1
|
Hubers N, Hagenbeek FA, Pool R, Déjean S, Harms AC, Roetman PJ, van Beijsterveldt CEM, Fanos V, Ehli EA, Vermeiren RRJM, Bartels M, Hottenga JJ, Hankemeier T, van Dongen J, Boomsma DI. Integrative multi-omics analysis of genomic, epigenomic, and metabolomics data leads to new insights for Attention-Deficit/Hyperactivity Disorder. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32955. [PMID: 37534875 DOI: 10.1002/ajmg.b.32955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The evolving field of multi-omics combines data and provides methods for simultaneous analysis across several omics levels. Here, we integrated genomics (transmitted and non-transmitted polygenic scores [PGSs]), epigenomics, and metabolomics data in a multi-omics framework to identify biomarkers for Attention-Deficit/Hyperactivity Disorder (ADHD) and investigated the connections among the three omics levels. We first trained single- and next multi-omics models to differentiate between cases and controls in 596 twins (cases = 14.8%) from the Netherlands Twin Register (NTR) demonstrating reasonable in-sample prediction through cross-validation. The multi-omics model selected 30 PGSs, 143 CpGs, and 90 metabolites. We confirmed previous associations of ADHD with glucocorticoid exposure and the transmembrane protein family TMEM, show that the DNA methylation of the MAD1L1 gene associated with ADHD has a relation with parental smoking behavior, and present novel findings including associations between indirect genetic effects and CpGs of the STAP2 gene. However, out-of-sample prediction in NTR participants (N = 258, cases = 14.3%) and in a clinical sample (N = 145, cases = 51%) did not perform well (range misclassification was [0.40, 0.57]). The results highlighted connections between omics levels, with the strongest connections between non-transmitted PGSs, CpGs, and amino acid levels and show that multi-omics designs considering interrelated omics levels can help unravel the complex biology underlying ADHD.
Collapse
Affiliation(s)
- Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Fiona A Hagenbeek
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Sébastien Déjean
- Toulouse Mathematics Institute, UMR 5219, University of Toulouse, CNRS, Toulouse, France
| | - Amy C Harms
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Peter J Roetman
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Vassilios Fanos
- Department of Surgical Sciences, University of Cagliari and Neonatal Intensive Care Unit, Cagliari, Italy
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota, USA
| | - Robert R J M Vermeiren
- LUMC-Curium, Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
- Youz, Parnassia Group, the Netherlands
| | - Meike Bartels
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Center for Drug Research, Leiden University, Leiden, the Netherlands
- The Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, the Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Camerota M, Lester BM, Castellanos FX, Carter BS, Check J, Helderman J, Hofheimer JA, McGowan EC, Neal CR, Pastyrnak SL, Smith LM, O'Shea TM, Marsit CJ, Everson TM. Epigenome-wide association study identifies neonatal DNA methylation associated with two-year attention problems in children born very preterm. Transl Psychiatry 2024; 14:126. [PMID: 38418845 PMCID: PMC10902402 DOI: 10.1038/s41398-024-02841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Prior research has identified epigenetic predictors of attention problems in school-aged children but has not yet investigated these in young children, or children at elevated risk of attention problems due to preterm birth. The current study evaluated epigenome-wide associations between neonatal DNA methylation and attention problems at age 2 years in children born very preterm. Participants included 441 children from the Neonatal Neurobehavior and Outcomes in Very Preterm Infants (NOVI) Study, a multi-site study of infants born < 30 weeks gestational age. DNA methylation was measured from buccal swabs collected at NICU discharge using the Illumina MethylationEPIC Bead Array. Attention problems were assessed at 2 years of adjusted age using the attention problems subscale of the Child Behavior Checklist (CBCL). After adjustment for multiple testing, DNA methylation at 33 CpG sites was associated with child attention problems. Differentially methylated CpG sites were located in genes previously linked to physical and mental health, including several genes associated with ADHD in prior epigenome-wide and genome-wide association studies. Several CpG sites were located in genes previously linked to exposure to prenatal risk factors in the NOVI sample. Neonatal epigenetics measured at NICU discharge could be useful in identifying preterm children at risk for long-term attention problems and related psychiatric disorders, who could benefit from early prevention and intervention efforts.
Collapse
Affiliation(s)
- Marie Camerota
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA.
- Brown Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA.
| | - Barry M Lester
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA
- Brown Center for the Study of Children at Risk, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Brian S Carter
- Department of Pediatrics-Neonatology, Children's Mercy Hospital, Kansas City, MO, USA
| | - Jennifer Check
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jennifer Helderman
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Julie A Hofheimer
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Elisabeth C McGowan
- Department of Pediatrics, Alpert Medical School of Brown University and Women and Infants Hospital, Providence, RI, USA
| | - Charles R Neal
- Department of Pediatrics, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | - Steven L Pastyrnak
- Department of Pediatrics, Spectrum Health-Helen DeVos Hospital, Grand Rapids, MI, USA
| | - Lynne M Smith
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Thomas Michael O'Shea
- Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
3
|
Verscheure E, Stierum R, Schlünssen V, Lund Würtz AM, Vanneste D, Kogevinas M, Harding BN, Broberg K, Zienolddiny-Narui S, Erdem JS, Das MK, Makris KC, Konstantinou C, Andrianou X, Dekkers S, Morris L, Pronk A, Godderis L, Ghosh M. Characterization of the internal working-life exposome using minimally and non-invasive sampling methods - a narrative review. ENVIRONMENTAL RESEARCH 2023; 238:117001. [PMID: 37683788 DOI: 10.1016/j.envres.2023.117001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
During recent years, we are moving away from the 'one exposure, one disease'-approach in occupational settings and towards a more comprehensive approach, taking into account the totality of exposures during a life course by using an exposome approach. Taking an exposome approach however is accompanied by many challenges, one of which, for example, relates to the collection of biological samples. Methods used for sample collection in occupational exposome studies should ideally be minimally invasive, while at the same time sensitive, and enable meaningful repeated sampling in a large population and over a longer time period. This might be hampered in specific situations e.g., people working in remote areas, during pandemics or with flexible work hours. In these situations, using self-sampling techniques might offer a solution. Therefore, our aim was to identify existing self-sampling techniques and to evaluate the applicability of these techniques in an occupational exposome context by conducting a literature review. We here present an overview of current self-sampling methodologies used to characterize the internal exposome. In addition, the use of different biological matrices was evaluated and subdivided based on their level of invasiveness and applicability in an occupational exposome context. In conclusion, this review and the overview of self-sampling techniques presented herein can serve as a guide in the design of future (occupational) exposome studies while circumventing sample collection challenges associated with exposome studies.
Collapse
Affiliation(s)
- Eline Verscheure
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Anne Mette Lund Würtz
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Dorian Vanneste
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manolis Kogevinas
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Barbara N Harding
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Mrinal K Das
- National Institute of Occupational Health, Oslo, Norway
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Xanthi Andrianou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | | | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at work, Heverlee, Belgium.
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Ehlinger JV, Goodrich JM, Dolinoy DC, Watkins DJ, Cantoral A, Mercado-García A, Téllez-Rojo MM, Peterson KE. Associations between blood leukocyte DNA methylation and sustained attention in mid-to-late childhood. Epigenomics 2023; 15:965-981. [PMID: 37942546 PMCID: PMC10718163 DOI: 10.2217/epi-2023-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023] Open
Abstract
Aims: To identify associations between DNA methylation (DNAm) across the epigenome and symptoms related to attention-deficit/hyperactivity disorder in a population of Hispanic children. Materials & methods: Among 517 participants in the ELEMENT study aged 9-18 years, we conducted an epigenome-wide association study examining associations between blood leukocyte DNAm and performance on the Conners' continuous performance test (CPT3). Results: DNAm at loci in or near ZNF814, ELF4 and OR6K6 and functional enrichment for gene pathways pertaining to ferroptosis, inflammation, immune response and neurotransmission were significantly related to CPT3 scores. Conclusion: DNAm was associated with CPT3 performance. Further analysis is warranted to understand how these genes and enriched pathways contribute to attention-deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Jessa V Ehlinger
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah J Watkins
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | - Karen E Peterson
- Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Campos-Martin R, Bey K, Elsner B, Reuter B, Klawohn J, Philipsen A, Kathmann N, Wagner M, Ramirez A. Epigenome-wide analysis identifies methylome profiles linked to obsessive-compulsive disorder, disease severity, and treatment response. Mol Psychiatry 2023; 28:4321-4330. [PMID: 37587247 PMCID: PMC10827661 DOI: 10.1038/s41380-023-02219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a prevalent mental disorder affecting ~2-3% of the population. This disorder involves genetic and, possibly, epigenetic risk factors. The dynamic nature of epigenetics also presents a promising avenue for identifying biomarkers associated with symptom severity, clinical progression, and treatment response in OCD. We, therefore, conducted a comprehensive case-control investigation using Illumina MethylationEPIC BeadChip, encompassing 185 OCD patients and 199 controls recruited from two distinct sites in Germany. Rigorous clinical assessments were performed by trained raters employing the Structured Clinical Interview for DSM-IV (SCID-I). We performed a robust two-step epigenome-wide association study that led to the identification of 305 differentially methylated CpG positions. Next, we validated these findings by pinpointing the optimal set of CpGs that could effectively classify individuals into their respective groups. This approach identified a subset comprising 12 CpGs that overlapped with the 305 CpGs identified in our EWAS. These 12 CpGs are close to or in genes associated with the sweet-compulsive brain hypothesis which proposes that aberrant dopaminergic transmission in the striatum may impair insulin signaling sensitivity among OCD patients. We replicated three of the 12 CpGs signals from a recent independent study conducted on the Han Chinese population, underscoring also the cross-cultural relevance of our findings. In conclusion, our study further supports the involvement of epigenetic mechanisms in the pathogenesis of OCD. By elucidating the underlying molecular alterations associated with OCD, our study contributes to advancing our understanding of this complex disorder and may ultimately improve clinical outcomes for affected individuals.
Collapse
Affiliation(s)
- Rafael Campos-Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937, Cologne, Germany
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Björn Elsner
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Benedikt Reuter
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Julia Klawohn
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Medicine, MSB Medical School Berlin, Berlin, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Norbert Kathmann
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Wagner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, 50937, Cologne, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA.
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Wang L, Chen Y, Wang M, Zhao C, Qiao D. Relationship between gene-environment interaction and obsessive-compulsive disorder: A systematic review. J Psychiatr Res 2023; 164:281-290. [PMID: 37390623 DOI: 10.1016/j.jpsychires.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/29/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Gene-environment interaction (G × E) refers to the change of genetic effects under the participation of environmental factors resulting in differences in genetic expression. G × E has been studied in the occurrence and development of many neuropsychiatric disorders, including obsessive-compulsive disorder (OCD). AIM A systematic review was conducted to investigate the role of G × E plays in OCD. This review explored the relationship between G × E and the susceptibility to OCD occurrence, disease progression, and treatment response. METHODS This systematic literature search was performed using Web of Science, PubMed, Cochrane Library, and CNKI. Seven studies were selected, which included seven genes (BDNF, COMT, MAO, 5-HTT, SMAD4, PGRN, and SLC1A1) polymorphisms, polygenic risk score (PRS), and two environmental factors (childhood trauma and stressful life events). RESULTS Information from this systematic review indicated that G × E increased the susceptibility to OCD, played a crucial role in the clinical characteristics, and had an inconsistent impact on treatment response of OCD. FUTURE DIRECTIONS The multi-omics studies and the inclusion of G × E in future GWAS studies of OCD should be drawn more attention, which may contribute to a deeper understanding of the etiology of OCD as well as guide therapeutic interventions for the disease.
Collapse
Affiliation(s)
- Lina Wang
- Department of Psychology, Shandong Normal University, Jinan, Shandong, 250358, China; Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, Shandong, 250014, China
| | - Yu Chen
- Jining Medical University, Jining, Shandong, 272000, China
| | - Miao Wang
- Jining Medical University, Jining, Shandong, 272000, China
| | - Chaoben Zhao
- Jining Medical University, Jining, Shandong, 272000, China
| | - Dongdong Qiao
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, Shandong, 250014, China.
| |
Collapse
|
7
|
Mohammadi AH, Karimian M, Mirzaei H, Milajerdi A. Epigenetic modifications and obsessive-compulsive disorder: what do we know? Brain Struct Funct 2023:10.1007/s00429-023-02649-4. [PMID: 37204485 DOI: 10.1007/s00429-023-02649-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023]
Abstract
Obsessive-Compulsive Disorder (OCD) is a chronic, severe disabling neuropsychiatric disorder whose pathophysiology is not yet well defined. Generally, the symptom onset occurs during pre-adult life and affects subjects in different life aspects, including professional and social relationships. Although robust evidence indicates the presence of genetic factors in the etiopathology of OCD, the entirely mechanisms are not totally clarified. Thus, the possible interactions between genes and environmental risk factors mediated by epigenetic mechanisms should be sought. Therefore, we provide a review of genetic and epigenetic mechanisms related to OCD with a deep focus on the regulation of critical genes of the central nervous system seeking possible potential biomarkers.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Alireza Milajerdi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
8
|
Chen H, Yang Y, Odisho D, Wu S, Yi C, Oliver BG. Can biomarkers be used to diagnose attention deficit hyperactivity disorder? Front Psychiatry 2023; 14:1026616. [PMID: 36970271 PMCID: PMC10030688 DOI: 10.3389/fpsyt.2023.1026616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
Currently, the diagnosis of attention deficit hyperactivity disorder (ADHD) is solely based on behavioral tests prescribed by the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5). However, biomarkers can be more objective and accurate for diagnosis and evaluating treatment efficacy. Thus, this review aimed to identify potential biomarkers for ADHD. Search terms “ADHD,” and “biomarker” combined with one of “protein,” “blood/serum,” “gene,” and “neuro” were used to identify human and animal studies in PubMed, Ovid Medline, and Web of Science. Only papers in English were included. Potential biomarkers were categorized into radiographic, molecular, physiologic, or histologic markers. The radiographic analysis can identify specific activity changes in several brain regions in individuals with ADHD. Several molecular biomarkers in peripheral blood cells and some physiologic biomarkers were found in a small number of participants. There were no published histologic biomarkers for ADHD. Overall, most associations between ADHD and potential biomarkers were properly controlled. In conclusion, a series of biomarkers in the literature are promising as objective parameters to more accurately diagnose ADHD, especially in those with comorbidities that prevent the use of DSM-5. However, more research is needed to confirm the reliability of the biomarkers in larger cohort studies.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Yang Yang
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Diana Odisho
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Siqi Wu
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chenju Yi
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Research Centre, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, China
- *Correspondence: Chenju Yi,
| | - Brian G. Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia
| |
Collapse
|
9
|
Choi YJ, Cho J, Hong YC, Lee DW, Moon S, Park SJ, Lee KS, Shin CH, Lee YA, Kim BN, Kaminsky Z, Kim JI, Lim YH. DNA methylation is associated with prenatal exposure to sulfur dioxide and childhood attention-deficit hyperactivity disorder symptoms. Sci Rep 2023; 13:3501. [PMID: 36859453 PMCID: PMC9977725 DOI: 10.1038/s41598-023-29843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
Epigenetic influence plays a role in the association between exposure to air pollution and attention deficit hyperactivity disorder (ADHD); however, research regarding sulfur dioxide (SO2) is scarce. Herein, we investigate the associations between prenatal SO2 exposure and ADHD rating scale (ARS) at ages 4, 6 and 8 years repeatedly in a mother-child cohort (n = 329). Whole blood samples were obtained at ages 2 and 6 years, and genome-wide DNA methylation (DNAm) was analyzed for 51 children using the Illumina Infinium HumanMethylation BeadChip. We analyzed the associations between prenatal SO2 exposure and DNAm levels at ages 2 and 6, and further investigated the association between the DNAm and ARS at ages 4, 6 and 8. Prenatal SO2 exposure was associated with ADHD symptoms. From candidate gene analysis, DNAm levels at the 6 CpGs at age 2 were associated with prenatal SO2 exposure levels. Of the 6 CpGs, cg07583420 (INS-IGF2) was persistently linked with ARS at ages 4, 6 and 8. Epigenome-wide analysis showed that DNAm at 6733 CpG sites were associated with prenatal SO2 exposure, of which 58 CpGs involved in Notch signalling pathway were further associated with ARS at age 4, 6 and 8 years, persistently. DNAm at age 6 was not associated with prenatal SO2 exposure. Changes in DNAm levels associated with prenatal SO2 exposure during early childhood are associated with increases in ARS in later childhood.
Collapse
Affiliation(s)
- Yoon-Jung Choi
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Republic of Korea.,Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jinwoo Cho
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Dong-Wook Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Healthcare Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sungji Moon
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Park
- Department of Surgery, Wonkwang University Sanbon Hospital, Gunpo, Republic of Korea
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.,Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea.,Public Health Research Institute, National Medical Center, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Zachary Kaminsky
- Institute of Mental Health Research, University of Ottawa, Ottawa, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, 222-1 Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Section of Environmental Epidemiology, Department of Public Health, University of Copenhagen, Østerster Farimagsgade 5, 1014, København K, Copenhagen, Denmark.
| |
Collapse
|
10
|
Gunasekara CJ, MacKay H, Scott CA, Li S, Laritsky E, Baker MS, Grimm SL, Jun G, Li Y, Chen R, Wiemels JL, Coarfa C, Waterland RA. Systemic interindividual epigenetic variation in humans is associated with transposable elements and under strong genetic control. Genome Biol 2023; 24:2. [PMID: 36631879 PMCID: PMC9835319 DOI: 10.1186/s13059-022-02827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/01/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Genetic variants can modulate phenotypic outcomes via epigenetic intermediates, for example at methylation quantitative trait loci (mQTL). We present the first large-scale assessment of mQTL at human genomic regions selected for interindividual variation in CpG methylation, which we call correlated regions of systemic interindividual variation (CoRSIVs). These can be assayed in blood DNA and do not reflect interindividual variation in cellular composition. RESULTS We use target-capture bisulfite sequencing to assess DNA methylation at 4086 CoRSIVs in multiple tissues from each of 188 donors in the NIH Gene-Tissue Expression (GTEx) program. At CoRSIVs, DNA methylation in peripheral blood correlates with methylation and gene expression in internal organs. We also discover unprecedented mQTL at these regions. Genetic influences on CoRSIV methylation are extremely strong (median R2=0.76), cumulatively comprising over 70-fold more human mQTL than detected in the most powerful previous study. Moreover, mQTL beta coefficients at CoRSIVs are highly skewed (i.e., the major allele predicts higher methylation). Both surprising findings are independently validated in a cohort of 47 non-GTEx individuals. Genomic regions flanking CoRSIVs show long-range enrichments for LINE-1 and LTR transposable elements; the skewed beta coefficients may therefore reflect evolutionary selection of genetic variants that promote their methylation and silencing. Analyses of GWAS summary statistics show that mQTL polymorphisms at CoRSIVs are associated with metabolic and other classes of disease. CONCLUSIONS A focus on systemic interindividual epigenetic variants, clearly enhanced in mQTL content, should likewise benefit studies attempting to link human epigenetic variation to the risk of disease.
Collapse
Affiliation(s)
- Chathura J. Gunasekara
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Harry MacKay
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - C. Anthony Scott
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Shaobo Li
- grid.42505.360000 0001 2156 6853Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Eleonora Laritsky
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Maria S. Baker
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA
| | - Sandra L. Grimm
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Goo Jun
- grid.267308.80000 0000 9206 2401Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Yumei Li
- grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Rui Chen
- grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Joseph L. Wiemels
- grid.42505.360000 0001 2156 6853Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| | - Cristian Coarfa
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX USA
| | - Robert A. Waterland
- grid.508989.50000 0004 6410 7501USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
11
|
Silk T, Dipnall L, Wong YT, Craig JM. Epigenetics and ADHD. Curr Top Behav Neurosci 2022; 57:269-289. [PMID: 35505060 DOI: 10.1007/7854_2022_339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is robust evidence of genetic susceptibility to Attention-Deficit Hyperactivity Disorder (ADHD); however, there still remains significant variability that is not attributable to genetic factors. The emerging field of epigenetics is beginning to reveal how genotypic expression can be mediated by an array of variables including external environmental exposure, inter-individual developmental variation, and by the genome itself. Epigenetic modification plays a central role in neurobiological and developmental processes, and disturbances to these processes can have implications for a range of mental health problems. Although the field is still in its early days, this chapter will discuss the current standing of epigenetic research into ADHD. Firstly, key relevant epigenetic processes will be discussed. This will be followed by an overview of the key findings to date investigating the role of epigenetics in ADHD. Human studies have included the theory-driven approach of candidate-gene studies (CGS), as well as the increasingly popular exploratory approach of epigenome-wide association studies (EWAS). Overall, the findings are heterogeneous. However, it is possible that with more longitudinal studies and better characterised cohorts, both predictive and protective links between epigenetic processes and ADHD will be revealed.
Collapse
Affiliation(s)
- Timothy Silk
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, VIC, Australia. .,Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Lillian Dipnall
- Centre for Social and Early Emotional Development and School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Yen Ting Wong
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Jeffrey M Craig
- Murdoch Children's Research Institute, Parkville, VIC, Australia.,Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
12
|
Schiele MA, Lipovsek J, Schlosser P, Soutschek M, Schratt G, Zaudig M, Berberich G, Köttgen A, Domschke K. Epigenome-wide DNA methylation in obsessive-compulsive disorder. Transl Psychiatry 2022; 12:221. [PMID: 35650177 PMCID: PMC9160220 DOI: 10.1038/s41398-022-01996-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 01/02/2023] Open
Abstract
In adult patients with obsessive-compulsive disorder (OCD), altered DNA methylation has been discerned in several candidate genes, while DNA methylation on an epigenome-wide level has been investigated in only one Chinese study so far. Here, an epigenome-wide association study (EWAS) was performed in a sample of 76 OCD patients of European ancestry (37 women, age ± SD: 33.51 ± 10.92 years) and 76 sex- and age-matched healthy controls for the first time using the Illumina MethylationEPIC BeadChip. After quality control, nine epigenome-wide significant quantitative trait methylation sites (QTMs) and 21 suggestive hits were discerned in the final sample of 68 patients and 68 controls. The top hit (cg24159721) and four other significant QTMs (cg11894324, cg01070250, cg11330075, cg15174812) map to the region of the microRNA 12136 gene (MIR12136). Two additional significant CpG sites (cg05740793, cg20450977) are located in the flanking region of the MT-RNR2 (humanin) like 8 gene (MT-RNRL8), while two further QTMs (cg16267121, cg15890734) map to the regions of the MT-RNR2 (humanin) like 3 (MT-RNRL3) and MT-RNR2 (humanin) like 2 (MT-RNRL2) genes. Provided replication of the present findings in larger samples, the identified QTMs might provide more biological insight into the pathogenesis of OCD and thereby could in the future serve as peripheral epigenetic markers of OCD risk with the potential to inform targeted preventive and therapeutic efforts.
Collapse
Affiliation(s)
- Miriam A. Schiele
- grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104 Freiburg, Germany
| | - Jan Lipovsek
- grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104 Freiburg, Germany ,grid.7708.80000 0000 9428 7911Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Hugstetter Straße 49, 79106 Freiburg, Germany
| | - Pascal Schlosser
- grid.7708.80000 0000 9428 7911Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Hugstetter Straße 49, 79106 Freiburg, Germany ,grid.21107.350000 0001 2171 9311Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD USA
| | - Michael Soutschek
- grid.5801.c0000 0001 2156 2780ETH Zurich–D-HEST, Institute for Neuroscience, Systems Neuroscience, Building Y17 L48, Winterthurerstraße 190, 8057 Zurich, Switzerland
| | - Gerhard Schratt
- grid.5801.c0000 0001 2156 2780ETH Zurich–D-HEST, Institute for Neuroscience, Systems Neuroscience, Building Y17 L48, Winterthurerstraße 190, 8057 Zurich, Switzerland
| | - Michael Zaudig
- Psychosomatic Hospital Windach, Schützenstraße 100, 86949 Windach, Germany
| | - Götz Berberich
- Psychosomatic Hospital Windach, Schützenstraße 100, 86949 Windach, Germany
| | - Anna Köttgen
- grid.7708.80000 0000 9428 7911Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Hugstetter Straße 49, 79106 Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstraße 5, 79104, Freiburg, Germany. .,Center for Basics in NeuroModulation, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.
| |
Collapse
|
13
|
Klyne DM, Barbe MF, Hodges PW. Relationship between systemic inflammation and recovery over 12 months after an acute episode of low back pain. Spine J 2022; 22:214-225. [PMID: 34547387 DOI: 10.1016/j.spinee.2021.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Individual characteristics can influence outcomes after injury. Our previous work in individuals with early-acute low back pain (LBP) identified subgroups (clusters) with specific biopsychosocial features that recovered poorly or well by 6 months. PURPOSE This study extends on that work by revealing the short- and long-term trajectories of recovery and systemic inflammation of these participant clusters: (1) "inflammatory & poor sleep" (Cluster 1), "high TNF & depression" (Cluster 2), "high pain & high pain-related fear" (Cluster 3), and "low pain & low pain-related fear" (Cluster 4). STUDY DESIGN/SETTING Longitudinal cohort study. PATIENT SAMPLE Eighty-three individuals within 2 weeks of an acute episode of LBP - grouped into their a priori-defined cluster. OUTCOME MEASURES General participant characteristics (sex, age, body mass index, smoking history, previous LBP history); self-reported LBP (0-10 numerical rating scale, LBP-related disability (Roland-Morris Disability Questionnaire), depression (Center for Epidemiological Studies Depression Scale, pain catastrophizing (Pain Catastrophizing Scale), fear avoidance (Fear Avoidance Beliefs Questionnaire), pain self-efficacy (Pain Self-Efficacy Questionnaire), and sleep (Pittsburgh Sleep Quality Index); systemic inflammatory biomarkers (C-reactive protein [CRP], interleukin-6 [IL-6], interleukin-1β, tumor necrosis factor [TNF]). METHODS Participants provided blood for the measurement of CRP/cytokines, and completed questionnaires related to their pain/disability, psychological and sleep status. Blood measures were repeated 3-monthly for 9 months, and pain/disability were self-reported fortnightly for 12 months. Recovery (change in pain) and CRP/cytokines were longitudinally compared between clusters using mixed-models. Associations between baseline factors and follow-up CRP/cytokines levels were assessed with multiple regression. RESULTS Clusters 1 and 2 were associated, but oppositely, with recovery over the 12-months. Cluster 1 reported most recovery at every 3-monthly interval, whereas Cluster 2 reported least recovery. Cluster 1 had elevated CRP (and IL-6) at baseline that continued to decrease from 3 to 9 months. TNF was elevated early and persistently in Cluster 2. Baseline factors other than inflammation generally failed to predict follow-up inflammation. CONCLUSIONS Findings support the early role of CRP (and perhaps IL-6) in control of inflammation and recovery, and a pathological role of persistent TNF overexpression, which may be perpetuated by depressive-like behaviors.
Collapse
Affiliation(s)
- David M Klyne
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Paul W Hodges
- NHMRC Centre of Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
14
|
de Oliveira KC, Camilo C, Gastaldi VD, Sant'Anna Feltrin A, Lisboa BCG, de Jesus Rodrigues de Paula V, Moretto AC, Lafer B, Hoexter MQ, Miguel EC, Maschietto M, Brentani H. Brain areas involved with obsessive-compulsive disorder present different DNA methylation modulation. BMC Genom Data 2021; 22:45. [PMID: 34717534 PMCID: PMC8557022 DOI: 10.1186/s12863-021-00993-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive actions, that presents the involvement of the cortico-striatal areas. The contribution of environmental risk factors to OCD development suggests that epigenetic mechanisms may contribute to its pathophysiology. DNA methylation changes and gene expression were evaluated in post-mortem brain tissues of the cortical (anterior cingulate gyrus and orbitofrontal cortex) and ventral striatum (nucleus accumbens, caudate nucleus and putamen) areas from eight OCD patients and eight matched controls. Results There were no differentially methylated CpG (cytosine-phosphate-guanine) sites (DMSs) in any brain area, nevertheless gene modules generated from CpG sites and protein-protein-interaction (PPI) showed enriched gene modules for all brain areas between OCD cases and controls. All brain areas but nucleus accumbens presented a predominantly hypomethylation pattern for the differentially methylated regions (DMRs). Although there were common transcriptional factors that targeted these DMRs, their targeted differentially expressed genes were different among all brain areas. The protein-protein interaction network based on methylation and gene expression data reported that all brain areas were enriched for G-protein signaling pathway, immune response, apoptosis and synapse biological processes but each brain area also presented enrichment of specific signaling pathways. Finally, OCD patients and controls did not present significant DNA methylation age differences. Conclusions DNA methylation changes in brain areas involved with OCD, especially those involved with genes related to synaptic plasticity and the immune system could mediate the action of genetic and environmental factors associated with OCD. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00993-0.
Collapse
Affiliation(s)
- Kátia Cristina de Oliveira
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil.,Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Caroline Camilo
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.
| | - Vinícius Daguano Gastaldi
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Arthur Sant'Anna Feltrin
- Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Bianca Cristina Garcia Lisboa
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Vanessa de Jesus Rodrigues de Paula
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | | | - Beny Lafer
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Marcelo Queiroz Hoexter
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Euripedes Constantino Miguel
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Helena Brentani
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Mahjani B, Bey K, Boberg J, Burton C. Genetics of obsessive-compulsive disorder. Psychol Med 2021; 51:2247-2259. [PMID: 34030745 PMCID: PMC8477226 DOI: 10.1017/s0033291721001744] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a psychiatric disorder with multiple symptom dimensions (e.g. contamination, symmetry). OCD clusters in families and decades of twin studies clearly demonstrate an important role for genetics in the etiology of the disorder. METHODS In this review, we summarize the genetic epidemiology and molecular genetic studies of OCD and obsessive-compulsive symptoms. RESULTS OCD is a heritable, polygenic disorder with contributions from both common and rare variants, including de novo deleterious variations. Multiple studies have provided reliable support for a large additive genetic contribution to liability to OCD, with discrete OCD symptom dimensions having both shared and unique genetic risks. Genome-wide association studies have not produced significant results yet, likely because of small sample sizes, but larger meta-analyses are forthcoming. Both twin and genome-wide studies show that OCD shares genetic risk with its comorbid conditions (e.g. Tourette syndrome and anorexia nervosa). CONCLUSIONS Despite significant efforts to uncover the genetic basis of OCD, the mechanistic understanding of how genetic and environmental risk factors interact and converge at the molecular level to result in OCD's heterogeneous phenotype is still mostly unknown. Future investigations should increase ancestral genetic diversity, explore age and/or sex differences in genetic risk for OCD and expand the study of pharmacogenetics, gene expression, gene × environment interactions and epigenetic mechanisms for OCD.
Collapse
Affiliation(s)
- Behrang Mahjani
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Tics, Obsessive-Compulsive Disorder (OCD) and Related Disorders, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Katharina Bey
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Julia Boberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Christie Burton
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
16
|
Strom NI, Grove J, Meier SM, Bækvad-Hansen M, Becker Nissen J, Damm Als T, Halvorsen M, Nordentoft M, Mortensen PB, Hougaard DM, Werge T, Mors O, Børglum AD, Crowley JJ, Bybjerg-Grauholm J, Mattheisen M. Polygenic Heterogeneity Across Obsessive-Compulsive Disorder Subgroups Defined by a Comorbid Diagnosis. Front Genet 2021; 12:711624. [PMID: 34531895 PMCID: PMC8438210 DOI: 10.3389/fgene.2021.711624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/27/2021] [Indexed: 01/20/2023] Open
Abstract
Among patients with obsessive-compulsive disorder (OCD), 65-85% manifest another psychiatric disorder concomitantly or at some other time point during their life. OCD is highly heritable, as are many of its comorbidities. A possible genetic heterogeneity of OCD in relation to its comorbid conditions, however, has not yet been exhaustively explored. We used a framework of different approaches to study the genetic relationship of OCD with three commonly observed comorbidities, namely major depressive disorder (MDD), attention-deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD). First, using publicly available summary statistics from large-scale genome-wide association studies, we compared genetic correlation patterns for OCD, MDD, ADHD, and ASD with 861 somatic and mental health phenotypes. Secondly, we examined how polygenic risk scores (PRS) of eight traits that showed heterogeneous correlation patterns with OCD, MDD, ADHD, and ASD partitioned across comorbid subgroups in OCD using independent unpublished data from the Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH). The comorbid subgroups comprised of patients with only OCD (N = 366), OCD and MDD (N = 1,052), OCD and ADHD (N = 443), OCD and ASD (N = 388), and OCD with more than 1 comorbidity (N = 429). We found that PRS of all traits but BMI were significantly associated with OCD across all subgroups (neuroticism: p = 1.19 × 10-32, bipolar disorder: p = 7.51 × 10-8, anorexia nervosa: p = 3.52 × 10-20, age at first birth: p = 9.38 × 10-5, educational attainment: p = 1.56 × 10-4, OCD: p = 1.87 × 10-6, insomnia: p = 2.61 × 10-5, BMI: p = 0.15). For age at first birth, educational attainment, and insomnia PRS estimates significantly differed across comorbid subgroups (p = 2.29 × 10-4, p = 1.63 × 10-4, and p = 0.045, respectively). Especially for anorexia nervosa, age at first birth, educational attainment, insomnia, and neuroticism the correlation patterns that emerged from genetic correlation analysis of OCD, MDD, ADHD, and ASD were mirrored in the PRS associations with the respective comorbid OCD groups. Dissecting the polygenic architecture, we found both quantitative and qualitative polygenic heterogeneity across OCD comorbid subgroups.
Collapse
Affiliation(s)
- Nora I. Strom
- Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedicine and the iSEQ Center, Aarhus University, Aarhus, Denmark
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Jakob Grove
- Department of Biomedicine and the iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Sandra M. Meier
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Marie Bækvad-Hansen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Judith Becker Nissen
- Center for Child and Adolescent Psychiatry, Aarhus University Hospital Risskov, Risskov, Denmark
| | - Thomas Damm Als
- Department of Biomedicine and the iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - Matthew Halvorsen
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Copenhagen Research Centre for Mental Health (CORE), Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Preben B. Mortensen
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
- National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
- Centre for Integrated Register-based Research, Aarhus University, Aarhus, Denmark
| | - David M. Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
- Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
- Psychosis Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Anders D. Børglum
- Department of Biomedicine and the iSEQ Center, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
- Center for Genomics and Personalized Medicine, Aarhus, Denmark
| | - James J. Crowley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States
| | - Jonas Bybjerg-Grauholm
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
- Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Manuel Mattheisen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedicine and the iSEQ Center, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|