1
|
Janz P, Bainier M, Marashli S, Gross S, Redondo RL. Clinically-probed mechanisms of action in Fragile-X syndrome fail to normalize translational EEG phenotypes in Fmr1 knockout mice. Neuropharmacology 2025; 262:110182. [PMID: 39396738 DOI: 10.1016/j.neuropharm.2024.110182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by Fragile X Messenger Ribonucleoprotein (FMRP) deficiency. Electroencephalogram (EEG) changes in FXS include alterations of oscillatory activity and responses to sensory stimuli, some of which have been back-translated into rodent models by knocking-out the Fragile X messenger ribonucleoprotein 1 gene (Fmr1-KO). However, the validity of these EEG phenotypes as objective biomarkers requires further investigation. Potential pharmacotherapies such as mGluR5 inhibitors (e.g. CTEP; 2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazole-4-yl)ethynyl)pyridine), GABABR agonists (e.g. arbaclofen) and δ-containing GABAAR agonists (e.g. gaboxadol) have not translated into clinical success despite rescuing many phenotypes in the Fmr1-KO model. Yet none of these treatments have been assessed on EEG phenotypes in the Fmr1-KO model. Therefore, we set out to discover new EEG phenotypes in Fmr1-KO mice, using "task-free" and auditory-evoked (AEPs) and visually-evoked potential (VEP) paradigms, and probe their modulation by CTEP, arbaclofen and gaboxadol, using within-subjects designs. First, we report Fmr1-KO-associated EEG abnormalities that closely resemble those observed in FXS, including elevated gamma-band power, reduced alpha/beta-band coherence, increased AEPs and delayed VEPs. Secondly, we found that pharmacological treatment, at best, only partially normalized EEG phenotypes. CTEP restored alpha/beta-band coherence and AEP amplitudes but failed to normalize gamma power and VEP latencies. Conversely, arbaclofen reduced gamma power but did not restore coherence or AEP amplitudes and further delayed VEPs. Gaboxadol did not normalize any EEG phenotypes. We conclude that these compounds have limited ability to normalize these EEG phenotypes.
Collapse
Affiliation(s)
- Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Simon Gross
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
2
|
McKinney WS, Schmitt LM, De Stefano LA, Ethridge L, Norris JE, Horn PS, Dauterman S, Rosselot H, Pedapati EV, Reisinger DL, Dominick KC, Shaffer RC, Chin D, Friedman NR, Hong M, Sweeney JA, Erickson C. Results from a Double-Blind, Randomized, Placebo-Controlled, Single-Dose, Crossover Trial of Lovastatin or Minocycline in Fragile X Syndrome. J Child Adolesc Psychopharmacol 2024. [PMID: 39651602 DOI: 10.1089/cap.2024.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Introduction: Treatment studies in FMR1 knockout rodent models have found that minocycline and lovastatin each improve synaptic, neurological, and behavioral functioning, and open-label chronic dosing studies in human patients with fragile X syndrome (FXS) have demonstrated modest clinical improvements. Findings from blinded studies are mixed, and there is a limited understanding of electrophysiological target engagement that would facilitate cross-species translational studies. Smaller-scale, acute (e.g., single-dose) drug studies may speed treatment identification by detecting subtle electrophysiological and behavioral changes. Materials and Methods: Twenty-nine participants with FXS (31% female) ages 15-45 years completed a randomized, double-blind, crossover study in which they received a single oral dose of 40 mg of lovastatin, 270 mg of minocycline, or placebo, with a 2-week washout period between dosing visits. Participants completed a comprehensive neuropsychological battery and three EEG paradigms (resting state; auditory chirp; auditory habituation) before and 4 hours after dosing. Results: No serious adverse events were reported, and both drugs were well-tolerated. Compared with placebo, there were no overall treatment effects for any outcomes, including EEG, but several modest drug responses varied as a function of sex and age. Lovastatin treatment was associated with improved spatial awareness in older participants and females compared with minocycline and placebo. Discussion: We show that single-dose drug studies are highly feasible in FXS and that patients with FXS can complete a range of EEG and behavioral tasks, many of which have been shown to be reliable and may therefore be sensitive to subtle drug target engagement. Conclusions: Acute single doses of lovastatin or minocycline did not lead to changes in electrophysiological or performance-based measures. This may be due to the limited effects of these drugs in human patients or limited acute effects relative to chronic dosing. However, the study design was further validated for use in neurodevelopmental populations.
Collapse
Affiliation(s)
- Walker S McKinney
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lauren M Schmitt
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lisa A De Stefano
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lauren Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Pediatrics, Section of Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Jordan E Norris
- Department of Psychology, University of Oklahoma, Norman, Oklahoma, USA
| | - Paul S Horn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Shelby Dauterman
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Debra L Reisinger
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rebecca C Shaffer
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Danielle Chin
- The Heidt Center of Excellence, Cincinnati, Ohio, USA
| | - Nicole R Friedman
- Department of Psychology, University of Alabama, Tuscaloosa, Alabama, USA
| | - Michael Hong
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
3
|
May HG, Tsikonofilos K, Donat CK, Sastre M, Kozlov AS, Sharp DJ, Bruyns-Haylett M. EEG hyperexcitability and hyperconnectivity linked to GABAergic inhibitory interneuron loss following traumatic brain injury. Brain Commun 2024; 6:fcae385. [PMID: 39605970 PMCID: PMC11600960 DOI: 10.1093/braincomms/fcae385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/04/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Traumatic brain injury represents a significant global health burden and has the highest prevalence among neurological disorders. Even mild traumatic brain injury can induce subtle, long-lasting changes that increase the risk of future neurodegeneration. Importantly, this can be challenging to detect through conventional neurological assessment. This underscores the need for more sensitive diagnostic tools, such as electroencephalography, to uncover opportunities for therapeutic intervention. Progress in the field has been hindered by a lack of studies linking mechanistic insights at the microscopic level from animal models to the macroscale phenotypes observed in clinical imaging. Our study addresses this gap by investigating a rat model of mild blast traumatic brain injury using both immunohistochemical staining of inhibitory interneurons and translationally relevant electroencephalography recordings. Although we observed no pronounced effects immediately post-injury, chronic time points revealed broadband hyperexcitability and increased connectivity, accompanied by decreased density of inhibitory interneurons. This pattern suggests a disruption in the balance between excitation and inhibition, providing a crucial link between cellular mechanisms and clinical hallmarks of injury. Our findings have significant implications for the diagnosis, monitoring, and treatment of traumatic brain injury. The emergence of electroencephalography abnormalities at chronic time points, despite the absence of immediate effects, highlights the importance of long-term monitoring in traumatic brain injury patients. The observed decrease in inhibitory interneuron density offers a potential cellular mechanism underlying the electroencephalography changes and may represent a target for therapeutic intervention. This study demonstrates the value of combining cellular-level analysis with macroscale neurophysiological recordings in animal models to elucidate the pathophysiology of traumatic brain injury. Future research should focus on translating these findings to human studies and exploring potential therapeutic strategies targeting the excitation-inhibition imbalance in traumatic brain injury.
Collapse
Affiliation(s)
- Hazel G May
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Konstantinos Tsikonofilos
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Department of Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm 171 65, Sweden
| | - Cornelius K Donat
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
- Department of Medicinal Radiochemistry, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Andriy S Kozlov
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0NN, UK
| | - Michael Bruyns-Haylett
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
- Department of Bioengineering, Institut Quimic de Sarria, Universitat Ramon Llul, Barcelona 08017, Spain
- Department of Quantitative Methods, Institut Quimic de Sarria, Universitat Ramon Llul, Barcelona 08017, Spain
| |
Collapse
|
4
|
Fink JJ, Delaney-Busch N, Dawes R, Nanou E, Folts C, Harikrishnan K, Hempel C, Upadhyay H, Nguyen T, Shroff H, Stoppel D, Ryan SJ, Jacques J, Grooms J, Berry-Kravis E, Bear MF, Williams LA, Gerber D, Bunnage M, Furey B, Dempsey GT. Deep functional measurements of Fragile X syndrome human neurons reveal multiparametric electrophysiological disease phenotype. Commun Biol 2024; 7:1447. [PMID: 39506078 PMCID: PMC11541539 DOI: 10.1038/s42003-024-07120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by hypermethylation of expanded CGG repeats (>200) in the FMR1 gene leading to gene silencing and loss of Fragile X Messenger Ribonucleoprotein (FMRP) expression. FMRP plays important roles in neuronal function, and loss of FMRP in mouse and human FXS cell models leads to aberrant synaptic signaling and hyperexcitability. Multiple drug candidates have advanced into clinical trials for FXS, but no efficacious treatment has been identified to date, possibly as a consequence of poor translation from pre-clinical animal models to human. Here, we use a high resolution all-optical electrophysiology platform applied to multiple FXS patient-derived and CRISPR/Cas9-generated isogenic neuronal cell lines to develop a multi-parametric FXS disease phenotype. This neurophysiological phenotype was optimized and validated into a high throughput assay based on the amount of FMRP re-expression and the number of healthy neurons in a mosaic network necessary for functional rescue. The resulting highly sensitive and multiparameter functional assay can now be applied as a discovery platform to explore new therapeutic approaches for the treatment of FXS.
Collapse
Affiliation(s)
- James J Fink
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | - David Stoppel
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Steven J Ryan
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | - Jane Jacques
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | - Jennifer Grooms
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | | | - Mark F Bear
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luis A Williams
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | - David Gerber
- Quiver Bioscience, Cambridge, MA, USA
- Q-State Biosciences, Cambridge, MA, USA
| | | | | | - Graham T Dempsey
- Quiver Bioscience, Cambridge, MA, USA.
- Q-State Biosciences, Cambridge, MA, USA.
| |
Collapse
|
5
|
Ethridge LE, Pedapati EV, Schmitt LM, Norris JE, Auger E, De Stefano LA, Sweeney JA, Erickson CA. Validating brain activity measures as reliable indicators of individual diagnostic group and genetically mediated sub-group membership Fragile X Syndrome. Sci Rep 2024; 14:22982. [PMID: 39362936 PMCID: PMC11450163 DOI: 10.1038/s41598-024-72935-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 09/11/2024] [Indexed: 10/05/2024] Open
Abstract
Recent failures translating preclinical behavioral treatment effects to positive clinical trial results in humans with Fragile X Syndrome (FXS) support refocusing attention on biological pathways and associated measures, such as electroencephalography (EEG), with strong translational potential and small molecule target engagement. This study utilized guided machine learning to test promising translational EEG measures (resting power and auditory chirp oscillatory variables) in a large heterogeneous sample of individuals with FXS to identify best performing EEG variables for reliably separating individuals with FXS, and genetically-mediated subgroups within FXS, from typically developing controls. Best performing variables included resting relative frontal theta power, all combined posterior-head resting power bands, posterior peak alpha frequency (PAF), combined PAF across all measured regions, combined theta, alpha, and gamma power during the chirp, and all combined chirp oscillatory variables. Sub-group analyses for resting EEG best discriminated non-mosaic FXS males via frontal theta resting relative power (AUC = 0.8759), even with data reduced to a 20-channel clinical montage (AUC = 0.9062). In the chirp task, FXS females and non-mosaic males were nearly perfectly discriminated by combined theta, alpha, and gamma power (AUC = 0.9444) and a combination of all variables (AUC = 0.9610), respectively. Results support use of resting and auditory oscillatory tasks to reliably identify neural deficit in FXS, and to identify specific translational targets for genetically-mediated sub-groups, supporting potential points for stratification.
Collapse
Affiliation(s)
- Lauren E Ethridge
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA.
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ernest V Pedapati
- Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jordan E Norris
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA
| | - Emma Auger
- Department of Psychology, University of Oklahoma, 455 W. Lindsey Street, Dale Hall Tower, Room 705, Norman, OK, 73019-2007, USA
| | - Lisa A De Stefano
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
6
|
Huynh TN, Delagrammatikas CG, Chiriatti L, Panfili A, Ventarola K, Menke LA, Tartaglia M, Huisman SA, Priolo M. Natural history in Malan syndrome: survey of 28 adults and literature review. Orphanet J Rare Dis 2024; 19:282. [PMID: 39075508 PMCID: PMC11288048 DOI: 10.1186/s13023-024-03288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/14/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Malan syndrome (MALNS), previously referred to as "Sotos syndrome 2" due to its resemblance to Sotos syndrome (SS), is an ultra-rare neurodevelopmental disorder characterized by overgrowth, typical craniofacial features, intellectual disability (ID), and a range of psychobehavioral, musculoskeletal, vision and neurological signs. As MALNS and SS partly overlap, it is essential to more accurately profile their clinical presentations and highlight their differences in order to improve syndrome specific management. An increasing number of individuals with MALNS reach adult-age though the natural history of the disorder is poorly characterized due to the small number of adult individuals described so far. As a consequence, current guidelines are limited to the pediatric population. Further delineation of MALNS is essential to optimize care in adulthood. RESULTS A mixed approach based on cross-sectional data collection with a survey disseminated to caregivers of adults with molecularly confirmed MALNS and literature review was conducted. Twenty-eight caregivers completed the survey. Clinical presentation in adulthood is multisystemic and defined by psychobehavioral comorbidities (96%), musculoskeletal involvement (96%), vision impairment (96%) and neurological complications (86%). The most common signs were anxiety (79%), hypotonia (75%), movement difficulty (75%), scoliosis (64%), problems with coordination (61%), strabismus (57%), constipation (54%), breastbone abnormalities (54%) and advanced bone age during childhood (54%). Impaired vision was complicated by vision decline (36%) and optic atrophy (32%). We report some previously unidentified features, including high pain threshold (46%), incontinence (25%), tremors (21%), muscle hypoplasia (18%) and tics (18%). CONCLUSIONS This survey in the adult population has allowed a more complete description of the natural history of MALNS. Our findings will contribute to the development and improvement of standards of care for adults with MALNS to assure optimal health monitoring and treatment of evolutive complications. We propose additional recommendations to the previous dataset of clinical evaluations specifically applied to adults. The comparison of MALNS and SS adult presentation highlights significant differences in terms of prevalence and severity of ID, behavioral issues, and vision problems, confirming that a proper differential diagnosis between the two conditions is indispensable to guide physicians and mental health professionals to syndrome specific management.
Collapse
Affiliation(s)
- T N Huynh
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | | | - L Chiriatti
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - A Panfili
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Medical Genetics Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - K Ventarola
- Malan Syndrome Foundation, Old Bridge, NJ, USA
| | - L A Menke
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - M Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - S A Huisman
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Zodiak, Prinsenstichting, 1444 JE, Purmerend, The Netherlands.
| | - M Priolo
- Operative Unit of Medical Genetics and Laboratory of Genetics, AORN A.Cardarelli, Via Cardarelli 9, 80131, Naples, Italy.
| |
Collapse
|
7
|
Westmark PR, Swietlik TJ, Runde E, Corsiga B, Nissan R, Boeck B, Granger R, Jennings E, Nebbia M, Thauwald A, Lyon G, Maganti RK, Westmark CJ. Adult Inception of Ketogenic Diet Therapy Increases Sleep during the Dark Cycle in C57BL/6J Wild Type and Fragile X Mice. Int J Mol Sci 2024; 25:6679. [PMID: 38928388 PMCID: PMC11203515 DOI: 10.3390/ijms25126679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Sleep problems are a significant phenotype in children with fragile X syndrome. Our prior work assessed sleep-wake cycles in Fmr1KO male mice and wild type (WT) littermate controls in response to ketogenic diet therapy where mice were treated from weaning (postnatal day 18) through study completion (5-6 months of age). A potentially confounding issue with commencing treatment during an active period of growth is the significant reduction in weight gain in response to the ketogenic diet. The aim here was to employ sleep electroencephalography (EEG) to assess sleep-wake cycles in mice in response to the Fmr1 genotype and a ketogenic diet, with treatment starting at postnatal day 95. EEG results were compared with prior sleep outcomes to determine if the later intervention was efficacious, as well as with published rest-activity patterns to determine if actigraphy is a viable surrogate for sleep EEG. The data replicated findings that Fmr1KO mice exhibit sleep-wake patterns similar to wild type littermates during the dark cycle when maintained on a control purified-ingredient diet but revealed a genotype-specific difference during hours 4-6 of the light cycle of the increased wake (decreased sleep and NREM) state in Fmr1KO mice. Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of NREM sleep in both wild type and Fmr1KO mice during the dark cycle. Differences in sleep microstructure (length of wake bouts) supported the altered sleep states in response to ketogenic diet. Commencing ketogenic diet treatment in adulthood resulted in a 15% (WT) and 8.6% (Fmr1KO) decrease in body weight after 28 days of treatment, but not the severe reduction in body weight associated with starting treatment at weaning. We conclude that the lack of evidence for improved sleep during the light cycle (mouse sleep time) in Fmr1KO mice in response to ketogenic diet therapy in two studies suggests that ketogenic diet may not be beneficial in treating sleep problems associated with fragile X and that actigraphy is not a reliable surrogate for sleep EEG in mice.
Collapse
Affiliation(s)
- Pamela R. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Timothy J. Swietlik
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Ethan Runde
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Brian Corsiga
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Rachel Nissan
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Brynne Boeck
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Ricky Granger
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Erica Jennings
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Maya Nebbia
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Andrew Thauwald
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Greg Lyon
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Rama K. Maganti
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (T.J.S.); (E.R.); (B.C.); (R.N.); (B.B.); (R.G.); (E.J.); (M.N.); (A.T.); (G.L.); (R.K.M.)
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
8
|
Pedapati EV, Ethridge LE, Liu Y, Liu R, Sweeney JA, DeStefano LA, Miyakoshi M, Razak K, Schmitt LM, Moore DR, Gilbert DL, Wu SW, Smith E, Shaffer RC, Dominick KC, Horn PS, Binder D, Erickson CA. Frontal Cortex Hyperactivation and Gamma Desynchrony in Fragile X Syndrome: Correlates of Auditory Hypersensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598957. [PMID: 38915683 PMCID: PMC11195233 DOI: 10.1101/2024.06.13.598957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Fragile X syndrome (FXS) is an X-linked disorder that often leads to intellectual disability, anxiety, and sensory hypersensitivity. While sound sensitivity (hyperacusis) is a distressing symptom in FXS, its neural basis is not well understood. It is postulated that hyperacusis may stem from temporal lobe hyperexcitability or dysregulation in top-down modulation. Studying the neural mechanisms underlying sound sensitivity in FXS using scalp electroencephalography (EEG) is challenging because the temporal and frontal regions have overlapping neural projections that are difficult to differentiate. To overcome this challenge, we conducted EEG source analysis on a group of 36 individuals with FXS and 39 matched healthy controls. Our goal was to characterize the spatial and temporal properties of the response to an auditory chirp stimulus. Our results showed that males with FXS exhibit excessive activation in the frontal cortex in response to the stimulus onset, which may reflect changes in top-down modulation of auditory processing. Additionally, during the chirp stimulus, individuals with FXS demonstrated a reduction in typical gamma phase synchrony, along with an increase in asynchronous gamma power, across multiple regions, most strongly in temporal cortex. Consistent with these findings, we observed a decrease in the signal-to-noise ratio, estimated by the ratio of synchronous to asynchronous gamma activity, in individuals with FXS. Furthermore, this ratio was highly correlated with performance in an auditory attention task. Compared to controls, males with FXS demonstrated elevated bidirectional frontotemporal information flow at chirp onset. The evidence indicates that both temporal lobe hyperexcitability and disruptions in top-down regulation play a role in auditory sensitivity disturbances in FXS. These findings have the potential to guide the development of therapeutic targets and back-translation strategies.
Collapse
Affiliation(s)
- Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lauren E Ethridge
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Psychology, University of Oklahoma, Norman, OK, United States
| | - Yanchen Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rui Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lisa A DeStefano
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Makoto Miyakoshi
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Khaleel Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David R Moore
- Communication Sciences Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Manchester Centre for Audiology and Deafness, University of Manchester, Manchester, UK
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Elizabeth Smith
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rebecca C Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Devin Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, United States
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
9
|
Sandoval SO, Méndez-Albelo NM, Xu Z, Zhao X. From wings to whiskers to stem cells: why every model matters in fragile X syndrome research. J Neurodev Disord 2024; 16:30. [PMID: 38872088 PMCID: PMC11177515 DOI: 10.1186/s11689-024-09545-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/21/2024] [Indexed: 06/15/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by epigenetic silencing of the X-linked fragile X messenger ribonucleoprotein 1 (FMR1) gene located on chromosome Xq27.3, which leads to the loss of its protein product, fragile X messenger ribonucleoprotein (FMRP). It is the most prevalent inherited form of intellectual disability and the highest single genetic cause of autism. Since the discovery of the genetic basis of FXS, extensive studies using animal models and human pluripotent stem cells have unveiled the functions of FMRP and mechanisms underlying FXS. However, clinical trials have not yielded successful treatment. Here we review what we have learned from commonly used models for FXS, potential limitations of these models, and recommendations for future steps.
Collapse
Affiliation(s)
- Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhiyan Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
10
|
Jonak CR, Assad SA, Garcia TA, Sandhu MS, Rumschlag JA, Razak KA, Binder DK. Phenotypic analysis of multielectrode array EEG biomarkers in developing and adult male Fmr1 KO mice. Neurobiol Dis 2024; 195:106496. [PMID: 38582333 DOI: 10.1016/j.nbd.2024.106496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Fragile X Syndrome (FXS) is a leading known genetic cause of intellectual disability with symptoms that include increased anxiety and social and sensory processing deficits. Recent electroencephalographic (EEG) studies in humans with FXS have identified neural oscillation deficits that include increased resting state gamma power, increased amplitude of auditory evoked potentials, and reduced phase locking of sound-evoked gamma oscillations. Similar EEG phenotypes are present in mouse models of FXS, but very little is known about the development of such abnormal responses. In the current study, we employed a 30-channel mouse multielectrode array (MEA) system to record and analyze resting and stimulus-evoked EEG signals in male P21 and P91 WT and Fmr1 KO mice. This led to several novel findings. First, P91, but not P21, Fmr1 KO mice have significantly increased resting EEG power in the low- and high-gamma frequency bands. Second, both P21 and P91 Fmr1 KO mice have markedly attenuated inter-trial phase coherence (ITPC) to spectrotemporally dynamic auditory stimuli as well as to 40 Hz and 80 Hz auditory steady-state response (ASSR) stimuli. This suggests abnormal temporal processing from early development that may lead to abnormal speech and language function in FXS. Third, we found hemispheric asymmetry of fast temporal processing in the mouse auditory cortex in WT but not Fmr1 KO mice. Together, these findings define a set of EEG phenotypes in young and adult mice that can serve as translational targets for genetic and pharmacological manipulation in phenotypic rescue studies.
Collapse
Affiliation(s)
- Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Samantha A Assad
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Terese A Garcia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Manbir S Sandhu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, SC, United States of America
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California, Riverside, CA, United States of America; Department of Psychology, University of California, Riverside, CA, United States of America
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, United States of America; Neuroscience Graduate Program, University of California, Riverside, CA, United States of America.
| |
Collapse
|
11
|
Granato A, Phillips WA, Schulz JM, Suzuki M, Larkum ME. Dysfunctions of cellular context-sensitivity in neurodevelopmental learning disabilities. Neurosci Biobehav Rev 2024; 161:105688. [PMID: 38670298 DOI: 10.1016/j.neubiorev.2024.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Pyramidal neurons have a pivotal role in the cognitive capabilities of neocortex. Though they have been predominantly modeled as integrate-and-fire point processors, many of them have another point of input integration in their apical dendrites that is central to mechanisms endowing them with the sensitivity to context that underlies basic cognitive capabilities. Here we review evidence implicating impairments of those mechanisms in three major neurodevelopmental disabilities, fragile X, Down syndrome, and fetal alcohol spectrum disorders. Multiple dysfunctions of the mechanisms by which pyramidal cells are sensitive to context are found to be implicated in all three syndromes. Further deciphering of these cellular mechanisms would lead to the understanding of and therapies for learning disabilities beyond any that are currently available.
Collapse
Affiliation(s)
- Alberto Granato
- Dept. of Veterinary Sciences. University of Turin, Grugliasco, Turin 10095, Italy.
| | - William A Phillips
- Psychology, Faculty of Natural Sciences, University of Stirling, Scotland FK9 4LA, UK
| | - Jan M Schulz
- Roche Pharma Research & Early Development, Neuroscience & Rare Diseases Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Mototaka Suzuki
- Dept. of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam 1098 XH, the Netherlands
| | - Matthew E Larkum
- Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin 10117, Germany; Institute of Biology, Humboldt University Berlin, Berlin, Germany
| |
Collapse
|
12
|
Croom K, Rumschlag JA, Erickson MA, Binder D, Razak KA. Sex differences during development in cortical temporal processing and event related potentials in wild-type and fragile X syndrome model mice. J Neurodev Disord 2024; 16:24. [PMID: 38720271 PMCID: PMC11077726 DOI: 10.1186/s11689-024-09539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is currently diagnosed in approximately 1 in 44 children in the United States, based on a wide array of symptoms, including sensory dysfunction and abnormal language development. Boys are diagnosed ~ 3.8 times more frequently than girls. Auditory temporal processing is crucial for speech recognition and language development. Abnormal development of temporal processing may account for ASD language impairments. Sex differences in the development of temporal processing may underlie the differences in language outcomes in male and female children with ASD. To understand mechanisms of potential sex differences in temporal processing requires a preclinical model. However, there are no studies that have addressed sex differences in temporal processing across development in any animal model of ASD. METHODS To fill this major gap, we compared the development of auditory temporal processing in male and female wildtype (WT) and Fmr1 knock-out (KO) mice, a model of Fragile X Syndrome (FXS), a leading genetic cause of ASD-associated behaviors. Using epidural screw electrodes, we recorded auditory event related potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady state response (ASSR) paradigm at young (postnatal (p)21 and p30) and adult (p60) ages from both auditory and frontal cortices of awake, freely moving mice. RESULTS The results show that ERP amplitudes were enhanced in both sexes of Fmr1 KO mice across development compared to WT counterparts, with greater enhancement in adult female than adult male KO mice. Gap-ASSR deficits were seen in the frontal, but not auditory, cortex in early development (p21) in female KO mice. Unlike male KO mice, female KO mice show WT-like temporal processing at p30. There were no temporal processing deficits in the adult mice of both sexes. CONCLUSIONS These results show a sex difference in the developmental trajectories of temporal processing and hypersensitive responses in Fmr1 KO mice. Male KO mice show slower maturation of temporal processing than females. Female KO mice show stronger hypersensitive responses than males later in development. The differences in maturation rates of temporal processing and hypersensitive responses during various critical periods of development may lead to sex differences in language function, arousal and anxiety in FXS.
Collapse
Affiliation(s)
- Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, USA
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, USA
| | - Michael A Erickson
- Department of Psychology, University of California, 900 University Avenue, Riverside, USA
| | - Devin Binder
- Graduate Neuroscience Program, University of California, Riverside, USA
- Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, USA.
- Department of Psychology, University of California, 900 University Avenue, Riverside, USA.
| |
Collapse
|
13
|
Takarae Y, Zanesco A, Erickson CA, Pedapati EV. EEG Microstates as Markers for Cognitive Impairments in Fragile X Syndrome. Brain Topogr 2024; 37:432-446. [PMID: 37751055 DOI: 10.1007/s10548-023-01009-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
Fragile X syndrome (FXS) is one of the most common inherited causes of intellectual disabilities. While there is currently no cure for FXS, EEG is considered an important method to investigate the pathophysiology and evaluate behavioral and cognitive treatments. We conducted EEG microstate analysis to investigate resting brain dynamics in FXS participants. Resting-state recordings from 70 FXS participants and 71 chronological age-matched typically developing control (TDC) participants were used to derive microstates via modified k-means clustering. The occurrence, mean global field power (GFP), and global explained variance (GEV) of microstate C were significantly higher in the FXS group compared to the TDC group. The mean GFP was significantly negatively correlated with non-verbal IQ (NVIQ) in the FXS group, where lower NVIQ scores were associated with greater GFP. In addition, the occurrence, mean duration, mean GFP, and GEV of microstate D were significantly greater in the FXS group than the TDC group. The mean GFP and occurrence of microstate D were also correlated with individual alpha frequencies in the FXS group, where lower IAF frequencies accompanied greater microstate GFP and occurrence. Alterations in microstates C and D may be related to the two well-established cognitive characteristics of FXS, intellectual disabilities and attention impairments, suggesting that microstate parameters could serve as markers to study cognitive impairments and evaluate treatment outcomes in this population. Slowing of the alpha peak frequency and its correlation to microstate D parameters may suggest changes in thalamocortical dynamics in FXS, which could be specifically related to attention control. (250 words).
Collapse
Affiliation(s)
- Yukari Takarae
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, USA.
- M.I.N.D. Institute, University of California, Davis, Sacramento, CA, USA.
| | - Anthony Zanesco
- Department of Psychology, University of Miami, Coral Gables, FL, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
14
|
Stamenkovic V, Lautz JD, Harsh FM, Smith SEP. SRC family kinase inhibition rescues molecular and behavioral phenotypes, but not protein interaction network dynamics, in a mouse model of Fragile X syndrome. Mol Psychiatry 2024; 29:1392-1405. [PMID: 38297084 PMCID: PMC11524049 DOI: 10.1038/s41380-024-02418-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Glutamatergic synapses encode information from extracellular inputs using dynamic protein interaction networks (PINs) that undergo widespread reorganization following synaptic activity, allowing cells to distinguish between signaling inputs and generate coordinated cellular responses. Here, we investigate how Fragile X Messenger Ribonucleoprotein (FMRP) deficiency disrupts signal transduction through a glutamatergic synapse PIN downstream of NMDA receptor or metabotropic glutamate receptor (mGluR) stimulation. In cultured cortical neurons or acute cortical slices from P7, P17 and P60 FMR1-/y mice, the unstimulated protein interaction network state resembled that of wildtype littermates stimulated with mGluR agonists, demonstrating resting state pre-activation of mGluR signaling networks. In contrast, interactions downstream of NMDAR stimulation were similar to WT. We identified the Src family kinase (SFK) Fyn as a network hub, because many interactions involving Fyn were pre-activated in FMR1-/y animals. We tested whether targeting SFKs in FMR1-/y mice could modify disease phenotypes, and found that Saracatinib (SCB), an SFK inhibitor, normalized elevated basal protein synthesis, novel object recognition memory and social behavior in FMR1-/y mice. However, SCB treatment did not normalize the PIN to a wild-type-like state in vitro or in vivo, but rather induced extensive changes to protein complexes containing Shank3, NMDARs and Fyn. We conclude that targeting abnormal nodes of a PIN can identify potential disease-modifying drugs, but behavioral rescue does not correlate with PIN normalization.
Collapse
Affiliation(s)
- Vera Stamenkovic
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Felicia M Harsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Meneghetti N, Vannini E, Mazzoni A. Rodents' visual gamma as a biomarker of pathological neural conditions. J Physiol 2024; 602:1017-1048. [PMID: 38372352 DOI: 10.1113/jp283858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Neural gamma oscillations (indicatively 30-100 Hz) are ubiquitous: they are associated with a broad range of functions in multiple cortical areas and across many animal species. Experimental and computational works established gamma rhythms as a global emergent property of neuronal networks generated by the balanced and coordinated interaction of excitation and inhibition. Coherently, gamma activity is strongly influenced by the alterations of synaptic dynamics which are often associated with pathological neural dysfunctions. We argue therefore that these oscillations are an optimal biomarker for probing the mechanism of cortical dysfunctions. Gamma oscillations are also highly sensitive to external stimuli in sensory cortices, especially the primary visual cortex (V1), where the stimulus dependence of gamma oscillations has been thoroughly investigated. Gamma manipulation by visual stimuli tuning is particularly easy in rodents, which have become a standard animal model for investigating the effects of network alterations on gamma oscillations. Overall, gamma in the rodents' visual cortex offers an accessible probe on dysfunctional information processing in pathological conditions. Beyond vision-related dysfunctions, alterations of gamma oscillations in rodents were indeed also reported in neural deficits such as migraine, epilepsy and neurodegenerative or neuropsychiatric conditions such as Alzheimer's, schizophrenia and autism spectrum disorders. Altogether, the connections between visual cortical gamma activity and physio-pathological conditions in rodent models underscore the potential of gamma oscillations as markers of neuronal (dys)functioning.
Collapse
Affiliation(s)
- Nicolò Meneghetti
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | - Alberto Mazzoni
- The Biorobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
- Department of Excellence for Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
16
|
Ethridge LE, Pedapati EV, Schmitt LM, Norris JE, Auger E, De Stefano LA, Sweeney JA, Erickson CA. Validating brain activity measures as reliable indicators of individual diagnostic group and genetically mediated sub-group membership Fragile X Syndrome. RESEARCH SQUARE 2024:rs.3.rs-3849272. [PMID: 38313274 PMCID: PMC10836101 DOI: 10.21203/rs.3.rs-3849272/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Recent failures translating preclinical behavioral treatment effects to positive clinical trial results in humans with Fragile X Syndrome (FXS) support refocusing attention on biological pathways and associated measures, such as electroencephalography (EEG), with strong translational potential and small molecule target engagement. This study utilized guided machine learning to test promising translational EEG measures (resting power and auditory chirp oscillatory variables) in a large heterogeneous sample of individuals with FXS to identify best performing EEG variables for reliably separating individuals with FXS, and genetically-mediated subgroups within FXS, from typically developing controls. Best performing variables included resting relative frontal theta power, all combined whole-head resting power bands, posterior peak alpha frequency (PAF), combined PAF across all measured regions, combined theta, alpha, and gamma power during the chirp, and all combined chirp oscillatory variables. Sub-group analyses best discriminated non-mosaic FXS males via whole-head resting relative power (AUC = .9250), even with data reduced to a 20-channel clinical montage. FXS females were nearly perfectly discriminated by combined theta, alpha, and gamma power during the chirp (AUC = .9522). Results support use of resting and auditory oscillatory tasks to reliably identify neural deficit in FXS, and to identify specific translational targets for genetically-mediated sub-groups, supporting potential points for stratification.
Collapse
|
17
|
Gibson JM, Vazquez AH, Yamashiro K, Jakkamsetti V, Ren C, Lei K, Dentel B, Pascual JM, Tsai PT. Cerebellar contribution to autism-relevant behaviors in fragile X syndrome models. Cell Rep 2023; 42:113533. [PMID: 38048226 PMCID: PMC10831814 DOI: 10.1016/j.celrep.2023.113533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 09/01/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
Cerebellar dysfunction has been linked to autism spectrum disorders (ASDs). Although cerebellar pathology has been observed in individuals with fragile X syndrome (FXS) and in mouse models of the disorder, a cerebellar functional contribution to ASD-relevant behaviors in FXS has yet to be fully characterized. In this study, we demonstrate a critical cerebellar role for Fmr1 (fragile X messenger ribonucleoprotein 1) in ASD-relevant behaviors. First, we identify reduced social behaviors, sensory hypersensitivity, and cerebellar dysfunction, with loss of cerebellar Fmr1. We then demonstrate that cerebellar-specific expression of Fmr1 is sufficient to impact social, sensory, cerebellar dysfunction, and cerebro-cortical hyperexcitability phenotypes observed in global Fmr1 mutants. Moreover, we demonstrate that targeting the ASD-implicated cerebellar region Crus1 ameliorates behaviors in both cerebellar-specific and global Fmr1 mutants. Together, these results demonstrate a critical role for the cerebellar contribution to FXS-related behaviors, with implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Jennifer M Gibson
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Anthony Hernandez Vazquez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kunihiko Yamashiro
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vikram Jakkamsetti
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chongyu Ren
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katherine Lei
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brianne Dentel
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Juan M Pascual
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Peter T Tsai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
18
|
Leontiadis LJ, Trompoukis G, Tsotsokou G, Miliou A, Felemegkas P, Papatheodoropoulos C. Rescue of sharp wave-ripples and prevention of network hyperexcitability in the ventral but not the dorsal hippocampus of a rat model of fragile X syndrome. Front Cell Neurosci 2023; 17:1296235. [PMID: 38107412 PMCID: PMC10722241 DOI: 10.3389/fncel.2023.1296235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder characterized by intellectual disability and is related to autism. FXS is caused by mutations of the fragile X messenger ribonucleoprotein 1 gene (Fmr1) and is associated with alterations in neuronal network excitability in several brain areas including hippocampus. The loss of fragile X protein affects brain oscillations, however, the effects of FXS on hippocampal sharp wave-ripples (SWRs), an endogenous hippocampal pattern contributing to memory consolidation have not been sufficiently clarified. In addition, it is still not known whether dorsal and ventral hippocampus are similarly affected by FXS. We used a Fmr1 knock-out (KO) rat model of FXS and electrophysiological recordings from the CA1 area of adult rat hippocampal slices to assess spontaneous and evoked neural activity. We find that SWRs and associated multiunit activity are affected in the dorsal but not the ventral KO hippocampus, while complex spike bursts remain normal in both segments of the KO hippocampus. Local network excitability increases in the dorsal KO hippocampus. Furthermore, specifically in the ventral hippocampus of KO rats we found an increased effectiveness of inhibition in suppressing excitation and an upregulation of α1GABAA receptor subtype. These changes in the ventral KO hippocampus are accompanied by a striking reduction in its susceptibility to induced epileptiform activity. We propose that the neuronal network specifically in the ventral segment of the hippocampus is reorganized in adult Fmr1-KO rats by means of balanced changes between excitability and inhibition to ensure normal generation of SWRs and preventing at the same time derailment of the neural activity toward hyperexcitability.
Collapse
|
19
|
Liu R, Pedapati EV, Schmitt LM, Shaffer RC, Smith EG, Dominick KC, DeStefano LA, Westerkamp G, Horn P, Sweeney JA, Erickson CA. Reliability of resting-state electrophysiology in fragile X syndrome. Biomark Neuropsychiatry 2023; 9:100070. [PMID: 38817342 PMCID: PMC11138258 DOI: 10.1016/j.bionps.2023.100070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Objective Fragile X Syndrome (FXS) is the leading monogenic cause of intellectual disability and autism spectrum disorder. Currently, there are no established biomarkers for predicting and monitoring drug effects in FXS, and no approved therapies are available. Previous studies have shown electrophysiological changes in the brain using electroencephalography (EEG) in individuals with FXS and animal models. These changes may be influenced by drug therapies. In this study, we aimed to assess the reliability of resting-state EEG measures in individuals with FXS, which could potentially serve as a biomarker for drug discovery. Methods We collected resting-state EEG data from 35 individuals with FXS participating in placebo-controlled clinical trials (23 males, 12 females; visit age mean+/-std 25.6 +/-8.3). The data were analyzed for various spectral features using intraclass correlation analysis to evaluate test-retest reliability. The intervals between EEG recordings ranged from same-day measurements to up to six weeks apart. Results Our results showed high reliability for most spectral features, with same-day reliability exceeding 0.8. Features of interest demonstrated ICC values of 0.60 or above at longer intervals. Among the features, alpha band relative power exhibited the highest reliability. Conclusion These findings indicate that resting-state EEG can provide consistent and reproducible measures of brain activity in individuals with FXS. This supports the potential use of EEG as an objective biomarker for evaluating the effects of new drugs in FXS. Significance The reliable measurements obtained from power spectrum-based resting-state EEG make it a promising tool for assessing the impact of small molecule drugs in FXS.
Collapse
Affiliation(s)
- Rui Liu
- Cincinnati Children’s Hospital Medical Center, United States
| | - Ernest V. Pedapati
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | - Lauren M. Schmitt
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | - Rebecca C. Shaffer
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | - Elizabeth G. Smith
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | - Kelli C. Dominick
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | | | | | - Paul Horn
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| | | | - Craig A. Erickson
- Cincinnati Children’s Hospital Medical Center, United States
- University of Cincinnati, United States
| |
Collapse
|
20
|
Westmark PR, Gholston AK, Swietlik TJ, Maganti RK, Westmark CJ. Ketogenic Diet Affects Sleep Architecture in C57BL/6J Wild Type and Fragile X Mice. Int J Mol Sci 2023; 24:14460. [PMID: 37833907 PMCID: PMC10572443 DOI: 10.3390/ijms241914460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Nearly half of children with fragile X syndrome experience sleep problems including trouble falling asleep and frequent nighttime awakenings. The goals here were to assess sleep-wake cycles in mice in response to Fmr1 genotype and a dietary intervention that reduces hyperactivity. Electroencephalography (EEG) results were compared with published rest-activity patterns to determine if actigraphy is a viable surrogate for sleep EEG. Specifically, sleep-wake patterns in adult wild type and Fmr1KO littermate mice were recorded after EEG electrode implantation and the recordings manually scored for vigilance states. The data indicated that Fmr1KO mice exhibited sleep-wake patterns similar to wild type littermates when maintained on a control purified ingredient diet. Treatment with a high-fat, low-carbohydrate ketogenic diet increased the percentage of non-rapid eye movement (NREM) sleep in both wild type and Fmr1KO mice during the dark cycle, which corresponded to decreased activity levels. Treatment with a ketogenic diet flattened diurnal sleep periodicity in both wild type and Fmr1KO mice. Differences in several sleep microstructure outcomes (number and length of sleep and wake bouts) supported the altered sleep states in response to a ketogenic diet and were correlated with altered rest-activity cycles. While actigraphy may be a less expensive, reduced labor surrogate for sleep EEG during the dark cycle, daytime resting in mice did not correlate with EEG sleep states.
Collapse
Affiliation(s)
- Pamela R. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
| | - Aaron K. Gholston
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| | - Timothy J. Swietlik
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
| | - Rama K. Maganti
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
| | - Cara J. Westmark
- Department of Neurology, University of Wisconsin, Madison, WI 53706, USA; (P.R.W.); (A.K.G.); (T.J.S.); (R.K.M.)
- Molecular Environmental Toxicology Center, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
21
|
Croom K, Rumschlag JA, Erickson MA, Binder DK, Razak KA. Developmental delays in cortical auditory temporal processing in a mouse model of Fragile X syndrome. J Neurodev Disord 2023; 15:23. [PMID: 37516865 PMCID: PMC10386252 DOI: 10.1186/s11689-023-09496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Autism spectrum disorders (ASD) encompass a wide array of debilitating symptoms, including sensory dysfunction and delayed language development. Auditory temporal processing is crucial for speech perception and language development. Abnormal development of temporal processing may account for the language impairments associated with ASD. Very little is known about the development of temporal processing in any animal model of ASD. METHODS In the current study, we quantify auditory temporal processing throughout development in the Fmr1 knock-out (KO) mouse model of Fragile X Syndrome (FXS), a leading genetic cause of intellectual disability and ASD-associated behaviors. Using epidural electrodes in awake and freely moving wildtype (WT) and KO mice, we recorded auditory event related potentials (ERP) and auditory temporal processing with a gap-in-noise auditory steady state response (gap-ASSR) paradigm. Mice were recorded at three different ages in a cross sectional design: postnatal (p)21, p30 and p60. Recordings were obtained from both auditory and frontal cortices. The gap-ASSR requires underlying neural generators to synchronize responses to gaps of different widths embedded in noise, providing an objective measure of temporal processing across genotypes and age groups. RESULTS We present evidence that the frontal, but not auditory, cortex shows significant temporal processing deficits at p21 and p30, with poor ability to phase lock to rapid gaps in noise. Temporal processing was similar in both genotypes in adult mice. ERP amplitudes were larger in Fmr1 KO mice in both auditory and frontal cortex, consistent with ERP data in humans with FXS. CONCLUSIONS These data indicate cortical region-specific delays in temporal processing development in Fmr1 KO mice. Developmental delays in the ability of frontal cortex to follow rapid changes in sounds may shape language delays in FXS, and more broadly in ASD.
Collapse
Affiliation(s)
- Katilynne Croom
- Graduate Neuroscience Program, University of California, Riverside, USA
| | - Jeffrey A Rumschlag
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, Charleston, USA
| | | | - Devin K Binder
- Graduate Neuroscience Program, University of California, Riverside, USA
- Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Khaleel A Razak
- Graduate Neuroscience Program, University of California, Riverside, USA.
- Department of Psychology, University of California, Riverside, USA.
| |
Collapse
|
22
|
Wong H, Hooper AW, Kang HR, Lee SJ, Zhao J, Sadhu C, Rawat S, Gray SJ, Hampson DR. CNS-dominant human FMRP isoform rescues seizures, fear, and sleep abnormalities in Fmr1-KO mice. JCI Insight 2023; 8:169650. [PMID: 37288657 PMCID: PMC10393223 DOI: 10.1172/jci.insight.169650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/18/2023] [Indexed: 06/09/2023] Open
Abstract
Fragile X syndrome is a neurodevelopmental disorder caused by the absence of the mRNA-binding protein fragile X messenger ribonucleoprotein (FMRP). Because FMRP is a highly pleiotropic protein controlling the expression of hundreds of genes, viral vector-mediated gene replacement therapy is viewed as a potential viable treatment to correct the fundamental underlying molecular pathology inherent in the disorder. Here, we studied the safety profile and therapeutic effects of a clinically relevant dose of a self-complementary adeno-associated viral (AAV) vector containing a major human brain isoform of FMRP after intrathecal injection into wild-type and fragile X-KO mice. Analysis of the cellular transduction in the brain indicated primarily neuronal transduction with relatively sparse glial expression, similar to endogenous FMRP expression in untreated wild-type mice. AAV vector-treated KO mice showed recovery from epileptic seizures, normalization of fear conditioning, reversal of slow-wave deficits as measured via electroencephalographic recordings, and restoration of abnormal circadian motor activity and sleep. Further assessment of vector efficacy by tracking and analyzing individual responses demonstrated correlations between the level and distribution of brain transduction and drug response. These preclinical findings further demonstrate the validity of AAV vector-mediated gene therapy for treating the most common genetic cause of cognitive impairment and autism in children.
Collapse
Affiliation(s)
- Hayes Wong
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Wm Hooper
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Hye Ri Kang
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shiron J Lee
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jiayi Zhao
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Steven J Gray
- University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David R Hampson
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Goodspeed K, Armstrong D, Dolce A, Evans P, Said R, Tsai P, Sirsi D. Electroencephalographic (EEG) Biomarkers in Genetic Neurodevelopmental Disorders. J Child Neurol 2023; 38:466-477. [PMID: 37264615 PMCID: PMC10644693 DOI: 10.1177/08830738231177386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/17/2022] [Accepted: 04/28/2023] [Indexed: 06/03/2023]
Abstract
Collectively, neurodevelopmental disorders are highly prevalent, but more than a third of neurodevelopmental disorders have an identifiable genetic etiology, each of which is individually rare. The genes associated with neurodevelopmental disorders are often involved in early brain development, neuronal signaling, or synaptic plasticity. Novel treatments for many genetic neurodevelopmental disorders are being developed, but disease-relevant clinical outcome assessments and biomarkers are limited. Electroencephalography (EEG) is a promising noninvasive potential biomarker of brain function. It has been used extensively in epileptic disorders, but its application in neurodevelopmental disorders needs further investigation. In this review, we explore the use of EEG in 3 of the most prevalent genetic neurodevelopmental disorders-Angelman syndrome, Rett syndrome, and fragile X syndrome. Quantitative analyses of EEGs, such as power spectral analysis or measures of connectivity, can quantify EEG signatures seen on qualitative review and potentially correlate with phenotypes. In both Angelman syndrome and Rett syndrome, increased delta power on spectral analysis has correlated with clinical markers of disease severity including developmental disability and seizure burden, whereas spectral power analysis on EEG in fragile X syndrome tends to demonstrate abnormalities in gamma power. Further studies are needed to establish reliable relationships between quantitative EEG biomarkers and clinical phenotypes in rare genetic neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kimberly Goodspeed
- Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dallas Armstrong
- Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alison Dolce
- Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Patricia Evans
- Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rana Said
- Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Peter Tsai
- Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Deepa Sirsi
- Department of Pediatrics, Division of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
24
|
Pedapati EV, Sweeney JA, Schmitt LM, Ethridge LE, Miyakoshi M, Liu R, Smith E, Shaffer RC, Wu SW, Gilbert DL, Horn PS, Erickson C. Empirical Frequency Bound Derivation Reveals Prominent Mid-Frontal Alpha Associated with Neurosensory Dysfunction in Fragile X Syndrome. RESEARCH SQUARE 2023:rs.3.rs-2855646. [PMID: 37162907 PMCID: PMC10168472 DOI: 10.21203/rs.3.rs-2855646/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The FMR1 gene is inactive in Fragile X syndrome (FXS), resulting in low levels of FMRP and consequent neurochemical, synaptic, and local circuit neurophysiological alterations in the fmr1 KO mouse. In FXS patients, electrophysiological studies have demonstrated a marked reduction in global alpha activity and regional increases in gamma oscillations associated with intellectual disability and sensory hypersensitivity. Since alpha activity is associated with a thalamocortical function with widely distributed modulatory effects on neocortical excitability, insight into alpha physiology may provide insight into systems-level disease mechanisms. Herein, we took a data-driven approach to clarify the temporal and spatial properties of alpha and theta activity in participants with FXS. High-resolution resting-state EEG data were collected from participants affected by FXS (n = 65) and matched controls (n = 70). We used a multivariate technique to empirically classify neural oscillatory bands based on their coherent spatiotemporal patterns. Participants with FXS demonstrated: 1) redistribution of lower-frequency boundaries indicating a "slower" dominant alpha rhythm, 2) an anteriorization of alpha frequency activity, and 3) a correlation of increased individualized alpha power measurements with auditory neurosensory dysfunction. These findings suggest an important role for alterations in thalamocortical physiology for the well-established neocortical hyper-excitability in FXS and, thus, a role for neural systems level disruption to cortical hyperexcitability that has been studied primarily at the local circuit level in animal models.
Collapse
Affiliation(s)
| | | | | | | | | | - Rui Liu
- Cincinnati Children's Hospital Medical Center
| | | | | | - Steve W Wu
- Cincinnati Children's Hospital Medical Center
| | | | - Paul S Horn
- Cincinnati Children's Hospital Medical Center
| | | |
Collapse
|
25
|
Murari K, Abushaibah A, Rho JM, Turner RW, Cheng N. A clinically relevant selective ERK-pathway inhibitor reverses core deficits in a mouse model of autism. EBioMedicine 2023; 91:104565. [PMID: 37088035 PMCID: PMC10149189 DOI: 10.1016/j.ebiom.2023.104565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/07/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Extracellular signal-regulated kinase (ERK/MAPK) pathway in the brain is hypothesized to be a critical convergent node in the development of autism spectrum disorder. We reasoned that selectively targeting this pathway could reverse core autism-like phenotype in animal models. METHODS Here we tested a clinically relevant, selective inhibitor of ERK pathway, PD325901 (Mirdametinib), in a mouse model of idiopathic autism, the BTBR mice. FINDINGS We report that treating juvenile mice with PD325901 reduced ERK pathway activation, dose and duration-dependently reduced core disease-modeling deficits in sociability, vocalization and repetitive behavior, and reversed abnormal EEG signals. Further analysis revealed that subchronic treatment did not affect weight gain, locomotion, or neuronal density in the brain. Parallel treatment in the C57BL/6J mice did not alter their phenotype. INTERPRETATION Our data indicate that selectively inhibiting ERK pathway using PD325901 is beneficial in the BTBR model, thus further support the notion that ERK pathway is critically involved in the pathophysiology of autism. These results suggest that a similar approach could be applied to animal models of syndromic autism with dysregulated ERK signaling, to further test selectively targeting ERK pathway as a new approach for treating autism. FUNDING This has beenwork was supported by Alberta Children's Hospital Research Foundation (JMR & NC), University of Calgary Faculty of Veterinary Medicine (NC), Kids Brain Health Network (NC), and Natural Sciences and Engineering Research Council of Canada (NC).
Collapse
Affiliation(s)
- Kartikeya Murari
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Canada; Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Canada
| | - Abdulrahman Abushaibah
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Bachelor of Health Sciences, Cumming School of Medicine, University of Calgary, Canada
| | - Jong M Rho
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada
| | - Ray W Turner
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Department of Cell Biology & Anatomy, Cumming School of Medicine, University of Calgary, Canada
| | - Ning Cheng
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Canada; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Canada.
| |
Collapse
|
26
|
Martinez C, Chen ZS. Identification of atypical sleep microarchitecture biomarkers in children with autism spectrum disorder. Front Psychiatry 2023; 14:1115374. [PMID: 37139324 PMCID: PMC10150704 DOI: 10.3389/fpsyt.2023.1115374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/15/2023] [Indexed: 05/05/2023] Open
Abstract
Importance Sleep disorders are one of the most frequent comorbidities in children with autism spectrum disorder (ASD). However, the link between neurodevelopmental effects in ASD children with their underlying sleep microarchitecture is not well understood. An improved understanding of etiology of sleep difficulties and identification of sleep-associated biomarkers for children with ASD can improve the accuracy of clinical diagnosis. Objectives To investigate whether machine learning models can identify biomarkers for children with ASD based on sleep EEG recordings. Design setting and participants Sleep polysomnogram data were obtained from the Nationwide Children' Health (NCH) Sleep DataBank. Children (ages: 8-16 yrs) with 149 autism and 197 age-matched controls without neurodevelopmental diagnosis were selected for analysis. An additional independent age-matched control group (n = 79) selected from the Childhood Adenotonsillectomy Trial (CHAT) was also used to validate the models. Furthermore, an independent smaller NCH cohort of younger infants and toddlers (age: 0.5-3 yr.; 38 autism and 75 controls) was used for additional validation. Main outcomes and measures We computed periodic and non-periodic characteristics from sleep EEG recordings: sleep stages, spectral power, sleep spindle characteristics, and aperiodic signals. Machine learning models including the Logistic Regression (LR) classifier, Support Vector Machine (SVM), and Random Forest (RF) model were trained using these features. We determined the autism class based on the prediction score of the classifier. The area under the receiver operating characteristics curve (AUC), accuracy, sensitivity, and specificity were used to evaluate the model performance. Results In the NCH study, RF outperformed two other models with a 10-fold cross-validated median AUC of 0.95 (interquartile range [IQR], [0.93, 0.98]). The LR and SVM models performed comparably across multiple metrics, with median AUC 0.80 [0.78, 0.85] and 0.83 [0.79, 0.87], respectively. In the CHAT study, three tested models have comparable AUC results: LR: 0.83 [0.76, 0.92], SVM: 0.87 [0.75, 1.00], and RF: 0.85 [0.75, 1.00]. Sleep spindle density, amplitude, spindle-slow oscillation (SSO) coupling, aperiodic signal's spectral slope and intercept, as well as the percentage of REM sleep were found to be key discriminative features in the predictive models. Conclusion and relevance Our results suggest that integration of EEG feature engineering and machine learning can identify sleep-based biomarkers for ASD children and produce good generalization in independent validation datasets. Microstructural EEG alterations may help reveal underlying pathophysiological mechanisms of autism that alter sleep quality and behaviors. Machine learning analysis may reveal new insight into the etiology and treatment of sleep difficulties in autism.
Collapse
Affiliation(s)
- Caroline Martinez
- Department of Pediatrics, Division of Developmental Pediatrics, Icahn School of Medicine at Mount Sinai, Kravis Children’s Hospital, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
27
|
Sex-Related Changes in the Clinical, Genetic, Electrophysiological, Connectivity, and Molecular Presentations of ASD: A Comparison between Human and Animal Models of ASD with Reference to Our Data. Int J Mol Sci 2023; 24:ijms24043287. [PMID: 36834699 PMCID: PMC9965966 DOI: 10.3390/ijms24043287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
The etiology of autism spectrum disorder (ASD) is genetic, environmental, and epigenetic. In addition to sex differences in the prevalence of ASD, which is 3-4 times more common in males, there are also distinct clinical, molecular, electrophysiological, and pathophysiological differences between sexes. In human, males with ASD have more externalizing problems (i.e., attention-deficit hyperactivity disorder), more severe communication and social problems, as well as repetitive movements. Females with ASD generally exhibit fewer severe communication problems, less repetitive and stereotyped behavior, but more internalizing problems, such as depression and anxiety. Females need a higher load of genetic changes related to ASD compared to males. There are also sex differences in brain structure, connectivity, and electrophysiology. Genetic or non-genetic experimental animal models of ASD-like behavior, when studied for sex differences, showed some neurobehavioral and electrophysiological differences between male and female animals depending on the specific model. We previously carried out studies on behavioral and molecular differences between male and female mice treated with valproic acid, either prenatally or early postnatally, that exhibited ASD-like behavior and found distinct differences between the sexes, the female mice performing better on tests measuring social interaction and undergoing changes in the expression of more genes in the brain compared to males. Interestingly, co-administration of S-adenosylmethionine alleviated the ASD-like behavioral symptoms and the gene-expression changes to the same extent in both sexes. The mechanisms underlying the sex differences are not yet fully understood.
Collapse
|
28
|
Norris JE, Schmitt LM, De Stefano LA, Pedapati EV, Erickson CA, Sweeney JA, Ethridge LE. Neuropsychiatric feature-based subgrouping reveals neural sensory processing spectrum in female FMR1 premutation carriers: A pilot study. Front Integr Neurosci 2023; 17:898215. [PMID: 36816716 PMCID: PMC9936150 DOI: 10.3389/fnint.2023.898215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Fragile X Syndrome (FXS) is rare genetic condition characterized by a repeat expansion (CGG) in the Fragile X messenger ribonucleoprotein 1 (FMR1) gene where individuals with greater than 200 repeats are defined as full mutation. FXS clinical presentation often includes intellectual disability, and autism-like symptoms, including anxiety and sensory hypersensitivities. Individuals with 55 to <200 CGG repeats are said to have the FMR1 premutation, which is not associated with primary characteristics of the full mutation, but with an increased risk for anxiety, depression, and other affective conditions, as well as and impaired cognitive processing differences that vary in severity. Defining subgroups of premutation carriers based on distinct biological features may identify subgroups with varying levels of psychiatric, cognitive, and behavioral alterations. Methods The current pilot study utilized 3 cluster subgroupings defined by previous k means cluster analysis on neuropsychiatric, cognitive, and resting EEG variables in order to examine basic sensory auditory chirp task-based EEG parameters from 33 females with the FMR1 premutation (ages 17-78). Results Based on the predefined, neuropsychiatric three-cluster solution, premutation carriers with increased neuropsychiatric features and higher CGG repeat counts (cluster 1) showed decreased stimulus onset response, similar to previous ERP findings across a number of psychiatric disorders but opposite to findings in individuals with full mutation FXS. Premutation carriers with increased executive dysfunction and resting gamma power (cluster 2) exhibited decreased gamma phase locking to a chirp stimulus, similar to individuals with full mutation FXS. Cluster 3 members, who were relatively unaffected by psychiatric or cognitive symptoms, showed the most normative task-based EEG metrics. Discussion Our findings suggest a spectrum of sensory processing characteristics present in subgroups of premutation carriers that have been previously understudied due to lack of overall group differences. Our findings also further validate the pre-defined clinical subgroups by supporting links between disturbances in well-defined neural pathways and behavioral alterations that may be informative for identifying the mechanisms supporting specific risk factors and divergent therapeutic needs in individuals with the FMR1 premutation.
Collapse
Affiliation(s)
- Jordan E. Norris
- Department of Psychology, The University of Oklahoma, Norman, OK, United States
| | - Lauren M. Schmitt
- Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Lisa A. De Stefano
- Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ernest V. Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Division of Child Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Craig A. Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - John A. Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Lauren E. Ethridge
- Department of Psychology, The University of Oklahoma, Norman, OK, United States,Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States,*Correspondence: Lauren E. Ethridge,
| |
Collapse
|
29
|
Acute and Repeated Administration of NLX-101, a Selective Serotonin-1A Receptor Biased Agonist, Reduces Audiogenic Seizures in Developing Fmr1 Knockout Mice. Neuroscience 2023; 509:113-124. [PMID: 36410632 DOI: 10.1016/j.neuroscience.2022.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 11/22/2022]
Abstract
Fragile XSyndrome (FXS) is a leading known genetic cause of Autism Spectrum Disorders (ASD) and intellectual disability. A consistent and debilitating phenotype of FXS is sensory hypersensitivity that manifests strongly in the auditory domain and may lead to delayed language and high anxiety. The mouse model of FXS, the Fmr1 KO mouse, also shows auditory hypersensitivity, an extreme form of which is seen as audiogenic seizures (AGS). The midbrain inferior colliculus (IC) is critically involved in generating audiogenic seizures and IC neurons are hyper-responsive to sounds in developing Fmr1 KO mice. Serotonin-1A receptor (5-HT1A) activation reduces IC activity. Therefore, we tested whether 5-HT1A activation is sufficient to reduce audiogenic seizures in Fmr1 KO mice. A selective and post-synaptic 5-HT1A receptor biased agonist, 3-Chloro-4-fluorophenyl-[4-fluoro-4-[[(5-methylpyrimidin-2-ylmethyl)amino]methyl]piperidin-1-yl] methanone (NLX-101, 0.6, 1.2, 1.8 or 2.4 mg/kg, i.p.) was administered to Fmr1 KO mice 15 min before seizure induction. Whereas the 0.6 mg/kg dose was ineffective in reducing seizures, the 1.2, 1.8 and 2.4 mg/kg doses of NLX-101 dramatically reduced seizures and increased mouse survival. Treatment with a combination of NLX-101 and 5-HT1A receptor antagonists prevented the protective effects of NLX-101, indicating that NLX-101 acts selectively through 5-HT1A receptors to reduce audiogenic seizures. NLX-101 (1.8 mg/kg) was still strongly effective in reducing seizures even after repeated administration over 5 days, suggesting an absence of tachyphylaxis to the effects of the compound. Together, these studies point to a promising treatment option targeting post-synaptic 5-HT1A receptors to reduce auditory hypersensitivity in FXS, and potentially across autism spectrum disorders.
Collapse
|
30
|
Tempio A, Boulksibat A, Bardoni B, Delhaye S. Fragile X Syndrome as an interneuronopathy: a lesson for future studies and treatments. Front Neurosci 2023; 17:1171895. [PMID: 37188005 PMCID: PMC10176609 DOI: 10.3389/fnins.2023.1171895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability (ID) and a primary genetic cause of autism spectrum disorder (ASD). FXS arises from the silencing of the FMR1 gene causing the lack of translation of its encoded protein, the Fragile X Messenger RibonucleoProtein (FMRP), an RNA-binding protein involved in translational control and in RNA transport along dendrites. Although a large effort during the last 20 years has been made to investigate the cellular roles of FMRP, no effective and specific therapeutic intervention is available to treat FXS. Many studies revealed a role for FMRP in shaping sensory circuits during developmental critical periods to affect proper neurodevelopment. Dendritic spine stability, branching and density abnormalities are part of the developmental delay observed in various FXS brain areas. In particular, cortical neuronal networks in FXS are hyper-responsive and hyperexcitable, making these circuits highly synchronous. Overall, these data suggest that the excitatory/inhibitory (E/I) balance in FXS neuronal circuitry is altered. However, not much is known about how interneuron populations contribute to the unbalanced E/I ratio in FXS even if their abnormal functioning has an impact on the behavioral deficits of patients and animal models affected by neurodevelopmental disorders. We revise here the key literature concerning the role of interneurons in FXS not only with the purpose to better understand the pathophysiology of this disorder, but also to explore new possible therapeutic applications to treat FXS and other forms of ASD or ID. Indeed, for instance, the re-introduction of functional interneurons in the diseased brains has been proposed as a promising therapeutic approach for neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Alessandra Tempio
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Alessandra Tempio,
| | - Asma Boulksibat
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Barbara Bardoni
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- Inserm, Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- *Correspondence: Barbara Bardoni,
| | - Sébastien Delhaye
- Université Côte d’Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| |
Collapse
|
31
|
Abstract
The histories of targeted treatment trials in fragile X syndrome (FXS) are reviewed in animal studies and human trials. Advances in understanding the neurobiology of FXS have identified a number of pathways that are dysregulated in the absence of FMRP and are therefore pathways that can be targeted with new medication. The utilization of quantitative outcome measures to assess efficacy in multiple studies has improved the quality of more recent trials. Current treatment trials including the use of cannabidiol (CBD) topically and metformin orally have positive preliminary data, and both of these medications are available clinically. The use of the phosphodiesterase inhibitor (PDE4D), BPN1440, which raised the level of cAMP that is low in FXS has very promising results for improving cognition in adult males who underwent a controlled trial. There are many more targeted treatments that will undergo trials in FXS, so the future looks bright for new treatments.
Collapse
Affiliation(s)
- Devon Johnson
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Courtney Clark
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis Health, Sacramento, CA, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
32
|
Saraf TS, McGlynn RP, Bhatavdekar OM, Booth RG, Canal CE. FPT, a 2-Aminotetralin, Is a Potent Serotonin 5-HT 1A, 5-HT 1B, and 5-HT 1D Receptor Agonist That Modulates Cortical Electroencephalogram Activity in Adult Fmr1 Knockout Mice. ACS Chem Neurosci 2022; 13:3629-3640. [PMID: 36473166 PMCID: PMC10364582 DOI: 10.1021/acschemneuro.2c00574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There are no approved medicines for fragile X syndrome (FXS), a monogenic, neurodevelopmental disorder. Electroencephalogram (EEG) studies show alterations in resting-state cortical EEG spectra, such as increased gamma-band power, in patients with FXS that are also observed in Fmr1 knockout models of FXS, offering putative biomarkers for drug discovery. Genes encoding serotonin receptors (5-HTRs), including 5-HT1A, 5-HT1B, and 5-HT1DRs, are differentially expressed in FXS, providing a rationale for investigating them as pharmacotherapeutic targets. Previously we reported pharmacological activity and preclinical neurotherapeutic effects in Fmr1 knockout mice of an orally active 2-aminotetralin, (S)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (FPT). FPT is a potent (low nM), high-efficacy partial agonist at 5-HT1ARs and a potent, low-efficacy partial agonist at 5-HT7Rs. Here we report new observations that FPT also has potent and efficacious agonist activity at human 5-HT1B and 5-HT1DRs. FPT's Ki values at 5-HT1B and 5-HT1DRs were <5 nM, but it had nil activity (>10 μM Ki) at 5-HT1FRs. We tested the effects of FPT (5.6 mg/kg, subcutaneous) on EEG recorded above the somatosensory and auditory cortices in freely moving, adult Fmr1 knockout and control mice. Consistent with previous reports, we observed significantly increased relative gamma power in untreated or vehicle-treated male and female Fmr1 knockout mice from recordings above the left somatosensory cortex (LSSC). In addition, we observed sex effects on EEG power. FPT did not eliminate the genotype difference in relative gamma power from the LSSC. FPT, however, robustly decreased relative alpha power in the LSSC and auditory cortex, with more pronounced effects in Fmr1 KO mice. Similarly, FPT decreased relative alpha power in the right SSC but only in Fmr1 knockout mice. FPT also increased relative delta power, with more pronounced effects in Fmr1 KO mice and caused small but significant increases in relative beta power. Distinct impacts of FPT on cortical EEG were like effects caused by certain FDA-approved psychotropic medications (including baclofen, allopregnanolone, and clozapine). These results advance the understanding of FPT's pharmacological and neurophysiological effects.
Collapse
Affiliation(s)
- Tanishka S Saraf
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Ryan P McGlynn
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, 300 Huntington Street, Boston, Massachusetts 02115, United States
| | - Omkar M Bhatavdekar
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Croft Hall B27, Baltimore, Maryland 21218, United States
| | - Raymond G Booth
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, 300 Huntington Street, Boston, Massachusetts 02115, United States
| | - Clinton E Canal
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| |
Collapse
|
33
|
Schmitt LM, Li J, Liu R, Horn PS, Sweeney JA, Erickson CA, Pedapati EV. Altered frontal connectivity as a mechanism for executive function deficits in fragile X syndrome. Mol Autism 2022; 13:47. [PMID: 36494861 PMCID: PMC9733336 DOI: 10.1186/s13229-022-00527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the leading inherited monogenic cause of intellectual disability and autism spectrum disorder. Executive function (EF), necessary for adaptive goal-oriented behavior and dependent on frontal lobe function, is impaired in individuals with FXS. Yet, little is known how alterations in frontal lobe neural activity is related to EF deficits in FXS. METHODS Sixty-one participants with FXS (54% males) and 71 age- and sex-matched typically-developing controls (TDC; 58% males) completed a five-minute resting state electroencephalography (EEG) protocol and a computerized battery of tests of EF, the Test of Attentional Performance for Children (KiTAP). Following source localization (minimum-norm estimate), we computed debiased weighted phase lag index (dWPLI), a phase connectivity value, for pairings between 18 nodes in frontal regions for gamma (30-55 Hz) and alpha (10.5-12.5 Hz) bands. Linear models were generated with fixed factors of group, sex, frequency, and connection. Relationships between frontal connectivity and EF variables also were examined. RESULTS Individuals with FXS demonstrated increased gamma band and reduced alpha band connectivity across all frontal regions and across hemispheres compared to TDC. After controlling for nonverbal IQ, increased error rates on EF tasks were associated with increased gamma band and reduced alpha band connectivity. LIMITATIONS Frontal connectivity findings are limited to intrinsic brain activity during rest and may not generalize to frontal connectivity during EF tasks or everyday function. CONCLUSIONS We report gamma hyper-connectivity and alpha hypo-connectivity within source-localized frontal brain regions in FXS compared to TDC during resting-state EEG. For the first time in FXS, we report significant associations between EF and altered frontal connectivity, with increased error rate relating to increased gamma band connectivity and reduced alpha band connectivity. These findings suggest increased phase connectivity within gamma band may impair EF performance, whereas greater alpha band connectivity may provide compensatory support for EF. Together, these findings provide important insight into neurophysiological mechanisms of EF deficits in FXS and provide novel targets for treatment development.
Collapse
Affiliation(s)
- Lauren M. Schmitt
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Joy Li
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Rui Liu
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA
| | - Paul S. Horn
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - John A. Sweeney
- grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Craig A. Erickson
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Ernest V. Pedapati
- grid.239573.90000 0000 9025 8099Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave, MLC 4002, Cincinnati, OH 45229 USA ,grid.24827.3b0000 0001 2179 9593University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
34
|
Norris JE, DeStefano LA, Schmitt LM, Pedapati EV, Erickson CA, Sweeney JA, Ethridge LE. Hemispheric Utilization of Alpha Oscillatory Dynamics as a Unique Biomarker of Neural Compensation in Females with Fragile X Syndrome. ACS Chem Neurosci 2022; 13:3389-3402. [PMID: 36411085 DOI: 10.1021/acschemneuro.2c00404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by a trinucleotide expansion on the FMR1 gene and characterized by intellectual disability, sensory hypersensitivity, executive function difficulties, and social anxiety. Recently, efforts to define neural biomarkers for FXS have highlighted disruptions to power in the alpha frequency band; however the dynamic mechanisms supporting these findings are poorly understood. The current study aimed to explore the temporal and hemispheric dynamics supporting alpha phenotypes in FXS and their relationship with neural phenotypes related to auditory processing using electroencephalography during an auditory evoked task. Adolescents and adults (N = 36) with FXS and age/sex matched typically developing controls (N = 40) completed an auditory chirp task. Frontal alpha power in the prestimulus period was decomposed into "bursts" using percentile thresholding, then assessed for number of bursts per second (burst count) and burst length. Data were compared across left and right hemispheres to assess lateralization of neural activity. Individuals with FXS showed more differences in alpha power compared to TDC primarily in the right hemisphere. Notably, alpha hemisphere outcomes in males with FXS were driven by the number of times they entered a dynamically relevant period of alpha (burst count) rather than length of time spent in alpha. Females with FXS showed reduced burst counts but remained in sustained high alpha states for longer periods of time. Length of time spent in alpha may reflect a modulatory or compensatory mechanism capable of recovering sensory processing abilities in females with FXS resulting in a less severe clinical presentation. Right hemisphere abnormalities may impact sensory processing differences between males and females with FXS. The relationship between alpha burst length, count, sex, and hemisphere may shed light on underlying mechanisms for previously observed alpha power abnormalities in FXS and their variation by sex.
Collapse
Affiliation(s)
- Jordan E Norris
- Department of Psychology, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Lisa A DeStefano
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Division of Child Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, United States.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - John A Sweeney
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lauren E Ethridge
- Department of Psychology, University of Oklahoma, Norman, Oklahoma 73019, United States.,Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
35
|
Janz P, Bainier M, Marashli S, Schoenenberger P, Valencia M, Redondo RL. Neurexin1α knockout rats display oscillatory abnormalities and sensory processing deficits back-translating key endophenotypes of psychiatric disorders. Transl Psychiatry 2022; 12:455. [PMID: 36307390 PMCID: PMC9616904 DOI: 10.1038/s41398-022-02224-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Neurexins are presynaptic transmembrane proteins crucial for synapse development and organization. Deletion and missense mutations in all three Neurexin genes have been identified in psychiatric disorders, with mutations in the NRXN1 gene most strongly linked to schizophrenia (SZ) and autism spectrum disorder (ASD). While the consequences of NRXN1 deletion have been extensively studied on the synaptic and behavioral levels, circuit endophenotypes that translate to the human condition have not been characterized yet. Therefore, we investigated the electrophysiology of cortico-striatal-thalamic circuits in Nrxn1α-/- rats and wildtype littermates focusing on a set of translational readouts, including spontaneous oscillatory activity, auditory-evoked oscillations and potentials, as well as mismatch negativity-like (MMN) responses and responses to social stimuli. On the behavioral level Nrxn1α-/- rats showed locomotor hyperactivity. In vivo freely moving electrophysiology revealed pronounced increases of spontaneous oscillatory power within the gamma band in all studied brain areas and elevation of gamma coherence in cortico-striatal and thalamocortical circuits of Nrxn1α-/- rats. In contrast, auditory-evoked oscillations driven by chirp-modulated tones showed reduced power in cortical areas confined to slower oscillations. Finally, Nrxn1α-/- rats exhibited altered auditory evoked-potentials and profound deficits in MMN-like responses, explained by reduced prediction error. Despite deficits for auditory stimuli, responses to social stimuli appeared intact. A central hypothesis for psychiatric and neurodevelopmental disorders is that a disbalance of excitation-to-inhibition is underlying oscillatory and sensory deficits. In a first attempt to explore the impact of inhibitory circuit modulation, we assessed the effects of enhancing tonic inhibition via δ-containing GABAA receptors (using Gaboxadol) on endophenotypes possibly associated with network hyperexcitability. Pharmacological experiments applying Gaboxadol showed genotype-specific differences, but failed to normalize oscillatory or sensory processing abnormalities. In conclusion, our study revealed endophenotypes in Nrxn1α-/- rats that could be used as translational biomarkers for drug development in psychiatric disorders.
Collapse
Affiliation(s)
- Philipp Janz
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland.
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Samuel Marashli
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Philipp Schoenenberger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Miguel Valencia
- Universidad de Navarra, CIMA, Program of Neuroscience, 31080, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, 31080, Pamplona, Spain
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, 31080, Pamplona, Spain
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery & Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| |
Collapse
|
36
|
Jonak CR, Pedapati EV, Schmitt LM, Assad SA, Sandhu MS, DeStefano L, Ethridge L, Razak KA, Sweeney JA, Binder DK, Erickson CA. Baclofen-associated neurophysiologic target engagement across species in fragile X syndrome. J Neurodev Disord 2022; 14:52. [PMID: 36167501 PMCID: PMC9513876 DOI: 10.1186/s11689-022-09455-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 08/03/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most common inherited form of neurodevelopmental disability. It is often characterized, especially in males, by intellectual disability, anxiety, repetitive behavior, social communication deficits, delayed language development, and abnormal sensory processing. Recently, we identified electroencephalographic (EEG) biomarkers that are conserved between the mouse model of FXS (Fmr1 KO mice) and humans with FXS. METHODS In this report, we evaluate small molecule target engagement utilizing multielectrode array electrophysiology in the Fmr1 KO mouse and in humans with FXS. Neurophysiologic target engagement was evaluated using single doses of the GABAB selective agonist racemic baclofen (RBAC). RESULTS In Fmr1 KO mice and in humans with FXS, baclofen use was associated with suppression of elevated gamma power and increase in low-frequency power at rest. In the Fmr1 KO mice, a baclofen-associated improvement in auditory chirp synchronization was also noted. CONCLUSIONS Overall, we noted synchronized target engagement of RBAC on resting state electrophysiology, in particular the reduction of aberrant high frequency gamma activity, across species in FXS. This finding holds promise for translational medicine approaches to drug development for FXS, synchronizing treatment study across species using well-established EEG biological markers in this field. TRIAL REGISTRATION The human experiments are registered under NCT02998151.
Collapse
Affiliation(s)
- Carrie R. Jonak
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Ernest V. Pedapati
- grid.239573.90000 0000 9025 8099Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.239573.90000 0000 9025 8099Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Lauren M. Schmitt
- grid.239573.90000 0000 9025 8099Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Samantha A. Assad
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Manbir S. Sandhu
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA
| | - Lisa DeStefano
- grid.239573.90000 0000 9025 8099Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.266900.b0000 0004 0447 0018Department of Psychology, University of Oklahoma, Norman, OK USA
| | - Lauren Ethridge
- grid.266900.b0000 0004 0447 0018Department of Psychology, University of Oklahoma, Norman, OK USA ,grid.266902.90000 0001 2179 3618Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Khaleel A. Razak
- grid.266097.c0000 0001 2222 1582Neuroscience Graduate Program, University of California, Riverside, USA ,grid.266097.c0000 0001 2222 1582Psychology Graduate Program, University of California, Riverside, USA
| | - John A. Sweeney
- grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Devin K. Binder
- grid.266097.c0000 0001 2222 1582Division of Biomedical Sciences, School of Medicine, University of California, Riverside, USA ,grid.266097.c0000 0001 2222 1582Neuroscience Graduate Program, University of California, Riverside, USA
| | - Craig A. Erickson
- grid.239573.90000 0000 9025 8099Division of Child and Adolescent Psychiatry, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA ,grid.24827.3b0000 0001 2179 9593Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
37
|
Shing N, Walker MC, Chang P. The Role of Aberrant Neural Oscillations in the Hippocampal-Medial Prefrontal Cortex Circuit in Neurodevelopmental and Neurological Disorders. Neurobiol Learn Mem 2022; 195:107683. [PMID: 36174886 DOI: 10.1016/j.nlm.2022.107683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in cognition, emotion, and sensory processing. In recent years, interests have shifted towards developing a deeper understanding of the mechanisms underlying interactions between the HPC and mPFC in achieving these functions. Considerable research supports the idea that synchronized activity between the HPC and the mPFC is a general mechanism by which brain functions are regulated. In this review, we summarize current knowledge on the hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a focus on oscillations and highlight several neurodevelopmental and neurological disorders associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, gene therapy and pharmacotherapy are explored as promising therapies for disorders with aberrant HPC-mPFC circuit dynamics.
Collapse
Affiliation(s)
- Nathanael Shing
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Medicine, University of Central Lancashire, Preston, PR17BH, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT.
| |
Collapse
|
38
|
Maria Pani S, Saba L, Fraschini M. Clinical applications of EEG power spectra aperiodic component analysis: a mini-review. Clin Neurophysiol 2022; 143:1-13. [DOI: 10.1016/j.clinph.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/03/2022]
|
39
|
Bülow P, Segal M, Bassell GJ. Mechanisms Driving the Emergence of Neuronal Hyperexcitability in Fragile X Syndrome. Int J Mol Sci 2022; 23:ijms23116315. [PMID: 35682993 PMCID: PMC9181819 DOI: 10.3390/ijms23116315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hyperexcitability is a shared neurophysiological phenotype across various genetic neurodevelopmental disorders, including Fragile X syndrome (FXS). Several patient symptoms are associated with hyperexcitability, but a puzzling feature is that their onset is often delayed until their second and third year of life. It remains unclear how and why hyperexcitability emerges in neurodevelopmental disorders. FXS is caused by the loss of FMRP, an RNA-binding protein which has many critical roles including protein synthesis-dependent and independent regulation of ion channels and receptors, as well as global regulation of protein synthesis. Here, we discussed recent literature uncovering novel mechanisms that may drive the progressive onset of hyperexcitability in the FXS brain. We discussed in detail how recent publications have highlighted defects in homeostatic plasticity, providing new insight on the FXS brain and suggest pharmacotherapeutic strategies in FXS and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Pernille Bülow
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| | - Menahem Segal
- Department of Brain Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Gary J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence: (P.B.); (G.J.B.)
| |
Collapse
|
40
|
Liang S, Mody M. Abnormal Brain Oscillations in Developmental Disorders: Application of Resting State EEG and MEG in Autism Spectrum Disorder and Fragile X Syndrome. FRONTIERS IN NEUROIMAGING 2022; 1:903191. [PMID: 37555160 PMCID: PMC10406242 DOI: 10.3389/fnimg.2022.903191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/29/2022] [Indexed: 08/10/2023]
Abstract
Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS) are neurodevelopmental disorders with similar clinical and behavior symptoms and partially overlapping and yet distinct neurobiological origins. It is therefore important to distinguish these disorders from each other as well as from typical development. Examining disruptions in functional connectivity often characteristic of neurodevelopment disorders may be one approach to doing so. This review focuses on EEG and MEG studies of resting state in ASD and FXS, a neuroimaging paradigm frequently used with difficult-to-test populations. It compares the brain regions and frequency bands that appear to be impacted, either in power or connectivity, in each disorder; as well as how these abnormalities may result in the observed symptoms. It argues that the findings in these studies are inconsistent and do not fit neatly into existing models of ASD and FXS, then highlights the gaps in the literature and recommends future avenues of inquiry.
Collapse
Affiliation(s)
- Sophia Liang
- College of Arts and Sciences, Harvard University, Cambridge, MA, United States
| | - Maria Mody
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
41
|
Holley A, Shedd A, Boggs A, Lovelace J, Erickson C, Gross C, Jankovic M, Razak K, Huber K, Gibson JR. A sound-driven cortical phase-locking change in the Fmr1 KO mouse requires Fmr1 deletion in a subpopulation of brainstem neurons. Neurobiol Dis 2022; 170:105767. [PMID: 35588990 PMCID: PMC9273231 DOI: 10.1016/j.nbd.2022.105767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Sensory impairments commonly occur in patients with autism or intellectual disability. Fragile X syndrome (FXS) is one form of intellectual disability that is often comorbid with autism. In electroencephalographic (EEG) recordings obtained from humans with FXS, the ability of cortical regions to consistently synchronize, or “phase-lock”, to modulated auditory stimuli is reduced compared to that of typically developing individuals. At the same time, less time-locked, “non-phase-locked” power induced by sounds is higher. The same changes occur in the Fmr1 knockout (KO) mouse – an animal model of FXS. We determined if Fmr1 deletion in a subset of brainstem auditory neurons plays any role in these EEG changes in the mouse. Methods: We reinstated FMRP expression in a subpopulation of brainstem auditory neurons in an otherwise Fmr1 KO control (conditional on; cON Fmr1) mouse and used EEG recordings to determine if reinstatement normalized, or “rescued”, the phase-locking phenotype observed in the cON Fmr1 mouse. In determining rescue, this also meant that Fmr1 deletion in the same neuron population was necessary for the phenotype to occur. Results: We find that Fmr1 reinstatement in a subset of brainstem neurons rescues certain aspects of the phase-locking phenotype but does not rescue the increase in non-phase-locked power. Unexpectedly, not all electrophysiological phenotypes observed in the Fmr1 KO were observed in the cON Fmr1 mouse used for the reinstatement experiments, and this was likely due to residual expression of FMRP in these Fmr1 KO controls. Conclusions: Fmr1 deletion in brainstem neurons is necessary for certain aspects of the decreased phase-locking phenotype in the Fmr1 KO, but not necessary for the increase in non-phase-locked power induced by a sound. The most likely brainstem structure underlying these results is the inferior colliculus. We also demonstrate that low levels of FMRP can rescue some EEG phenotypes but not others. This latter finding provides a foundation for how symptoms in FXS individuals may vary due to FMRP levels and that reinstatement of low FMRP levels may be sufficient to alleviate particular symptoms.
Collapse
Affiliation(s)
- AndrewJ Holley
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Aleya Shedd
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Anna Boggs
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jonathan Lovelace
- Department of Psychology, University of California, Riverside, CA 92521, USA
| | - Craig Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Miranda Jankovic
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Khaleel Razak
- Department of Psychology, University of California, Riverside, CA 92521, USA
| | - Kimberly Huber
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA
| | - Jay R Gibson
- University of Texas Southwestern Medical Center at Dallas, Department of Neuroscience, Dallas, TX 75390-9111, USA.
| |
Collapse
|
42
|
Pedapati EV, Schmitt LM, Ethridge LE, Miyakoshi M, Sweeney JA, Liu R, Smith E, Shaffer RC, Dominick KC, Gilbert DL, Wu SW, Horn PS, Binder DK, Lamy M, Axford M, Erickson CA. Neocortical localization and thalamocortical modulation of neuronal hyperexcitability contribute to Fragile X Syndrome. Commun Biol 2022; 5:442. [PMID: 35546357 PMCID: PMC9095835 DOI: 10.1038/s42003-022-03395-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/22/2022] [Indexed: 12/13/2022] Open
Abstract
Fragile X Syndrome (FXS) is a monogenetic form of intellectual disability and autism in which well-established knockout (KO) animal models point to neuronal hyperexcitability and abnormal gamma-frequency physiology as a basis for key disorder features. Translating these findings into patients may identify tractable treatment targets. Using source modeling of resting-state electroencephalography data, we report findings in FXS, including 1) increases in localized gamma activity, 2) pervasive changes of theta/alpha activity, indicative of disrupted thalamocortical modulation coupled with elevated gamma power, 3) stepwise moderation of low and high-frequency abnormalities based on female sex, and 4) relationship of this physiology to intellectual disability and neuropsychiatric symptoms. Our observations extend findings in Fmr1-/- KO mice to patients with FXS and raise a key role for disrupted thalamocortical modulation in local hyperexcitability. This systems-level mechanism has received limited preclinical attention but has implications for understanding fundamental disease mechanisms.
Collapse
Affiliation(s)
- Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lauren E Ethridge
- Department of Pediatrics, Section on Developmental and Behavioral Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Psychology, University of Oklahoma, Norman, OK, USA
| | - Makoto Miyakoshi
- Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rui Liu
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Elizabeth Smith
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rebecca C Shaffer
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kelli C Dominick
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - Martine Lamy
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Megan Axford
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
43
|
Neklyudova A, Smirnov K, Rebreikina A, Martynova O, Sysoeva O. Electrophysiological and Behavioral Evidence for Hyper- and Hyposensitivity in Rare Genetic Syndromes Associated with Autism. Genes (Basel) 2022; 13:671. [PMID: 35456477 PMCID: PMC9027402 DOI: 10.3390/genes13040671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 01/27/2023] Open
Abstract
Our study reviewed abnormalities in spontaneous, as well as event-related, brain activity in syndromes with a known genetic underpinning that are associated with autistic symptomatology. Based on behavioral and neurophysiological evidence, we tentatively subdivided the syndromes on primarily hyper-sensitive (Fragile X, Angelman) and hypo-sensitive (Phelan-McDermid, Rett, Tuberous Sclerosis, Neurofibromatosis 1), pointing to the way of segregation of heterogeneous idiopathic ASD, that includes both hyper-sensitive and hypo-sensitive individuals. This segmentation links abnormalities in different genes, such as FMR1, UBE3A, GABRB3, GABRA5, GABRG3, SHANK3, MECP2, TSC1, TSC2, and NF1, that are causative to the above-mentioned syndromes and associated with synaptic transmission and cell growth, as well as with translational and transcriptional regulation and with sensory sensitivity. Excitation/inhibition imbalance related to GABAergic signaling, and the interplay of tonic and phasic inhibition in different brain regions might underlie this relationship. However, more research is needed. As most genetic syndromes are very rare, future investigations in this field will benefit from multi-site collaboration with a common protocol for electrophysiological and event-related potential (EEG/ERP) research that should include an investigation into all modalities and stages of sensory processing, as well as potential biomarkers of GABAergic signaling (such as 40-Hz ASSR).
Collapse
Affiliation(s)
- Anastasia Neklyudova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
| | - Kirill Smirnov
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
| | - Anna Rebreikina
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
- Sirius Center for Cognitive Research, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Olga Martynova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
| | - Olga Sysoeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.N.); (K.S.); (A.R.); (O.M.)
- Sirius Center for Cognitive Research, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
44
|
Key AP. Searching for a "Brain Signature" of Neurodevelopmental Disorders: Event-Related Potentials and the Quest for Biomarkers of Cognition. J Clin Neurophysiol 2022; 39:113-120. [PMID: 34366396 DOI: 10.1097/wnp.0000000000000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY This review summarizes main applications of event-related potentials (ERPs) to the study of cognitive processes in persons with neurodevelopmental disorders, for whom traditional behavioral assessments may not be suitable. A brief introduction to the ERPs is followed by a review of empirical studies using passive ERP paradigms to address three main questions: characterizing individual differences, predicting risk for poor developmental outcomes, and documenting treatment effects in persons with neurodevelopmental disorders. Evidence across studies reveals feasibility of ERP methodology in a wide range of clinical populations and notes consistently stronger brain-behavior associations involving ERP measures of higher-order cognition compared with sensory-perceptual processes. The final section describes the current limitations of ERP methodology that need to be addressed before it could be used as a clinical tool and highlights the needed steps toward translating ERPs from group-level research applications to individually interpretable clinical use.
Collapse
Affiliation(s)
- Alexandra P Key
- Vanderbilt University Medical Center, Vanderbilt Kennedy Center, Nashville, Tennessee, U.S.A
| |
Collapse
|
45
|
Kenny A, Wright D, Stanfield AC. EEG as a translational biomarker and outcome measure in fragile X syndrome. Transl Psychiatry 2022; 12:34. [PMID: 35075104 PMCID: PMC8786970 DOI: 10.1038/s41398-022-01796-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/01/2021] [Accepted: 01/12/2022] [Indexed: 01/08/2023] Open
Abstract
Targeted treatments for fragile X syndrome (FXS) have frequently failed to show efficacy in clinical testing, despite success at the preclinical stages. This has highlighted the need for more effective translational outcome measures. EEG differences observed in FXS, including exaggerated N1 ERP amplitudes, increased resting gamma power and reduced gamma phase-locking in the sensory cortices, have been suggested as potential biomarkers of the syndrome. These abnormalities are thought to reflect cortical hyper excitability resulting from an excitatory (glutamate) and inhibitory (GABAergic) imbalance in FXS, which has been the target of several pharmaceutical remediation studies. EEG differences observed in humans also show similarities to those seen in laboratory models of FXS, which may allow for greater translational equivalence and better predict clinical success of putative therapeutics. There is some evidence from clinical trials showing that treatment related changes in EEG may be associated with clinical improvements, but these require replication and extension to other medications. Although the use of EEG characteristics as biomarkers is still in the early phases, and further research is needed to establish its utility in clinical trials, the current research is promising and signals the emergence of an effective translational biomarker.
Collapse
Affiliation(s)
- Aisling Kenny
- Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF, Edinburgh, UK.
| | - Damien Wright
- grid.4305.20000 0004 1936 7988Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF Edinburgh, UK
| | - Andrew C. Stanfield
- grid.4305.20000 0004 1936 7988Patrick Wild Centre, Division of Psychiatry, Kennedy Tower, Royal Edinburgh Hospital, University of Edinburgh, EH10 5HF Edinburgh, UK
| |
Collapse
|
46
|
Liu X, Kumar V, Tsai NP, Auerbach BD. Hyperexcitability and Homeostasis in Fragile X Syndrome. Front Mol Neurosci 2022; 14:805929. [PMID: 35069112 PMCID: PMC8770333 DOI: 10.3389/fnmol.2021.805929] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Fragile X Syndrome (FXS) is a leading inherited cause of autism and intellectual disability, resulting from a mutation in the FMR1 gene and subsequent loss of its protein product FMRP. Despite this simple genetic origin, FXS is a phenotypically complex disorder with a range of physical and neurocognitive disruptions. While numerous molecular and cellular pathways are affected by FMRP loss, there is growing evidence that circuit hyperexcitability may be a common convergence point that can account for many of the wide-ranging phenotypes seen in FXS. The mechanisms for hyperexcitability in FXS include alterations to excitatory synaptic function and connectivity, reduced inhibitory neuron activity, as well as changes to ion channel expression and conductance. However, understanding the impact of FMR1 mutation on circuit function is complicated by the inherent plasticity in neural circuits, which display an array of homeostatic mechanisms to maintain activity near set levels. FMRP is also an important regulator of activity-dependent plasticity in the brain, meaning that dysregulated plasticity can be both a cause and consequence of hyperexcitable networks in FXS. This makes it difficult to separate the direct effects of FMR1 mutation from the myriad and pleiotropic compensatory changes associated with it, both of which are likely to contribute to FXS pathophysiology. Here we will: (1) review evidence for hyperexcitability and homeostatic plasticity phenotypes in FXS models, focusing on similarities/differences across brain regions, cell-types, and developmental time points; (2) examine how excitability and plasticity disruptions interact with each other to ultimately contribute to circuit dysfunction in FXS; and (3) discuss how these synaptic and circuit deficits contribute to disease-relevant behavioral phenotypes like epilepsy and sensory hypersensitivity. Through this discussion of where the current field stands, we aim to introduce perspectives moving forward in FXS research.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Vipendra Kumar
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Nien-Pei Tsai
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Benjamin D. Auerbach
- Deparment of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Benjamin D. Auerbach
| |
Collapse
|
47
|
Schmitt LM, Dominick KC, Liu R, Pedapati EV, Ethridge LE, Smith E, Sweeney JA, Erickson CA. Evidence for Three Subgroups of Female FMR1 Premutation Carriers Defined by Distinct Neuropsychiatric Features: A Pilot Study. Front Integr Neurosci 2022; 15:797546. [PMID: 35046780 PMCID: PMC8763356 DOI: 10.3389/fnint.2021.797546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023] Open
Abstract
Over 200 Cytosine-guanine-guanine (CGG) trinucleotide repeats in the 5' untranslated region of the Fragile X mental retardation 1 (FMR1) gene results in a "full mutation," clinically Fragile X Syndrome (FXS), whereas 55 - 200 repeats result in a "premutation." FMR1 premutation carriers (PMC) are at an increased risk for a range of psychiatric, neurocognitive, and physical conditions. Few studies have examined the variable expression of neuropsychiatric features in female PMCs, and whether heterogeneous presentation among female PMCs may reflect differential presentation of features in unique subgroups. In the current pilot study, we examined 41 female PMCs (ages 17-78 years) and 15 age-, sex-, and IQ-matched typically developing controls (TDC) across a battery of self-report, eye tracking, expressive language, neurocognitive, and resting state EEG measures to determine the feasibility of identifying discrete clusters. Secondly, we sought to identify the key features that distinguished these clusters of female PMCs. We found a three cluster solution using k-means clustering. Cluster 1 represented a psychiatric feature group (27% of our sample); cluster 2 represented a group with executive dysfunction and elevated high frequency neural oscillatory activity (32%); and cluster 3 represented a relatively unaffected group (41%). Our findings indicate the feasibility of using a data-driven approach to identify naturally occurring clusters in female PMCs using a multi-method assessment battery. CGG repeat count and its association with neuropsychiatric features differ across clusters. Together, our findings provide important insight into potential diverging pathophysiological mechanisms and risk factors for each female PMC cluster, which may ultimately help provide novel and individualized targets for treatment options.
Collapse
Affiliation(s)
- Lauren M. Schmitt
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Kelli C. Dominick
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Rui Liu
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Ernest V. Pedapati
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Lauren E. Ethridge
- Department of Psychology, University of Oklahoma, Norman, OK, United States
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Elizabeth Smith
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - John A. Sweeney
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Craig A. Erickson
- Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
48
|
Williams OOF, Coppolino M, Perreault ML. Sex differences in neuronal systems function and behaviour: beyond a single diagnosis in autism spectrum disorders. Transl Psychiatry 2021; 11:625. [PMID: 34887388 PMCID: PMC8660826 DOI: 10.1038/s41398-021-01757-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is associated with functional brain alterations that underlie the expression of behaviour. Males are diagnosed up to four times more than females, and sex differences have been identified in memory, cognitive flexibility, verbal fluency, and social communication. Unfortunately, there exists a lack of information on the sex-dependent mechanisms of ASD, as well as biological markers to distinguish sex-specific symptoms in ASD. This can often result in a standardized diagnosis for individuals across the spectrum, despite significant differences in the various ASD subtypes. Alterations in neuronal connectivity and oscillatory activity, such as is observed in ASD, are highly coupled to behavioural states. Yet, despite the well-identified sexual dimorphisms that exist in ASD, these functional patterns have rarely been analyzed in the context of sex differences or symptomology. This review summarizes alterations in neuronal oscillatory function in ASD, discusses the age, region, symptom and sex-specific differences that are currently observed across the spectrum, and potential targets for regulating neuronal oscillatory activity in ASD. The need to identify sex-specific biomarkers, in order to facilitate specific diagnostic criteria and allow for more targeted therapeutic approaches for ASD will also be discussed.
Collapse
Affiliation(s)
| | | | - Melissa L Perreault
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
49
|
Carreño-Muñoz MI, Chattopadhyaya B, Agbogba K, Côté V, Wang S, Lévesque M, Avoli M, Michaud JL, Lippé S, Di Cristo G. Sensory processing dysregulations as reliable translational biomarkers in SYNGAP1 haploinsufficiency. Brain 2021; 145:754-769. [PMID: 34791091 DOI: 10.1093/brain/awab329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Amongst the numerous genes associated with intellectual disability, SYNGAP1 stands out for its frequency and penetrance of loss-of-function variants found in patients, as well as the wide range of co-morbid disorders associated with its mutation. Most studies exploring the pathophysiological alterations caused by Syngap1 haploinsufficiency in mouse models have focused on cognitive problems and epilepsy, however whether and to what extent sensory perception and processing are altered by Syngap1 haploinsufficiency is less clear. By performing EEG recordings in awake mice, we identified specific alterations in multiple aspects of auditory and visual processing, including increased baseline gamma oscillation power, increased theta/gamma phase amplitude coupling following stimulus presentation and abnormal neural entrainment in response to different sensory modality-specific frequencies. We also report lack of habituation to repetitive auditory stimuli and abnormal deviant sound detection. Interestingly, we found that most of these alterations are present in human patients as well, thus making them strong candidates as translational biomarkers of sensory-processing alterations associated with SYNGAP1/Syngap1 haploinsufficiency.
Collapse
Affiliation(s)
- Maria Isabel Carreño-Muñoz
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | | | - Kristian Agbogba
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada
| | - Valérie Côté
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Siyan Wang
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Maxime Lévesque
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Massimo Avoli
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Jacques L Michaud
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| | - Sarah Lippé
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Graziella Di Cristo
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montreal, Quebec, Canada.,Department of Neurosciences, Université de Montréal, Montreal, Quebec, Canada.,Department of Pediatrics, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
50
|
Pirbhoy PS, Jonak CR, Syed R, Argueta DA, Perez PA, Wiley MB, Hessamian K, Lovelace JW, Razak KA, DiPatrizio NV, Ethell IM, Binder DK. Increased 2-arachidonoyl-sn-glycerol levels normalize cortical responses to sound and improve behaviors in Fmr1 KO mice. J Neurodev Disord 2021; 13:47. [PMID: 34645383 PMCID: PMC8513313 DOI: 10.1186/s11689-021-09394-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background Individuals with Fragile X syndrome (FXS) and autism spectrum disorder (ASD) exhibit an array of symptoms, including sociability deficits, increased anxiety, hyperactivity, and sensory hyperexcitability. It is unclear how endocannabinoid (eCB) modulation can be targeted to alleviate neurophysiological abnormalities in FXS as behavioral research reveals benefits to inhibiting cannabinoid (CB) receptor activation and increasing endocannabinoid ligand levels. Here, we hypothesize that enhancement of 2-arachidonoyl-sn-glycerol (2-AG) in Fragile X mental retardation 1 gene knock-out (Fmr1 KO) mice may reduce cortical hyperexcitability and behavioral abnormalities observed in FXS. Methods To test whether an increase in 2-AG levels normalized cortical responses in a mouse model of FXS, animals were subjected to electroencephalography (EEG) recording and behavioral assessment following treatment with JZL-184, an irreversible inhibitor of monoacylglycerol lipase (MAGL). Assessment of 2-AG was performed using lipidomic analysis in conjunction with various doses and time points post-administration of JZL-184. Baseline electrocortical activity and evoked responses to sound stimuli were measured using a 30-channel multielectrode array (MEA) in adult male mice before, 4 h, and 1 day post-intraperitoneal injection of JZL-184 or vehicle. Behavior assessment was done using the open field and elevated plus maze 4 h post-treatment. Results Lipidomic analysis showed that 8 mg/kg JZL-184 significantly increased the levels of 2-AG in the auditory cortex of both Fmr1 KO and WT mice 4 h post-treatment compared to vehicle controls. EEG recordings revealed a reduction in the abnormally enhanced baseline gamma-band power in Fmr1 KO mice and significantly improved evoked synchronization to auditory stimuli in the gamma-band range post-JZL-184 treatment. JZL-184 treatment also ameliorated anxiety-like and hyperactivity phenotypes in Fmr1 KO mice. Conclusions Overall, these results indicate that increasing 2-AG levels may serve as a potential therapeutic approach to normalize cortical responses and improve behavioral outcomes in FXS and possibly other ASDs. Supplementary Information The online version contains supplementary material available at 10.1186/s11689-021-09394-x.
Collapse
Affiliation(s)
- Patricia S Pirbhoy
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Rashid Syed
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Pedro A Perez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Mark B Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Keon Hessamian
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Jonathan W Lovelace
- Department of Psychology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Khaleel A Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, 92521, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Iryna M Ethell
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|