disease-causing agents. In this review, we have surveyed antibacterial and antiviral materials of various classes such as small-molecule organics, synthetic and biodegradable polymers, silver, TiO2, and copper-derived chemicals. The surface protection mechanisms of the materials against the pathogen colonies are discussed in detail, which highlights the key differences that could determine the parameters that would govern the future development of advanced antibacterial and antiviral materials and surfaces.
Collapse
Affiliation(s)
| | - Prateek
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sudhir Ranjan
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Mohit Saraf
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Prasenjit Kar
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Surya Pratap Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Anand Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Raju Kumar Gupta
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center
for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
31
|
Jeung DG, Lee M, Paek SM, Oh JM. Controlled Growth of Silver Oxide Nanoparticles on the Surface of Citrate Anion Intercalated Layered Double Hydroxide. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:455. [PMID: 33670137 PMCID: PMC7916874 DOI: 10.3390/nano11020455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 11/26/2022]
Abstract
Silver oxide nanoparticles with controlled particle size were successfully obtained utilizing citrate-intercalated layered double hydroxide (LDH) as a substrate and Ag+ as a precursor. The lattice of LDH was partially dissolved during the reaction by Ag+. The released hydroxyl and citrate acted as a reactant in crystal growth and a size controlling capping agent, respectively. X-ray diffraction, X-ray photoelectron spectroscopy, and microscopic measurements clearly showed the development of nano-sized silver oxide particles on the LDH surface. The particle size, homogeneity and purity of silver oxide were influenced by the stoichiometric ratio of Ag/Al. At the lowest silver ratio, the particle size was the smallest, while the chemical purity was the highest. X-ray photoelectron spectroscopy and UV-vis spectroscopy results suggested that the high Ag/Al ratio tended to produce silver oxide with a complex silver environment. The small particle size and homogeneous distribution of silver oxide showed advantages in antibacterial efficacy compared with bulk silver oxide. LDH with an appropriate ratio could be utilized as a substrate to grow silver oxide nanoparticles with controlled size with effective antibacterial performance.
Collapse
Affiliation(s)
- Do-Gak Jeung
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Korea;
| | - Minseop Lee
- Department of Chemistry, Kyungpook National University, Daegu 41566, Korea;
| | - Seung-Min Paek
- Department of Chemistry, Kyungpook National University, Daegu 41566, Korea;
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Korea;
| |
Collapse
|
32
|
Fan X, Yahia L, Sacher E. Antimicrobial Properties of the Ag, Cu Nanoparticle System. BIOLOGY 2021; 10:137. [PMID: 33578705 PMCID: PMC7916421 DOI: 10.3390/biology10020137] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
Microbes, including bacteria and fungi, easily form stable biofilms on many surfaces. Such biofilms have high resistance to antibiotics, and cause nosocomial and postoperative infections. The antimicrobial and antiviral behaviors of Ag and Cu nanoparticles (NPs) are well known, and possible mechanisms for their actions, such as released ions, reactive oxygen species (ROS), contact killing, the immunostimulatory effect, and others have been proposed. Ag and Cu NPs, and their derivative NPs, have different antimicrobial capacities and cytotoxicities. Factors, such as size, shape and surface treatment, influence their antimicrobial activities. The biomedical application of antimicrobial Ag and Cu NPs involves coating onto substrates, including textiles, polymers, ceramics, and metals. Because Ag and Cu are immiscible, synthetic AgCu nanoalloys have different microstructures, which impact their antimicrobial effects. When mixed, the combination of Ag and Cu NPs act synergistically, offering substantially enhanced antimicrobial behavior. However, when alloyed in Ag-Cu NPs, the antimicrobial behavior is even more enhanced. The reason for this enhancement is unclear. Here, we discuss these results and the possible behavior mechanisms that underlie them.
Collapse
Affiliation(s)
- Xinzhen Fan
- Laboratoire d’Innovation et d’Analyse de Bioperformance, Département de Génie Mécanique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada; (X.F.); (L.Y.)
| | - L’Hocine Yahia
- Laboratoire d’Innovation et d’Analyse de Bioperformance, Département de Génie Mécanique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada; (X.F.); (L.Y.)
| | - Edward Sacher
- Département de Génie Physique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
33
|
Dharmaraj D, Krishnamoorthy M, Rajendran K, Karuppiah K, Annamalai J, Durairaj KR, Santhiyagu P, Ethiraj K. Antibacterial and cytotoxicity activities of biosynthesized silver oxide (Ag2O) nanoparticles using Bacillus paramycoides. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102111] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Araújo CM, das Virgens Santana M, do Nascimento Cavalcante A, Nunes LCC, Bertolino LC, de Sousa Brito CAR, Barreto HM, Eiras C. Cashew-gum-based silver nanoparticles and palygorskite as green nanocomposites for antibacterial applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:110927. [DOI: 10.1016/j.msec.2020.110927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/09/2020] [Accepted: 04/01/2020] [Indexed: 01/06/2023]
|
35
|
Structure-activity relationship of diameter controlled Ag@Cu nanoparticles in broad-spectrum antibacterial mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111501. [PMID: 33321601 DOI: 10.1016/j.msec.2020.111501] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 01/27/2023]
Abstract
Current outbreaks associated with drug-resistant clinical strains are demanding for the development of broad-spectrum antibacterial agents. The bactericidal materials should be eco-friendly, economical and effective to suppress bacterial growth. Thus, in this work, diameter controlled spherical Cucore-Agshell nanoparticles (Ag@CuNPs) with diameter ranging from 70 to 100 nm by one-step co-reduction approach were designed and synthesized. The Ag@CuNPs were homogenous, stable, and positively charged. The 70 nm Ag@CuNPs showed a consistent and regular Ag shielding. We observed the 100 nm Ag@CuNPs achieved symmetrical doped Ag clusters on the Cu core surface. We used Gram-positive and Gram-negative models strains to test the wide-spectrum antibacterial activity. The Ag@CuNPs showed detrimental microbial viability in a dose-dependent manner; however, 70 nm Ag@CuNPs were superior to those of 100 nm Ag@CuNPs. Initially, Ag@CuNPs attached and translocated the membrane surface resulting in bacterial eradication. Our analyses exhibited that antibacterial mechanism was not governed by the bacterial genre, nonetheless, by cell type, morphology, growing ability and the NPs uptake capability. The Ag@CuNPs were highly tolerated by human fibroblasts, mainly by the use of starch as glucosidic capper and stabilizer, suggesting optimal biocompatibility and activity. The Ag@CuNPs open up a novel platform to study the potential action of bimetallic nanoparticles and their molecular role for biomedical, clinical, hospital and industrial-chemical applications.
Collapse
|
36
|
Petrik IS, Eremenko AM, Naumenko AP, Rudenko AV. Effect of silver and copper nanoparticles on adsorption and fluorescence of tryptophan on the surface of bactericidal textile. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Sergi R, Bellucci D, Salvatori R, Cannillo V. Chitosan-Based Bioactive Glass Gauze: Microstructural Properties, In Vitro Bioactivity, and Biological Tests. MATERIALS 2020; 13:ma13122819. [PMID: 32585873 PMCID: PMC7344553 DOI: 10.3390/ma13122819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 01/19/2023]
Abstract
Passive commercial gauzes were turned into interactive wound dressings by impregnating them with a chitosan suspension. To further improve healing, and cell adhesion and proliferation, chitosan/bioactive glass wound dressings were produced with the addition of (i) 45S5, (ii) a Sr- and Mg-containing bioactive glass, and (iii) a Zn-containing bioactive glass to the chitosan suspension. SEM and FTIR analyses evidenced positive results in terms of incorporation of bioactive glass particles. Bioactivity was investigated by soaking chitosan-based bioactive glass wound dressings in simulated body fluid (SBF). Cell viability, proliferation, and morphology were investigated using NIH 3T3 (mouse embryonic fibroblast) cells by neutral red (NR) uptake and MTT assays. Furthermore, the wound-healing rate was evaluated by means of the scratch test, using NIH 3T3. The results showed that bioactive glass particles enhance cell adhesion and proliferation, and wound healing compared to pure chitosan. Therefore, chitosan-based bioactive glass wound dressings combine the properties of the organic matrix with the specific biological characteristics of bioactive glasses to achieve chitosan composites suitable for healing devices.
Collapse
Affiliation(s)
- Rachele Sergi
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| | - Devis Bellucci
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| | - Roberta Salvatori
- Laboratorio dei Biomateriali, Dipartimento di Scienze Mediche Chirurgiche Materno-Infantili e dell’Adulto, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy;
| | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
- Correspondence: ; Tel.: +39-059-2056240
| |
Collapse
|
38
|
Das B, Dadhich P, Pal P, Thakur S, Neogi S, Dhara S. Carbon nano dot decorated copper nanowires for SERS-Fluorescence dual-mode imaging/anti-microbial activity and enhanced angiogenic activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117669. [PMID: 31698154 DOI: 10.1016/j.saa.2019.117669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/09/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Copper nanoparticles are explored significantly for their antimicrobial activity, especially for antibiotic-resistant strain infections. However, copper has severe toxic responses and mostly it is due to its generation capability of reactive oxygen species (ROS) molecules while interacting with in vitro or in vivo systems. In the current study, wire shaped copper nanostructures were synthesized via microwave irradiation with single step doping of carbon nanodots (CDs). The synthesized material (CuCs) was characterized by UV-Vis spectroscopy, fluorescence spectroscopy, FTIR, TEM, FESEM, XRD, DLS, and XPS. The fluorescence spectroscopy, microscopy and Raman spectroscopy results suggested CuCs to work well as a bi-modal imaging nanoprobe (fluorescence/SERS). The cell culture studies prove significant cytocompatibility and ROS scavenging property of the samples with respect to control. Further, CuCs-gelatin nanocomposite thin films were prepared and implanted into rodent deep wound model. The histological study has showed enhanced angiogenesis in the subcutaneous region. The results were validated by immuno-histochemistry. The ROS scavenging and enhanced angiogenesis were validated via gene expression studies and a HIF-α induced enhanced angiogenesis mechanism was also proposed for better wound healing.
Collapse
Affiliation(s)
- Bodhisatwa Das
- Department of Biomedical Engineering, Rutgers the State University of New Jersey, NJ, USA; School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| | - Prabhash Dadhich
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Pallabi Pal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Shaila Thakur
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, India
| | - Sudarshan Neogi
- Department of Chemical Engineering, Indian Institute of Technology Kharagpur, India
| | - Santanu Dhara
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
39
|
Quintero-Quiroz C, Acevedo N, Zapata-Giraldo J, Botero LE, Quintero J, Zárate-Triviño D, Saldarriaga J, Pérez VZ. Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater Res 2020. [PMID: 31890269 DOI: 10.1186/s40824-019-0173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Chemical reduction has become an accessible and useful alternative to obtain silver nanoparticles (AgNPs). However, its toxicity capacity depends on multiple variables that generate differences in the ability to inhibit the growth of microorganisms. Thus, optimazing parameters for the synthesis of AgNPs can increase its antimicrobial capacity by improving its physical-chemical properties. METHODS In this study a Face Centered Central Composite Design (FCCCD) was carried out with four parameters: A g N O 3 concentration, sodium citrate (TSC) concentration, N a B H 4 concentration and the pH of the reaction with the objective of inhibit the growth of microorganisms. The response variables were the average size of AgNPs, the peak with the greatest intensity in the size distribution, the polydispersity of the nanoparticle size and the yield of the process. AgNPs obtained from the optimization were characterized physically and chemically. The antimicrobial activity of optimized AgNPs was evaluated against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans and compared with AgNPs before optimization. In addition, the cytotoxicity of the optimized AgNPs was evaluated by the colorimetric assay MTT (3- (4,5- Dimethylthiazol- 2- yl)- 2, 5 - Diphenyltetrazolium Bromide). RESULTS It was found that the four factors studied were significant for the response variables, and a significant model (p < 0.05) was obtained for each variable. The optimal conditions were 8 for pH and 0.01 M, 0.0 6M, 0.01 M for the concentration of TSC, A g N O 3, and N a B H 4, respectively. Optimized AgNPs spherical and hemispherical were obtained, and 67.66% of it had a diameter less than 10.30 nm. A minimum bactericidal concentration (MBC) and minimum fungicidal Concentration (MFC) of optimized AgNPs was found against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans at 19.89, 9.94, 9.94, 2.08 μg/mL, respectively. Furthermore, the lethal concentration 50 (L C 50) of optimized AgNPs was found on 19.11 μg/mL and 19.60 μg/mL to Vero and NiH3T3 cells, respectively. CONCLUSIONS It was found that the factors studied were significant for the variable responses and the optimization process used was effective to improve the antimicrobial activity of the AgNPs.
Collapse
Affiliation(s)
- Catalina Quintero-Quiroz
- 1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia
| | - Natalia Acevedo
- 1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia
| | - Jenniffer Zapata-Giraldo
- 2Grupo de Investigación de Biología de Sistemas,Universidad Pontificia Bolivariana, Cl 78B No. 72A-109, Medellín, 050031 Colombia
| | - Luz E Botero
- 2Grupo de Investigación de Biología de Sistemas,Universidad Pontificia Bolivariana, Cl 78B No. 72A-109, Medellín, 050031 Colombia
| | - Julián Quintero
- 3Universidad de Antioquia, Cl.67 No. 53-108, Medellín, 050010 Colombia
| | - Diana Zárate-Triviño
- 4Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba S/N Ciudad Universitaria San Nicolás de los Garza, Monterrey, 64450 México
| | - Jorge Saldarriaga
- 5Grupo de Investigación Sobre Nuevos Materiales, Universidad Pontificia Bolivariana, Cq.1 No. 70-01, Medellín, 050031 Colombia
| | - Vera Z Pérez
- 1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia.,Facultad de Ingeniería Eléctrica y Electrónica, Medellín, 050031 Colombia
| |
Collapse
|
40
|
Subhadarshini S, Singh R, Goswami DK, Das AK, Das NC. Electrodeposited Cu 2O Nanopetal Architecture as a Superhydrophobic and Antibacterial Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:17166-17176. [PMID: 31809569 DOI: 10.1021/acs.langmuir.9b03024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infections being sporadic and uncontrollable demands an urgent paradigm shift in the development of novel antibacterial agents. This work involves the fabrication of Cu2O nanopetals over copper foil that show superlative antibacterial and superhydrophobic properties. A superhydrophobic surface has been fabricated using the electrochemical deposition (ECD) method. Here, it is aimed to establish the superior antibacterial activity as an outcome of the inherent superhydrophobic property of the as-fabricated nanostructures. The present study finds that the elevated value of the water contact angle (154 ± 0.6°) does not allow proper bacterial adhesion, and it is immune from the possibility of biofouling. Specifically, two kinds of bacterial strains have been tested and the time response of the antibacterial activity has been studied over a period of 12 h, taking DH5α Escherichia coli as a Gram-negative model and Bacillus subtilis 168 as a Gram-positive model. Higher antibacterial effects were observed for the Gram-negative model (E. coli) owing to its simplistic cell wall structure which facilitates the easy diffusion of Cu+ ions into the bacterial membrane. The simplicity of the developed method of fabrication along with the superlative superhydrophobic nature and excellent antibacterial property of the material, owing to its synergistic biophysical and biochemical modes of biocidal action, establishes its viability in many applications.
Collapse
|
41
|
Quintero-Quiroz C, Acevedo N, Zapata-Giraldo J, Botero LE, Quintero J, Zárate-Triviño D, Saldarriaga J, Pérez VZ. Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater Res 2019; 23:27. [PMID: 31890269 PMCID: PMC6921438 DOI: 10.1186/s40824-019-0173-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
Background Chemical reduction has become an accessible and useful alternative to obtain silver nanoparticles (AgNPs). However, its toxicity capacity depends on multiple variables that generate differences in the ability to inhibit the growth of microorganisms. Thus, optimazing parameters for the synthesis of AgNPs can increase its antimicrobial capacity by improving its physical-chemical properties. Methods In this study a Face Centered Central Composite Design (FCCCD) was carried out with four parameters: AgNO3 concentration, sodium citrate (TSC) concentration, NaBH4 concentration and the pH of the reaction with the objective of inhibit the growth of microorganisms. The response variables were the average size of AgNPs, the peak with the greatest intensity in the size distribution, the polydispersity of the nanoparticle size and the yield of the process. AgNPs obtained from the optimization were characterized physically and chemically. The antimicrobial activity of optimized AgNPs was evaluated against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans and compared with AgNPs before optimization. In addition, the cytotoxicity of the optimized AgNPs was evaluated by the colorimetric assay MTT (3- (4,5- Dimethylthiazol- 2- yl)- 2, 5 - Diphenyltetrazolium Bromide). Results It was found that the four factors studied were significant for the response variables, and a significant model (p < 0.05) was obtained for each variable. The optimal conditions were 8 for pH and 0.01 M, 0.0 6M, 0.01 M for the concentration of TSC, AgNO3, and NaBH4, respectively. Optimized AgNPs spherical and hemispherical were obtained, and 67.66% of it had a diameter less than 10.30 nm. A minimum bactericidal concentration (MBC) and minimum fungicidal Concentration (MFC) of optimized AgNPs was found against Staphylococcus aureus, Escherichia coli, Escherichia coli AmpC resistant, and Candida albicans at 19.89, 9.94, 9.94, 2.08 μg/mL, respectively. Furthermore, the lethal concentration 50 (LC50) of optimized AgNPs was found on 19.11 μg/mL and 19.60 μg/mL to Vero and NiH3T3 cells, respectively. Conclusions It was found that the factors studied were significant for the variable responses and the optimization process used was effective to improve the antimicrobial activity of the AgNPs.
Collapse
Affiliation(s)
- Catalina Quintero-Quiroz
- 1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia
| | - Natalia Acevedo
- 1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia
| | - Jenniffer Zapata-Giraldo
- 2Grupo de Investigación de Biología de Sistemas,Universidad Pontificia Bolivariana, Cl 78B No. 72A-109, Medellín, 050031 Colombia
| | - Luz E Botero
- 2Grupo de Investigación de Biología de Sistemas,Universidad Pontificia Bolivariana, Cl 78B No. 72A-109, Medellín, 050031 Colombia
| | - Julián Quintero
- 3Universidad de Antioquia, Cl.67 No. 53-108, Medellín, 050010 Colombia
| | - Diana Zárate-Triviño
- 4Laboratorio de Inmunología y Virología, Universidad Autónoma de Nuevo León, Ave. Pedro de Alba S/N Ciudad Universitaria San Nicolás de los Garza, Monterrey, 64450 México
| | - Jorge Saldarriaga
- 5Grupo de Investigación Sobre Nuevos Materiales, Universidad Pontificia Bolivariana, Cq.1 No. 70-01, Medellín, 050031 Colombia
| | - Vera Z Pérez
- 1Centro de Bioingeniería, Grupo de investigaciones en Bioingeniería, Universidad Pontificia Bolivariana, circular 1 No. 73-76, Medellín, 050031 Colombia.,Facultad de Ingeniería Eléctrica y Electrónica, Medellín, 050031 Colombia
| |
Collapse
|
42
|
Das M, Goswami U, Kandimalla R, Kalita S, Ghosh SS, Chattopadhyay A. Iron–Copper Bimetallic Nanocomposite Reinforced Dressing Materials for Infection Control and Healing of Diabetic Wound. ACS APPLIED BIO MATERIALS 2019; 2:5434-5445. [DOI: 10.1021/acsabm.9b00870] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Madhumita Das
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Guwahati Neurological Research Centre Medical Lab, North Guwahati 781031, India
| | - Upashi Goswami
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Raghuram Kandimalla
- Institute of Advance Study of Science and Technology, Guwahati 781035, India
| | - Sanjeeb Kalita
- Institute of Advance Study of Science and Technology, Guwahati 781035, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
43
|
Syafiuddin A. Toward a comprehensive understanding of textiles functionalized with silver nanoparticles. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800474] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Achmad Syafiuddin
- Department of Water and Environmental Engineering, Faculty of EngineeringUniversiti Teknologi Malaysia Johor Bahru Johor Malaysia
- Resource Sustainability Research AllianceUniversiti Teknologi Malaysia Johor Bahru Johor Malaysia
| |
Collapse
|
44
|
Synthesis, Characterization, and Antibacterial Activity of Ag₂O-Loaded Polyethylene Terephthalate Fabric via Ultrasonic Method. NANOMATERIALS 2019; 9:nano9030450. [PMID: 30889785 PMCID: PMC6474086 DOI: 10.3390/nano9030450] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022]
Abstract
In this study, Ag₂O was synthesized on polyethylene terephthalate fabrics by using an ultrasonic technique with Ag ion reduction in an aqueous solution. The effects of pH on the microstructure and antibacterial properties of the fabrics were evaluated. X-ray diffraction confirmed the presence of Ag₂O on the fabrics. The fabrics were characterized by Fourier transform infrared spectroscopy, ultraviolet⁻visible spectroscopy, and wettability testing. Field-emission scanning electron microscopy verified that the change of pH altered the microstructure of the materials. Moreover, the antibacterial activity of the fabrics against Escherichia coli was related to the morphology of Ag₂O particles. Thus, the surface structure of Ag₂O particles may be a key factor of the antibacterial activity.
Collapse
|
45
|
Montagut AM, Granados A, Ballesteros A, Pleixats R, Llagostera M, Cortés P, Sebastián RM, Vallribera A. Antibiotic protected silver nanoparticles for microbicidal cotton. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Das M, Goswami U, Ghosh SS, Chattopadhyay A. Bimetallic Fe-Cu Nanocomposites on Sand Particles for the Inactivation of Clinical Isolates and Point-of-Use Water Filtration. ACS APPLIED BIO MATERIALS 2018; 1:2153-2166. [PMID: 34996276 DOI: 10.1021/acsabm.8b00572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bimetallic Fe-Cu nanocomposites with an average size of 26.4 ± 4.7 nm were prepared on the surface of fine sand particles by modified coprecipitation and the chemical reduction method and were applied as an in vitro broad spectrum antimicrobial agent and recyclable hand-held water filter to sieve bacteria and metals. The size of the nanocomposites could be further reduced to 11.8 ± 1.6 nm when prepared after ball milling the sand particles, keeping the antimicrobial property intact. The results showed that the chemical nature and morphology of the nanocomposites had a great effect on both Gram-positive and Gram-negative bacteria with a minimum inhibitory concentration of 10.6 μg/mL and 13.8 μg/mL of copper, whereas the minimum bactericidal concentration was found to be 15.9 μg/mL and 21.2 μg/mL. The nanocomposites exhibited antimicrobial activity against multidrug-resistant bacteria as well as fungus isolated from different human biological samples like blood, urine, pus, and wound swabs. The nanocomposites were also capable of filtering a wide range bacteria like Acinetobacter baumannii, Escherichia coli, Salmonella typhi, Bacteroides fragilis, Salmonella paratyphi, Shigella dysenteriae, and Enterococcus faecalis, which are predominantly responsible for waterborne diseases. Further, the nanocomposites were used for the removal of hazardous metals like nickel, zinc, and lead. Leaching of copper and iron from the nanocomposites was within the permissible limit as per Bureau of Indian Standards (BIS) for Drinking Water (IS-10500-2012, second revision) as well as the International Standards for Drinking Water.
Collapse
Affiliation(s)
- Madhumita Das
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Upashi Goswami
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddhartha Sankar Ghosh
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Chattopadhyay
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.,Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
47
|
Edwards JV, Prevost NT, Santiago M, von Hoven T, Condon BD, Qureshi H, Yager DR. Hydrogen Peroxide Generation of Copper/Ascorbate Formulations on Cotton: Effect on Antibacterial and Fibroblast Activity for Wound Healing Application. Molecules 2018; 23:E2399. [PMID: 30235850 PMCID: PMC6225216 DOI: 10.3390/molecules23092399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 11/24/2022] Open
Abstract
Greige cotton (unbleached cotton) is an intact plant fiber that retains much of the outer cotton fiber layers. These layers contain pectin, peroxidases, and trace metals that are associated with hydrogen peroxide (H₂O₂) generation during cotton fiber development. When greige cotton is subjected to a nonwoven hydroentanglement process, components of the outer cotton fiber layers are retained. When hydrated, this fabric can generate H₂O₂ (5⁻50 micromolar). This range has been characterized as inducing accelerated wound healing associated with enhanced cell signaling and the proliferation of cells vital to wound restoration. On the other hand, H₂O₂ levels above 50 micromolar have been associated with bacteriostatic activity. Here, we report the preparation and hydrogen peroxide activity of copper/ascorbate formulations, both as adsorbed and in situ synthesized analogs on cotton. The cooper/ascorbate-cotton formulations were designed with the goal of modulating hydrogen peroxide levels within functional ranges beneficial to wound healing. The cotton/copper formulation analogs were prepared on nonwoven unbleached cotton and characterized with cotton impregnation titers of 3⁻14 mg copper per gram of cotton. The copper/ascorbate cotton analog formulations were characterized spectroscopically, and the copper titer was quantified with ICP analysis and probed for peroxide production through assessment with Amplex Red. All analogs demonstrated antibacterial activity. Notably, the treatment of unbleached cotton with low levels of ascorbate (~2 mg/g cotton) resulted in a 99 percent reduction in Klebsiella pneumoniae and Staphylococcus aureus. In situ synthesized copper/ascorbate nanoparticles retained activity and did not leach out upon prolonged suspension in an aqueous environment. An assessment of H₂O₂ effects on fibroblast proliferation are discussed in light of the copper/cotton analogs and wound healing.
Collapse
Affiliation(s)
- J Vincent Edwards
- Southern Regional Research Center, USDA-ARS, New Orleans, LA 70120, USA.
| | | | - Michael Santiago
- Southern Regional Research Center, USDA-ARS, New Orleans, LA 70120, USA.
| | - Terri von Hoven
- Southern Regional Research Center, USDA-ARS, New Orleans, LA 70120, USA.
| | - Brian D Condon
- Southern Regional Research Center, USDA-ARS, New Orleans, LA 70120, USA.
| | - Huzaifah Qureshi
- Plastic and Reconstructive Surgery, Virginia Commonwealth University, Richmond, VA 23111, USA.
| | - Dorne R Yager
- Plastic and Reconstructive Surgery, Virginia Commonwealth University, Richmond, VA 23111, USA.
| |
Collapse
|
48
|
Graves JL, Thomas M, Ewunkem JA. Antimicrobial Nanomaterials: Why Evolution Matters. NANOMATERIALS 2017; 7:nano7100283. [PMID: 28934114 PMCID: PMC5666448 DOI: 10.3390/nano7100283] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/25/2023]
Abstract
Due to the widespread occurrence of multidrug resistant microbes there is increasing interest in the use of novel nanostructured materials as antimicrobials. Specifically, metallic nanoparticles such as silver, copper, and gold have been deployed due to the multiple impacts they have on bacterial physiology. From this, many have concluded that such nanomaterials represent steep obstacles against the evolution of resistance. However, we have already shown that this view is fallacious. For this reason, the significance of our initial experiments are beginning to be recognized in the antimicrobial effects of nanomaterials literature. This recognition is not yet fully understood and here we further explain why nanomaterials research requires a more nuanced understanding of core microbial evolution principles.
Collapse
Affiliation(s)
- Joseph L Graves
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina A&T State University and UNC Greensboro, Greensboro, NC 27401, USA.
| | - Misty Thomas
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Jude Akamu Ewunkem
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina A&T State University and UNC Greensboro, Greensboro, NC 27401, USA.
| |
Collapse
|
49
|
Shankar S, Oun AA, Rhim JW. Preparation of antimicrobial hybrid nano-materials using regenerated cellulose and metallic nanoparticles. Int J Biol Macromol 2017; 107:17-27. [PMID: 28855135 DOI: 10.1016/j.ijbiomac.2017.08.129] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 07/05/2017] [Accepted: 08/22/2017] [Indexed: 11/15/2022]
Abstract
In this study, antimicrobial hybrid nano-materials were prepared by one-pot syntheses of silver (Ag), copper oxide (CuO), or zinc oxide (ZnO) nanoparticles (NPs) during regeneration of cellulose from cotton linter (CL) and microcrystalline cellulose (MCC). SEM micrographs indicated that the metallic nanoparticles were attached to the surface of the regenerated cellulose. EDX and ICP results showed that more AgNPs were adsorbed on the cellulose than CuONPs or ZnONPs. FTIR results revealed that the metallic nanoparticles were attached to the cellulose through the interaction with the hydroxyl group of cellulose. XRD results showed the characteristic diffraction peaks of individual metallic nanoparticles. The thermal stability of the R-CL and R-MCC increased in the hybrids with AgNPs and ZnONPs. The R-cellulose/metallic NPs hybrids showed strong antibacterial activity against E. coli and L. monocytogenes. Thus, the hybrid nano-materials can be used as nanofillers for the preparation of antibacterial packaging films.
Collapse
Affiliation(s)
- Shiv Shankar
- Department of Food Engineering and Bionanocomposite Research Institute, Mokpo National University, 61 Dorimri, Chungkyemyon, Muangun, Jeonnam 534-729, Republic of Korea
| | - Ahmed A Oun
- Department of Food Engineering and Bionanocomposite Research Institute, Mokpo National University, 61 Dorimri, Chungkyemyon, Muangun, Jeonnam 534-729, Republic of Korea; Food Engineering and Packaging Department, Food Technology Research Institute, Agricultural Research Center, Giza, Egypt
| | - Jong-Whan Rhim
- Center for Humanities and Sciences, and Department of Food and Nutrition, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
50
|
Kang C, Ahn D, Roh C, Kim SS, Lee J. Development of Synergistic Antimicrobial Coating of p-Aramid Fibers Using Ag Nanoparticles and Glycidyltrimethylammonium Chloride (GTAC) without the Aid of a Cross-Linking Agent. Polymers (Basel) 2017; 9:E357. [PMID: 30971033 PMCID: PMC6418537 DOI: 10.3390/polym9080357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/03/2017] [Accepted: 08/06/2017] [Indexed: 11/16/2022] Open
Abstract
Functional p-aramid fibers that can express antimicrobial activity were produced by simple processing of silver nanoparticles (AgNPs), which are well known as antimicrobial agents, by using glycidyltrimethylammonium chloride (GTAC), a quaternary ammonium salt. P-aramid fibers were treated with GTAC by the pad-dry-cure process and put into an Ag colloid solution for reactions at 40 °C for 90 min to prepare GTAC/AgNPs-treated p-aramid fibers. Through these processes, GTAC was used as a substitute for existing cross-linking agents. The changes in the degree of attachment of AgNPs to the surface of p-aramid fibers were determined using a scanning electron microscope according to parameters such as GTAC concentration, Ag colloid concentration, and reaction temperature. Through this study, the following results were obtained: (i) The tensile strength of AgNPs/GTAC-treated p-aramid fibers was found to be about 80% of that of untreated p-aramid fibers; (ii) Thermogravimetric analysis showed that the thermal stability of p-aramid fibers did not change much after GTAC/AgNPs treatment and (iii) Antimicrobial activity analysis showed that AgNPs/GTAC-treated p-aramid fibers exhibited superior antibacterial properties compared to untreated p-aramid fibers, which may or may not be the effect of GTAC or AgNPs, or both.
Collapse
Affiliation(s)
- Chankyu Kang
- Ministry of Employment and Labor, Major Industrial Accident Prevention Center, 10 Jeungheung 2ro Yeosusandallo, Yeosu-si 59615, Korea.
| | - Dajeong Ahn
- Department of Fiber and System Engineering, Yeungnam University, Gyeongsan 38541, Korea.
| | - Changhyun Roh
- Division of Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 1266, Sinjeong-dong, Jeongeup, Jeonbuk 56212, Korea.
| | - Sam Soo Kim
- Department of Fiber and System Engineering, Yeungnam University, Gyeongsan 38541, Korea.
| | - Jaewoong Lee
- Department of Fiber and System Engineering, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|