1
|
Zhou Y, Zhao M, Shen Q, Zhang M, Wang C, Zhang Y, Yang Q, Bo Y, Hu Z, Yang J, Zhang M, Lyu X. Genetic mapping reveals a candidate gene CmoFL1 controlling fruit length in pumpkin. FRONTIERS IN PLANT SCIENCE 2024; 15:1408602. [PMID: 38867882 PMCID: PMC11168575 DOI: 10.3389/fpls.2024.1408602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
Fruit length (FL) is an important economical trait that affects fruit yield and appearance. Pumpkin (Cucurbita moschata Duch) contains a wealth genetic variation in fruit length. However, the natural variation underlying differences in pumpkin fruit length remains unclear. In this study, we constructed a F2 segregate population using KG1 producing long fruit and MBF producing short fruit as parents to identify the candidate gene for fruit length. By bulked segregant analysis (BSA-seq) and Kompetitive Allele-Specific PCR (KASP) approach of fine mapping, we obtained a 50.77 kb candidate region on chromosome 14 associated with the fruit length. Then, based on sequence variation, gene expression and promoter activity analyses, we identified a candidate gene (CmoFL1) encoding E3 ubiquitin ligase in this region may account for the variation of fruit length. One SNP variation in promoter of CmoFL1 changed the GT1CONSENSUS, and DUAL-LUC assay revealed that this variation significantly affected the promoter activity of CmoFL1. RNA-seq analysis indicated that CmoFL1 might associated with the cell division process and negatively regulate fruit length. Collectively, our work identifies an important allelic affecting fruit length, and provides a target gene manipulating fruit length in future pumpkin breeding.
Collapse
Affiliation(s)
- Yimei Zhou
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Meng Zhao
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qinghui Shen
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengyi Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Chenhao Wang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yutong Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qinrong Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Key laboratory of Horticultural Plant growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Xiaolong Lyu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Wang K, Wang X, Zhang L, Chi Y, Luo Y, Xu W, Wang Y, Qu S. Morphological Analyses and QTL Mapping of Mottled Leaf in Zucchini ( Cucurbita pepo L.). Int J Mol Sci 2024; 25:2491. [PMID: 38473740 DOI: 10.3390/ijms25052491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
The mottled leaf is one of the agronomic traits of zucchini and can be applied as a marker trait in aggregation breeding. However, the genetic mechanism responsible for mottled leaf has yet to be elucidated. In the present study, we used two inbred lines (line '19': silver mottled leaf; line '113': normal leaf) as parents for the physiological and genetic analysis of mottled leaf. The synthesis and net photosynthetic rate of chlorophyll were not significantly affected in the mottled areas of leaves. However, we detected a large space between the palisade parenchyma in the leaf mottle area of line '19', which may have caused the mottled leaf phenotype. Light also plays an important role in the formation of mottled leaf, and receiving light during the early stages of leaf development is a necessary factor. Genetic analysis has previously demonstrated that mottled leaf is a quantitative trait that is controlled by multiple genes. Based on the strategy of quantitative trait locus sequencing (QTL-seq), two QTLs were identified on chromosomes 1 and 17, named CpML1.1 and CpML17.1, respectively. Two major loci were identified using R/qtl software version 1.66 under greenhouse conditions in April 2019 (2019A) and April 2020 (2020A) and under open cultivation conditions in May 2020 (2020M). The major QTL, CpML1.1, was located in a 925.2-kb interval on chromosome 1 and explained 10.51%-24.15% of the phenotypic variation. The CpML17.1 was located in a 719.7-kb interval on chromosome 17 and explained 16.25%-38.68% of the phenotypic variation. Based on gene annotation, gene sequence alignment, and qRT-PCR analysis, the Cp4.1LG01g23790 at the CpML1.1 locus encoding a protein of the TPX2 family (target protein of Xklp2) may be a candidate gene for mottled leaf in zucchini. Our findings may provide a theoretical basis for the formation of mottled leaf and provide a foundation for the fine mapping of genes associated with mottled leaf. Molecular markers closely linked to mottled leaf can be used in molecular-assisted selection for the zucchini mottled leaf breeding.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xinyu Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lijing Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yichen Chi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yusong Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
McLeod L, Barchi L, Tumino G, Tripodi P, Salinier J, Gros C, Boyaci HF, Ozalp R, Borovsky Y, Schafleitner R, Barchenger D, Finkers R, Brouwer M, Stein N, Rabanus-Wallace MT, Giuliano G, Voorrips R, Paran I, Lefebvre V. Multi-environment association study highlights candidate genes for robust agronomic quantitative trait loci in a novel worldwide Capsicum core collection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1508-1528. [PMID: 37602679 DOI: 10.1111/tpj.16425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023]
Abstract
Investigating crop diversity through genome-wide association studies (GWAS) on core collections helps in deciphering the genetic determinants of complex quantitative traits. Using the G2P-SOL project world collection of 10 038 wild and cultivated Capsicum accessions from 10 major genebanks, we assembled a core collection of 423 accessions representing the known genetic diversity. Since complex traits are often highly dependent upon environmental variables and genotype-by-environment (G × E) interactions, multi-environment GWAS with a 10 195-marker genotypic matrix were conducted on a highly diverse subset of 350 Capsicum annuum accessions, extensively phenotyped in up to six independent trials from five climatically differing countries. Environment-specific and multi-environment quantitative trait loci (QTLs) were detected for 23 diverse agronomic traits. We identified 97 candidate genes potentially implicated in 53 of the most robust and high-confidence QTLs for fruit flavor, color, size, and shape traits, and for plant productivity, vigor, and earliness traits. Investigating the genetic architecture of agronomic traits in this way will assist the development of genetic markers and pave the way for marker-assisted selection. The G2P-SOL pepper core collection will be available upon request as a unique and universal resource for further exploitation in future gene discovery and marker-assisted breeding efforts by the pepper community.
Collapse
Affiliation(s)
- Louis McLeod
- INRAE, GAFL, Montfavet, France
- INRAE, A2M, Montfavet, France
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Giorgio Tumino
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Pasquale Tripodi
- Research Centre for Vegetable and Ornamental Crops, Council for Agricultural Research and Economics (CREA), Pontecagnano Faiano, Italy
| | | | | | | | - Ramazan Ozalp
- Bati Akdeniz Agricultural Research Institute (BATEM), Antalya, Türkiye
| | - Yelena Borovsky
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | - Roland Schafleitner
- Vegetable Diversity and Improvement, World Vegetable Center, Shanhua, Taiwan
| | - Derek Barchenger
- Vegetable Diversity and Improvement, World Vegetable Center, Shanhua, Taiwan
| | - Richard Finkers
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Matthijs Brouwer
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Corre, Gatersleben, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research, Georg-August-University, Göttingen, Germany
| | | | - Giovanni Giuliano
- Casaccia Research Centre, Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA), Rome, Italy
| | - Roeland Voorrips
- Plant Breeding, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Ilan Paran
- The Volcani Center, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon LeZion, Israel
| | | |
Collapse
|
4
|
Verma N, Garcha KS, Sharma A, Sharma M, Bhatia D, Khosa JS, Kaur B, Chuuneja P, Dhatt AS. Identification of a Major-Effect Quantitative Trait Loci Associated with Begomovirus Resistance in Cucurbita moschata. PHYTOPATHOLOGY 2023:PHYTO07220240FI. [PMID: 37352896 DOI: 10.1094/phyto-07-22-0240-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
Begomoviruses, viz. squash leaf curl China virus and tomato leaf curl New Delhi virus causative diseases are major concerns of quantitative and qualitative losses in pumpkin (Cucurbita moschata) worldwide. Punjab Agricultural University (PAU) in India has identified a resistant source (PVR-1343) against mixed infection (MI-Sq/To) of these begomoviruses. Introgression of resistance in diverse genetic backgrounds requires the identification of quantitative trait loci (QTLs) associated with MI-Sq/To resistance. Phenotyping of 229 F2:3 progenies derived from the PVR-1343 × P-135 cross revealed digenic recessive inheritance against MI-Sq/To resistance in PVR-1343. To identify the genomic region, resistant and susceptible bulks were subjected to whole-genome resequencing along with their parents. The whole-genome resequence analysis of parents and bulks using QTLseq/QTLseqr approaches identified an overlapping 1.52 Mb region on chromosome 7 (qMI-Sq/To7.1), while chromosomal region spanning 0.87 Mb on chromosome17 (qMI-Sq/To17.1) was additionally identified by QTLseqr. However, the highest peak value on chromosome 7 with three algorithms {G', ∆(SNP-index) and -log10 (P value)} highlighted the major contribution of qMI-Sq/To7.1 in MI-Sq/To resistance. Nine polymorphic SNPs identified within the highly significant qMI-Sq/To7.1 region were converted into KASP markers. KASP genotyping of F2 individuals narrowed down the qMI-Sq/To7.1 interval to 103 kb region flanked by two markers, Cmo3914729 and Cmo4018182, which contained 16 annotated genes and accounted for 59.84% of phenotypic variation. The Cmo4018182 KASP marker accurately predicted disease reaction in 91% of diverse Cucurbita genotypes and showed nonsynonym substitutions in the coding region of putative candidate SYNTAXIN-121 gene. These findings pave the way for marker-assisted breeding and elucidating the underlying mechanism of begomovirus resistance in C. moschata.
Collapse
Affiliation(s)
- Neha Verma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karmvir Singh Garcha
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Abhishek Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Madhu Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jiffinvir Singh Khosa
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Barinder Kaur
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Parveen Chuuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ajmer Singh Dhatt
- Directorate of Research, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
5
|
Hernandez CO, Labate J, Reitsma K, Fabrizio J, Bao K, Fei Z, Grumet R, Mazourek M. Characterization of the USDA Cucurbita pepo, C. moschata, and C. maxima germplasm collections. FRONTIERS IN PLANT SCIENCE 2023; 14:1130814. [PMID: 36993863 PMCID: PMC10040574 DOI: 10.3389/fpls.2023.1130814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
The Cucurbita genus is home to a number of economically and culturally important species. We present the analysis of genotype data generated through genotyping-by-sequencing of the USDA germplasm collections of Cucurbita pepo, C. moschata, and C. maxima. These collections include a mixture of wild, landrace, and cultivated specimens from all over the world. Roughly 1,500 - 32,000 high-quality single nucleotide polymorphisms (SNPs) were called in each of the collections, which ranged in size from 314 to 829 accessions. Genomic analyses were conducted to characterize the diversity in each of the species. Analysis revealed extensive structure corresponding to a combination of geographical origin and morphotype/market class. Genome-wide associate studies (GWAS) were conducted using both historical and contemporary data. Signals were observed for several traits, but the strongest was for the bush (Bu) gene in C. pepo. Analysis of genomic heritability, together with population structure and GWAS results, was used to demonstrate a close alignment of seed size in C. pepo, maturity in C. moschata, and plant habit in C. maxima with genetic subgroups. These data represent a large, valuable collection of sequenced Cucurbita that can be used to direct the maintenance of genetic diversity, for developing breeding resources, and to help prioritize whole-genome re-sequencing.
Collapse
Affiliation(s)
- Christopher O. Hernandez
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, United States
| | - Joanne Labate
- Plant Genetic Resource Conservation Unit, United States Department of Agricultural Research Service, Geneva, NY, United States
| | - Kathleen Reitsma
- North Central Regional Plant Introduction Station, Iowa State University, Ames, IA, United States
| | - Jack Fabrizio
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Kan Bao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
- U.S. Department of Agriculture-Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Michael Mazourek
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
6
|
Fine Mapping and Identification of SmAPRR2 Regulating Rind Color in Eggplant ( Solanum melongena L.). Int J Mol Sci 2023; 24:ijms24043059. [PMID: 36834473 PMCID: PMC9964064 DOI: 10.3390/ijms24043059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Rind color is an economically important agronomic trait in eggplant that impacts consumer preferences. In this study, bulked segregant analysis and competitive allele-specific PCR were employed to identify the candidate gene for eggplant rind color through constructing a 2794 F2 population generated from a cross between "BL01" (green pericarp) and "B1" (white pericarp). Genetic analysis of rind color revealed that a single dominant gene controls green color of eggplant peel. Pigment content measurement and cytological observations demonstrated that chlorophyll content and chloroplast number in BL01 were higher than in B1. A candidate gene (EGP19168.1) was fine-mapped to a 20.36 Kb interval on chromosome 8, which was predicted to encode the two-component response regulator-like protein Arabidopsis pseudo-response regulator2 (APRR2). Subsequently, allelic sequence analysis revealed that a SNP deletion (ACT→AT) in white-skinned eggplant led to a premature termination codon. Genotypic validation of 113 breeding lines using the Indel marker closely linked to SmAPRR2 could predict the skin color (green/white) trait with an accuracy of 92.9%. This study will be valuable for molecular marker-assisted selection in eggplant breeding and provides theoretical foundation for analyzing the formation mechanism of eggplant peel color.
Collapse
|
7
|
Hussain A, Farooq M, Naqvi RZ, Aslam MQ, Siddiqui HA, Amin I, Liu C, Liu X, Scheffler J, Asif M, Mansoor S. Whole-Genome Resequencing Deciphers New Insight Into Genetic Diversity and Signatures of Resistance in Cultivated Cotton Gossypium hirsutum. Mol Biotechnol 2023; 65:34-51. [PMID: 35778659 DOI: 10.1007/s12033-022-00527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 01/11/2023]
Abstract
Cotton is an important crop that produces fiber and cottonseed oil for the textile and oil industry. However, cotton leaf curl virus disease (CLCuD) stress is limiting its yield in several Asian countries. In this study, we have sequenced Mac7 accession, a Gossypium hirsutum resistance source against several biotic stresses. By aligning with the Gossypium hirsutum (AD1) 'TM-1' genome, a total of 4.7 and 1.2 million SNPs and InDels were identified in the Mac7 genome. The gene ontology and metabolic pathway enrichment indicated SNPs and InDels role in nucleotide bindings, secondary metabolite synthesis, and plant-pathogen interaction pathways. Furthermore, the RNA-seq data in different tissues and qPCR expression profiling under CLCuD provided individual gene roles in resistant and susceptible accessions. Interestingly, the differential NLR genes demonstrated higher expression in resistant plants rather than in susceptible plants expression. The current resequencing results may provide primary data to identify DNA resistance markers which will be helpful in marker-assisted breeding for development of Mac7-derived resistance lines.
Collapse
Affiliation(s)
- Athar Hussain
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Farooq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan.,Bioinformatics Group, Wageningen University & Research (WUR), Wageningen, Netherlands
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Muhammad Qasim Aslam
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Hamid Anees Siddiqui
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | | | - Xin Liu
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Jodi Scheffler
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture-Agricultural Research Service, USDA-ARS), 141 Experimental Station Road, Stoneville, MS, USA
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan.
| |
Collapse
|
8
|
Cocetta G, Natalini A. Ethylene: Management and breeding for postharvest quality in vegetable crops. A review. FRONTIERS IN PLANT SCIENCE 2022; 13:968315. [PMID: 36452083 PMCID: PMC9702508 DOI: 10.3389/fpls.2022.968315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/21/2022] [Indexed: 05/06/2023]
Abstract
Ethylene is a two-carbon gaseous plant growth regulator that involved in several important physiological events, including growth, development, ripening and senescence of fruits, vegetables, and ornamental crops. The hormone accelerates ripening of ethylene sensitive fruits, leafy greens and vegetables at micromolar concentrations, and its accumulation can led to fruit decay and waste during the postharvest stage. Several strategies of crops management and techniques of plant breeding have been attempted in the last decades to understand ethylene regulation pathways and ethylene-dependent biochemical and physiological processes, with the final aim to extend the produce shelf-life and improve the postharvest quality of fruits and vegetables. These investigation approaches involve the use of conventional and new breeding techniques, including precise genome-editing. This review paper aims to provide a relevant overview on the state of the art related to the use of modern breeding techniques focused on ethylene and ethylene-related metabolism, as well as on the possible postharvest technological applications for the postharvest management of ethylene-sensitive crops. An updated view and perspective on the implications of new breeding and management strategies to maintain the quality and the marketability of different crops during postharvest are given, with particular focus on: postharvest physiology (ethylene dependent) for mature and immature fruits and vegetables; postharvest quality management of vegetables: fresh and fresh cut products, focusing on the most important ethylene-dependent biochemical pathways; evolution of breeding technologies for facing old and new challenges in postharvest quality of vegetable crops: from conventional breeding and marker assisted selection to new breeding technologies focusing on transgenesis and gene editing. Examples of applied breeding techniques for model plants (tomato, zucchini and brocccoli) are given to elucidate ethylene metabolism, as well as beneficial and detrimental ethylene effects.
Collapse
Affiliation(s)
- Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Natalini
- Council for Agricultural Research and Economics – Research Centre for Vegetable and Ornamental Crops, Monsampolo del Tronto, Italy
| |
Collapse
|
9
|
Kaur B, Garcha KS, Bhatia D, Khosa JS, Sharma M, Mittal A, Verma N, Dhatt AS. Identification of single major QTL and candidate gene(s) governing hull-less seed trait in pumpkin. FRONTIERS IN PLANT SCIENCE 2022; 13:948106. [PMID: 36035714 PMCID: PMC9406289 DOI: 10.3389/fpls.2022.948106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/12/2022] [Indexed: 06/01/2023]
Abstract
The hull-less pumpkin (Cucurbita pepo) seed does not require de-hulling before use for human consumption, as a result highly preferred by the oil, nut, and baking industries. In hull-less seeds, a single recessive gene is responsible for the absence of outer thick seed coat layers; however, the genomic region and gene(s) controlling the trait are unclear to date. In this study, four crosses attempted to derive F2 and backcross populations confirmed the single recessive gene inheritance of hull-less seed trait in populations adapted to the sub-tropical climate. The candidate genomic region for hull-less seed trait was identified through the BSA-QTLseq approach using bulks of F2:3 progenies from a cross of HP111 (hulled) and HLP36 (hull-less). A novel genomic region on chromosome 12 ranging from 1.80 to 3.86 Mb was associated with the hull-less seed trait. The re-sequencing data identified a total of 396 SNPs within this region and eight were successfully converted into polymorphic KASP assays. The genotyping of segregating F2 (n = 160) with polymorphic KASP assays resulted in a 40.3 cM partial linkage map and identified Cp_3430407 (10 cM) and Cp_3498687 (16.1 cM) as flanking markers for hull-less locus (Cphl-1). These flanking markers correspond to the 68.28 kb region in the reference genome, and the marker, Cp_3430407 successfully predicted the genotype in 93.33% of the C. pepo hull-less germplasm lines, thus can be used for marker-assisted selection in parents polymorphic for the hull-less seed trait. The Cphl-1-linked genomic region (2.06 Mb) encompasses a total of 182 genes, including secondary cell wall and lignin biosynthesis-related transcriptional factors viz., "NAC" (Cp4.1LG12g04350) and "MYB" (Cp4.1LG12g03120). These genes were differentially expressed in the seeds of hulled and hull-less genotypes, and therefore could be the potential candidate genes governing the hull-less seed trait in pumpkin.
Collapse
Affiliation(s)
- Barinder Kaur
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Karmvir Singh Garcha
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jiffinvir Singh Khosa
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Madhu Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Neha Verma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ajmer Singh Dhatt
- Directorate of Research, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
10
|
Parvathi MS, Antony PD, Kutty MS. Multiple Stressors in Vegetable Production: Insights for Trait-Based Crop Improvement in Cucurbits. FRONTIERS IN PLANT SCIENCE 2022; 13:861637. [PMID: 35592574 PMCID: PMC9111534 DOI: 10.3389/fpls.2022.861637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Vegetable production is a key determinant of contribution from the agricultural sector toward national Gross Domestic Product in a country like India, the second largest producer of fresh vegetables in the world. This calls for a careful scrutiny of the threats to vegetable farming in the event of climate extremes, environmental degradation and incidence of plant pests/diseases. Cucurbits are a vast group of vegetables grown almost throughout the world, which contribute to the daily diet on a global scale. Increasing food supply to cater to the ever-increasing world population, calls for intensive, off-season and year-round cultivation of cucurbits. Current situation predisposes these crops to a multitude of stressors, often simultaneously, under field conditions. This scenario warrants a systematic understanding of the different stress specific traits/mechanisms/pathways and their crosstalk that have been examined in cucurbits and identification of gaps and formulation of perspectives on prospective research directions. The careful dissection of plant responses under specific production environments will help in trait identification for genotype selection, germplasm screens to identify superior donors or for direct genetic manipulation by modern tools for crop improvement. Cucurbits exhibit a wide range of acclimatory responses to both biotic and abiotic stresses, among which a few like morphological characters like waxiness of cuticle; primary and secondary metabolic adjustments; membrane thermostability, osmoregulation and, protein and reactive oxygen species homeostasis and turnover contributing to cellular tolerance, appear to be common and involved in cross talk under combinatorial stress exposures. This is assumed to have profound influence in triggering system level acclimation responses that safeguard growth and metabolism. The possible strategies attempted such as grafting initiatives, molecular breeding, novel genetic manipulation avenues like gene editing and ameliorative stress mitigation approaches, have paved way to unravel the prospects for combined stress tolerance. The advent of next generation sequencing technologies and big data management of the omics output generated have added to the mettle of such emanated concepts and ideas. In this review, we attempt to compile the progress made in deciphering the biotic and abiotic stress responses of cucurbits and their associated traits, both individually and in combination.
Collapse
Affiliation(s)
- M. S. Parvathi
- Department of Plant Physiology, College of Agriculture Vellanikkara, Kerala Agricultural University, Thrissur, India
| | - P. Deepthy Antony
- Centre for Intellectual Property Rights, Technology Management and Trade, College of Agriculture Vellanikkara, Kerala Agricultural University, Thrissur, India
| | - M. Sangeeta Kutty
- Department of Vegetable Science, College of Agriculture Vellanikkara, Kerala Agricultural University, Thrissur, India
| |
Collapse
|
11
|
Bo K, Duan Y, Qiu X, Zhang M, Shu Q, Sun Y, He Y, Shi Y, Weng Y, Wang C. Promoter variation in a homeobox gene, CpDll, is associated with deeply lobed leaf in Cucurbita pepo L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1223-1234. [PMID: 34985539 DOI: 10.1007/s00122-021-04026-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
CpDll, encoding an HD-Zip I transcription factor, positively regulates formation of deeply lobed leaf shape in zucchini, Cucurbita pepo, which is associated with sequence variation in its promoter region. Leaf shape is an important horticultural trait in zucchini (Cucurbita pepo L.). Deeply lobed leaves have potential advantages for high-density planting and hybrid production. However, little is known about the molecular basis of deeply lobed leaf formation in this important vegetable crop. Here, we conducted QTL analysis and fine mapping of the deeply lobed leaf (CpDll) locus using recombinant inbred lines and large F2 populations developed from crosses between the deeply lobed leaf HM-S2, and entire leaf Jin-GL parental lines. We show that CpDll exhibited incomplete dominance for the deeply lobed leaf shape in HM-S2. Map-based cloning provided evidence that CpCll encodes a type I homeodomain (HD)- and Leu zipper (Zip) element-containing transcription factor. Sequence analysis between HM-S2 and Jin-GL revealed no sequence variations in the coding sequences, whereas a number of variations were identified in the promoter region between them. DUAL-LUC assays revealed significantly stronger promoter activity in HM-S2 than that in Jin-GL. There was also significantly higher expression of CpDll in the leaf base of deeply lobed leaves of HM-S2 compared with entire leaf Jin-GL. Comparative analysis of CpDll gene homologs in nine cucurbit crop species (family Cucurbitaceae) revealed conservation in both structure and function of this gene in regulation of deeply lobed leaf formation. Our work provides new insights into the molecular basis of leaf lobe formation in pumpkin/squash and other cucurbit crops. This work also facilitates marker-assisted selection for leaf shape in zucchini breeding.
Collapse
Affiliation(s)
- Kailiang Bo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Ying Duan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiyan Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Meng Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Qin Shu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yapei Sun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yadi He
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yuzi Shi
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, Madison, WI, 53706, USA.
| | - Changlin Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
- China Vegetable Biotechnology (Shouguang) Co., Ltd, Shouguang, Shandong, People's Republic of China.
| |
Collapse
|
12
|
Michael VN, Fu Y, Shrestha S, Meru G. A Novel QTL for Resistance to Phytophthora Crown Rot in Squash. PLANTS 2021; 10:plants10102115. [PMID: 34685924 PMCID: PMC8537320 DOI: 10.3390/plants10102115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Phytophthora capsici Leonian causes significant yield losses in commercial squash (Cucurbita pepo) production worldwide. The deployment of resistant cultivars can complement integrated management practices for P. capsici, but resistant cultivars are currently unavailable for growers. Moderate resistance to Phytophthora crown rot in a selection of accession PI 181761 (C. pepo) (designated line #181761-36P) is controlled by three dominant genes (R4, R5 and R6). Introgression of these loci into elite germplasm through marker-assisted selection (MAS) can accelerate the release of new C. pepo cultivars resistant to crown rot, but these tools are currently unavailable. Here we describe the identification of a quantitative trait locus (QTL), molecular markers and candidate genes associated with crown rot resistance in #181761-36P. Five hundred and twenty-three SNP markers were genotyped in an F2 (n = 83) population derived from a cross between #181761-36P (R) and Table Queen (S) using targeted genotyping by sequencing. A linkage map (2068.96 cM) consisting of twenty-one linkage groups and an average density of 8.1 markers/cM was developed for the F2 population. The F2:3 families were phenotyped in the greenhouse with a virulent strain of P. capsica, using the spore-spray method. A single QTL (QtlPC-C13) was consistently detected on LG 13 (chromosome 13) across three experiments and explained 17.92-21.47% of phenotypic variation observed in the population. Nine candidate disease resistance gene homologs were found within the confidence interval of QtlPC-C13. Single nucleotide polymorphism (SNP) markers within these genes were converted into Kompetitive Allele Specific PCR (KASP) assays and tested for association with resistance in the F2 population. One SNP marker (C002686) was significantly associated with resistance to crown rot in the F2 population (p < 0.05). This marker is a potential target for MAS for crown rot resistance in C. pepo.
Collapse
|
13
|
Mkhize P, Mashilo J, Shimelis H. Progress on Genetic Improvement and Analysis of Bottle Gourd [Lagenaria siceraria (Molina) Standl.] for Agronomic Traits, Nutrient Compositions, and Stress Tolerance: A Review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.683635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bottle gourd [Lagenaria siceraria (Molina) Standl.] is an important multi-purpose cucurbit crop grown for its leaf, fruit, and seed. It is widely cultivated and used for human consumption in sub-Saharan Africa (SSA) providing vital human nutrition and serving as food security crop. There is wide genetic variation among bottle gourd genetic resources in Africa for diverse qualitative and quantitative attributes for effective variety design, product development, and marketing. However, the crop is under- researched and -utilized, and improved varieties are yet to be developed and commercialized in the region. Therefore, the objective of this review is to provide the progress on bottle gourd genetic improvement and genetic analysis targeting agronomic and horticultural attributes, nutritional composition, biotic, and abiotic stress tolerance to guide current and future cultivar development, germplasm access, and conservation in SSA. The first section of the paper presents progress on breeding of bottle gourd for horticultural traits, agronomic performance, nutritional and anti-nutritional composition, and biotic and abiotic stress tolerance. This is followed by important highlights on key genetic resources of cultivated and wild bottle gourd for demand driven breeding. Lastly, the review summaries advances in bottle gourd genomics, genetic engineering and genome editing. Information presented in this paper should aid bottle gourd breeders and agronomists to develop and deploy new generation and promising varieties with farmer- and market -preferred attributes.
Collapse
|
14
|
Xanthopoulou A, Montero-Pau J, Picó B, Boumpas P, Tsaliki E, Paris HS, Tsaftaris A, Kalivas A, Mellidou I, Ganopoulos I. A comprehensive RNA-Seq-based gene expression atlas of the summer squash (Cucurbita pepo) provides insights into fruit morphology and ripening mechanisms. BMC Genomics 2021; 22:341. [PMID: 33980145 PMCID: PMC8114506 DOI: 10.1186/s12864-021-07683-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. RESULTS In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. CONCLUSIONS These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Javier Montero-Pau
- Cavanilles Institute of Biodiversity and Evolutionary Biology (ICBiBE), Universitat de València, 46022 Valencia, Spain
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Panagiotis Boumpas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Eleni Tsaliki
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Harry S. Paris
- Department of Vegetable Crops and Plant Genetics, Agricultural Research Organization, Newe Ya‘ar Research Center, 3009500 Ramat Yishay, Israel
| | | | - Apostolos Kalivas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DIMITRA (ex NAGREF), GR-57001 Thermi, Macedonia Greece
| |
Collapse
|
15
|
Vogel G, LaPlant KE, Mazourek M, Gore MA, Smart CD. A combined BSA-Seq and linkage mapping approach identifies genomic regions associated with Phytophthora root and crown rot resistance in squash. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1015-1031. [PMID: 33388885 DOI: 10.1007/s00122-020-03747-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Two QTL mapping approaches were used to identify a total of six QTL associated with Phytophthora root and crown rot resistance in a biparental squash population. Phytophthora root and crown rot, caused by the soilborne oomycete pathogen Phytophthora capsici, leads to severe yield losses in squash (Cucurbita pepo). To identify quantitative trait loci (QTL) involved in resistance to this disease, we crossed a partially resistant squash breeding line with a susceptible zucchini cultivar and evaluated over 13,000 F2 seedlings in a greenhouse screen. Bulked segregant analysis with whole genome resequencing (BSA-Seq) resulted in the identification of five genomic regions-on chromosomes 4, 5, 8, 12, and 16-featuring significant allele frequency differentiation between susceptible and resistant bulks in each of two independent replicates. In addition, we conducted linkage mapping using a population of 176 F3 families derived from individually genotyped F2 individuals. Variation in disease severity among these families was best explained by a four-QTL model, comprising the same loci identified via BSA-Seq on chromosomes 4, 5, and 8 as well as an additional locus on chromosome 19, for a combined total of six QTL identified between both methods. Loci, whether those identified by BSA-Seq or linkage mapping, were of small-to-moderate effect, collectively accounting for 28-35% and individually for 2-10% of the phenotypic variance explained. However, a multiple linear regression model using one marker in each BSA-Seq QTL could predict F2:3 disease severity with only a slight drop in cross-validation accuracy compared to genomic prediction models using genome-wide markers. These results suggest that marker-assisted selection could be a suitable approach for improving Phytophthora crown and root rot resistance in squash.
Collapse
Affiliation(s)
- Gregory Vogel
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA
| | - Kyle E LaPlant
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Michael Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
16
|
Genetic Mapping and Identification of the Candidate Gene for White Seed Coat in Cucurbita maxima. Int J Mol Sci 2021; 22:ijms22062972. [PMID: 33804065 PMCID: PMC8000038 DOI: 10.3390/ijms22062972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Seed coat color is an important agronomic trait of edible seed pumpkin in Cucurbita maxima. In this study, the development pattern of seed coat was detected in yellow and white seed coat accessions Wuminglv and Agol. Genetic analysis suggested that a single recessive gene white seed coat (wsc) is involved in seed coat color regulation in Cucurbita maxima. An F2 segregating population including 2798 plants was used for fine mapping and a candidate region containing nine genes was identified. Analysis of 54 inbred accessions revealed four main Insertion/Deletion sites in the promoter of CmaCh15G005270 encoding an MYB transcription factor were co-segregated with the phenotype of seed coat color. RNA-seq analysis and qRT-PCR revealed that some genes involved in phenylpropanoid/flavonoid metabolism pathway displayed remarkable distinction in Wuminglv and Agol during the seed coat development. The flanking InDel marker S1548 was developed to predict the seed coat color in the MAS breeding with an accuracy of 100%. The results may provide valuable information for further studies in seed coat color formation and structure development in Cucurbitaceae crops and help the molecular breeding of Cucurbita maxima.
Collapse
|
17
|
Rao PG, Behera TK, Gaikwad AB, Munshi AD, Srivastava A, Boopalakrishnan G, Vinod. Genetic analysis and QTL mapping of yield and fruit traits in bitter gourd (Momordica charantia L.). Sci Rep 2021; 11:4109. [PMID: 33603131 PMCID: PMC7893057 DOI: 10.1038/s41598-021-83548-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bitter gourd (Momordica charantia L.) is an economically important vegetable crop grown in tropical parts of the world. In this study, a high-density linkage map of M. charantia was constructed through genotyping-by-sequencing (GBS) technology using F2:3 mapping population generated from the cross DBGy-201 × Pusa Do Mausami. About 2013 high-quality SNPs were assigned on a total of 20 linkage groups (LGs) spanning over 2329.2 CM with an average genetic distance of 1.16 CM. QTL analysis was performed for six major yield-contributing traits such as fruit length, fruit diameter, fruit weight, fruit flesh thickness, number of fruits per plant and yield per plant. These six quantitative traits were mapped with 19 QTLs (9 QTLs with LOD > 3) using composite interval mapping (CIM). Among 19 QTLs, 12 QTLs derived from 'Pusa Do Mausami' revealed a negative additive effect when its allele increased trait score whereas 7 QTLs derived from 'DBGy-201' revealed a positive additive effect when its allele trait score increased. The phenotypic variation (R2%) elucidated by these QTLs ranged from 0.09% (fruit flesh thickness) on LG 14 to 32.65% (fruit diameter) on LG 16 and a total of six major QTLs detected. Most QTLs detected in the present study were located relatively very close, maybe due to the high correlation among the traits. This information will serve as a significant basis for marker-assisted selection and molecular breeding in bitter gourd crop improvement.
Collapse
Affiliation(s)
- P Gangadhara Rao
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Ambika B Gaikwad
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - A D Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Arpita Srivastava
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - G Boopalakrishnan
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
18
|
Discovery of SNPs and InDels in papaya genotypes and its potential for marker assisted selection of fruit quality traits. Sci Rep 2021; 11:292. [PMID: 33431939 PMCID: PMC7801719 DOI: 10.1038/s41598-020-79401-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
Papaya is a tropical and climacteric fruit that is recognized for its nutritional benefits and medicinal applications. Its fruits ripen quickly and show a drastic fruit softening, leading to great post-harvest losses. To overcome this scenario, breeding programs of papaya must invest in exploring the available genetic variation to continue developing superior cultivars with improved fruit quality traits. The objective of this study was to perform a whole-genome genotyping (WGG) of papaya, predict the effects of the identified variants, and develop a list of ripening-related genes (RRGs) with linked variants. The Formosa elite lines of papaya Sekati and JS-12 were submitted to WGG with an Illumina Miseq platform. The effects of variants were predicted using the snpEff program. A total of 28,451 SNPs having Ts/Tv (Transition/Transversion) ratio of 2.45 and 1,982 small insertions/deletions (InDels) were identified. Most variant effects were predicted in non-coding regions, with only 2,104 and 138 effects placed in exons and splice site regions, respectively. A total of 106 RRGs were found to be associated with 460 variants, which may be converted into PCR markers to facilitate genetic mapping and diversity studies and to apply marker-assisted selection (MAS) for specific traits in papaya breeding programs.
Collapse
|
19
|
Kaur G, Pathak M, Singla D, Chhabra G, Chhuneja P, Kaur Sarao N. Quantitative Trait Loci Mapping for Earliness, Fruit, and Seed Related Traits Using High Density Genotyping-by-Sequencing-Based Genetic Map in Bitter Gourd ( Momordica charantia L.). FRONTIERS IN PLANT SCIENCE 2021; 12:799932. [PMID: 35211132 PMCID: PMC8863046 DOI: 10.3389/fpls.2021.799932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/28/2021] [Indexed: 05/17/2023]
Abstract
Bitter gourd (Momordica charantia L.) is an important vegetable crop having numerous medicinal properties. Earliness and yield related traits are main aims of bitter gourd breeding program. High resolution quantitative trait loci (QTLs) mapping can help in understanding the molecular basis of phenotypic variation of these traits and thus facilitate marker-assisted breeding. The aim of present study was to identify genetic loci controlling earliness, fruit, and seed related traits. To achieve this, genotyping-by-sequencing (GBS) approach was used to genotype 101 individuals of F4 population derived from a cross between an elite cultivar Punjab-14 and PAUBG-6. This population was phenotyped under net-house conditions for three years 2018, 2019, and 2021. The linkage map consisting of 15 linkage groups comprising 3,144 single nucleotide polymorphism (SNP) markers was used to detect the QTLs for nine traits. A total of 50 QTLs for these traits were detected which were distributed on 11 chromosomes. The QTLs explained 5.09-29.82% of the phenotypic variance. The highest logarithm of the odds (LOD) score for a single QTL was 8.68 and the lowest was 2.50. For the earliness related traits, a total of 22 QTLs were detected. For the fruit related traits, a total of 16 QTLs and for seed related traits, a total of 12 QTLs were detected. Out of 50 QTLs, 20 QTLs were considered as frequent QTLs (FQ-QTLs). The information generated in this study is very useful in the future for fine-mapping and marker-assisted selection for these traits in bitter gourd improvement program.
Collapse
Affiliation(s)
- Gurpreet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Mamta Pathak
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India
| | - Deepak Singla
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Gautam Chhabra
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Navraj Kaur Sarao
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Navraj Kaur Sarao,
| |
Collapse
|
20
|
Kaur G, Pathak M, Singla D, Sharma A, Chhuneja P, Sarao NK. High-Density GBS-Based Genetic Linkage Map Construction and QTL Identification Associated With Yellow Mosaic Disease Resistance in Bitter Gourd ( Momordica charantia L.). FRONTIERS IN PLANT SCIENCE 2021; 12:671620. [PMID: 34249043 PMCID: PMC8264296 DOI: 10.3389/fpls.2021.671620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 05/14/2023]
Abstract
Yellow mosaic disease (YMD) in bitter gourd (Momordica charantia) is a devastating disease that seriously affects its yield. Although there is currently no effective method to control the disease, breeding of resistant varieties is the most effective and economic option. Moreover, quantitative trait locus (QTL) associated with resistance to YMD has not yet been reported. With the objective of mapping YMD resistance in bitter gourd, the susceptible parent "Punjab-14" and the resistant parent "PAUBG-6" were crossed to obtain F4 mapping population comprising 101 individuals. In the present study, the genotyping by sequencing (GBS) approach was used to develop the genetic linkage map. The map contained 3,144 single nucleotide polymorphism (SNP) markers, consisted of 15 linkage groups, and it spanned 2415.2 cM with an average marker distance of 0.7 cM. By adopting the artificial and field inoculation techniques, F4:5 individuals were phenotyped for disease resistance in Nethouse (2019), Rainy (2019), and Spring season (2020). The QTL analysis using the genetic map and phenotyping data identified three QTLs qYMD.pau_3.1, qYMD.pau_4.1, and qYMD.pau_5.1 on chromosome 3, 4, and 5 respectively. Among these, qYMD.pau_3.1, qYMD.pau_4.1 QTLs were identified during the rainy season, explaining the 13.5 and 21.6% phenotypic variance respectively, whereas, during the spring season, qYMD.pau_4.1 and qYMD.pau_5.1 QTLs were observed with 17.5 and 22.1% phenotypic variance respectively. Only one QTL qYMD.pau_5.1 was identified for disease resistance under nethouse conditions with 15.6% phenotypic variance. To our knowledge, this is the first report on the identification of QTLs associated with YMD resistance in bitter gourd using SNP markers. The information generated in this study is very useful in the future for fine-mapping and marker-assisted selection for disease resistance.
Collapse
Affiliation(s)
- Gurpreet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Mamta Pathak
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India
| | - Deepak Singla
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Abhishek Sharma
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Navraj Kaur Sarao
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Navraj Kaur Sarao,
| |
Collapse
|
21
|
Quantitative Trait Locus Analysis in Squash (Cucurbita moschata) Based on Simple Sequence Repeat Markers and Restriction Site-Associated DNA Sequencing Analysis. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Squash (Cucurbita moschata) displays wide morphological and genetic variations; however, limited information is available regarding the genetic loci of squash that control its agronomic traits. To obtain basic genetic information for C. moschata, an F2 population was prepared derived from a cross between the Vietnamese cultivar ‘Bí Hồ Lô TN 6 (TN 6)’ and the Japanese cultivar ‘Shishigatani’, and flowering and fruit traits were examined. Overall, the traits showed a continuous distribution in the F2 population, suggesting that they were quantitative traits. A linkage map was constructed based on simple sequence repeat and restriction site-associated DNA (RAD) markers to detect quantitative trait loci (QTLs). Twelve QTLs for flowering and fruit traits, as well as one phenotypic trait locus, were successfully localized on the map. The present QTLs explained the phenotypic variations at a moderate to relatively high level (16.0%–47.3%). RAD markers linked to the QTLs were converted to codominant cleaved amplified polymorphic sequence (CAPS) and derived CAPS markers for the easy detection of alleles. The information reported here provides useful information for understanding the genetics of Cucurbita and other cucurbit species, and for the selection of individuals with ideal traits during the breeding of Cucurbita vegetables.
Collapse
|
22
|
Hernandez CO, Wyatt LE, Mazourek MR. Genomic Prediction and Selection for Fruit Traits in Winter Squash. G3 (BETHESDA, MD.) 2020; 10:3601-3610. [PMID: 32816923 PMCID: PMC7534422 DOI: 10.1534/g3.120.401215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 11/20/2022]
Abstract
Improving fruit quality is an important but challenging breeding goal in winter squash. Squash breeding in general is resource-intensive, especially in terms of space, and the biology of squash makes it difficult to practice selection on both parents. These restrictions translate to smaller breeding populations and limited use of greenhouse generations, which in turn, limit genetic gain per breeding cycle and increases cycle length. Genomic selection is a promising technology for improving breeding efficiency; yet, few studies have explored its use in horticultural crops. We present results demonstrating the predictive ability of whole-genome models for fruit quality traits. Predictive abilities for quality traits were low to moderate, but sufficient for implementation. To test the use of genomic selection for improving fruit quality, we conducted three rounds of genomic recurrent selection in a butternut squash (Cucurbita moschata) population. Selections were based on a fruit quality index derived from a multi-trait genomic selection model. Remnant seed from selected populations was used to assess realized gain from selection. Analysis revealed significant improvement in fruit quality index value and changes in correlated traits. This study is one of the first empirical studies to evaluate gain from a multi-trait genomic selection model in a resource-limited horticultural crop.
Collapse
Affiliation(s)
- Christopher O Hernandez
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY
| | - Lindsay E Wyatt
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY
| | - Michael R Mazourek
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY
| |
Collapse
|
23
|
Applications of genotyping-by-sequencing (GBS) in maize genetics and breeding. Sci Rep 2020; 10:16308. [PMID: 33004874 PMCID: PMC7530987 DOI: 10.1038/s41598-020-73321-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
Genotyping-by-Sequencing (GBS) is a low-cost, high-throughput genotyping method that relies on restriction enzymes to reduce genome complexity. GBS is being widely used for various genetic and breeding applications. In the present study, 2240 individuals from eight maize populations, including two association populations (AM), backcross first generation (BC1), BC1F2, F2, double haploid (DH), intermated B73 × Mo17 (IBM), and a recombinant inbred line (RIL) population, were genotyped using GBS. A total of 955,120 of raw data for SNPs was obtained for each individual, with an average genotyping error of 0.70%. The rate of missing genotypic data for these SNPs was related to the level of multiplex sequencing: ~ 25% missing data for 96-plex and ~ 55% for 384-plex. Imputation can greatly reduce the rate of missing genotypes to 12.65% and 3.72% for AM populations and bi-parental populations, respectively, although it increases total genotyping error. For analysis of genetic diversity and linkage mapping, unimputed data with a low rate of genotyping error is beneficial, whereas, for association mapping, imputed data would result in higher marker density and would improve map resolution. Because imputation does not influence the prediction accuracy, both unimputed and imputed data can be used for genomic prediction. In summary, GBS is a versatile and efficient SNP discovery approach for homozygous materials and can be effectively applied for various purposes in maize genetics and breeding.
Collapse
|
24
|
Nguyen NN, Kim M, Jung JK, Shim EJ, Chung SM, Park Y, Lee GP, Sim SC. Genome-wide SNP discovery and core marker sets for assessment of genetic variations in cultivated pumpkin ( Cucurbita spp.). HORTICULTURE RESEARCH 2020; 7:121. [PMID: 32821404 PMCID: PMC7395168 DOI: 10.1038/s41438-020-00342-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 05/24/2023]
Abstract
Three pumpkin species Cucurbita maxima, C. moschata, and C. pepo are commonly cultivated worldwide. To identify genome-wide SNPs in these cultivated pumpkin species, we collected 48 F1 cultivars consisting of 40 intraspecific hybrids (15 C. maxima, 18 C. moschata, and 7 C. pepo) and 8 interspecific hybrids (C. maxima x C. moschata). Genotyping by sequencing identified a total of 37,869 confident SNPs in this collection. These SNPs were filtered to generate a subset of 400 SNPs based on polymorphism and genome distribution. Of the 400 SNPs, 288 were used to genotype an additional 188 accessions (94 F1 cultivars, 50 breeding lines, and 44 landraces) with a SNP array-based platform. Reliable polymorphisms were observed in 224 SNPs (78.0%) and were used to assess genetic variations between and within the four predefined populations in 223 cultivated pumpkin accessions. Both principal component analysis and UPGMA clustering found four major clusters representing three pumpkin species and interspecific hybrids. This genetic differentiation was supported by pairwise Fst and Nei's genetic distance. The interspecific hybrids showed a higher level of genetic diversity relative to the other three populations. Of the 224 SNPs, five subsets of 192, 96, 48, 24, and 12 markers were evaluated for variety identification. The 192, 96, and 48 marker sets identified 204 (91.5%), 190 (85.2%), and 141 (63.2%) of the 223 accessions, respectively, while other subsets showed <25% of variety identification rates. These SNP markers provide a molecular tool with many applications for genetics and breeding in cultivated pumpkin.
Collapse
Affiliation(s)
- Nam Ngoc Nguyen
- Department of Bioresources Engineering, Sejong University, Seoul, 05006 South Korea
| | - Minkyung Kim
- Department of Bioresources Engineering, Sejong University, Seoul, 05006 South Korea
| | - Jin-Kee Jung
- Seed Testing and Research Center, Korea Seed & Variety Service, Gimcheon, 39660 South Korea
| | - Eun-Jo Shim
- Seed Testing and Research Center, Korea Seed & Variety Service, Gimcheon, 39660 South Korea
| | - Sang-Min Chung
- Department of Life Sciences, Dongguk University, Seoul, 04620 South Korea
| | - Younghoon Park
- Department of Horticultural Bioscience, Pusan National University, Miryang, 50463 South Korea
| | - Gung Pyo Lee
- Department of Plant Science and Technology, Chung-Ang University, Ansung, 17546 South Korea
| | - Sung-Chur Sim
- Department of Bioresources Engineering, Sejong University, Seoul, 05006 South Korea
- Plant Engineering Research Institute, Sejong University, Seoul, 05006 South Korea
| |
Collapse
|
25
|
Kaźmińska K, Hallmann E, Korzeniewska A, Niemirowicz-Szczytt K, Bartoszewski G. Identification of Fruit-Associated QTLs in Winter Squash ( Cucurbita maxima Duchesne) Using Recombinant Inbred Lines. Genes (Basel) 2020; 11:genes11040419. [PMID: 32295204 PMCID: PMC7230694 DOI: 10.3390/genes11040419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/18/2023] Open
Abstract
Cucurbita maxima Duchesne squash and pumpkins are cultivated world-wide. Cucurbita maxima fruits are produced for fresh market and are valuable for food processing. Therefore, fruit characteristics and yield are the traits of high economic importance for breeders. To date, the genetic basis of fruit-associated traits in C. maxima have been poorly understood. In the present study, we evaluated fruit-associated traits and conducted quantitative trait locus (QTL) analysis using recombinant inbred lines (RILs) derived from a cross of two inbred lines with different fruit morphotypes. Phenotypic data for nine fruit traits (earliness, weight, number per plant, yield per plant, length and diameter, shape index, flesh thickness, sucrose content and dry matter content) were collected for RILs in two open-field experiments. Pairwise analysis of the phenotypic data revealed correlations among the fruit and yield-associated traits. Using a previously developed genetic map, we identified 26 QTLs for eight traits. The QTLs were found in 10 locations on eight chromosomes of C. maxima. The QTLs were detected across experiments and explained up to 41.4% of the observed phenotypic variations. Major-effect QTLs for multiple fruit-associated traits were clustered on chromosome 4, suggesting that this genomic region has been under selection during diversification and/or domestication of C. maxima.
Collapse
Affiliation(s)
- Karolina Kaźmińska
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Ewelina Hallmann
- Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, 02-787 Warsaw, Poland
| | - Aleksandra Korzeniewska
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Katarzyna Niemirowicz-Szczytt
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
- Correspondence:
| |
Collapse
|
26
|
Pan Y, Wang Y, McGregor C, Liu S, Luan F, Gao M, Weng Y. Genetic architecture of fruit size and shape variation in cucurbits: a comparative perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1-21. [PMID: 31768603 DOI: 10.1007/s00122-019-03481-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 11/11/2019] [Indexed: 05/28/2023]
Abstract
The Cucurbitaceae family hosts many economically important fruit vegetables (cucurbits) such as cucumber, melon, watermelon, pumpkin/squash, and various gourds. The cucurbits are probably best known for the diverse fruit sizes and shapes, but little is known about their genetic basis and molecular regulation. Here, we reviewed the literature on fruit size (FS), shape (FSI), and fruit weight (FW) QTL identified in cucumber, melon, and watermelon, from which 150 consensus QTL for these traits were inferred. Genome-wide survey of the three cucurbit genomes identified 253 homologs of eight classes of fruit or grain size/weight-related genes cloned in Arabidopsis, tomato, and rice that encode proteins containing the characteristic CNR (cell number regulator), CSR (cell size regulator), CYP78A (cytochrome P450), SUN, OVATE, TRM (TONNEAU1 Recruiting Motif), YABBY, and WOX domains. Alignment of the consensus QTL with candidate gene homologs revealed widespread structure and function conservation of fruit size/shape gene homologs in cucurbits, which was exemplified with the fruit size/shape candidate genes CsSUN25-26-27a and CsTRM5 in cucumber, CmOFP1a in melon, and ClSUN25-26-27a in watermelon. In cucurbits, the andromonoecy (for 1-aminocyclopropane-1-carboxylate synthase) and the carpel number (for CLAVATA3) loci are known to have pleiotropic effects on fruit shape, which may complicate identification of fruit size/shape candidate genes in these regions. The present work illustrates the power of comparative analysis in understanding the genetic architecture of fruit size/shape variation, which may facilitate QTL mapping and cloning for fruit size-related traits in cucurbits. The limitations and perspectives of this approach are also discussed.
Collapse
Affiliation(s)
- Yupeng Pan
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuhui Wang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Cecilia McGregor
- Department of Horticulture and Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Shi Liu
- College of Horticulture and, Landscape Architecture at Northeast Agricultural University, Harbin, 150030, China
| | - Feishi Luan
- College of Horticulture and, Landscape Architecture at Northeast Agricultural University, Harbin, 150030, China
| | - Meiling Gao
- College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI, 53706, USA.
| |
Collapse
|
27
|
Nantawan U, Kanchana-udomkan C, Bar I, Ford R. Linkage mapping and quantitative trait loci analysis of sweetness and other fruit quality traits in papaya. BMC PLANT BIOLOGY 2019; 19:449. [PMID: 31655544 PMCID: PMC6815024 DOI: 10.1186/s12870-019-2043-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/20/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND The identification and characterisation of quantitative trait loci (QTL) is an important step towards identifying functional sequences underpinning important crop traits and for developing accurate markers for selective breeding strategies. In this study, a genotyping-by-sequencing (GBS) approach detected QTL conditioning desirable fruit quality traits in papaya. RESULTS For this, a linkage map was constructed comprising 219 single nucleotide polymorphism (SNP) loci across 10 linkage groups and covering 509 centiMorgan (cM). In total, 21 QTLs were identified for seven key fruit quality traits, including flesh sweetness, fruit weight, fruit length, fruit width skin freckle, flesh thickness and fruit firmness. Several QTL for flesh sweetness, fruit weight, length, width and firmness were stable across harvest years and individually explained up to 19.8% of the phenotypic variance of a particular trait. Where possible, candidate genes were proposed and explored further for their application to marker-assisted breeding. CONCLUSIONS This study has extended knowledge on the inheritance and genetic control for key papaya physiological and fruit quality traits. Candidate genes together with associated SNP markers represent a valuable resource for the future of strategic selective breeding of elite Australian papaya cultivars.
Collapse
Affiliation(s)
- Usana Nantawan
- Environmental Futures Research Institute, School of Environment and Sciences, Griffith University, 170 Kessels Road Nathan, Nathan, QLD 4111 Australia
| | - Chutchamas Kanchana-udomkan
- Environmental Futures Research Institute, School of Environment and Sciences, Griffith University, 170 Kessels Road Nathan, Nathan, QLD 4111 Australia
| | - Ido Bar
- Environmental Futures Research Institute, School of Environment and Sciences, Griffith University, 170 Kessels Road Nathan, Nathan, QLD 4111 Australia
| | - Rebecca Ford
- Environmental Futures Research Institute, School of Environment and Sciences, Griffith University, 170 Kessels Road Nathan, Nathan, QLD 4111 Australia
| |
Collapse
|
28
|
De Ollas C, Morillón R, Fotopoulos V, Puértolas J, Ollitrault P, Gómez-Cadenas A, Arbona V. Facing Climate Change: Biotechnology of Iconic Mediterranean Woody Crops. FRONTIERS IN PLANT SCIENCE 2019; 10:427. [PMID: 31057569 PMCID: PMC6477659 DOI: 10.3389/fpls.2019.00427] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
The Mediterranean basin is especially sensitive to the adverse outcomes of climate change and especially to variations in rainfall patterns and the incidence of extremely high temperatures. These two concurring adverse environmental conditions will surely have a detrimental effect on crop performance and productivity that will be particularly severe on woody crops such as citrus, olive and grapevine that define the backbone of traditional Mediterranean agriculture. These woody species have been traditionally selected for traits such as improved fruit yield and quality or alteration in harvesting periods, leaving out traits related to plant field performance. This is currently a crucial aspect due to the progressive and imminent effects of global climate change. Although complete genome sequence exists for sweet orange (Citrus sinensis) and clementine (Citrus clementina), olive tree (Olea europaea) and grapevine (Vitis vinifera), the development of biotechnological tools to improve stress tolerance still relies on the study of the available genetic resources including interspecific hybrids, naturally occurring (or induced) polyploids and wild relatives under field conditions. To this respect, post-genomic era studies including transcriptomics, metabolomics and proteomics provide a wide and unbiased view of plant physiology and biochemistry under adverse environmental conditions that, along with high-throughput phenotyping, could contribute to the characterization of plant genotypes exhibiting physiological and/or genetic traits that are correlated to abiotic stress tolerance. The ultimate goal of precision agriculture is to improve crop productivity, in terms of yield and quality, making a sustainable use of land and water resources under adverse environmental conditions using all available biotechnological tools and high-throughput phenotyping. This review focuses on the current state-of-the-art of biotechnological tools such as high throughput -omics and phenotyping on grapevine, citrus and olive and their contribution to plant breeding programs.
Collapse
Affiliation(s)
- Carlos De Ollas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Raphaël Morillón
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Petit-Bourg, France
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Jaime Puértolas
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Patrick Ollitrault
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), San-Giuliano, France
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
29
|
Xanthopoulou A, Montero-Pau J, Mellidou I, Kissoudis C, Blanca J, Picó B, Tsaballa A, Tsaliki E, Dalakouras A, Paris HS, Ganopoulou M, Moysiadis T, Osathanunkul M, Tsaftaris A, Madesis P, Kalivas A, Ganopoulos I. Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. HORTICULTURE RESEARCH 2019; 6:94. [PMID: 31645952 PMCID: PMC6804688 DOI: 10.1038/s41438-019-0176-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 05/20/2023]
Abstract
Cucurbita pepo contains two cultivated subspecies, each of which encompasses four fruit-shape morphotypes (cultivar groups). The Pumpkin, Vegetable Marrow, Cocozelle, and Zucchini Groups are of subsp. pepo and the Acorn, Crookneck, Scallop, and Straightneck Groups are of subsp. ovifera. Recently, a de novo assembly of the C. pepo subsp. pepo Zucchini genome was published, providing insights into its evolution. To expand our knowledge of evolutionary processes within C. pepo and to identify variants associated with particular morphotypes, we performed whole-genome resequencing of seven of these eight C. pepo morphotypes. We report for the first time whole-genome resequencing of the four subsp. pepo (Pumpkin, Vegetable Marrow, Cocozelle, green Zucchini, and yellow Zucchini) morphotypes and three of the subsp. ovifera (Acorn, Crookneck, and Scallop) morphotypes. A high-depth resequencing approach was followed, using the BGISEQ-500 platform that enables the identification of rare variants, with an average of 33.5X. Approximately 94.5% of the clean reads were mapped against the reference Zucchini genome. In total, 3,823,977 high confidence single-nucleotide polymorphisms (SNPs) were identified. Within each accession, SNPs varied from 636,918 in green Zucchini to 2,656,513 in Crookneck, and were distributed homogeneously along the chromosomes. Clear differences between subspecies pepo and ovifera in genetic variation and linkage disequilibrium are highlighted. In fact, comparison between subspecies pepo and ovifera indicated 5710 genes (22.5%) with Fst > 0.80 and 1059 genes (4.1%) with Fst = 1.00 as potential candidate genes that were fixed during the independent evolution and domestication of the two subspecies. Linkage disequilibrium was greater in subsp. ovifera than in subsp. pepo, perhaps reflective of the earlier differentiation of morphotypes within subsp. ovifera. Some morphotype-specific genes have been localized. Our results offer new clues that may provide an improved understanding of the underlying genomic regions involved in the independent evolution and domestication of the two subspecies. Comparisons among SNPs unique to particular subspecies or morphotypes may provide candidate genes responsible for traits of high economic importance.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Department of Genetics and Plant Breeding, Aristotle University of Thessaloniki, Thessaloniki, 54124 Greece
| | - Javier Montero-Pau
- Department of Biochemistry and Molecular Biology, Universitat de València, 46022 Valencia, Spain
| | - Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DEMETER (ex NAGREF), Thermi, Macedonia 57001 Greece
| | | | - José Blanca
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Aphrodite Tsaballa
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DEMETER (ex NAGREF), Thermi, Macedonia 57001 Greece
| | - Eleni Tsaliki
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DEMETER (ex NAGREF), Thermi, Macedonia 57001 Greece
| | - Athanasios Dalakouras
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DEMETER (ex NAGREF), Thermi, Macedonia 57001 Greece
| | - Harry S. Paris
- Department of Vegetable Crops and Plant Genetics, Agricultural Research Organization, Newe Ya’ar Research Center, Ramat Yishay, Israel
| | - Maria Ganopoulou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DEMETER (ex NAGREF), Thermi, Macedonia 57001 Greece
| | - Theodoros Moysiadis
- Institute of Applied Biosciences (INAB), CERTH, Thermi-Thessaloniki, 57001 Greece
| | - Maslin Osathanunkul
- Department of Biology, Faculty of Science Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Bioresources for Agriculture, Industry and MedicineChiang Mai University, Chiang Mai, Thailand
| | | | - Panagiotis Madesis
- Institute of Applied Biosciences (INAB), CERTH, Thermi-Thessaloniki, 57001 Greece
| | - Apostolos Kalivas
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DEMETER (ex NAGREF), Thermi, Macedonia 57001 Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DEMETER (ex NAGREF), Thermi, Macedonia 57001 Greece
| |
Collapse
|
30
|
Paudel L, Clevenger J, McGregor C. Chromosomal Locations and Interactions of Four Loci Associated With Seed Coat Color in Watermelon. FRONTIERS IN PLANT SCIENCE 2019; 10:788. [PMID: 31293604 PMCID: PMC6603093 DOI: 10.3389/fpls.2019.00788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 05/13/2023]
Abstract
Different species of edible seed watermelons (Citrullus spp.) are cultivated in Asia and Africa for their colorful nutritious seeds. Consumer preference varies for watermelon seed coat color. Therefore, it is an important consideration for watermelon breeders. In 1940s, a genetic model of four genes, R, T, W and D, was proposed to elucidate the inheritance of seed coat color in watermelon. In this study, we developed three segregating F2 populations: Sugar Baby (dotted black seed, RRTTWW) × plant introduction (PI) 482379 (green seed, rrTTWW), Charleston Gray (dotted black seed, RRTTWW) × PI 189225 (red seed, rrttWW), and Charleston Gray (dotted black seed, RRTTWWdd) × UGA147 (clump seed, RRTTwwDD) to re-examine the four-gene model and to map the four genes. In the dotted black × green population, the dotted black seed coat color (R_) is dominant to green seed coat color (rr). In the dotted black × red population, the dominant dotted black seed coat color and the recessive red seed coat color segregate for the R and T genes, where the R gene is dominantly epistatic to the T gene. However, the inheritance of the T locus did not fit the four-gene model, thus we named it T1 . In the dotted black × clump population, the clump seed coat color and the dotted black seed coat color segregate for W and D, where D is recessively epistatic to W. The R, T1 , W, and D loci were mapped on chromosomes 3, 5, 6, and 8, respectively, using QTL-seq and genotyping-by-sequencing (GBS). Kompetitive Allele Specific PCR (KASP™) assays and SNP markers linked to the four loci were developed to facilitate maker-assisted selection (MAS) for watermelon seed coat color.
Collapse
Affiliation(s)
- Lucky Paudel
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Josh Clevenger
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Cecilia McGregor
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
- Department of Horticulture, University of Georgia, Athens, GA, United States
- *Correspondence: Cecilia McGregor,
| |
Collapse
|
31
|
Wang Y, Wang C, Han H, Luo Y, Wang Z, Yan C, Xu W, Qu S. Construction of a High-Density Genetic Map and Analysis of Seed-Related Traits Using Specific Length Amplified Fragment Sequencing for Cucurbita maxima. FRONTIERS IN PLANT SCIENCE 2019; 10:1782. [PMID: 32153597 PMCID: PMC7046561 DOI: 10.3389/fpls.2019.01782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/20/2019] [Indexed: 05/03/2023]
Abstract
Seed traits are agronomically important for Cucurbita breeding, but the genes controlling seed size, seed weight and seed number have not been mapped in Cucurbita maxima (C. maxima). In this study, 100 F2 individual derived from two parental lines, "2013-12" and "9-6", were applied to construct a 3,376.87-cM genetic map containing 20 linkage groups (LGs) with an average genetic distance of 0.47 cM using a total of 8,406 specific length amplified fragment (SLAF) markers in C. maxima. Ten quantitative trait loci (QTLs) of seed width (SW), seed length (SL) and hundred-seed weight (HSW) were identified using the composite interval mapping (CIM) method. The QTLs affecting SW, SL and HSW explained a maximum of 38.6%, 28.9% and 17.2% of the phenotypic variation and were detected in LG6, LG6 and LG17, respectively. To validate these results, an additional 150 F2 individuals were used for QTL mapping of SW and SL with cleaved amplified polymorphic sequence (CAPS) markers. We found that two major QTLs, SL6-1 and SW6-1, could be detected in both SLAF-seq and CAPS markers in an overlapped region. Based on gene annotation and non-synonymous single-nucleotide polymorphisms (SNPs) in the major SWand SL-associated regions, we found that two genes encoding a VQ motif and an E3 ubiquitin-protein ligase may be candidate genes influencing SL, while an F-box and leucinerich repeat (LRR) domain-containing protein is the potential regulator for SW in C. maxima. This study provides the first high-density linkage map of C. maxima using SNPs developed by SLAF-seq technology, which is a powerful tool for associated mapping of important agronomic traits, map-based gene cloning and marker-assisted selection (MAS)-based breeding in C. maxima.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Chaojie Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Hongyu Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Yusong Luo
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Zhichao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Chundong Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Wenlong Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Shuping Qu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs/Northeast Agricultural University, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- *Correspondence: Shuping Qu,
| |
Collapse
|
32
|
A High-Density EST-SSR-Based Genetic Map and QTL Analysis of Dwarf Trait in Cucurbita pepo L. Int J Mol Sci 2018; 19:ijms19103140. [PMID: 30322052 PMCID: PMC6213718 DOI: 10.3390/ijms19103140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 11/17/2022] Open
Abstract
As one of the earliest domesticated species, Cucurbita pepo (including squash and pumpkin) is rich in phenotypic polymorphism and has huge economic value. In this research, using 1660 expressed sequence tags-simple sequence repeats (EST-SSRs) and 632 genomic simple sequence repeats (gSSRs), we constructed the highest-density EST-SSR-based genetic map in Cucurbita genus, which spanned 2199.1 cM in total and harbored 623 loci distributed in 20 linkage groups. Using this map as a bridge, the two previous gSSR maps were integrated by common gSSRs and the corresponding relationships around chromosomes in three sets of genomes were also collated. Meanwhile, one large segmental inversion that existed between our map and the C. pepo genome was detected. Furthermore, three Quantitative Trait Loci (QTLs) of the dwarf trait (gibberellin-sensitive dwarf type) in C. pepo were located, and the candidate region that covered the major QTL spanned 1.39 Mb, which harbored a predicted gibberellin 2-β-oxidase gene. Considering the rich phenotypic polymorphism, the important economic value in the Cucurbita genus species and several advantages of the SSR marker were identified; thus, this high-density EST-SSR-based genetic map will be useful in Pumpkin and Squash breeding work in the future.
Collapse
|
33
|
Kaźmińska K, Hallmann E, Rusaczonek A, Korzeniewska A, Sobczak M, Filipczak J, Kuczerski KS, Steciuk J, Sitarek-Andrzejczyk M, Gajewski M, Niemirowicz-Szczytt K, Bartoszewski G. Genetic mapping of ovary colour and quantitative trait loci for carotenoid content in the fruit of Cucurbita maxima Duchesne. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2018; 38:114. [PMID: 30237748 PMCID: PMC6133072 DOI: 10.1007/s11032-018-0869-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
The high content of carotenoids, sugars, dry matter, vitamins and minerals makes the fruit of winter squash (Cucurbita maxima Duchesne) a valuable fresh-market vegetable and an interesting material for the food industry. Due to their nutritional value, long shelf-life and health protective properties, winter squash fruits have gained increased interest from researchers in recent years. Despite these advantages, the genetic and genomic resources available for C. maxima are still limited. The aim of this study was to use the genetic mapping approach to map the ovary colour locus and to identify the quantitative trait loci (QTLs) for high carotenoid content and flesh colour. An F6 recombinant inbred line (RIL) mapping population was developed and used for evaluations of ovary colour, carotenoid content and fruit flesh colour. SSR markers and DArTseq genotyping-by-sequencing were used to construct an advanced genetic map that consisted of 1824 molecular markers distributed across linkage groups corresponding to 20 chromosomes of C. maxima. Total map length was 2208 cM and the average distance between markers was 1.21 cM. The locus affecting ovary colour was mapped at the end of chromosome 14. The identified QTLs for carotenoid content in the fruit and fruit flesh colour shared locations on chromosomes 2, 4 and 14. QTLs on chromosomes 2 and 4 were the most meaningful. A correlation was clearly confirmed between fruit flesh colour as described by the chroma value and carotenoid content in the fruit. A high-density genetic map of C. maxima with mapped loci for important fruit quality traits is a valuable resource for winter squash improvement programmes.
Collapse
Affiliation(s)
- Karolina Kaźmińska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewelina Hallmann
- Organic Food Division, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Rusaczonek
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Aleksandra Korzeniewska
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mirosław Sobczak
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Joanna Filipczak
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Karol Seweryn Kuczerski
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
- Present Address: Department of Plant Physiology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jarosław Steciuk
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
- Present Address: Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Monika Sitarek-Andrzejczyk
- Department of Vegetable and Medicinal Plants, Faculty of Horticulture Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marek Gajewski
- Department of Vegetable and Medicinal Plants, Faculty of Horticulture Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Katarzyna Niemirowicz-Szczytt
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
34
|
Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, Ferriol M, Gómez P, Jamilena M, Mueller L, Picó B, Cañizares J. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. PLANT BIOTECHNOLOGY JOURNAL 2018. [PMID: 29112324 DOI: 10.1101/147702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Cucurbita genus (squashes, pumpkins and gourds) includes important domesticated species such as C. pepo, C. maxima and C. moschata. In this study, we present a high-quality draft of the zucchini (C. pepo) genome. The assembly has a size of 263 Mb, a scaffold N50 of 1.8 Mb and 34 240 gene models. It includes 92% of the conserved BUSCO core gene set, and it is estimated to cover 93.0% of the genome. The genome is organized in 20 pseudomolecules that represent 81.4% of the assembly, and it is integrated with a genetic map of 7718 SNPs. Despite the small genome size, three independent lines of evidence support that the C. pepo genome is the result of a whole-genome duplication: the topology of the gene family phylogenies, the karyotype organization and the distribution of 4DTv distances. Additionally, 40 transcriptomes of 12 species of the genus were assembled and analysed together with all the other published genomes of the Cucurbitaceae family. The duplication was detected in all the Cucurbita species analysed, including C. maxima and C. moschata, but not in the more distant cucurbits belonging to the Cucumis and Citrullus genera, and it is likely to have occurred 30 ± 4 Mya in the ancestral species that gave rise to the genus.
Collapse
Affiliation(s)
- Javier Montero-Pau
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| | - José Blanca
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| | - Aureliano Bombarely
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Peio Ziarsolo
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| | - Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| | - Carlos Martí-Gómez
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| | - María Ferriol
- Instituto Agroforestal Mediterráneo (IAM), Universitat Politècnica de València, Valencia, Spain
| | - Pedro Gómez
- IFAPA Centro La Mojonera, La Mojonera, Almería, Spain
| | - Manuel Jamilena
- Department of Biology and Geology, Research Centers CIAIMBITAL and CeiA3, University of Almeria, Almería, Spain
| | - Lukas Mueller
- Boyce Thompson Institute for Plant Research, Ithaca, NY, USA
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| | - Joaquín Cañizares
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV-UPV), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
35
|
Montero‐Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí‐Gómez C, Ferriol M, Gómez P, Jamilena M, Mueller L, Picó B, Cañizares J. De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1161-1171. [PMID: 29112324 PMCID: PMC5978595 DOI: 10.1111/pbi.12860] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 05/17/2023]
Abstract
The Cucurbita genus (squashes, pumpkins and gourds) includes important domesticated species such as C. pepo, C. maxima and C. moschata. In this study, we present a high-quality draft of the zucchini (C. pepo) genome. The assembly has a size of 263 Mb, a scaffold N50 of 1.8 Mb and 34 240 gene models. It includes 92% of the conserved BUSCO core gene set, and it is estimated to cover 93.0% of the genome. The genome is organized in 20 pseudomolecules that represent 81.4% of the assembly, and it is integrated with a genetic map of 7718 SNPs. Despite the small genome size, three independent lines of evidence support that the C. pepo genome is the result of a whole-genome duplication: the topology of the gene family phylogenies, the karyotype organization and the distribution of 4DTv distances. Additionally, 40 transcriptomes of 12 species of the genus were assembled and analysed together with all the other published genomes of the Cucurbitaceae family. The duplication was detected in all the Cucurbita species analysed, including C. maxima and C. moschata, but not in the more distant cucurbits belonging to the Cucumis and Citrullus genera, and it is likely to have occurred 30 ± 4 Mya in the ancestral species that gave rise to the genus.
Collapse
Affiliation(s)
- Javier Montero‐Pau
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| | - José Blanca
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| | - Aureliano Bombarely
- Department of HorticultureVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Peio Ziarsolo
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| | - Cristina Esteras
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| | - Carlos Martí‐Gómez
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| | - María Ferriol
- Instituto Agroforestal Mediterráneo (IAM)Universitat Politècnica de ValènciaValenciaSpain
| | - Pedro Gómez
- IFAPA Centro La MojoneraLa MojoneraAlmeríaSpain
| | - Manuel Jamilena
- Department of Biology and GeologyResearch Centers CIAIMBITAL and CeiA3University of AlmeriaAlmeríaSpain
| | - Lukas Mueller
- Boyce Thompson Institute for Plant ResearchIthacaNYUSA
| | - Belén Picó
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| | - Joaquín Cañizares
- Institute for the Conservation and Breeding of Agricultural Biodiversity (COMAV‐UPV)Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
36
|
Tan Z, Zhang Z, Sun X, Li Q, Sun Y, Yang P, Wang W, Liu X, Chen C, Liu D, Teng Z, Guo K, Zhang J, Liu D, Zhang Z. Genetic Map Construction and Fiber Quality QTL Mapping Using the CottonSNP80K Array in Upland Cotton. FRONTIERS IN PLANT SCIENCE 2018; 9:225. [PMID: 29535744 PMCID: PMC5835031 DOI: 10.3389/fpls.2018.00225] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/06/2018] [Indexed: 05/04/2023]
Abstract
Cotton fiber quality traits are controlled by multiple quantitative trait loci (QTL), and the improvement of these traits requires extensive germplasm. Herein, an Upland cotton cultivar from America, Acala Maxxa, was crossed with a local high fiber quality cultivar, Yumian 1, and 180 recombinant inbred lines (RILs) were obtained. In order to dissect the genetic basis of fiber quality differences between these parents, a genetic map containing 12116 SNP markers was constructed using the CottonSNP80K assay, which covered 3741.81 cM with an average distance of 0.31 cM between markers. Based on the genetic map and growouts in three environments, we detected a total of 104 QTL controlling fiber quality traits. Among these QTL, 25 were detected in all three environments and 35 in two environments. Meanwhile, 19 QTL clusters were also identified, and nine contained at least one stable QTL (detected in three environments for a given trait). These stable QTL or QTL clusters are priorities for fine mapping, identifying candidate genes, elaborating molecular mechanisms of fiber development, and application in cotton breeding programs by marker-assisted selection (MAS).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhengsheng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| |
Collapse
|
37
|
Gangadhara Rao P, Behera TK, Gaikwad AB, Munshi AD, Jat GS, Boopalakrishnan G. Mapping and QTL Analysis of Gynoecy and Earliness in Bitter Gourd ( Momordica charantia L.) Using Genotyping-by-Sequencing (GBS) Technology. FRONTIERS IN PLANT SCIENCE 2018; 9:1555. [PMID: 30429861 PMCID: PMC6220052 DOI: 10.3389/fpls.2018.01555] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/04/2018] [Indexed: 05/05/2023]
Abstract
A high-density, high-resolution genetic map was constructed for bitter gourd (Momordica charantia L.). A total of 2013 high quality SNP markers binned to 20 linkage groups (LG) spanning a cumulative distance of 2329.2 cM were developed. Each LG ranging from 185.2 cM (LG-12) to 46.2 cM (LG-17) and average LG span of 116.46 cM. The number of SNP markers mapped in each LG varied from 23 markers in LG-20 to 146 markers in LG-1 with an average of 100.65 SNPs per LG. The average distance between markers was 1.16 cM across 20 LGs and average distance between the markers ranged from 0.70 (LG-4) to 2.92 (LG-20). A total of 22 QTLs for four traits (gynoecy, sex ratio, node and days at first female flower appearance) were identified and mapped on 20 LGs. The gynoecious (gy-1) locus is flanked by markers TP_54865 and TP_54890 on LG 12 at a distance of 3.04 cM to TP_54890 and the major QTLs identified for the earliness traits will be extremely useful in marker development and MAS for rapid development of various gynoecious lines with different genetic background of best combiner for development of early and high yielding hybrids in bitter gourd.
Collapse
Affiliation(s)
- P. Gangadhara Rao
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Tusar Kanti Behera, ;
| | | | - Anilabh Das Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gograj Singh Jat
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - G. Boopalakrishnan
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
38
|
A high-density linkage map and QTL mapping of fruit-related traits in pumpkin (Cucurbita moschata Duch.). Sci Rep 2017; 7:12785. [PMID: 28986571 PMCID: PMC5630576 DOI: 10.1038/s41598-017-13216-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022] Open
Abstract
Pumpkin (Cucurbita moschata) is an economically worldwide crop. Few quantitative trait loci (QTLs) were reported previously due to the lack of genomic and genetic resources. In this study, a high-density linkage map of C. moschata was structured by double-digest restriction site-associated DNA sequencing, using 200 F2 individuals of CMO-1 × CMO-97. By filtering 74,899 SNPs, a total of 3,470 high quality SNP markers were assigned to the map spanning a total genetic distance of 3087.03 cM on 20 linkage groups (LGs) with an average genetic distance of 0.89 cM. Based on this map, both pericarp color and strip were fined mapped to a novel single locus on LG8 in the same region of 0.31 cM with phenotypic variance explained (PVE) of 93.6% and 90.2%, respectively. QTL analysis was also performed on carotenoids, sugars, tuberculate fruit, fruit diameter, thickness and chamber width with a total of 12 traits. 29 QTLs distributed in 9 LGs were detected with PVE from 9.6% to 28.6%. It was the first high-density linkage SNP map for C. moschata which was proved to be a valuable tool for gene or QTL mapping. This information will serve as significant basis for map-based gene cloning, draft genome assembling and molecular breeding.
Collapse
|
39
|
Oueslati A, Salhi-Hannachi A, Luro F, Vignes H, Mournet P, Ollitrault P. Genotyping by sequencing reveals the interspecific C. maxima / C. reticulata admixture along the genomes of modern citrus varieties of mandarins, tangors, tangelos, orangelos and grapefruits. PLoS One 2017; 12:e0185618. [PMID: 28982157 PMCID: PMC5628881 DOI: 10.1371/journal.pone.0185618] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/15/2017] [Indexed: 11/19/2022] Open
Abstract
The mandarin horticultural group is an important component of world citrus production for the fresh fruit market. This group formerly classified as C. reticulata is highly polymorphic and recent molecular studies have suggested that numerous cultivated mandarins were introgressed by C. maxima (the pummelos). C. maxima and C. reticulata are also the ancestors of sweet and sour oranges, grapefruit, and therefore of all the "small citrus" modern varieties (mandarins, tangors, tangelos) derived from sexual hybridization between these horticultural groups. Recently, NGS technologies have greatly modified how plant evolution and genomic structure are analyzed, moving from phylogenetics to phylogenomics. The objective of this work was to develop a workflow for phylogenomic inference from Genotyping By Sequencing (GBS) data and to analyze the interspecific admixture along the nine citrus chromosomes for horticultural groups and recent varieties resulting from the combination of the C. reticulata and C. maxima gene pools. A GBS library was established from 55 citrus varieties, using the ApekI restriction enzyme and selective PCR to improve the read depth. Diagnostic polymorphisms (DPs) of C. reticulata/C. maxima differentiation were identified and used to decipher the phylogenomic structure of the 55 varieties. The GBS approach was powerful and revealed 30,289 SNPs and 8,794 Indels with 12.6% of missing data. 11,133 DPs were selected covering the nine chromosomes with a higher density in genic regions. GBS combined with the detection of DPs was powerful for deciphering the "phylogenomic karyotypes" of cultivars derived from admixture of the two ancestral species after a limited number of interspecific recombinations. All the mandarins, mandarin hybrids, tangelos and tangors analyzed displayed introgression of C. maxima in different parts of the genome. C. reticulata/C. maxima admixture should be a major component of the high phenotypic variability of this germplasm opening up the way for association studies based on phylogenomics.
Collapse
Affiliation(s)
- Amel Oueslati
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis (FST), Université de Tunis El Manar, Tunis, Tunisia
- AGAP Research Unit, Centre de coopération Internationale en Recherche Agronomique pour le Développement Petit-Bourg, Guadeloupe, France
| | - Amel Salhi-Hannachi
- Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis (FST), Université de Tunis El Manar, Tunis, Tunisia
| | - François Luro
- AGAPResearch Unit, Institut National de la Recherche Agronomique, San Giuliano, France
| | - Hélène Vignes
- AGAP Research Unit, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Pierre Mournet
- AGAP Research Unit, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Patrick Ollitrault
- AGAP Research Unit, Centre de coopération Internationale en Recherche Agronomique pour le Développement Petit-Bourg, Guadeloupe, France
| |
Collapse
|
40
|
Li L, Zhao S, Su J, Fan S, Pang C, Wei H, Wang H, Gu L, Zhang C, Liu G, Yu D, Liu Q, Zhang X, Yu S. High-density genetic linkage map construction by F2 populations and QTL analysis of early-maturity traits in upland cotton (Gossypium hirsutum L.). PLoS One 2017; 12:e0182918. [PMID: 28809947 PMCID: PMC5557542 DOI: 10.1371/journal.pone.0182918] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 11/26/2022] Open
Abstract
Due to China’s rapidly increasing population, the total arable land area has dramatically decreased; as a consequence, the competition for farming land allocated for grain and cotton production has become fierce. Therefore, to overcome the existing contradiction between cotton grain and fiber production and the limited farming land, development of early-maturing cultivars is necessary. In this research, a high-density linkage map of upland cotton was constructed using genotyping by sequencing (GBS) to discover single nucleotide polymorphism (SNP) markers associated with early maturity in 170 F2 individuals derived from a cross between LU28 and ZHONG213. The high-density genetic map, which was composed of 3978 SNP markers across the 26 cotton chromosomes, spanned 2480 cM with an average genetic distance of 0.62 cM. Collinearity analysis showed that the genetic map was of high quality and accurate and agreed well with the Gossypium hirsutum reference genome. Based on this high-density linkage map, QTL analysis was performed on cotton early-maturity traits, including FT, FBP, WGP, NFFB, HNFFB and PH. A total 47 QTLs for the six traits were detected; each of these QTLs explained between 2.61% and 32.57% of the observed phenotypic variation. A major region controlling early-maturity traits in Gossypium hirsutum was identified for FT, FBP, WGP, NFFB and HNFFB on chromosome D03. QTL analyses revealed that phenotypic variation explained (PVE) ranged from 10.42% to 32.57%. Two potential candidate genes, Gh_D03G0885 and Gh_D03G0922, were predicted in a stable QTL region and had higher expression levels in the early-maturity variety ZHONG213 than in the late-maturity variety LU28. However, further evidence is required for functional validation. This study could provide useful information for the dissection of early-maturity traits and guide valuable genetic loci for molecular-assisted selection (MAS) in cotton breeding.
Collapse
Affiliation(s)
- Libei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuqi Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- Huanggang Academy of Agricultural Sciences, Huanggang, Hubei, China
| | - Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Chi Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Guoyuan Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Dingwei Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Qibao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
- College of Agronomy, Northwest A&F University, Yangling, China
- * E-mail:
| |
Collapse
|