1
|
Mishra P, Nanda SR, Barpanda T, Dash M, Dash S, Choudhury S, Roul S, Mishra A. The complexity of kodo millet: genomic analysis and implications in crop improvement. PLANTA 2024; 261:15. [PMID: 39680216 DOI: 10.1007/s00425-024-04588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/30/2024] [Indexed: 12/17/2024]
Abstract
MAIN CONCLUSION This article explores possible future initiatives, such as the development of targeted breeding and integrated omics approach to boost kodo millet production, nutritional value, and environmental adaptation. Kodo millet is grouped under the genus Paspalum and family Gramineae. It is a tropical African crop that was initially domesticated in India approximately 3000 years ago. It is predominantly cultivated in India as well as in various south-east Asian countries. Recent years have witnessed a resurgence of interest in kodo millet breeding, particularly owing to its outstanding nutritional profile. Kodo millet's ability to adapt to different marginal environments makes it promising to be grown as a part of sustainable agriculture. Availability of a plethora of diverse genetic resources in kodo millet has been instrumental in development of various improved cultivars through conventional breeding. Additionally, functional genomics has been instrumental in decoding the complex genetic architecture of kodo millet, thus enabling identification of key genes associated with drought tolerance, disease resistance, and improved nutritional profiling. Additionally, transcriptomics has deepened the insights into gene expression pattern in response to various stresses, offering valuable information for developing resistant genotypes. The expressed sequence tags (ESTs) available will surely benefit the scientists working on molecular breeding of millets through development and use of SSRs and SNPs markers under the marker assisted selection (MAS) scheme. This article examines potential directions for future research, including the advancement of genomics and targeted breeding approaches for holistic development of the kodo millet.
Collapse
Affiliation(s)
- Pratikshya Mishra
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Sourav Ranjan Nanda
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Tanya Barpanda
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Manasi Dash
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Suman Dash
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Suman Choudhury
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Sarojini Roul
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India
| | - Abinash Mishra
- Department of Plant Breeding and Genetics, College of Agriculture, Odisha University of Agriculture & Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
2
|
Kasule F, Diack O, Mbaye M, Kakeeto R, Econopouly BF. Genomic resources, opportunities, and prospects for accelerated improvement of millets. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:273. [PMID: 39565376 PMCID: PMC11579216 DOI: 10.1007/s00122-024-04777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
KEY MESSAGE Genomic resources, alongside the tools and expertise required to leverage them, are essential for the effective improvement of globally significant millet crop species. Millets are essential for global food security and nutrition, particularly in sub-Saharan Africa and South Asia. They are crucial in promoting nutrition, climate resilience, economic development, and cultural heritage. Despite their critical role, millets have historically received less investment in developing genomic resources than major cereals like wheat, maize, and rice. However, recent advancements in genomics, particularly next-generation sequencing technologies, offer unprecedented opportunities for rapid improvement in millet crops. This review paper provides an overview of the status of genomic resources in millets and in harnessing the recent opportunities in artificial intelligence to address challenges in millet crop improvement to boost productivity, nutrition, and end quality. It emphasizes the significance of genomics in tackling global food security issues and underscores the necessity for innovative breeding strategies to translate genomics and AI into effective breeding strategies for millets.
Collapse
Affiliation(s)
- Faizo Kasule
- Interdepartmental Genetics and Genomics (IGG), Iowa State University, Ames, IA, 50011, USA
| | - Oumar Diack
- Centre National de Recherches Agronomiques de Bambey (CNRA), Institut Sénégalais de Recherches Agricoles (ISRA), BP 53, Bambey, Sénégal
| | - Modou Mbaye
- Centre d'Etude Régional Pour L'Amélioration de L'Adaptation À La Sécheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, BP 3320, Thiès, Sénégal
| | - Ronald Kakeeto
- National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute (NaSARRI), P.O. Box 56, Soroti, Uganda
| | | |
Collapse
|
3
|
Rani V, Singh VK, Joshi D, Singh R, Yadav D. Genome-wide identification of nuclear factor -Y (NF-Y) transcription factor family in finger millet reveals structural and functional diversity. Heliyon 2024; 10:e36370. [PMID: 39315219 PMCID: PMC11417175 DOI: 10.1016/j.heliyon.2024.e36370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
The Nuclear Factor Y (NF-Y) is one of the widely explored transcription factors (TFs) family for its potential role in regulating molecular mechanisms related to stress response and developmental processes. Finger millet (Eleusine coracana (L.) Gaertn) is a hardy and stress-tolerant crop where partial efforts have been made to characterize a few transcription factors. However, the NF-Y TF is still poorly explored and not well documented. The present study aims to identify and characterize NF-Y genes of finger millet using a bioinformatics approach. Genome mining revealed 57 EcNF-Y (Eleusine coracana Nuclear Factor-Y) genes in finger millet, comprising 18 NF-YA, 23 NF-YB, and 16 NF-YC genes. The gene organization, conserved motif, cis-regulatory elements, miRNA target sites, and three-dimensional structures of these NF-Ys were analyzed. The nucleotide substitution rate and gene duplication analysis showed the presence of 7 EcNF-YA, 10 EcNF-YB, and 8 EcNF-YC paralogous genes and revealed the possibilities of synonymous substitution and stabilizing selection during evolution. The role of NF-Ys of finger millet in abiotic stress tolerance was evident by the presence of relevant cis-elements such as ABRE (abscisic acid-responsive elements), DRE (dehydration-responsive element), MYB (myeloblastosis) or MYC (myelocytomatosis). Twenty-three isoforms of miR169, mainly targeting a single NF-Y gene, i.e., the EcNF-YA13 gene, were observed. This interaction could be targeted for finger millet improvement against Magnaporthe oryzae (blast fungus). Therefore, by this study, the putative functions related to biotic and abiotic stress tolerance for many of the EcNF-Y genes could be explored in finger millet.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
- Department of Biotechnology, School of Engineering and Technology, Sandip University, Nashik, 422213, Maharashtra, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - D.C. Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, 263601, Uttarakhand, India
| | - Rajesh Singh
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221 005, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, 273009, Uttar Pradesh, India
| |
Collapse
|
4
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
5
|
Sareen B, Pudake RN, Sevanthi AM, Solanke AU. Biotechnological approaches to reduce the phytic acid content in millets to improve nutritional quality. PLANTA 2024; 260:99. [PMID: 39294492 DOI: 10.1007/s00425-024-04525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
MAIN CONCLUSION The review article summarizes the approaches and potential targets to address the challenges of anti-nutrient like phytic acid in millet grains for nutritional improvement. Millets are a diverse group of minor cereal grains that are agriculturally important, nutritionally rich, and the oldest cereals in the human diet. The grains are important for protein, vitamins, macro and micronutrients, fibre, and energy sources. Despite a high amount of nutrients, millet grains also contain anti-nutrients that limit the proper utilization of nutrients and finally affect their dietary quality. Our study aims to outline the genomic information to identify the target areas of research for the exploration of candidate genes for nutritional importance and show the possibilities to address the presence of anti-nutrient (phytic acid) in millets. So, the physicochemical accessibility of micronutrients increases and the agronomic traits can do better. Several strategies have been adopted to minimize the phytic acid, a predominant anti-nutrient in cereal grains. In the present review, we highlight the potential of biotechnological tools and genome editing approaches to address phytic acid in millets. It also highlights the biosynthetic pathway of phytic acid and potential targets for knockout or silencing to achieve low phytic acid content in millets.
Collapse
Affiliation(s)
- Bhuvnesh Sareen
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Ramesh Namdeo Pudake
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
- Amity University, Uttar Pradesh, Noida, India.
| | | | - Amolkumar U Solanke
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
6
|
Mane RS, Prasad BD, Sahni S, Quaiyum Z, Sharma VK. Biotechnological studies towards improvement of finger millet using multi-omics approaches. Funct Integr Genomics 2024; 24:148. [PMID: 39218842 DOI: 10.1007/s10142-024-01438-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
A plethora of studies have uncovered numerous important genes with agricultural significance in staple crops. However, when it comes to orphan crops like minor millet, genomic research lags significantly behind that of major crops. This situation has promoted a focus on exploring research opportunities in minor millets, particularly in finger millet, using cutting-edge methods. Finger millet, a coarse cereal known for its exceptional nutritional content and ability to withstand environmental stresses represents a promising climate-smart and nutritional crop in the battle against escalating environmental challenges. The existing traditional improvement programs for finger millet are insufficient to address global hunger effectively. The lack of utilization of high-throughput platforms, genome editing, haplotype breeding, and advanced breeding approaches hinders the systematic multi-omics studies on finger millet, which are essential for pinpointing crucial genes related to agronomically important and various stress responses. The growing environmental uncertainties have widened the gap between the anticipated and real progress in crop improvement. To overcome these challenges a combination of cutting-edge multi-omics techniques such as high-throughput sequencing, speed breeding, mutational breeding, haplotype-based breeding, genomic selection, high-throughput phenotyping, pangenomics, genome editing, and more along with integration of deep learning and artificial intelligence technologies are essential to accelerate research efforts in finger millet. The scarcity of multi-omics approaches in finger millet leaves breeders with limited modern tools for crop enhancement. Therefore, leveraging datasets from previous studies could prove effective in implementing the necessary multi-omics interventions to enrich the genetic resource in finger millet.
Collapse
Affiliation(s)
- Rushikesh Sanjay Mane
- Department of AB and MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Bishun Deo Prasad
- Department of AB and MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India.
| | - Sangita Sahni
- Department of Plant Pathology, TCA Dholi, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - Zeba Quaiyum
- Department of AB and MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| | - V K Sharma
- Department of AB and MB, CBS&H, Dr. Rajendra Prasad Central Agricultural University, Pusa, Samastipur, Bihar, 848125, India
| |
Collapse
|
7
|
Mazumder S, Bhattacharya D, Lahiri D, Nag M. Milletomics: a metabolomics centered integrated omics approach toward genetic progression. Funct Integr Genomics 2024; 24:149. [PMID: 39218822 DOI: 10.1007/s10142-024-01430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Producing alternative staple foods like millet will be essential to feeding ten billion people by 2050. The increased demand for millet is driving researchers to improve its genetic variation. Millets include protein, dietary fiber, phenolic substances, and flavonoid components. Its climate resilience makes millet an appealing crop for agronomic sustainability. Integrative omics technologies could potentially identify and develop millets with desirable phenotypes that may have high agronomic value. Millets' salinity and drought tolerance have been enhanced using transcriptomics. In foxtail, finger, and pearl millet, proteomics has discovered salt-tolerant protein, phytohormone-focused protein, and drought tolerance. Metabolomics studies have revealed that certain metabolic pathways including those involving lignin, flavonoids, phenylpropanoid, and lysophospholipids are critical for many processes, including seed germination, photosynthesis, energy metabolism, and the synthesis of bioactive chemicals necessary for drought tolerance. Metabolomics integration with other omics revealed metabolome engineering and trait-specific metabolite creation. Integrated metabolomics and ionomics are still in the development stage, but they could potentially assist in comprehending the pathway of ionomers to control nutrient levels and biofortify millet. Epigenomic analysis has shown alterations in DNA methylation patterns and chromatin structure in foxtail and pearl millets in response to abiotic stress. Whole-genome sequencing utilizing next-generation sequencing is the most proficient method for finding stress-induced phytoconstituent genes. New genome sequencing enables novel biotechnological interventions including genome-wide association, mutation-based research, and other omics approaches. Millets can breed more effectively by employing next-generation sequencing and genotyping by sequencing, which may mitigate climate change. Millet marker-assisted breeding has advanced with high-throughput markers and combined genotyping technologies.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata, West Bengal, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India.
| |
Collapse
|
8
|
Adegbaju MS, Ajose T, Adegbaju IE, Omosebi T, Ajenifujah-Solebo SO, Falana OY, Shittu OB, Adetunji CO, Akinbo O. Genetic engineering and genome editing technologies as catalyst for Africa's food security: the case of plant biotechnology in Nigeria. Front Genome Ed 2024; 6:1398813. [PMID: 39045572 PMCID: PMC11263695 DOI: 10.3389/fgeed.2024.1398813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/15/2024] [Indexed: 07/25/2024] Open
Abstract
Many African countries are unable to meet the food demands of their growing population and the situation is worsened by climate change and disease outbreaks. This issue of food insecurity may lead to a crisis of epic proportion if effective measures are not in place to make more food available. Thus, deploying biotechnology towards the improvement of existing crop varieties for tolerance or resistance to both biotic and abiotic stresses is crucial to increasing crop production. In order to optimize crop production, several African countries have implemented strategies to make the most of this innovative technology. For example, Nigerian government has implemented the National Biotechnology Policy to facilitate capacity building, research, bioresource development and commercialization of biotechnology products for over two decades. Several government ministries, research centers, universities, and agencies have worked together to implement the policy, resulting in the release of some genetically modified crops to farmers for cultivation and Commercialization, which is a significant accomplishment. However, the transgenic crops were only brought to Nigeria for confined field trials; the manufacturing of the transgenic crops took place outside the country. This may have contributed to the suspicion of pressure groups and embolden proponents of biotechnology as an alien technology. Likewise, this may also be the underlying issue preventing the adoption of biotechnology products in other African countries. It is therefore necessary that African universities develop capacity in various aspects of biotechnology, to continuously train indigenous scientists who can generate innovative ideas tailored towards solving problems that are peculiar to respective country. Therefore, this study intends to establish the role of genetic engineering and genome editing towards the achievement of food security in Africa while using Nigeria as a case study. In our opinion, biotechnology approaches will not only complement conventional breeding methods in the pursuit of crop improvements, but it remains a viable and sustainable means of tackling specific issues hindering optimal crop production. Furthermore, we suggest that financial institutions should offer low-interest loans to new businesses. In order to promote the growth of biotechnology products, especially through the creation of jobs and revenues through molecular farming.
Collapse
Affiliation(s)
- Muyiwa Seyi Adegbaju
- Department of Crop, Soil and Pest Management, Federal University of Technology Akure, Akure, Ondo, Nigeria
| | - Titilayo Ajose
- Fruits and Spices Department, National Horticultural Institute, Ibadan, Oyo, Nigeria
| | | | - Temitayo Omosebi
- Department of Agricultural Technology, Federal College of Forestry, Jos, Nigeria
| | | | - Olaitan Yetunde Falana
- Department of Genetics, Genomic and Bioinformatics, National Biotechnology Research and Development Agency, Abuja, Nigeria
| | - Olufunke Bolatito Shittu
- Department of Microbiology, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Olalekan Akinbo
- African Union Development Agency-NEPAD, Office of Science, Technology and Innovation, Midrand, South Africa
| |
Collapse
|
9
|
Patan SSVK, Vallepu S, Shaik KB, Shaik N, Adi Reddy NRY, Terry RG, Sergeant K, Hausman JF. Drought resistance strategies in minor millets: a review. PLANTA 2024; 260:29. [PMID: 38879859 DOI: 10.1007/s00425-024-04427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/26/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION The review discusses growth and drought-response mechanisms in minor millets under three themes: drought escape, drought avoidance and drought tolerance. Drought is one of the most prominent abiotic stresses impacting plant growth, performance, and productivity. In the context of climate change, the prevalence and severity of drought is expected to increase in many agricultural regions worldwide. Millets (coarse grains) are a group of small-seeded grasses cultivated in arid and semi-arid regions throughout the world and are an important source of food and feed for humans and livestock. Although minor millets, i.e., foxtail millet, finger millet, proso millet, barnyard millet, kodo millet and little millet are generally hardier and more drought-resistant than cereals and major millets (sorghum and pearl millet), understanding their responses, processes and strategies in response to drought is more limited. Here, we review drought resistance strategies in minor millets under three themes: drought escape (e.g., short crop cycle, short vegetative period, developmental plasticity and remobilization of assimilates), drought avoidance (e.g., root traits for better water absorption and leaf traits to control water loss), and drought tolerance (e.g., osmotic adjustment, maintenance of photosynthetic ability and antioxidant potential). Data from 'omics' studies are summarized to provide an overview of the molecular mechanisms important in drought tolerance. In addition, the final section highlights knowledge gaps and challenges to improving minor millets. This review is intended to enhance major cereals and millet per se in light of climate-related increases in aridity.
Collapse
Affiliation(s)
| | - Suneetha Vallepu
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Khader Basha Shaik
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | - Naseem Shaik
- Department of Botany, Yogi Vemana University, Kadapa, Andhra Pradesh, 516005, India
| | | | | | - Kjell Sergeant
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, (LIST), Avenue Des Hauts Fourneaux 5, Esch-Sur-Alzette, Luxembourg
| | - Jean François Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, (LIST), Avenue Des Hauts Fourneaux 5, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|
10
|
Bhavani P, Nandini C, Maharajan T, Ningaraju TM, Nandini B, Parveen SG, Pushpa K, Ravikumar RL, Nagaraja TE, Ceasar SA. Brown-top millet: an overview of breeding, genetic, and genomic resources development for crop improvement. PLANTA 2024; 260:10. [PMID: 38796805 DOI: 10.1007/s00425-024-04446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
MAIN CONCLUSION Brown-top millet is a lesser-known millet with a high grain nutrient value, early maturation, and drought tolerance that needs basic research to understand and conserve food security. Brown-top millet [Urochloa ramosa (L.)] is currently cultivated in some developing countries (especially in India) for food and fodder, although it is less known among the small millets. Like other millets, it contains macro- and micronutrients, vitamins, minerals, proteins, and fiber, all of which have rich health benefits. The nutritional importance and health benefits of brown-top millet are still unknown to many people due to a lack of awareness, wide cultivation, and research. Hence, this millet is currently overshadowed by other major cereals. This review article aims to present the nutritional, breeding, genetic, and genomic resources of brown-top millet to inform millet and other plant researchers. It is important to note that genetic and genomic resources have not yet been created for this millet. To date, there are no genomic and transcriptomic resources for brown-top millet to develop single nucleotide polymorphisms (SNP) and insertion/Deletions (InDels) for breeding studies. Furthermore, studies regarding nutritional significance and health benefits are required to investigate the exact nutritional contents and health benefits of the brown-top millet. The present review delves into the nutritional value and health advantages of brown-top millet, as supported by the available literature. The limitations of producing brown-top millet have been enumerated. We also cover the status of marker-assisted breeding and functional genomics research on closely related species. Lastly, we draw insights for further research such as developing omics resources and applying genome editing to study and improve brown-top millet. This review will help to start breeding and other molecular studies to increase the growth and development of this cereal.
Collapse
Affiliation(s)
- P Bhavani
- Department of Biotechnology, University of Agricultural Sciences, Bangalore, Karnataka, India.
| | - C Nandini
- Zonal Agricultural and Horticultural Research Station, Babbur Farm, Hiriyur, KSNUAHS, Shivamogga, Karnataka, India.
| | - Theivanayagam Maharajan
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683104, Kerala, India
| | - T M Ningaraju
- Department of Biotechnology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - B Nandini
- College of Horticulture, Kolar, University of Horticultural Sciences, Bagalkot, Karnataka, India
| | - S Gazala Parveen
- AICRP on Small Millets, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka, India
| | - K Pushpa
- Department of Agronomy, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka, India
| | - R L Ravikumar
- Department of Biotechnology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - T E Nagaraja
- AICRP on Small Millets, University of Agricultural Sciences, GKVK, Bengaluru, Karnataka, India
| | - Stanislaus Antony Ceasar
- Division of Plant Molecular Biology and Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683104, Kerala, India
| |
Collapse
|
11
|
Wright H, Devos KM. Finger millet: a hero in the making to combat food insecurity. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:139. [PMID: 38771345 PMCID: PMC11108925 DOI: 10.1007/s00122-024-04637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Climate change and population growth pose challenges to food security. Major crops such as maize, wheat, and rice are expected to face yield reductions due to warming in the coming years, highlighting the need for incorporating climate-resilient crops in agricultural production systems. Finger millet (Eleusine coracana (L.) Gaertn) is a nutritious cereal crop adapted to arid regions that could serve as an alternative crop for sustaining the food supply in low rainfall environments where other crops routinely fail. Despite finger millet's nutritional qualities and climate resilience, it is deemed an "orphan crop," neglected by researchers compared to major crops, which has hampered breeding efforts. However, in recent years, finger millet has entered the genomics era. Next-generation sequencing resources, including a chromosome-scale genome assembly, have been developed to support trait characterization. This review discusses the current genetic and genomic resources available for finger millet while addressing the gaps in knowledge and tools that are still needed to aid breeders in bringing finger millet to its full production potential.
Collapse
Affiliation(s)
- Hallie Wright
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
12
|
Kapoor C, Anamika, Mukesh Sankar S, Singh SP, Singh N, Kumar S. Omics-driven utilization of wild relatives for empowering pre-breeding in pearl millet. PLANTA 2024; 259:155. [PMID: 38750378 DOI: 10.1007/s00425-024-04423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
MAIN CONCLUSION Pearl millet wild relatives harbour novel alleles which could be utilized to broaden genetic base of cultivated species. Genomics-informed pre-breeding is needed to speed up introgression from wild to cultivated gene pool in pearl millet. Rising episodes of intense biotic and abiotic stresses challenge pearl millet production globally. Wild relatives provide a wide spectrum of novel alleles which could address challenges posed by climate change. Pre-breeding holds potential to introgress novel diversity in genetically narrow cultivated Pennisetum glaucum from diverse gene pool. Practical utilization of gene pool diversity remained elusive due to genetic intricacies. Harnessing promising traits from wild pennisetum is limited by lack of information on underlying candidate genes/QTLs. Next-Generation Omics provide vast scope to speed up pre-breeding in pearl millet. Genomic resources generated out of draft genome sequence and improved genome assemblies can be employed to utilize gene bank accessions effectively. The article highlights genetic richness in pearl millet and its utilization with a focus on harnessing next-generation Omics to empower pre-breeding.
Collapse
Affiliation(s)
- Chandan Kapoor
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Anamika
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S Mukesh Sankar
- ICAR-Indian Institute of Spices Research, Kozhikode, Kerala, 673012, India
| | - S P Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nirupma Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Sudhir Kumar
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
13
|
Kayastha S, Sahoo JP, Mahapatra M, Sharma SS. Finger millet (Eleusine coracana) enhancement through genomic resources and breeding methods: current implications and potential future interventions. PLANTA 2024; 259:139. [PMID: 38687379 DOI: 10.1007/s00425-024-04415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Finger millet (Eleusine coracana) is an essential staple crop in many regions of Africa and Asia, valued for its nutritional content and resilience in challenging agro-ecological conditions. The enhancement of finger millet through genomic resources and breeding methods represents a promising avenue for addressing food and nutritional security. Current efforts in this field have harnessed genomic technologies to decipher the crop's genetic diversity and identify key traits related to yield, disease resistance, and nutritional content. These insights have facilitated the development of improved varieties through selective breeding, accelerating the crop's adaptation to changing environmental conditions. In the future, continued advancements in genomics and breeding methodologies hold the potential to further enhance finger millet's resilience, nutritional value, and productivity, ultimately benefiting both farmers and consumers. This review article synthesizes the current state of research and development in finger millet enhancement through the integration of genomic resources and innovative breeding methods. The utilization of these insights in selective breeding has already yielded promising results in developing improved finger millet varieties that meet the evolving needs of farmers and consumers. Moreover, this article discusses potential future interventions, including the continued advancement of genomics, precision breeding, and sustainable agricultural practices. These interventions hold the promise of further enhancing finger millet's adaptability to changing climates, its nutritional quality, and its overall productivity, thereby contributing to food security and improved livelihoods in finger millet-dependent regions.
Collapse
Affiliation(s)
- Salma Kayastha
- Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, 752054, India
| | - Jyoti Prakash Sahoo
- Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, 752054, India.
| | - Manaswini Mahapatra
- Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, 752054, India
| | - Siddhartha Shankar Sharma
- Faculty of Agriculture and Allied Sciences, C.V. Raman Global University, Bhubaneswar, 752054, India
| |
Collapse
|
14
|
Rani V, Rana S, Muthamilarasan M, Joshi DC, Yadav D. Expression profiling of Nuclear Factor-Y (NF-Y) transcription factors during dehydration and salt stress in finger millet reveals potential candidate genes for multiple stress tolerance. PLANTA 2024; 259:136. [PMID: 38679693 DOI: 10.1007/s00425-024-04417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
MAIN CONCLUSION Expression profiling of NF-Y transcription factors during dehydration and salt stress in finger millet genotypes contrastingly differing in tolerance levels identifies candidate genes for further characterization and functional studies. The Nuclear Factor-Y (NF-Y) transcription factors are known for imparting abiotic stress tolerance in different plant species. However, there is no information on the role of this transcription factor family in naturally drought-tolerant crop finger millet (Eleusine coracana L.). Therefore, interpretation of expression profiles against drought and salinity stress may provide valuable insights into specific and/or overlapping expression patterns of Eleusine coracana Nuclear Factor-Y (EcNF-Y) genes. Given this, we identified 59 NF-Y (18 NF-YA, 23 NF-YB, and 18 NF-YC) encoding genes and designated them EcNF-Y genes. Expression profiling of these genes was performed in two finger millet genotypes, PES400 (dehydration and salt stress tolerant) and VR708 (dehydration and salt stress sensitive), subjected to PEG-induced dehydration and salt (NaCl) stresses at different time intervals (0, 6, and 12 h). The qRT-PCR expression analysis reveals that the six EcNF-Y genes namely EcNF-YA1, EcNF-YA5, EcNF-YA16, EcNF-YB6, EcNF-YB10, and EcNF-YC2 might be associated with tolerance to both dehydration and salinity stress in early stress condition (6 h), suggesting the involvement of these genes in multiple stress responses in tolerant genotype. In contrast, the transcript abundance of finger millet EcNF-YA5 genes was also observed in the sensitive genotype VR708 under late stress conditions (12 h) of both dehydration and salinity stress. Therefore, the EcNF-YA5 gene might be important for adaptation to salinity and dehydration stress in sensitive finger millet genotypes. Therefore, this gene could be considered as a susceptibility determinant, which can be edited to impart tolerance. The phylogenetic analyses revealed that finger millet NF-Y genes share strong evolutionary and functional relationship to NF-Ys governing response to abiotic stresses in rice, sorghum, maize, and wheat. This is the first report of expression profiling of EcNF-Ys genes identified from the finger millet genome and reveals potential candidate for enhancing dehydration and salt tolerance.
Collapse
Affiliation(s)
- Varsha Rani
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - D C Joshi
- ICAR-Vivekananda Institute of Hill Agriculture, Almora, Uttarakhand, 263601, India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, 273009, India.
| |
Collapse
|
15
|
Prusty A, Panchal A, Singh RK, Prasad M. Major transcription factor families at the nexus of regulating abiotic stress response in millets: a comprehensive review. PLANTA 2024; 259:118. [PMID: 38592589 DOI: 10.1007/s00425-024-04394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.
Collapse
Affiliation(s)
- Ankita Prusty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anurag Panchal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Roshan Kumar Singh
- Department of Botany, Mahishadal Raj College, Purba Medinipur, Garh Kamalpur, West Bengal, 721628, India
| | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
- Department of Genetics, University of Delhi, South Campus, Benito-Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
16
|
Goyal E, Singh AK, Mahajan MM, Kanika K. Comparative transcriptome profiling of contrasting finger millet (Eleusine coracana (L.) Gaertn) genotypes under heat stress. Mol Biol Rep 2024; 51:283. [PMID: 38324135 DOI: 10.1007/s11033-024-09233-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Eleusine coracana (L.) Gaertn is a crucial C4 species renowned for its stress robustness and nutritional significance. Because of its adaptability traits, finger millet (ragi) is a storehouse of critical genomic resources for crop improvement. However, more knowledge about this crop's molecular responses to heat stress needs to be gained. METHODS AND RESULTS In the present study, a comparative RNA sequencing analysis was done in the leaf tissue of the finger millet, between the heat-sensitive (KJNS-46) and heat-tolerant (PES-110) cultivars of Ragi, in response to high temperatures. On average, each sample generated about 24 million reads. Interestingly, a comparison of transcriptomic profiling identified 684 transcripts which were significantly differentially expressed genes (DEGs) examined between the heat-stressed samples of both genotypes. The heat-induced change in the transcriptome was confirmed by qRT-PCR using a set of randomly selected genes. Pathway analysis and functional annotation analysis revealed the activation of various genes involved in response to stress specifically heat, oxidation-reduction process, water deprivation, and changes in heat shock protein (HSP) and transcription factors, calcium signaling, and kinase signaling. The basal regulatory genes, such as bZIP, were involved in response to heat stress, indicating that heat stress activates genes involved in housekeeping or related to basal regulatory processes. A substantial percentage of the DEGs belonged to proteins of unknown functions (PUFs), i.e., not yet characterized. CONCLUSION These findings highlight the importance of candidate genes, such as HSPs and pathways that can confer tolerance towards heat stress in ragi. These results will provide valuable information to improve the heat tolerance in heat-susceptible agronomically important varieties of ragi and other crops.
Collapse
Affiliation(s)
- Etika Goyal
- Biotechnology and Climate Change Laboratory, National Institute for Plant Biotechnology, New Delhi, India
| | - Amit Kumar Singh
- Biotechnology and Climate Change Laboratory, National Institute for Plant Biotechnology, New Delhi, India
| | - Mahesh Mohanrao Mahajan
- Biotechnology and Climate Change Laboratory, National Institute for Plant Biotechnology, New Delhi, India
| | - Kumar Kanika
- Biotechnology and Climate Change Laboratory, National Institute for Plant Biotechnology, New Delhi, India.
| |
Collapse
|
17
|
Yaqoob H, Tariq A, Bhat BA, Bhat KA, Nehvi IB, Raza A, Djalovic I, Prasad PVV, Mir RA. Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system. GM CROPS & FOOD 2023; 14:1-20. [PMID: 36606637 PMCID: PMC9828793 DOI: 10.1080/21645698.2022.2146952] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Domestication of orphan crops could be explored by editing their genomes. Genome editing has a lot of promise for enhancing agricultural output, and there is a lot of interest in furthering breeding in orphan crops, which are sometimes plagued with unwanted traits that resemble wild cousins. Consequently, applying model crop knowledge to orphan crops allows for the rapid generation of targeted allelic diversity and innovative breeding germplasm. We explain how plant breeders could employ genome editing as a novel platform to accelerate the domestication of semi-domesticated or wild plants, resulting in a more diversified base for future food and fodder supplies. This review emphasizes both the practicality of the strategy and the need to invest in research that advances our understanding of plant genomes, genes, and cellular systems. Planting more of these abandoned orphan crops could help alleviate food scarcities in the challenge of future climate crises.
Collapse
Affiliation(s)
- Huwaida Yaqoob
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Arooj Tariq
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Kaisar Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Jammu and Kashmir, India
| | - Iqra Bashir Nehvi
- Department of Clinical Biochemistry, SKIMS, Srinagar, Jammu and Kashmir, India
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China,Ali Raza College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - PV Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, USA
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Jammu and Kashmir, India,CONTACT Rakeeb Ahmad MirDepartment of Biotechnology, School of Life Sciences, Central University of Kashmir, Jammu and Kashmir, India
| |
Collapse
|
18
|
Verbeecke V, Custódio L, Strobbe S, Van Der Straeten D. The role of orphan crops in the transition to nutritional quality-oriented crop improvement. Biotechnol Adv 2023; 68:108242. [PMID: 37640278 DOI: 10.1016/j.biotechadv.2023.108242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/31/2023]
Abstract
Micronutrient malnutrition is a persisting problem threatening global human health. Biofortification via metabolic engineering has been proposed as a cost-effective and short-term means to alleviate this burden. There has been a recent rise in the recognition of potential that underutilized, orphan crops can hold in decreasing malnutrition concerns. Here, we illustrate how orphan crops can serve as a medium to provide micronutrients to populations in need, whilst promoting and maintaining dietary diversity. We provide a roadmap, illustrating which aspects to be taken into consideration when evaluating orphan crops. Recent developments have shown successful biofortification via metabolic engineering in staple crops. This review provides guidance in the implementation of these successes to relevant orphan crop species, with a specific focus on the relevant micronutrients iron, zinc, provitamin A and folates.
Collapse
Affiliation(s)
- Vincent Verbeecke
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Laura Custódio
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Simon Strobbe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium.
| |
Collapse
|
19
|
Chaudhary N, Salgotra RK, Chauhan BS. Genetic Enhancement of Cereals Using Genomic Resources for Nutritional Food Security. Genes (Basel) 2023; 14:1770. [PMID: 37761910 PMCID: PMC10530810 DOI: 10.3390/genes14091770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Advances in genomics resources have facilitated the evolution of cereal crops with enhanced yield, improved nutritional values, and heightened resistance to various biotic and abiotic stresses. Genomic approaches present a promising avenue for the development of high-yielding varieties, thereby ensuring food and nutritional security. Significant improvements have been made within the omics domain, specifically in genomics, transcriptomics, and proteomics. The advent of Next-Generation Sequencing (NGS) techniques has yielded an immense volume of data, accompanied by substantial progress in bioinformatic tools for proficient analysis. The synergy between genomics and computational tools has been acknowledged as pivotal for unravelling the intricate mechanisms governing genome-wide gene regulation. Within this review, the essential genomic resources are delineated, and their harmonization in the enhancement of cereal crop varieties is expounded upon, with a paramount focus on fulfilling the nutritional requisites of humankind. Furthermore, an encompassing compendium of the available genomic resources for cereal crops is presented, accompanied by an elucidation of their judicious utilization in the advancement of crop attributes.
Collapse
Affiliation(s)
- Neeraj Chaudhary
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu 180009, Jammu and Kashmir, India; (N.C.); (R.K.S.)
| | - Romesh Kumar Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Chatha, Jammu 180009, Jammu and Kashmir, India; (N.C.); (R.K.S.)
| | - Bhagirath Singh Chauhan
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
20
|
Maybery-Reupert K, Isenegger D, Hayden M, Cogan N. Development of genomic resources for Rhodes grass ( Chloris gayana), draft genome and annotated variant discovery. FRONTIERS IN PLANT SCIENCE 2023; 14:1239290. [PMID: 37731974 PMCID: PMC10507473 DOI: 10.3389/fpls.2023.1239290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Genomic resources for grasses, especially warm-season grasses are limited despite their commercial and environmental importance. Here, we report the first annotated draft whole genome sequence for diploid Rhodes grass (Chloris gayana), a tropical C4 species. Generated using long read nanopore sequencing and assembled using the Flye software package, the assembled genome is 603 Mbp in size and comprises 5,233 fragments that were annotated using the GenSas pipeline. The annotated genome has 46,087 predicted genes corresponding to 92.0% of the expected genomic content present via BUSCO analysis. Gene ontology terms and repetitive elements are identified and discussed. An additional 94 individual plant genotypes originating from three diploid and two tetraploid Rhodes grass cultivars were short-read whole genome resequenced (WGR) to generate a single nucleotide polymorphism (SNP) resource for the species that can be used to elucidate inter- and intra-cultivar relationships across both ploidy levels. A total of 75,777 high quality SNPs were used to generate a phylogenetic tree, highlighting the diversity present within the cultivars which agreed with the known breeding history. Differentiation was observed between diploid and tetraploid cultivars. The WGR data were also used to provide insights into the nature and evolution of the tetraploid status of the species, with results largely agreeing with the published literature that the tetraploids are autotetraploid.
Collapse
Affiliation(s)
- Kellie Maybery-Reupert
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Daniel Isenegger
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
| | - Matthew Hayden
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | - Noel Cogan
- Agriculture Victoria Research, AgriBio, The Centre for AgriBioscience, Bundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
21
|
Pandey S, Singh A, Jaiswal P, Singh MK, Meena KR, Singh SK. The potentialities of omics resources for millet improvement. Funct Integr Genomics 2023; 23:210. [PMID: 37355501 DOI: 10.1007/s10142-023-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Millets are nutrient-rich (nutri-rich) cereals with climate resilience attributes. However, its full productive potential is not realized due to the lack of a focused yield improvement approach, as evidenced by the available literature. Also, the lack of well-characterized genomic resources significantly limits millet improvement. But the recent availability of genomic data and advancement in omics tools has shown its enormous potential to enhance the efficiency and precision faced by conventional breeding in millet improvement. The development of high throughput genotyping platforms based on next-generation sequencing (NGS) has provided a low-cost method for genomic information, specifically for neglected nutri-rich cereals with the availability of a limited number of reference genome sequences. NGS has created new avenues for millet biotechnological interventions such as mutation-based study, GWAS, GS, and other omics technologies. The simultaneous discovery of high-throughput markers and multiplexed genotyping platform has aggressively aided marker-assisted breeding for millet improvement. Therefore, omics technology offers excellent opportunities to explore and combine useful variations for targeted traits that could impart high nutritional value to high-yielding cultivars under changing climatic conditions. In millet improvement, an in-depth account of NGS, integrating genomics data with different biotechnology tools, is reviewed in this context.
Collapse
Affiliation(s)
- Saurabh Pandey
- Department of Agricultural, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Ashutosh Singh
- Centre for Advanced Studies on Climate Change, RPCAU, Pusa, Samastipur, Bihar, 848125, India.
| | - Priyanka Jaiswal
- Lovely Professional University, Jalandhar - Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Mithilesh Kumar Singh
- Department of Genetics and Plant Breeding, RPCAU, Pusa, Samastipur, Bihar, 848125, India
| | - Khem Raj Meena
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Rajasthan, 305817, India
| | - Satish Kumar Singh
- Department of Genetics and Plant Breeding, RPCAU, Pusa, Samastipur, Bihar, 848125, India
| |
Collapse
|
22
|
Devos KM, Qi P, Bahri BA, Gimode DM, Jenike K, Manthi SJ, Lule D, Lux T, Martinez-Bello L, Pendergast TH, Plott C, Saha D, Sidhu GS, Sreedasyam A, Wang X, Wang H, Wright H, Zhao J, Deshpande S, de Villiers S, Dida MM, Grimwood J, Jenkins J, Lovell J, Mayer KFX, Mneney EE, Ojulong HF, Schatz MC, Schmutz J, Song B, Tesfaye K, Odeny DA. Genome analyses reveal population structure and a purple stigma color gene candidate in finger millet. Nat Commun 2023; 14:3694. [PMID: 37344528 DOI: 10.1038/s41467-023-38915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Finger millet is a key food security crop widely grown in eastern Africa, India and Nepal. Long considered a 'poor man's crop', finger millet has regained attention over the past decade for its climate resilience and the nutritional qualities of its grain. To bring finger millet breeding into the 21st century, here we present the assembly and annotation of a chromosome-scale reference genome. We show that this ~1.3 million years old allotetraploid has a high level of homoeologous gene retention and lacks subgenome dominance. Population structure is mainly driven by the differential presence of large wild segments in the pericentromeric regions of several chromosomes. Trait mapping, followed by variant analysis of gene candidates, reveals that loss of purple coloration of anthers and stigma is associated with loss-of-function mutations in the finger millet orthologs of the maize R1/B1 and Arabidopsis GL3/EGL3 anthocyanin regulatory genes. Proanthocyanidin production in seed is not affected by these gene knockouts.
Collapse
Affiliation(s)
- Katrien M Devos
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA.
| | - Peng Qi
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Bochra A Bahri
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Pathology, University of Georgia, Griffin, GA, 30223, USA
| | - Davis M Gimode
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, P.O. Box 39063-00623, Nairobi, Kenya
| | - Katharine Jenike
- Departments of Computer Science, Biology and Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Samuel J Manthi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, P.O. Box 39063-00623, Nairobi, Kenya
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA
| | - Dagnachew Lule
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Oromia Agricultural Research Institute, P.O. Box 81265, Addis Ababa, Ethiopia
- Ethiopian Agricultural Transformation Agency, Addis Ababa, Bole, Ethiopia
| | - Thomas Lux
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Liliam Martinez-Bello
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
- UR Ventures, University of Rochester, Rochester, NY, 14627, USA
| | - Thomas H Pendergast
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Chris Plott
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Dipnarayan Saha
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- ICAR-Central Research Institute for Jute and Allied Fibers, Kolkata, West Bengal, 700120, India
| | - Gurjot S Sidhu
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Hao Wang
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA
| | - Hallie Wright
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | - Jianxin Zhao
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Santosh Deshpande
- ICRISAT, Patancheru, 502 324, T.S., India
- Hytech Seed India Pvt. Ltd., Ravalkol Village, Medcahl-Malkajgiri Dist-, 501 401, Hubballi, T.S, India
| | - Santie de Villiers
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, 80108, Kenya
- Pwani University Biosciences Research Center (PUBReC), Kilifi, 80108, Kenya
| | - Mathews M Dida
- Department of Crop and Soil Science, Maseno University, P.O. 333, Maseno, Kenya
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - John Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany
| | - Emmarold E Mneney
- Mikocheni Agricultural Research Institute, P.O. Box 6226, Dar Es Salaam, Tanzania
- Biotechnology Society of Tanzania, P.O. Box 10257, Dar es Salaam, Tanzania
| | - Henry F Ojulong
- ICRISAT, Matopos Research Station, P.O. Box 776, Bulawayo, Zimbabwe
| | - Michael C Schatz
- Departments of Computer Science, Biology and Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bo Song
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Bio and Emerging Technology Institute, Addis Ababa, Ethiopia
| | - Damaris A Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, P.O. Box 39063-00623, Nairobi, Kenya
| |
Collapse
|
23
|
Wang Y, Abrouk M, Gourdoupis S, Koo DH, Karafiátová M, Molnár I, Holušová K, Doležel J, Athiyannan N, Cavalet-Giorsa E, Jaremko Ł, Poland J, Krattinger SG. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat Genet 2023:10.1038/s41588-023-01401-2. [PMID: 37217716 DOI: 10.1038/s41588-023-01401-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
The introgression of chromosome segments from wild relatives is an established strategy to enrich crop germplasm with disease-resistance genes1. Here we use mutagenesis and transcriptome sequencing to clone the leaf rust resistance gene Lr9, which was introduced into bread wheat from the wild grass species Aegilops umbellulata2. We established that Lr9 encodes an unusual tandem kinase fusion protein. Long-read sequencing of a wheat Lr9 introgression line and the putative Ae. umbellulata Lr9 donor enabled us to assemble the ~28.4-Mb Lr9 translocation and to identify the translocation breakpoint. We likewise cloned Lr58, which was reportedly introgressed from Aegilops triuncialis3, but has an identical coding sequence compared to Lr9. Cytogenetic and haplotype analyses corroborate that the two genes originate from the same translocation event. Our work sheds light on the emerging role of kinase fusion proteins in wheat disease resistance, expanding the repertoire of disease-resistance genes for breeding.
Collapse
Affiliation(s)
- Yajun Wang
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Spyridon Gourdoupis
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Miroslava Karafiátová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Emile Cavalet-Giorsa
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
24
|
Choudhary P, Shukla P, Muthamilarasan M. Genetic enhancement of climate-resilient traits in small millets: A review. Heliyon 2023; 9:e14502. [PMID: 37064482 PMCID: PMC10102230 DOI: 10.1016/j.heliyon.2023.e14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/28/2023] Open
Abstract
Agriculture is facing the challenge of feeding the ever-growing population that is projected to reach ten billion by 2050. While improving crop yield and productivity can address this challenge, the increasing effects of global warming and climate change seriously threaten agricultural productivity. Thus, genomics and genome modification technologies are crucial to improving climate-resilient traits to enable sustained yield and productivity; however, significant research focuses on staple crops such as rice, wheat, and maize. Crops that are naturally climate-resilient and nutritionally superior to staple cereals, such as small millets, remain neglected and underutilized by mainstream research. The ability of small millets to grow in marginal regions having limited irrigation and poor soil fertility makes these crops a better choice for cultivation in arid and semi-arid areas. Hence, mainstreaming small millets for cultivation and using omics technologies to dissect the climate-resilient traits to identify the molecular determinants underlying these traits are imperative for addressing food and nutritional security. In this context, the review discusses the genomics and genome modification approaches for dissecting key traits in small millets and their application for improving these traits in cultivated germplasm. The review also discusses biofortification for nutritional security and machine-learning approaches for trait improvement in small millets. Altogether, the review provides a roadmap for the effective use of next-generation approaches for trait improvement in small millets. This will lead to the development of improved varieties for addressing multiple insecurities prevailing in the present climate change scenario.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Pooja Shukla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
25
|
Kudapa H, Barmukh R, Vemuri H, Gorthy S, Pinnamaneni R, Vetriventhan M, Srivastava RK, Joshi P, Habyarimana E, Gupta SK, Govindaraj M. Genetic and genomic interventions in crop biofortification: Examples in millets. FRONTIERS IN PLANT SCIENCE 2023; 14:1123655. [PMID: 36950360 PMCID: PMC10025513 DOI: 10.3389/fpls.2023.1123655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Micronutrient malnutrition is a serious threat to the developing world's human population, which largely relies on a cereal-based diet that lacks diversity and micronutrients. Besides major cereals, millets represent the key sources of energy, protein, vitamins, and minerals for people residing in the dryland tropics and drought-prone areas of South Asia and sub-Saharan Africa. Millets serve as multi-purpose crops with several salient traits including tolerance to abiotic stresses, adaptation to diverse agro-ecologies, higher productivity in nutrient-poor soils, and rich nutritional characteristics. Considering the potential of millets in empowering smallholder farmers, adapting to changing climate, and transforming agrifood systems, the year 2023 has been declared by the United Nations as the International Year of Millets. In this review, we highlight recent genetic and genomic innovations that can be explored to enhance grain micronutrient density in millets. We summarize the advances made in high-throughput phenotyping to accurately measure grain micronutrient content in cereals. We shed light on genetic diversity in millet germplasm collections existing globally that can be exploited for developing nutrient-dense and high-yielding varieties to address food and nutritional security. Furthermore, we describe the progress made in the fields of genomics, proteomics, metabolomics, and phenomics with an emphasis on enhancing the grain nutritional content for designing competitive biofortified varieties for the future. Considering the close genetic-relatedness within cereals, upcoming research should focus on identifying the genetic and genomic basis of nutritional traits in millets and introgressing them into major cereals through integrated omics approaches. Recent breakthroughs in the genome editing toolbox would be crucial for mainstreaming biofortification in millets.
Collapse
Affiliation(s)
- Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Rutwik Barmukh
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Hindu Vemuri
- International Maize and Wheat Improvement Center (CIMMYT), Patancheru, Telangana, India
| | - Sunita Gorthy
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | | | - Mani Vetriventhan
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Priyanka Joshi
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - S. K. Gupta
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
| | - Mahalingam Govindaraj
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, India
- HarvestPlus Program, Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Cali, Colombia
| |
Collapse
|
26
|
Lydia Pramitha J, Ganesan J, Francis N, Rajasekharan R, Thinakaran J. Revitalization of small millets for nutritional and food security by advanced genetics and genomics approaches. Front Genet 2023; 13:1007552. [PMID: 36699471 PMCID: PMC9870178 DOI: 10.3389/fgene.2022.1007552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/07/2022] [Indexed: 01/12/2023] Open
Abstract
Small millets, also known as nutri-cereals, are smart foods that are expected to dominate food industries and diets to achieve nutritional security. Nutri-cereals are climate resilient and nutritious. Small millet-based foods are becoming popular in markets and are preferred for patients with celiac and diabetes. These crops once ruled as food and fodder but were pushed out of mainstream cultivation with shifts in dietary habits to staple crops during the green revolution. Nevertheless, small millets are rich in micronutrients and essential amino acids for regulatory activities. Hence, international and national organizations have recently aimed to restore these lost crops for their desirable traits. The major goal in reviving these crops is to boost the immune system of the upcoming generations to tackle emerging pandemics and disease infestations in crops. Earlier periods of civilization consumed these crops, which had a greater significance in ethnobotanical values. Along with nutrition, these crops also possess therapeutic traits and have shown vast medicinal use in tribal communities for the treatment of diseases like cancer, cardiovascular disease, and gastrointestinal issues. This review highlights the significance of small millets, their values in cultural heritage, and their prospects. Furthermore, this review dissects the nutritional and therapeutic traits of small millets for developing sustainable diets in near future.
Collapse
Affiliation(s)
- J. Lydia Pramitha
- Karunya Institute of Technology and Sciences, Coimbatore, India,*Correspondence: J. Lydia Pramitha,
| | - Jeeva Ganesan
- Tamil Nadu Agricultural University, Coimbatore, India
| | - Neethu Francis
- Karunya Institute of Technology and Sciences, Coimbatore, India
| | | | | |
Collapse
|
27
|
Wang Y, Yu J, Jiang M, Lei W, Zhang X, Tang H. Sequencing and Assembly of Polyploid Genomes. Methods Mol Biol 2023; 2545:429-458. [PMID: 36720827 DOI: 10.1007/978-1-0716-2561-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Polyploidy has been observed throughout major eukaryotic clades and has played a vital role in the evolution of angiosperms. Recent polyploidizations often result in highly complex genome structures, posing challenges to genome assembly and phasing. Recent advances in sequencing technologies and genome assembly algorithms have enabled high-quality, near-complete chromosome-level assemblies of polyploid genomes. Advances in novel sequencing technologies include highly accurate single-molecule sequencing with HiFi reads, chromosome conformation capture with Hi-C technique, and linked reads sequencing. Additionally, new computational approaches have also significantly improved the precision and reliability of polyploid genome assembly and phasing, such as HiCanu, hifiasm, ALLHiC, and PolyGembler. Herein, we review recently published polyploid genomes and compare the various sequencing, assembly, and phasing approaches that are utilized in these genome studies. Finally, we anticipate that accurate and telomere-to-telomere chromosome-level assembly of polyploid genomes could ultimately become a routine procedure in the near future.
Collapse
Affiliation(s)
- Yibin Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaxin Yu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengwei Jiang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenlong Lei
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
28
|
Brhane H, Haileselassie T, Tesfaye K, Ortiz R, Hammenhag C, Abreha KB, Vetukuri RR, Geleta M. Finger millet RNA-seq reveals differential gene expression associated with tolerance to aluminum toxicity and provides novel genomic resources. FRONTIERS IN PLANT SCIENCE 2022; 13:1068383. [PMID: 36570897 PMCID: PMC9780683 DOI: 10.3389/fpls.2022.1068383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/21/2022] [Indexed: 06/01/2023]
Abstract
Eleusine coracana, finger millet, is a multipurpose crop cultivated in arid and semi-arid regions of Africa and Asia. RNA sequencing (RNA-seq) was used in this study to obtain valuable genomic resources and identify genes differentially expressed between Al-tolerant and Al-susceptible genotypes. Two groups of finger millet genotypes were used: Al-tolerant (215836, 215845, and 229722) and Al-susceptible (212462, 215804 and 238323). The analysis of the RNA-seq data resulted in 198,546 unigenes, 56.5% of which were annotated with significant hits in one or more of the following six databases: NR (48.8%), GO (29.7%), KEGG (45%), PlantTFDB (19.0%), Uniprot (49.2%), and NT (46.2%). It is noteworthy that only 220 unigenes in the NR database had significant hits against finger millet sequences suggesting that finger millet's genomic resources are scarce. The gene expression analysis revealed that 322 genes were significantly differentially expressed between the Al-tolerant and Al-susceptible genotypes, of which 40.7% were upregulated while 59.3% were downregulated in Al-tolerant genotypes. Among the significant DEGs, 54.7% were annotated in the GO database with the top hits being ATP binding (GO:0005524) and DNA binding (GO:0003677) in the molecular function, DNA integration (GO:0015074) and cell redox homeostasis in the biological process, as well as cellular anatomical entity and intracellular component in the cellular component GO classes. Several of the annotated DEGs were significantly enriched for their corresponding GO terms. The KEGG pathway analysis resulted in 60 DEGs that were annotated with different pathway classes, of which carbohydrate metabolism and signal transduction were the most prominent. The homologs of a number of significant DEGs have been previously reported as being associated with Al or other abiotic stress responses in various crops, including carboxypeptidase SOL1, HMA3, AP2, bZIP, C3H, and WRKY TF genes. A more detailed investigation of these and other DEGs will enable genomic-led breeding for Al tolerance in finger millet. RNA-seq data analysis also yielded 119,073 SNP markers, the majority of which had PIC values above 0.3, indicating that they are highly informative. Additionally, 3,553 single-copy SSR markers were identified, of which trinucleotide SSRs were the most prevalent. These genomic resources contribute substantially to the enrichment of genomic databases for finger millet, and facilitate future research on this crop.
Collapse
Affiliation(s)
- Haftom Brhane
- Biology Department, Aksum University, Aksum, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute, Ministry of Innovation and Technology, Addis Ababa, Ethiopia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Kibrom B. Abreha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
29
|
Rakkammal K, Priya A, Pandian S, Maharajan T, Rathinapriya P, Satish L, Ceasar SA, Sohn SI, Ramesh M. Conventional and Omics Approaches for Understanding the Abiotic Stress Response in Cereal Crops-An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:2852. [PMID: 36365305 PMCID: PMC9655223 DOI: 10.3390/plants11212852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 05/22/2023]
Abstract
Cereals have evolved various tolerance mechanisms to cope with abiotic stress. Understanding the abiotic stress response mechanism of cereal crops at the molecular level offers a path to high-yielding and stress-tolerant cultivars to sustain food and nutritional security. In this regard, enormous progress has been made in the omics field in the areas of genomics, transcriptomics, and proteomics. Omics approaches generate a massive amount of data, and adequate advancements in computational tools have been achieved for effective analysis. The combination of integrated omics and bioinformatics approaches has been recognized as vital to generating insights into genome-wide stress-regulation mechanisms. In this review, we have described the self-driven drought, heat, and salt stress-responsive mechanisms that are highlighted by the integration of stress-manipulating components, including transcription factors, co-expressed genes, proteins, etc. This review also provides a comprehensive catalog of available online omics resources for cereal crops and their effective utilization. Thus, the details provided in the review will enable us to choose the appropriate tools and techniques to reduce the negative impacts and limit the failures in the intensive crop improvement study.
Collapse
Affiliation(s)
- Kasinathan Rakkammal
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Arumugam Priya
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Subramani Pandian
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Theivanayagam Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Cochin 683104, Kerala, India
| | - Periyasamy Rathinapriya
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, Mandapam Camp, CSIR—Central Salt and Marine Chemicals Research Institute, Bhavnagar 623519, Tamil Nadu, India
| | | | - Soo-In Sohn
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
30
|
Akagi T, Jung K, Masuda K, Shimizu KK. Polyploidy before and after domestication of crop species. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102255. [PMID: 35870416 DOI: 10.1016/j.pbi.2022.102255] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in the genomics of polyploid species answer some of the long-standing questions about the role of polyploidy in crop species. Here, we summarize the current literature to reexamine scenarios in which polyploidy played a role both before and after domestication. The prevalence of polyploidy can help to explain environmental robustness in agroecosystems. This review also clarifies the molecular basis of some agriculturally advantageous traits of polyploid crops, including yield increments in polyploid cotton via subfunctionalization, modification of a separated sexuality to selfing in polyploid persimmon via neofunctionalization, and transition to a selfing system via nonfunctionalization combined with epistatic interaction between duplicated S-loci. The rapid progress in genomics and genetics is discussed along with how this will facilitate functional studies of understudied polyploid crop species.
Collapse
Affiliation(s)
- Takashi Akagi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| | - Katharina Jung
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland
| | - Kanae Masuda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland; Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, 244-0813 Totsuka-ward, Yokohama, Japan.
| |
Collapse
|
31
|
Blume R, Yemets A, Korkhovyi V, Radchuk V, Rakhmetov D, Blume Y. Genome-wide identification and analysis of the cytokinin oxidase/dehydrogenase ( ckx) gene family in finger millet ( Eleusine coracana). Front Genet 2022; 13:963789. [PMID: 36299586 PMCID: PMC9589517 DOI: 10.3389/fgene.2022.963789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Cytokinin dehydrogenase/oxidase (CKX) enzymes play a key role in regulating cytokinin (CK) levels in plants by degrading the excess of this phytohormone. CKX genes have proven an attractive target for genetic engineering, as their silencing boosts cytokinin accumulation in various tissues, thereby contributing to a rapid increase in biomass and overall plant productivity. We previously reported a similar effect in finger millet (Eleusine coracana) somaclonal lines, caused by downregulation of EcCKX1 and EcCKX2. However, the CKX gene family has numerous representatives, especially in allopolyploid crop species, such as E. coracana. To date, the entire CKX gene family of E. coracana and its related species has not been characterized. We offer here, for the first time, a comprehensive genome-wide identification and analysis of a panel of CKX genes in finger millet. The functional genes identified in the E. coracana genome are compared with the previously-identified genes, EcCKX1 and EcCKX2. Exon-intron structural analysis and motif analysis of FAD- and CK-binding domains are performed. The phylogeny of the EcCKX genes suggests that CKX genes are divided into several distinct groups, corresponding to certain isotypes. Finally, the phenotypic effect of EcCKX1 and EcCKX2 in partially silencing the SE7 somaclonal line is investigated, showing that lines deficient in CKX-expression demonstrate increased grain yield and greater bushiness, enhanced biomass accumulation, and a shorter vegetation cycle.
Collapse
Affiliation(s)
- Rostyslav Blume
- Department of Population Genetics, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Alla Yemets
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vitaliy Korkhovyi
- Department of Cell Biology and Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Dzhamal Rakhmetov
- M. M. Gryshko National Botanic Garden of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Yaroslav Blume
- Department of Genomics and Molecular Biotechnology, Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
32
|
Babele PK, Kudapa H, Singh Y, Varshney RK, Kumar A. Mainstreaming orphan millets for advancing climate smart agriculture to secure nutrition and health. FRONTIERS IN PLANT SCIENCE 2022; 13:902536. [PMID: 36035707 PMCID: PMC9412166 DOI: 10.3389/fpls.2022.902536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/18/2022] [Indexed: 05/29/2023]
Abstract
The ever-changing climate and the current COVID-19 pandemic compound the problems and seriously impact agriculture production, resulting in socio-economic insecurities and imposing health implications globally. Most of the poor and malnourished population in the developing countries depends on agriculture for food, income, and employment. Impact of climate change together with the COVID-19 outbreak revealed immense problems highlighting the importance of mainstreaming climate-resilient and low input crops with more contemporary agriculture practices. Orphan millets play a vital role in the poor and malnourished population's livelihood, food and nutrition security. Recognizing their unique potential, the United Nations-Food and Agriculture Organization has announced the year 2023 as the "International Year of Millets". However, despite the unique properties for present and future agriculture of orphan millets, their cultivation is declining in many countries. As a result, millets have gained attention from researchers which eventually decelerated "multi-omics" resource generation. This review summarizes the benefits of millets and major barriers/ bottlenecks in their improvement. We also discuss the pre- and post-harvest technologies; policies required to introduce and establish millets in mainstream agriculture. To improve and ensure the livelihood of the poor/malnourished population, intensive efforts are urgently needed in advancing the research and development, implementing pre- and post-harvest technological intervention strategies, and making favorable policies for orphan crops to accomplish food and nutrition security. National and international collaborations are also indispensable to address the uncertain effects of climate change and COVID-19.
Collapse
Affiliation(s)
- Piyoosh K. Babele
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Himabindu Kudapa
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Yogeshwar Singh
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- Murdoch's Centre for Crop Research & Food Innovation, State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA, Australia
| | - Anil Kumar
- College of Agriculture, Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh, India
| |
Collapse
|
33
|
Sarker U, Lin YP, Oba S, Yoshioka Y, Hoshikawa K. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:104-123. [PMID: 35487123 DOI: 10.1016/j.plaphy.2022.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 05/23/2023]
Abstract
Climate change causes environmental variation worldwide, which is one of the most serious threats to global food security. In addition, more than 2 billion people in the world are reported to suffer from serious malnutrition, referred to as 'hidden hunger.' Dependence on only a few crops could lead to the loss of genetic diversity and high fragility of crop breeding in systems adapting to global scale climate change. The exploitation of underutilized species and genetic resources, referred to as orphan crops, could be a useful approach for resolving the issue of adaptability to environmental alteration, biodiversity preservation, and improvement of nutrient quality and quantity to ensure food security. Moreover, the use of these alternative crops will help to increase the human health benefits and the income of farmers in developing countries. In this review, we highlight the potential of orphan crops, especially amaranths, for use as vegetables and health-promoting nutritional components. This review highlights promising diversified sources of amaranth germplasms, their tolerance to abiotic stresses, and their nutritional, phytochemical, and antioxidant values for vegetable purposes. Betalains (betacyanins and betaxanthins), unique antioxidant components in amaranth vegetables, are also highlighted regarding their chemodiversity across amaranth germplasms and their stability and degradation. In addition, we discuss the physiological functions, antioxidant, antilipidemic, anticancer, and antimicrobial activities, as well as the biosynthesis pathway, molecular, biochemical, genetics, and genomic mechanisms of betalains in detail.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Ya-Ping Lin
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan, 74199, Taiwan
| | - Shinya Oba
- Faculty of Applied Biological Science, Gifu University, Gifu, 501-1193, Japan
| | - Yosuke Yoshioka
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Ibaraki, Japan; Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ken Hoshikawa
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan, 74199, Taiwan; Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan; Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki, 305-8686, Japan.
| |
Collapse
|
34
|
Chapman MA, He Y, Zhou M. Beyond a reference genome: pangenomes and population genomics of underutilized and orphan crops for future food and nutrition security. THE NEW PHYTOLOGIST 2022; 234:1583-1597. [PMID: 35318683 PMCID: PMC9994440 DOI: 10.1111/nph.18021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/22/2022] [Indexed: 04/14/2023]
Abstract
Underutilized crops are, by definition, under-researched compared to staple crops yet come with traits that may be especially important given climate change and the need to feed a globally increasing population. These crops are often stress-tolerant, and this combined with unique and beneficial nutritional profiles. Whilst progress is being made by generating reference genome sequences, in this Tansley Review, we show how this is only the very first step. We advocate that going 'beyond a reference genome' should be a priority, as it is only at this stage one can identify the specific genes and the adaptive alleles that underpin the valuable traits. We sum up how population genomic and pangenomic approaches have led to the identification of stress- and disease-tolerant alleles in staple crops and compare this to the small number of examples from underutilized crops. We also demonstrate how previously underutilized crops have benefitted from genomic advances and that many breeding targets in underutilized crops are often well studied in staple crops. This cross-crop population-level resequencing could lead to an understanding of the genetic basis of adaptive traits in underutilized crops. This level of investment may be crucial for fully understanding the value of these crops before they are lost.
Collapse
Affiliation(s)
- Mark A. Chapman
- Biological SciencesUniversity of SouthamptonLife Sciences Building 85, Highfield CampusSouthamptonSO17 1BJUK
| | - Yuqi He
- Institute of Crop SciencesChinese Academy of Agricultural SciencesRoom 405, National Crop Gene Bank BuildingZhongguancun South Street No. 12Haidian DistrictBeijing100081China
| | - Meiliang Zhou
- Institute of Crop SciencesChinese Academy of Agricultural SciencesRoom 405, National Crop Gene Bank BuildingZhongguancun South Street No. 12Haidian DistrictBeijing100081China
| |
Collapse
|
35
|
Wilson ML, VanBuren R. Leveraging millets for developing climate resilient agriculture. Curr Opin Biotechnol 2022; 75:102683. [DOI: 10.1016/j.copbio.2022.102683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 01/31/2023]
|
36
|
Brhane H, Haileselassie T, Tesfaye K, Ortiz R, Hammenhag C, Abreha KB, Geleta M. Novel GBS-Based SNP Markers for Finger Millet and Their Use in Genetic Diversity Analyses. Front Genet 2022; 13:848627. [PMID: 35559011 PMCID: PMC9090224 DOI: 10.3389/fgene.2022.848627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/21/2022] [Indexed: 12/04/2022] Open
Abstract
Eleusine coracana (L.) Gaertn., commonly known as finger millet, is a multipurpose crop used for food and feed. Genomic tools are required for the characterization of crop gene pools and their genomics-led breeding. High-throughput sequencing-based characterization of finger millet germplasm representing diverse agro-ecologies was considered an effective method for determining its genetic diversity, thereby suggesting potential candidates for breeding. In this study, the genotyping-by-sequencing (GBS) method was used to simultaneously identify novel single nucleotide polymorphism (SNP) markers and genotype 288 finger millet accessions collected from Ethiopia and Zimbabwe. The accessions were characterized at individual and group levels using 5,226 bi-allelic SNPs, with a minimum allele frequency (MAF) of above 0.05, distributed across 2,500 scaffolds of the finger millet reference genome. The polymorphism information content (PIC) of the SNPs was 0.23 on average, and a quarter of them have PIC values over 0.32, making them highly informative. The grouping of the 288 accessions into seven populations based on geographic proximity and the potential for germplasm exchange revealed a narrow range of observed heterozygosity (Ho; 0.09–0.11) and expected heterozygosity (He) that ranged over twofold, from 0.11 to 0.26. Alleles unique to the different groups were also identified, which merit further investigation for their potential association with desirable traits. The analysis of molecular variance (AMOVA) revealed a highly significant genetic differentiation among groups of accessions classified based on the geographic region, country of origin, days to flowering, panicle type, and Al tolerance (p < 0.01). The high genetic differentiation between Ethiopian and Zimbabwean accessions was evident in the AMOVA, cluster, principal coordinate, and population structure analyses. The level of genetic diversity of finger millet accessions varies moderately among locations within Ethiopia, with accessions from the northern region having the lowest level. In the neighbor-joining cluster analysis, most of the improved cultivars included in this study were closely clustered, probably because they were developed using genetically less diverse germplasm and/or selected for similar traits, such as grain yield. The recombination of alleles via crossbreeding genetically distinct accessions from different regions of the two countries can potentially lead to the development of superior cultivars.
Collapse
Affiliation(s)
- Haftom Brhane
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia.,Ethiopian Biotechnology Institute, Ministry of Science and Technology, Addis Ababa, Ethiopia
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Kibrom B Abreha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
37
|
Al Mutairi JF, Al-Otibi F, Alhajri HM, Alharbi RI, Alarifi S, Alterary SS. Antimicrobial Activity of Green Silver Nanoparticles Synthesized by Different Extracts from the Leaves of Saudi Palm Tree ( Phoenix Dactylifera L.). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103113. [PMID: 35630588 PMCID: PMC9143906 DOI: 10.3390/molecules27103113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
The Arabian desert is rich in different species of medicinal plants, which approved variable antimicrobial activities. Phoenix dactylifera L. is one of the medical trees rich in phenolic acids and flavonoids. The current study aimed to assess the antibacterial and antifungal properties of the silver nanoparticles (AgNPs) green-synthesized by two preparations (ethanolic and water extracts) from palm leaves. The characteristics of the produced AgNPs were tested by UV-visible spectroscopy and Transmitted Electron Microscopy (TEM). The antifungal activity of Phoenix dactylifera L. was tested against different species of Candida. Moreover, its antibacterial activity was evaluated against two Gram-positive and two Gram-negative strains. The results showed that AgNPs had a spherical larger shape than the crude extracts. AgNPs, from both preparations, had significant antimicrobial effects. The water extract had slightly higher antimicrobial activity than the ethanolic extract, as it induced more inhibitory effects against all species. That suggests the possible use of palm leaf extracts against different pathogenic bacteria and fungi instead of chemical compounds, which had economic and health benefits.
Collapse
Affiliation(s)
- Jihan F. Al Mutairi
- Chemistry Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (J.F.A.M.); (H.M.A.); (S.S.A.)
| | - Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
- Correspondence: ; Tel.: +966-805-5970
| | - Hassna M. Alhajri
- Chemistry Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (J.F.A.M.); (H.M.A.); (S.S.A.)
| | - Raedah I. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
| | - Saud Alarifi
- Zoology Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia;
| | - Seham S. Alterary
- Chemistry Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (J.F.A.M.); (H.M.A.); (S.S.A.)
| |
Collapse
|
38
|
Kadri SUT, Mulla SI, Babu R N, Suchithra B, Bilal M, Ameen F, Bharagava RN, Saratale GD, Ferreira LFR, Américo-Pinheiro JHP. Transcriptome-wide identification and computational insights into protein modeling and docking of CAMTA transcription factors in Eleusine coracana L (finger millet). Int J Biol Macromol 2022; 206:768-776. [DOI: 10.1016/j.ijbiomac.2022.03.073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/12/2022] [Accepted: 03/12/2022] [Indexed: 12/14/2022]
|
39
|
Suresh BV, Choudhary P, Aggarwal PR, Rana S, Singh RK, Ravikesavan R, Prasad M, Muthamilarasan M. De novo transcriptome analysis identifies key genes involved in dehydration stress response in kodo millet (Paspalum scrobiculatum L.). Genomics 2022; 114:110347. [PMID: 35337948 DOI: 10.1016/j.ygeno.2022.110347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 01/14/2023]
Abstract
Kodo millet (Paspalum scrobiculatum L.) is a small millet species known for its excellent nutritional and climate-resilient traits. To understand the genes and pathways underlying dehydration stress tolerance of kodo millet, the transcriptome of cultivar 'CO3' subjected to dehydration stress (0 h, 3 h, and 6 h) was sequenced. The study generated 239.1 million clean reads that identified 9201, 9814, and 2346 differentially expressed genes (DEGs) in 0 h vs. 3 h, 0 h vs. 6 h, and 3 h vs. 6 h libraries, respectively. The DEGs were found to be associated with vital molecular pathways, including hormone metabolism and signaling, antioxidant scavenging, photosynthesis, and cellular metabolism, and were validated using qRT-PCR. Also, a higher abundance of uncharacterized genes expressed during stress warrants further studies to characterize this class of genes to understand their role in dehydration stress response. Altogether, the study provides insights into the transcriptomic response of kodo millet during dehydration stress.
Collapse
Affiliation(s)
- Bonthala Venkata Suresh
- Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf 40225, Germany.
| | - Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | | | - Rajasekaran Ravikesavan
- Department of Millets, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - Manoj Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India; National Institute of Plant Genome Research, New Delhi 110067, India.
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
40
|
Cheng A, Mohd Hanafiah N, Harikrishna JA, Eem LP, Baisakh N, Mispan MS. A Reappraisal of Polyploidy Events in Grasses (Poaceae) in a Rapidly Changing World. BIOLOGY 2022; 11:biology11050636. [PMID: 35625365 PMCID: PMC9138248 DOI: 10.3390/biology11050636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Around 80% of megaflora species became extinct at the Cretaceous–Paleogene (K–Pg) boundary. Subsequent polyploidy events drove the survival of thousands of plant species and played a significant historical role in the development of the most successful modern cereal crops. However, current and rapid global temperature change poses an urgent threat to food crops worldwide, including the world’s big three cereals: rice, wheat, and maize, which are members of the grass family, Poaceae. Some minor cereals from the same family (such as teff) have grown in popularity in recent years, but there are important knowledge gaps regarding the similarities and differences between major and minor crops, including how polyploidy affects their biological processes under natural and (a)biotic stress conditions and thus the potential to harness polyploidization attributes for improving crop climate resilience. This review focuses on the impact of polyploidy events on the Poaceae family, which includes the world’s most important food sources, and discusses the past, present, and future of polyploidy research for major and minor crops. The increasing accessibility to genomes of grasses and their wild progenitors together with new tools and interdisciplinary research on polyploidy can support crop improvement for global food security in the face of climate change.
Collapse
Affiliation(s)
- Acga Cheng
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
| | - Noraikim Mohd Hanafiah
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
| | - Jennifer Ann Harikrishna
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Lim Phaik Eem
- Institute of Ocean and Earth Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Science, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
- Correspondence: (N.B.); (M.S.M.)
| | - Muhamad Shakirin Mispan
- Faculty of Science, Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.C.); (N.M.H.); (J.A.H.)
- Centre for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (N.B.); (M.S.M.)
| |
Collapse
|
41
|
High-quality chromosome-scale de novo assembly of the Paspalum notatum 'Flugge' genome. BMC Genomics 2022; 23:293. [PMID: 35410159 PMCID: PMC9004155 DOI: 10.1186/s12864-022-08489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Paspalum notatum 'Flugge' is a diploid with 20 chromosomes (2n = 20) multi-purpose subtropical herb native to South America and has a high ecological significance. It is currently widely planted in tropical and subtropical regions. Despite the gene pool of P. notatum 'Flugge' being unearthed to a large extent in the past decade, no details about the genomic information of relevant species in Paspalum have been reported. In this study, the complete genome information of P. notatum was established and annotated through sequencing and de novo assembly of its genome. RESULTS The latest PacBio third-generation HiFi assembly and sequencing revealed that the genome size of P. notatum 'Flugge' is 541 M. The assembly result is the higher index among the genomes of the gramineous family published so far, with a contig N50 = 52Mbp, scaffold N50 = 49Mbp, and BUSCOs = 98.1%, accounting for 98.5% of the estimated genome. Genome annotation revealed 36,511 high-confidence gene models, thus providing an important resource for future molecular breeding and evolutionary research. A comparison of the genome annotation results of P. notatum 'Flugge' with other closely related species revealed that it had a close relationship with Zea mays but not close compared to Brachypodium distachyon, Setaria viridis, Oryza sativa, Puccinellia tenuiflora, Echinochloa crusgalli. An analysis of the expansion and contraction of gene families suggested that P. notatum 'Flugge' contains gene families associated with environmental resistance, increased reproductive ability, and molecular evolution, which explained its excellent agronomic traits. CONCLUSION This study is the first to report the high-quality chromosome-scale-based genome of P. notatum 'Flugge' assembled using the latest PacBio third-generation HiFi sequencing reads. The study provides an excellent genetic resource bank for gramineous crops and invaluable perspectives regarding the evolution of gramineous plants.
Collapse
|
42
|
Drought tolerance improvement in Solanum lycopersicum: an insight into "OMICS" approaches and genome editing. 3 Biotech 2022; 12:63. [PMID: 35186660 PMCID: PMC8825918 DOI: 10.1007/s13205-022-03132-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
Solanum lycopersicum (tomato) is an internationally acclaimed vegetable crop that is grown worldwide. However, drought stress is one of the most critical challenges for tomato production, and it is a crucial task for agricultural biotechnology to produce drought-resistant cultivars. Although breeders have done a lot of work on the tomato to boost quality and quantity of production and enhance resistance to biotic and abiotic stresses, conventional tomato breeding approaches have been limited to improving drought tolerance because of the intricacy of drought traits. Many efforts have been made to better understand the mechanisms involved in adaptation and tolerance to drought stress in tomatoes throughout the years. "Omics" techniques, such as genomics, transcriptomics, proteomics, and metabolomics in combination with modern sequencing technologies, have tremendously aided the discovery of drought-responsive genes. In addition, the availability of biotechnological tools, such as plant transformation and the recently developed genome editing system for tomatoes, has opened up wider opportunities for validating the function of drought-responsive genes and the generation of drought-tolerant varieties. This review highlighted the recent progresses for tomatoes improvement against drought stress through "omics" and "multi-omics" technologies including genetic engineering. We have also discussed the roles of non-coding RNAs and genome editing techniques for drought stress tolerance improvement in tomatoes.
Collapse
|
43
|
Pendergast TH, Qi P, Odeny DA, Dida MM, Devos KM. A high-density linkage map of finger millet provides QTL for blast resistance and other agronomic traits. THE PLANT GENOME 2022; 15:e20175. [PMID: 34904374 DOI: 10.1002/tpg2.20175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Finger millet [Eleusine coracana (L.) Gaertn.] is a critical subsistence crop in eastern Africa and southern Asia but has few genomic resources and modern breeding programs. To aid in the understanding of finger millet genomic organization and genes underlying disease resistance and agronomically important traits, we generated a F2:3 population from a cross between E. coracana (L.) Gaertn. subsp. coracana accession ACC 100007 and E. coracana (L.) Gaertn. subsp. africana , accession GBK 030647. Phenotypic data on morphology, yield, and blast (Magnaporthe oryzae) resistance traits were taken on a subset of the F2:3 population in a Kenyan field trial. The F2:3 population was genotyped via genotyping-by-sequencing (GBS) and the UGbS-Flex pipeline was used for sequence alignment, nucleotide polymorphism calling, and genetic map construction. An 18-linkage-group genetic map consisting of 5,422 markers was generated that enabled comparative genomic analyses with rice (Oryza sativa L.), foxtail millet [Setaria italica (L.) P. Beauv.], and sorghum [Sorghum bicolor (L.) Moench]. Notably, we identified conserved acrocentric homoeologous chromosomes (4A and 4B in finger millet) across all species. Significant quantitative trait loci (QTL) were discovered for flowering date, plant height, panicle number, and blast incidence and severity. Sixteen putative candidate genes that may underlie trait variation were identified. Seven LEUCINE-RICH REPEAT-CONTAINING PROTEIN genes, with homology to nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance proteins, were found on three chromosomes under blast resistance QTL. This high-marker-density genetic map provides an important tool for plant breeding programs and identifies genomic regions and genes of critical interest for agronomic traits and blast resistance.
Collapse
Affiliation(s)
- Thomas H Pendergast
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Peng Qi
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| | - Damaris Achieng Odeny
- The International Crops Research Institute for the Semi-Arid Tropics-Eastern and Southern Africa, Nairobi, Kenya
| | - Mathews M Dida
- Dep. of Applied Sciences, Maseno Univ., Private Bag-40105, Maseno, Kenya
| | - Katrien M Devos
- Dep. of Plant Biology, Univ. of Georgia, Athens, GA, 30602, USA
- Institute of Plant Breeding, Genetics and Genomics, Univ. of Georgia, Athens, GA, 30602, USA
- Dep. of Crop and Soil Sciences, Univ. of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
44
|
Ajeesh Krishna TP, Maharajan T, Ceasar SA. Improvement of millets in the post-genomic era. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:669-685. [PMID: 35465206 PMCID: PMC8986959 DOI: 10.1007/s12298-022-01158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 05/16/2023]
Abstract
Millets are food and nutrient security crops in the semi-arid tropics of developing countries. Crop improvement using modern tools is one of the priority areas of research in millets. The whole-genome sequence (WGS) of millets provides new insight into understanding and studying the genes, genome organization and genomic-assisted improvement of millets. The WGS of millets helps to carry out genome-wide comparison and co-linearity studies among millets and other cereal crops. This approach might lead to the identification of genes underlying biotic and abiotic stress tolerance in millets. The available genome sequence of millets can be used for SNP identification, allele discovery, association and linkage mapping, identification of valuable candidate genes, and marker-assisted breeding (MAB) programs. Next generation sequencing (NGS) technology provides opportunities for genome-assisted breeding (GAB) through genomic selection (GS) and genome-wide association studies (GAWS) for crop improvement. Clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) genome editing (GE) system provides new opportunities for millet improvement. In this review, we discuss the details on the WGS available for millets and highlight the importance of utilizing such resources in the post-genomic era for millet improvement. We also draw inroads on the utilization of various approaches such as GS, GWAS, functional genomics, gene validation and GE for millet improvement. This review might be helpful for understanding the developments in the post-genomic era of millet improvement.
Collapse
Affiliation(s)
- T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| | - T Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| | - S Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, 683104 Kochi, Kerala India
| |
Collapse
|
45
|
Talabi AO, Vikram P, Thushar S, Rahman H, Ahmadzai H, Nhamo N, Shahid M, Singh RK. Orphan Crops: A Best Fit for Dietary Enrichment and Diversification in Highly Deteriorated Marginal Environments. FRONTIERS IN PLANT SCIENCE 2022; 13:839704. [PMID: 35283935 PMCID: PMC8908242 DOI: 10.3389/fpls.2022.839704] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 05/23/2023]
Abstract
Orphan crops are indigenous and invariably grown by small and marginal farmers under subsistence farming systems. These crops, which are common and widely accepted by local farmers, are highly rich in nutritional profile, good for medicinal purposes, and well adapted to suboptimal growing conditions. However, these crops have suffered neglect and abandonment from the scientific community because of very low or no investments in research and genetic improvement. A plausible reason for this is that these crops are not traded internationally at a rate comparable to that of the major food crops such as wheat, rice, and maize. Furthermore, marginal environments have poor soils and are characterized by extreme weather conditions such as heat, erratic rainfall, water deficit, and soil and water salinity, among others. With more frequent extreme climatic events and continued land degradation, orphan crops are beginning to receive renewed attention as alternative crops for dietary diversification in marginal environments and, by extension, across the globe. Increased awareness of good health is also a major contributor to the revived attention accorded to orphan crops. Thus, the introduction, evaluation, and adaptation of outstanding varieties of orphan crops for dietary diversification will contribute not only to sustained food production but also to improved nutrition in marginal environments. In this review article, the concept of orphan crops vis-à-vis marginality and food and nutritional security is defined for a few orphan crops. We also examined recent advances in research involving orphan crops and the potential of these crops for dietary diversification within the context of harsh marginal environments. Recent advances in genomics coupled with molecular breeding will play a pivotal role in improving the genetic potential of orphan crops and help in developing sustainable food systems. We concluded by presenting a potential roadmap to future research engagement and a policy framework with recommendations aimed at facilitating and enhancing the adoption and sustainable production of orphan crops under agriculturally marginal conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rakesh Kumar Singh
- International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| |
Collapse
|
46
|
Venkatesan J, Ramu V, Sethuraman T, Sivagnanam C, Doss G. Molecular marker for characterization of traditional and hybrid derivatives of Eleusine coracana (L.) using ISSR marker. J Genet Eng Biotechnol 2021; 19:178. [PMID: 34825986 PMCID: PMC8626548 DOI: 10.1186/s43141-021-00277-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 11/07/2021] [Indexed: 12/02/2022]
Abstract
BACKGROUND Finger millet is the most important food grain in the world for its nutritional benefits. Finger millet is genetically and geographically diverse and widely spread in the African and Asian sub-continent. Therefore, the present study was undertaken to analyze the genetic diversity using ISSR genetic markers using 15 ISSR primers. RESULTS About 23 genotypes of widely cultivated finger millet cultivars of economically important ones were characterized and the ISSR markers were critically analyzed for their performance with parameters such as polymorphic information content (PIC), effective multiplex ratio (EMR), marker index (MI), and resolving power (RP). In this study, 175 loci were scored across the 23 cultivars of finger millet, and out of these 173 loci (98%) were polymorphic, revealing the suitability of these loci for genetic diversity analysis with ISSR marker. The average number of polymorphic loci per primer was 11.50 with varying sizes from 100 bp to 2500 bp. ISSR primers that showed higher polymorphism were found to have higher EMR and MI values up to 15.30 and 13.44, respectively. CONCLUSION High degree of polymorphism supported with distinct differences of all the marker parameters revealed the suitability of ISSR markers for determining the genotypic differences based on ISSR markers among the 23 genotypes of finger millet. The possible application of the ISSR marker in the conservation and management of finger millet genetic resources is discussed.
Collapse
Affiliation(s)
- Jayalakshmi Venkatesan
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India.
| | - Vasuki Ramu
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Thilaga Sethuraman
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Chandrasekaran Sivagnanam
- Department of Plant Science, School of Biological Sciences, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India
| | - Ganesh Doss
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu, 625021, India.
| |
Collapse
|
47
|
Genome-editing in millets: current knowledge and future perspectives. Mol Biol Rep 2021; 49:773-781. [PMID: 34825322 DOI: 10.1007/s11033-021-06975-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Millets are small seeded cereal crops predominantly cultivated and consumed by resource-poor farmers in the semi-arid tropics of Asia and Africa. Millets possess rich nutrients and a climate resilience property when compared to the other cereals such as rice and wheat. Millet improvement using modern genetic and genomic tools is falling behind other cereal crops due to their cultivation being restricted to less developed countries. Genome editing tools have been successfully applied to major cereal crops and, as a result, many key traits have been introduced into rice, wheat and maize. However, genome editing tools have not yet been used for most millets although they possess rich nutrients. The foxtail millet is the only millet utilised up to now for genome editing works. Limited genomic resources and lack of efficient transformation systems may slow down genome editing in millets. As millets possess many important traits of agricultural importance, high resolution studies with genome editing tools will help to understand the specific mechanism and transfer such traits to major cereals in the future. This review covers the current status of genome editing studies in millets and discusses the future prospects of genome editing in millets to understand key traits of nutrient fortification and develop climate resilient crops in the future.
Collapse
|
48
|
Qian H, Xu Z, Cong K, Zhu X, Zhang L, Wang J, Wei J, Ji P. Transcriptomic responses to drought stress in Polygonatum kingianum tuber. BMC PLANT BIOLOGY 2021; 21:537. [PMID: 34781887 PMCID: PMC8591914 DOI: 10.1186/s12870-021-03297-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/23/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND Polygonatum kingianum Coll. et Hemsl. is an important plant in Traditional Chinese Medicine. The extracts from its tubers are rich in polysaccharides and other metabolites such as saponins. It is a well-known concept that growing medicinal plants in semi-arid (or drought stress) increases their natural compounds concentrations. This study was conducted to explore the morpho-physiological responses of P. kingianum plants and transcriptomic signatures of P. kingianum tubers exposed to mild, moderate, and severe drought and rewatering. RESULTS The stress effects on the morpho-physiological parameters were dependent on the intensity of the drought stress. The leaf area, relative water content, chlorophyll content, and shoot fresh weight decreased whereas electrolyte leakage increased with increase in drought stress intensity. A total of 53,081 unigenes were obtained; 59% of which were annotated. We observed that 1352 and 350 core genes were differentially expressed in drought and rewatering, respectively. Drought stress driven differentially expressed genes (DEGs) were enriched in phenylpropanoid biosynthesis, flavonoid biosynthesis, starch and sucrose metabolism, and stilbenoid diarylheptanoid and gingerol biosynthesis, and carotenoid biosynthesis pathways. Pathways such as plant-pathogen interaction and galactose metabolism were differentially regulated between severe drought and rewatering. Drought reduced the expression of lignin, gingerol, and flavonoid biosynthesis related genes and rewatering recovered the tubers from stress by increasing the expression of the genes. Increased expression of carotenoid biosynthesis pathway related genes under drought suggested their important role in stress endurance. An increase in starch and sucrose biosynthesis was evident from transcriptomic changes under drought stress. Rewatering recovered the drought affected tubers as evident from the contrasting expression profiles of genes related to these pathways. P. kingianum tuber experiences an increased biosynthesis of sucrose, starch, and carotenoid under drought stress. Drought decreases the flavonoids, phenylpropanoids, gingerol, and lignin biosynthesis. These changes can be reversed by rewatering the P. kingianum plants. CONCLUSIONS These results provide a transcriptome resource for P. kingianum and expands the knowledge on the effect of drought and rewatering on important pathways. This study also provides a large number of candidate genes that could be manipulated for drought stress tolerance and managing the polysaccharide and secondary metabolites' contents in P. kingianum.
Collapse
Affiliation(s)
- Huali Qian
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Zhe Xu
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Kun Cong
- Institute of Medicinal Plants, Yunnan Academy of Agricultural science, Kunming, 650223, China
| | - Xinyan Zhu
- Institute of Medicinal Plants, Yunnan Academy of Agricultural science, Kunming, 650223, China
| | - Lei Zhang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Junfeng Wang
- Institute of Medicinal Plants, Yunnan Academy of Agricultural science, Kunming, 650223, China
| | - Jiankun Wei
- Institute of Medicinal Plants, Yunnan Academy of Agricultural science, Kunming, 650223, China
| | - Pengzhang Ji
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650500, China.
- Institute of Medicinal Plants, Yunnan Academy of Agricultural science, Kunming, 650223, China.
| |
Collapse
|
49
|
Dhaka A, Singh RK, Muthamilarasan M, Prasad M. Genetics and Genomics Interventions for Promoting Millets as Functional Foods. Curr Genomics 2021; 22:154-163. [PMID: 34975288 PMCID: PMC8640850 DOI: 10.2174/1389202922666210225084212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 11/22/2022] Open
Abstract
Several crops, including millets with immense nutritional and therapeutic values, were once a part of our regular diet. However, due to domestication and selection pressures, many of them have become marginally cultivated crops confined to a particular region, race, or locality. Millets are a perfect example of neglected species that have the potential to address both food and nutritional insecurities prevalent among the ever-growing global population. Starvation and malnutrition contribute to a large number of health-related issues, being the main reason behind the occurrence of most of the severe diseases worldwide. These constraints are repeatedly disturbing both the social and economic health of global society. Naturally, millets are rich in minerals, nutrients, and bioactive compounds, and these crops are less dependent on synthetic fertilizers, systemic irrigation, and pest/weed control. Given this, the review emphasizes the nutritional values, health benefits, processing techniques, and genomic advancements of millets. In addition, it proposes a roadmap for enhancing the utility and commercialization of millets.
Collapse
Affiliation(s)
- Annvi Dhaka
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Roshan Kumar Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
50
|
Mahesh HB, Prasannakumar MK, Manasa KG, Perumal S, Khedikar Y, Kagale S, Soolanayakanahally RY, Lohithaswa HC, Rao AM, Hittalmani S. Genome, Transcriptome, and Germplasm Sequencing Uncovers Functional Variation in the Warm-Season Grain Legume Horsegram Macrotyloma uniflorum (Lam.) Verdc. FRONTIERS IN PLANT SCIENCE 2021; 12:758119. [PMID: 34733308 PMCID: PMC8558620 DOI: 10.3389/fpls.2021.758119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/21/2021] [Indexed: 06/07/2023]
Abstract
Horsegram is a grain legume with excellent nutritional and remedial properties and good climate resilience, able to adapt to harsh environmental conditions. Here, we used a combination of short- and long-read sequencing technologies to generate a genome sequence of 279.12Mb, covering 83.53% of the estimated total size of the horsegram genome, and we annotated 24,521 genes. De novo prediction of DNA repeats showed that approximately 25.04% of the horsegram genome was made up of repetitive sequences, the lowest among the legume genomes sequenced so far. The major transcription factors identified in the horsegram genome were bHLH, ERF, C2H2, WRKY, NAC, MYB, and bZIP, suggesting that horsegram is resistant to drought. Interestingly, the genome is abundant in Bowman-Birk protease inhibitors (BBIs), which can be used as a functional food ingredient. The results of maximum likelihood phylogenetic and estimated synonymous substitution analyses suggested that horsegram is closely related to the common bean and diverged approximately 10.17 million years ago. The double-digested restriction associated DNA (ddRAD) sequencing of 40 germplasms allowed us to identify 3,942 high-quality SNPs in the horsegram genome. A genome-wide association study with powdery mildew identified 10 significant associations similar to the MLO and RPW8.2 genes. The reference genome and other genomic information presented in this study will be of great value to horsegram breeding programs. In addition, keeping the increasing demand for food with nutraceutical values in view, these genomic data provide opportunities to explore the possibility of horsegram for use as a source of food and nutraceuticals.
Collapse
Affiliation(s)
- H. B. Mahesh
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, University of Agricultural Sciences, Bengaluru, India
| | - M. K. Prasannakumar
- Department of Plant Pathology, University of Agricultural Sciences, Bengaluru, India
| | - K. G. Manasa
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, University of Agricultural Sciences, Bengaluru, India
| | - Sampath Perumal
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yogendra Khedikar
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | | | | | - H. C. Lohithaswa
- Department of Genetics and Plant Breeding, College of Agriculture, Mandya, University of Agricultural Sciences, Bengaluru, India
| | - Annabathula Mohan Rao
- Department of Genetics and Plant Breeding, College of Agriculture, GKVK, University of Agricultural Sciences, Bengaluru, India
| | - Shailaja Hittalmani
- Department of Genetics and Plant Breeding, College of Agriculture, GKVK, University of Agricultural Sciences, Bengaluru, India
| |
Collapse
|