1
|
Li C, Colinas M, Wood JC, Vaillancourt B, Hamilton JP, Jones SL, Caputi L, O'Connor SE, Buell CR. Cell-type-aware regulatory landscapes governing monoterpene indole alkaloid biosynthesis in the medicinal plant Catharanthus roseus. THE NEW PHYTOLOGIST 2024. [PMID: 39456129 DOI: 10.1111/nph.20208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
In plants, the biosynthetic pathways of some specialized metabolites are partitioned into specialized or rare cell types, as exemplified by the monoterpenoid indole alkaloid (MIA) pathway of Catharanthus roseus (Madagascar Periwinkle), the source of the anticancer compounds vinblastine and vincristine. In the leaf, the C. roseus MIA biosynthetic pathway is partitioned into three cell types with the final known steps of the pathway expressed in the rare cell type termed idioblast. How cell-type specificity of MIA biosynthesis is achieved is poorly understood. We generated single-cell multi-omics data from C. roseus leaves. Integrating gene expression and chromatin accessibility profiles across single cells, as well as transcription factor (TF)-binding site profiles, we constructed a cell-type-aware gene regulatory network for MIA biosynthesis. We showcased cell-type-specific TFs as well as cell-type-specific cis-regulatory elements. Using motif enrichment analysis, co-expression across cell types, and functional validation approaches, we discovered a novel idioblast-specific TF (Idioblast MYB1, CrIDM1) that activates expression of late-stage MIA biosynthetic genes in the idioblast. These analyses not only led to the discovery of the first documented cell-type-specific TF that regulates the expression of two idioblast-specific biosynthetic genes within an idioblast metabolic regulon but also provides insights into cell-type-specific metabolic regulation.
Collapse
Affiliation(s)
- Chenxin Li
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, 30602, GA, USA
| | - Maite Colinas
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Joshua C Wood
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - Brieanne Vaillancourt
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - John P Hamilton
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, 30602, GA, USA
| | - Sophia L Jones
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany
| | - C Robin Buell
- Center for Applied Genetic Technologies, University of Georgia, Athens, 30602, GA, USA
- Department of Crop and Soil Sciences, University of Georgia, Athens, 30602, GA, USA
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, 30602, GA, USA
| |
Collapse
|
2
|
Cui D, Xiong G, Ye L, Gornall R, Wang Z, Heslop-Harrison P, Liu Q. Genome-wide analysis of flavonoid biosynthetic genes in Musaceae ( Ensete, Musella, and Musa species) reveals amplification of flavonoid 3',5'-hydroxylase. AOB PLANTS 2024; 16:plae049. [PMID: 39450414 PMCID: PMC11500454 DOI: 10.1093/aobpla/plae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/09/2024] [Indexed: 10/26/2024]
Abstract
Flavonoids in Musaceae are involved in pigmentation and stress responses, including cold resistance, and are a component of the healthy human diet. Identification and analysis of the sequence and copy number of flavonoid biosynthetic genes are valuable for understanding the nature and diversity of flavonoid evolution in Musaceae species. In this study, we identified 71-80 flavonoid biosynthetic genes in chromosome-scale genome sequence assemblies of Musaceae, including those of Ensete glaucum, Musella lasiocarpa, Musa beccarii, M. acuminata, M. balbisiana and M. schizocarpa, checking annotations with BLAST and determining the presence of conserved domains. The number of genes increased through segmental duplication and tandem duplication. Orthologues of both structural and regulatory genes in the flavonoid biosynthetic pathway are highly conserved across Musaceae. The flavonoid 3',5'-hydroxylase gene F3'5'H was amplified in Musaceae and ginger compared with grasses (rice, Brachypodium, Avena longiglumis, and sorghum). One group of genes from this gene family amplified near the centromere of chromosome 2 in the x = 11 Musaceae species. Flavonoid biosynthetic genes displayed few consistent responses in the yellow and red bracts of Musella lasiocarpa when subjected to low temperatures. The expression levels of MlDFR2/3 (dihydroflavonol reductase) increased while MlLAR (leucoanthocyanidin reductase) was reduced by half. Overall, the results establish the range of diversity in both sequence and copy number of flavonoid biosynthetic genes during evolution of Musaceae. The combination of allelic variants of genes, changes in their copy numbers, and variation in transcription factors with the modulation of expression under cold treatments and between genotypes with contrasting bract-colours suggests the variation may be exploited in plant breeding programmes, particularly for improvement of stress-resistance in the banana crop.
Collapse
Affiliation(s)
- Dongli Cui
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China
| | - Gui Xiong
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China
| | - Lyuhan Ye
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China
| | - Richard Gornall
- University of Leicester, Department of Genetics and Genome Biology, Institute for Environmental Futures, University Road, Leicester LE1 7RH, UK
| | - Ziwei Wang
- Henry Fok School of Biology and Agriculture, Shaoguan University, University Road 288, Zhenjiang District, Shaoguan 512005, China
| | - Pat Heslop-Harrison
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- University of Leicester, Department of Genetics and Genome Biology, Institute for Environmental Futures, University Road, Leicester LE1 7RH, UK
| | - Qing Liu
- Key Laboratory of National Forestry and Grassland Administration Plant Conservation and Utilization in Southern China/Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- South China National Botanical Garden, Xingke Road 723, Tianhe District, Guangzhou 510650, China
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, China
| |
Collapse
|
3
|
Wang Z, Peng Z, Khan S, Qayyum A, Rehman A, Du X. Unveiling the power of MYB transcription factors: Master regulators of multi-stress responses and development in cotton. Int J Biol Macromol 2024; 276:133885. [PMID: 39019359 DOI: 10.1016/j.ijbiomac.2024.133885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Plants, being immobile, are subject to environmental stresses more than other creatures, necessitating highly effective stress tolerance systems. Transcription factors (TFs) play a crucial role in the adaptation mechanism as they can be activated by diverse signals and ultimately control the expression of stress-responsive genes. One of the most prominent plant TFs family is MYB (myeloblastosis), which is involved in secondary metabolites, developmental mechanisms, biological processes, cellular architecture, metabolic pathways, and stress responses. Extensive research has been conducted on the involvement of MYB TFs in crops, while their role in cotton remains largely unexplored. We also utilized genome-wide data to discover potential 440 MYB genes and investigated their plausible roles in abiotic and biotic stress conditions, as well as in different tissues across diverse transcriptome databases. This review primarily summarized the structure and classification of MYB TFs biotic and abiotic stress tolerance and their role in secondary metabolism in different crops, especially in cotton. However, it intends to identify gaps in current knowledge and emphasize the need for further research to enhance our understanding of MYB roles in plants.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Sana Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38040, Pakistan
| | - Abdul Qayyum
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China.
| |
Collapse
|
4
|
Marin-Recinos MF, Pucker B. Genetic factors explaining anthocyanin pigmentation differences. BMC PLANT BIOLOGY 2024; 24:627. [PMID: 38961369 PMCID: PMC11221117 DOI: 10.1186/s12870-024-05316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Anthocyanins are important contributors to coloration across a wide phylogenetic range of plants. Biological functions of anthocyanins span from reproduction to protection against biotic and abiotic stressors. Owing to a clearly visible phenotype of mutants, the anthocyanin biosynthesis and its sophisticated regulation have been studied in numerous plant species. Genes encoding the anthocyanin biosynthesis enzymes are regulated by a transcription factor complex comprising MYB, bHLH and WD40 proteins. RESULTS A systematic comparison of anthocyanin-pigmented vs. non-pigmented varieties was performed within numerous plant species covering the taxonomic diversity of flowering plants. The literature was screened for cases in which genetic factors causing anthocyanin loss were reported. Additionally, transcriptomic data sets from four previous studies were reanalyzed to determine the genes possibly responsible for color variation based on their expression pattern. The contribution of different structural and regulatory genes to the intraspecific pigmentation differences was quantified. Differences concerning transcription factors are by far the most frequent explanation for pigmentation differences observed between two varieties of the same species. Among the transcription factors in the analyzed cases, MYB genes are significantly more prone to account for pigmentation differences compared to bHLH or WD40 genes. Among the structural genes, DFR genes are most often associated with anthocyanin loss. CONCLUSIONS These findings support previous assumptions about the susceptibility of transcriptional regulation to evolutionary changes and its importance for the evolution of novel coloration phenotypes. Our findings underline the particular significance of MYBs and their apparent prevalent role in the specificity of the MBW complex.
Collapse
Affiliation(s)
- Maria F Marin-Recinos
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany.
| |
Collapse
|
5
|
Wong DCJ, Wang Z, Perkins J, Jin X, Marsh GE, John EG, Peakall R. The road less taken: Dihydroflavonol 4-reductase inactivation and delphinidin anthocyanin loss underpins a natural intraspecific flower colour variation. Mol Ecol 2024:e17334. [PMID: 38651763 DOI: 10.1111/mec.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Visual cues are of critical importance for the attraction of animal pollinators, however, little is known about the molecular mechanisms underpinning intraspecific floral colour variation. Here, we combined comparative spectral analysis, targeted metabolite profiling, multi-tissue transcriptomics, differential gene expression, sequence analysis and functional analysis to investigate a bee-pollinated orchid species, Glossodia major with common purple- and infrequent white-flowered morphs. We found uncommon and previously unreported delphinidin-based anthocyanins responsible for the conspicuous and pollinator-perceivable colour of the purple morph and three genetic changes underpinning the loss of colour in the white morph - (1) a loss-of-function (LOF; frameshift) mutation affecting dihydroflavonol 4-reductase (DFR1) coding sequence due to a unique 4-bp insertion, (2) specific downregulation of functional DFR1 expression and (3) the unexpected discovery of chimeric Gypsy transposable element (TE)-gene (DFR) transcripts with potential consequences to the genomic stability and post-transcriptional or epigenetic regulation of DFR. This is one of few known cases where regulatory changes and LOF mutation in an anthocyanin structural gene, rather than transcription factors, are important. Furthermore, if TEs prove to be a frequent source of mutation, the interplay between environmental stress-induced TE evolution and pollinator-mediated selection for adaptive colour variation may be an overlooked mechanism maintaining floral colour polymorphism in nature.
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - James Perkins
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Grace Emma Marsh
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Emma Grace John
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
6
|
Dai G, Liu Y, Shen W, Zhu B, Chen L, Chen D, Tan C. Molecular evolution analysis of MYB5 in Brassicaceae with specific focus on seed coat color of Brassica napus. BMC PLANT BIOLOGY 2024; 24:52. [PMID: 38229007 DOI: 10.1186/s12870-023-04718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/31/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND MYB transcription factors are splay a vital role in plant biology, with previous research highlighting the significant impact of the R2R3-MYB-like transcription factor MYB5 on seed mucilage biosynthesis, trichome branching, and seed coat development. However, there is a dearth of studies investigating its role in the regulation of proanthocyanidin (PA) biosynthesis. RESULTS In this study, a total of 51 MYB5 homologous genes were identified across 31 species belonging to the Brassicaceae family, with particular emphasis on Brassica napus for subsequent investigation. Through phylogenetic analysis, these genes were categorized into four distinct subclasses. Protein sequence similarity and identity analysis demonstrated a high degree of conservation of MYB5 among species within the Brassicaceae family. Additionally, the examination of selection pressure revealed that MYB5 predominantly underwent purifying selection during its evolutionary history, as indicated by the Ka/Ks values of all MYB5 homologous gene pairs being less than one. Notably, we observed a higher rate of non-synonymous mutations in orthologous genes compared to paralogous genes, and the Ka/Ks value displayed a stronger correlation with Ka. In B. napus, an examination of expression patterns in five tissues revealed that MYB5 exhibited particularly high expression in the black seed coat. The findings from the WGCNA demonstrated a robust correlation between MYB5 and BAN(ANR) associated with PA biosynthesis in the black seed coat, providing further evidence of their close association and co-expression. Furthermore, the results obtained from of the analysis of protein interaction networks offer supplementary support for the proposition that MYB5 possesses the capability to interact with transcriptional regulatory proteins, specifically TT8 and TT2, alongside catalytic enzymes implicated in the synthesis of PAs, thereby making a contribution to the biosynthesis of PAs. These findings imply a plausible and significant correlation between the nuique expression pattern of MYB5 and the pigmentation of rapeseed coats. Nevertheless, additional research endeavors are imperative to authenticate and substantiate these findings. CONCLUSIONS This study offers valuable insights into the genetic evolution of Brassicaceae plants, thereby serving as a significant reference for the genetic enhancement of Brassicaceae seed coat color.
Collapse
Affiliation(s)
- Guoqiang Dai
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Lunlin Chen
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
7
|
Thoben C, Pucker B. Automatic annotation of the bHLH gene family in plants. BMC Genomics 2023; 24:780. [PMID: 38102570 PMCID: PMC10722790 DOI: 10.1186/s12864-023-09877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The bHLH transcription factor family is named after the basic helix-loop-helix (bHLH) domain that is a characteristic element of their members. Understanding the function and characteristics of this family is important for the examination of a wide range of functions. As the availability of genome sequences and transcriptome assemblies has increased significantly, the need for automated solutions that provide reliable functional annotations is emphasised. RESULTS A phylogenetic approach was adapted for the automatic identification and functional annotation of the bHLH transcription factor family. The bHLH_annotator, designed for the automated functional annotation of bHLHs, was implemented in Python3. Sequences of bHLHs described in literature were collected to represent the full diversity of bHLH sequences. Previously described orthologs form the basis for the functional annotation assignment to candidates which are also screened for bHLH-specific motifs. The pipeline was successfully deployed on the two Arabidopsis thaliana accessions Col-0 and Nd-1, the monocot species Dioscorea dumetorum, and a transcriptome assembly of Croton tiglium. Depending on the applied search parameters for the initial candidates in the pipeline, species-specific candidates or members of the bHLH family which experienced domain loss can be identified. CONCLUSIONS The bHLH_annotator allows a detailed and systematic investigation of the bHLH family in land plant species and classifies candidates based on bHLH-specific characteristics, which distinguishes the pipeline from other established functional annotation tools. This provides the basis for the functional annotation of the bHLH family in land plants and the systematic examination of a wide range of functions regulated by this transcription factor family.
Collapse
Affiliation(s)
- Corinna Thoben
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & Braunschweig Integrated, Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & Braunschweig Integrated, Centre of Systems Biology (BRICS), TU Braunschweig, Braunschweig, Germany.
| |
Collapse
|
8
|
Wolff K, Friedhoff R, Schwarzer F, Pucker B. Data literacy in genome research. J Integr Bioinform 2023; 20:jib-2023-0033. [PMID: 38047760 PMCID: PMC10777367 DOI: 10.1515/jib-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
With an ever increasing amount of research data available, it becomes constantly more important to possess data literacy skills to benefit from this valuable resource. An integrative course was developed to teach students the fundamentals of data literacy through an engaging genome sequencing project. Each cohort of students performed planning of the experiment, DNA extraction, nanopore sequencing, genome sequence assembly, prediction of genes in the assembled sequence, and assignment of functional annotation terms to predicted genes. Students learned how to communicate science through writing a protocol in the form of a scientific paper, providing comments during a peer-review process, and presenting their findings as part of an international symposium. Many students enjoyed the opportunity to own a project and to work towards a meaningful objective.
Collapse
Affiliation(s)
- Katharina Wolff
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & BRICS, TU Braunschweig, Braunschweig, Germany
| | - Ronja Friedhoff
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & BRICS, TU Braunschweig, Braunschweig, Germany
| | - Friderieke Schwarzer
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & BRICS, TU Braunschweig, Braunschweig, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & BRICS, TU Braunschweig, Braunschweig, Germany
| |
Collapse
|
9
|
Ramanauskas K, Igić B. kakapo: easy extraction and annotation of genes from raw RNA-seq reads. PeerJ 2023; 11:e16456. [PMID: 38034874 PMCID: PMC10688300 DOI: 10.7717/peerj.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
kakapo (kākāpō) is a Python-based pipeline that allows users to extract and assemble one or more specified genes or gene families. It flexibly uses original RNA-seq read or GenBank SRA accession inputs without performing global assembly of entire transcriptomes or metatranscriptomes. The pipeline identifies open reading frames in the assembled gene transcripts and annotates them. It optionally filters raw reads for ribosomal, plastid, and mitochondrial reads, or reads belonging to non-target organisms (e.g., viral, bacterial, human). kakapo can be employed for targeted assembly, to extract arbitrary loci, such as those commonly used for phylogenetic inference in systematics or candidate genes and gene families in phylogenomic and metagenomic studies. We provide example applications and discuss how its use can offset the declining value of GenBank's single-gene databases and help assemble datasets for a variety of phylogenetic analyses.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Boris Igić
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
10
|
Rempel A, Choudhary N, Pucker B. KIPEs3: Automatic annotation of biosynthesis pathways. PLoS One 2023; 18:e0294342. [PMID: 37972102 PMCID: PMC10653506 DOI: 10.1371/journal.pone.0294342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/28/2023] [Indexed: 11/19/2023] Open
Abstract
Flavonoids and carotenoids are pigments involved in stress mitigation and numerous other processes. Both pigment classes can contribute to flower and fruit coloration. Flavonoid aglycones and carotenoids are produced by a pathway that is largely conserved across land plants. Glycosylations, acylations, and methylations of the flavonoid aglycones can be species-specific and lead to a plethora of biochemically diverse flavonoids. We previously developed KIPEs for the automatic annotation of biosynthesis pathways and presented an application on the flavonoid aglycone biosynthesis. KIPEs3 is an improved version with additional features and the potential to identify not just the core biosynthesis players, but also candidates involved in the decoration steps and in the transport of flavonoids. Functionality of KIPEs3 is demonstrated through the analysis of the flavonoid biosynthesis in Arabidopsis thaliana Nd-1, Capsella grandiflora, and Dioscorea dumetorum. We demonstrate the applicability of KIPEs to other pathways by adding the carotenoid biosynthesis to the repertoire. As a technical proof of concept, the carotenoid biosynthesis was analyzed in the same species and Daucus carota. KIPEs3 is available as an online service to enable access without prior bioinformatics experience. KIPEs3 facilitates the automatic annotation and analysis of biosynthesis pathways with a consistent and high quality in a large number of plant species. Numerous genome sequencing projects are generating a huge amount of data sets that can be analyzed to identify evolutionary patterns and promising candidate genes for biotechnological and breeding applications.
Collapse
Affiliation(s)
- Andreas Rempel
- Genome Informatics, Faculty of Technology & Center for Biotechnology, Bielefeld University, Bielefeld, Germany
- Graduate School “Digital Infrastructure for the Life Sciences” (DILS), Bielefeld Institute for Bioinformatics Infrastructure (BIBI), Bielefeld University, Bielefeld, Germany
| | - Nancy Choudhary
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & BRICS, TU Braunschweig, Braunschweig, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology & BRICS, TU Braunschweig, Braunschweig, Germany
| |
Collapse
|
11
|
Kliebenstein DJ. Is specialized metabolite regulation specialized? JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4942-4948. [PMID: 37260397 DOI: 10.1093/jxb/erad209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
Recent technical and theoretical advances have generated an explosion in the identification of specialized metabolite pathways. In comparison, our understanding of how these pathways are regulated is relatively lagging. This and the relatively young age of specialized metabolite pathways has partly contributed to a default and common paradigm whereby specialized metabolite regulation is theorized as relatively simple with a few key transcription factors and the compounds are non-regulatory end-products. In contrast, studies into model specialized metabolites, such as glucosinolates, are beginning to identify a new understanding whereby specialized metabolites are highly integrated into the plants' core metabolic, physiological, and developmental pathways. This model includes a greatly extended compendium of transcription factors controlling the pathway, key transcription factors that co-evolve with the pathway and simultaneously control core metabolic and developmental components, and finally the compounds themselves evolve regulatory connections to integrate into the plants signaling machinery. In this review, these concepts are illustrated using studies in the glucosinolate pathway within the Brassicales. This suggests that the broader community needs to reconsider how they do or do not integrate specialized metabolism into the regulatory network of their study species.
Collapse
|
12
|
Li J, Tan Q, Yi M, Yu Z, Xia Q, Zheng L, Chen J, Zhou X, Zhang XQ, Guo HR. Identification of key genes responsible for green and white colored spathes in Anthurium andraeanum (Hort.). FRONTIERS IN PLANT SCIENCE 2023; 14:1208226. [PMID: 37745994 PMCID: PMC10511891 DOI: 10.3389/fpls.2023.1208226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/17/2023] [Indexed: 09/26/2023]
Abstract
Modern anthuriums, Anthurium andraeanum (Hort.) are among the most popular flowering plants and widely used for interior decoration. Their popularity is largely attributed to the exotic spathes with different colors. Previous studies have reported color development in red spathe cultivars, but limited information is available on key genes regulating white and green colored spathes. This study analyzed anthocyanin, chlorophyll, and carotenoid contents as well as transcript differences in spathes of eight cultivars that differed in spathe colors ranging from red to white and green. Results showed that increased expression of a transcription factor AaMYB2 was associated with elevated levels of anthocyanin in spathes, but decreased expression of AaMYB2 and increased expression of AaLAR (leucoanthocyanidin reductase) and AaANR (anthocyanidin reductase) were accompanied with the accumulation of colorless proanthocyanidin, thus the white spathe. As to the green colored spathe, chlorophyll content in the green spathe cultivar was substantially higher than the other cultivars. Correspondingly, transcripts of chlorophyll biosynthesis-related genes AaHemB (porphobilinogen synthase) and AaPor (protochlorophyllide oxidoreductase) were highly upregulated but almost undetectable in white and red spathes. The increased expression of AaHemB and AaPor was correlated with the expression of transcription factor AaMYB124. Subsequently, qRT-PCR analysis confirmed their expression levels in nine additional cultivars with red, white, and green spathes. A working model for the formation of white and green spathes was proposed. White colored spathes are likely due to the decreased expression of AaMYB2 which results in increased expression of AaLAR and AaANR, and the green spathes are attributed to AaMYB124 enhanced expression of AaHemB and AaPor. Further research is warranted to test this working model.
Collapse
Affiliation(s)
- Jieni Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Quanya Tan
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Maosheng Yi
- Guangzhou Flower Research Center, Guangzhou, China
| | - Zhengnan Yu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Qing Xia
- Guangzhou Flower Research Center, Guangzhou, China
| | - Lu Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
| | - Xiaoyun Zhou
- Guangzhou Flower Research Center, Guangzhou, China
| | - Xiang-Qian Zhang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - He-Rong Guo
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Bartas M, Volna A, Cerven J, Pucker B. Identification of annotation artifacts concerning the chalcone synthase (CHS). BMC Res Notes 2023; 16:109. [PMID: 37340477 DOI: 10.1186/s13104-023-06386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVE Chalcone synthase (CHS) catalyzes the initial step of the flavonoid biosynthesis. The CHS encoding gene is well studied in numerous plant species. Rapidly growing sequence databases contain hundreds of CHS entries that are the result of automatic annotation. In this study, we evaluated apparent multiplication of CHS domains in CHS gene models of four plant species. MAIN FINDINGS CHS genes with an apparent triplication of the CHS domain encoding part were discovered through database searches. Such genes were found in Macadamia integrifolia, Musa balbisiana, Musa troglodytarum, and Nymphaea colorata. A manual inspection of the CHS gene models in these four species with massive RNA-seq data suggests that these gene models are the result of artificial fusions in the annotation process. While there are hundreds of seemingly correct CHS records in the databases, it is not clear why these annotation artifacts appeared.
Collapse
Affiliation(s)
- Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Adriana Volna
- Department of Physics, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jiri Cerven
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Boas Pucker
- Institute of Plant Biology & BRICS, TU Braunschweig, Braunschweig, Germany.
| |
Collapse
|
14
|
Yang Y, Zhu J, Wang H, Guo D, Wang Y, Mei W, Peng S, Dai H. Systematic investigation of the R2R3-MYB gene family in Aquilaria sinensis reveals a transcriptional repressor AsMYB054 involved in 2-(2-phenylethyl)chromone biosynthesis. Int J Biol Macromol 2023:125302. [PMID: 37315664 DOI: 10.1016/j.ijbiomac.2023.125302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/19/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
Trees in the genus Aquilaria produce agarwood, a valuable resin used in medicine, perfumes, and incense. 2-(2-Phenethyl)chromones (PECs) are characteristic components of agarwood; however, molecular mechanisms underlying PEC biosynthesis and regulation remain largely unknown. The R2R3-MYB transcription factors play important regulatory roles in the biosynthesis of various secondary metabolites. In this study, 101 R2R3-MYB genes in Aquilaria sinensis were systematically identified and analyzed at the genome-wide level. Transcriptomic analysis revealed that 19 R2R3-MYB genes were significantly regulated by an agarwood inducer, and showed significant correlations with PEC accumulation. Expression and evolutionary analyses revealed that AsMYB054, a subgroup 4 R2R3-MYB, was negatively correlated with PEC accumulation. AsMYB054 was located in the nucleus and functioned as a transcriptional repressor. Moreover, AsMYB054 could bind to the promoters of the PEC biosynthesis related genes AsPKS02 and AsPKS09, and inhibit their transcriptional activity. These findings suggested that AsMYB054 functions as a negative regulator of PEC biosynthesis via the inhibition of AsPKS02 and AsPKS09 in A. sinensis. Our results provide a comprehensive understanding of the R2R3-MYB subfamily in A. sinensis and lay a foundation for further functional analyses of R2R3-MYB genes in PEC biosynthesis.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163000, China; International Joint Research Center of Agarwood, Haikou 571101, China
| | - Jiahong Zhu
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Hao Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; International Joint Research Center of Agarwood, Haikou 571101, China
| | - Dong Guo
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Ying Wang
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wenli Mei
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; International Joint Research Center of Agarwood, Haikou 571101, China.
| | - Shiqing Peng
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; International Joint Research Center of Agarwood, Haikou 571101, China.
| | - Haofu Dai
- Key Laboratory of Research and Development of Natural Product from Li Folk Medicine of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163000, China; International Joint Research Center of Agarwood, Haikou 571101, China.
| |
Collapse
|
15
|
Li Y, Sun Z, Lu J, Jin Z, Li J. Integrated transcriptomics and metabolomics analysis provide insight into anthocyanin biosynthesis for sepal color formation in Heptacodium miconioides. FRONTIERS IN PLANT SCIENCE 2023; 14:1044581. [PMID: 36890897 PMCID: PMC9987713 DOI: 10.3389/fpls.2023.1044581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Heptacodium miconioides Rehd., commonly known as "seven-son flower," is an ornamental species with a beautiful flower pattern and persistent sepals. Its sepals are of horticultural value, turning bright red and elongating in the autumn; however, the molecular mechanisms that cause sepal color change remain unclear. We analyzed the dynamic changes in anthocyanin composition in the sepal of H. miconioides at four developmental stages (S1-S4). A total of 41 anthocyanins were detected and classified into 7 major anthocyanin aglycones. High levels of the pigments cyanidin-3,5-O-diglucoside, cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, and pelargonidin-3-O-glucoside were responsible for sepal reddening. Transcriptome analysis revealed 15 differentially expressed genes involved in anthocyanin biosynthesis that were detected between 2 developmental stages. Of these, the high expression of HmANS was considered critical structural gene related to anthocyanin biosynthesis pathway in the sepal through co-expression analysis with anthocyanin content. In addition, a transcription factor (TF)-metabolite correlation analysis revealed that three HmMYB, two HmbHLH, two HmWRKY, and two HmNAC TFs exhibited a strong positive role in the regulation of the anthocyanin structural genes (Pearson's correlation coefficient > 0.90). Luciferase activity assay showed that HmMYB114, HmbHLH130, HmWRKY6, and HmNAC1 could activate the promoters of HmCHS4 and HmDFR1 genes in vitro. These findings increase our understanding of anthocyanin metabolism in the sepal of H. miconioides and provide a guide for studies involving sepal color conversion and regulation.
Collapse
Affiliation(s)
- Yueling Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| | - Zhongshuai Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| | - Jieyang Lu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| | - Zexin Jin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| | - Junmin Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou, China
- Institute of Ecology, Taizhou University, Taizhou, China
| |
Collapse
|
16
|
Wafula EK, Zhang H, Von Kuster G, Leebens-Mack JH, Honaas LA, dePamphilis CW. PlantTribes2: Tools for comparative gene family analysis in plant genomics. FRONTIERS IN PLANT SCIENCE 2023; 13:1011199. [PMID: 36798801 PMCID: PMC9928214 DOI: 10.3389/fpls.2022.1011199] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/02/2022] [Indexed: 05/12/2023]
Abstract
Plant genome-scale resources are being generated at an increasing rate as sequencing technologies continue to improve and raw data costs continue to fall; however, the cost of downstream analyses remains large. This has resulted in a considerable range of genome assembly and annotation qualities across plant genomes due to their varying sizes, complexity, and the technology used for the assembly and annotation. To effectively work across genomes, researchers increasingly rely on comparative genomic approaches that integrate across plant community resources and data types. Such efforts have aided the genome annotation process and yielded novel insights into the evolutionary history of genomes and gene families, including complex non-model organisms. The essential tools to achieve these insights rely on gene family analysis at a genome-scale, but they are not well integrated for rapid analysis of new data, and the learning curve can be steep. Here we present PlantTribes2, a scalable, easily accessible, highly customizable, and broadly applicable gene family analysis framework with multiple entry points including user provided data. It uses objective classifications of annotated protein sequences from existing, high-quality plant genomes for comparative and evolutionary studies. PlantTribes2 can improve transcript models and then sort them, either genome-scale annotations or individual gene coding sequences, into pre-computed orthologous gene family clusters with rich functional annotation information. Then, for gene families of interest, PlantTribes2 performs downstream analyses and customizable visualizations including, (1) multiple sequence alignment, (2) gene family phylogeny, (3) estimation of synonymous and non-synonymous substitution rates among homologous sequences, and (4) inference of large-scale duplication events. We give examples of PlantTribes2 applications in functional genomic studies of economically important plant families, namely transcriptomics in the weedy Orobanchaceae and a core orthogroup analysis (CROG) in Rosaceae. PlantTribes2 is freely available for use within the main public Galaxy instance and can be downloaded from GitHub or Bioconda. Importantly, PlantTribes2 can be readily adapted for use with genomic and transcriptomic data from any kind of organism.
Collapse
Affiliation(s)
- Eric K Wafula
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Huiting Zhang
- Tree Fruit Research Laboratory, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Wenatchee, WA, United States
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Gregory Von Kuster
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | | | - Loren A Honaas
- Tree Fruit Research Laboratory, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Wenatchee, WA, United States
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
17
|
Wang ZF, Rouard M, Droc G, Heslop-Harrison P(JS, Ge XJ. Genome assembly of Musa beccarii shows extensive chromosomal rearrangements and genome expansion during evolution of Musaceae genomes. Gigascience 2022; 12:giad005. [PMID: 36807539 PMCID: PMC9941839 DOI: 10.1093/gigascience/giad005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Musa beccarii (Musaceae) is a banana species native to Borneo, sometimes grown as an ornamental plant. The basic chromosome number of Musa species is x = 7, 10, or 11; however, M. beccarii has a basic chromosome number of x = 9 (2n = 2x = 18), which is the same basic chromosome number of species in the sister genera Ensete and Musella. Musa beccarii is in the section Callimusa, which is sister to the section Musa. We generated a high-quality chromosome-scale genome assembly of M. beccarii to better understand the evolution and diversity of genomes within the family Musaceae. FINDINGS The M. beccarii genome was assembled by long-read and Hi-C sequencing, and genes were annotated using both long Iso-seq and short RNA-seq reads. The size of M. beccarii was the largest among all known Musaceae assemblies (∼570 Mbp) due to the expansion of transposable elements and increased 45S ribosomal DNA sites. By synteny analysis, we detected extensive genome-wide chromosome fusions and fissions between M. beccarii and the other Musa and Ensete species, far beyond those expected from differences in chromosome number. Within Musaceae, M. beccarii showed a reduced number of terpenoid synthase genes, which are related to chemical defense, and enrichment in lipid metabolism genes linked to the physical defense of the cell wall. Furthermore, type III polyketide synthase was the most abundant biosynthetic gene cluster (BGC) in M. beccarii. BGCs were not conserved in Musaceae genomes. CONCLUSIONS The genome assembly of M. beccarii is the first chromosome-scale genome assembly in the Callimusa section in Musa, which provides an important genetic resource that aids our understanding of the evolution of Musaceae genomes and enhances our knowledge of the pangenome.
Collapse
Affiliation(s)
- Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Key Laboratory of Carbon Sequestration in Terrestrial Ecosystem, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, 34397 Montpellier, France
| | - Gaetan Droc
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pat (J S) Heslop-Harrison
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Xue-Jun Ge
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
18
|
Mengist MF, Grace MH, Mackey T, Munoz B, Pucker B, Bassil N, Luby C, Ferruzzi M, Lila MA, Iorizzo M. Dissecting the genetic basis of bioactive metabolites and fruit quality traits in blueberries ( Vaccinium corymbosum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:964656. [PMID: 36119607 PMCID: PMC9478557 DOI: 10.3389/fpls.2022.964656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/26/2022] [Indexed: 06/01/2023]
Abstract
Blueberry is well-recognized as a healthy fruit with functionality derived largely from anthocyanin and chlorogenic acid. Despite their importance, no study to date has evaluated the genetic basis of these bioactives in blueberries and their relationship with fruit quality traits. Hence, to fill this gap, a mapping population including 196 F1 individuals was phenotyped for anthocyanin and chlorogenic acid concentration and fruit quality traits (titratable acidity, pH, and total soluble solids) over 3 years and data were used for QTL mapping and correlation analysis. Total soluble solids and chlorogenic acid were positively correlated with glycosylated anthocyanin and total anthocyanin, respectively, indicating that parallel selection for these traits is possible. Across all the traits, a total of 188 QTLs were identified on chromosomes 1, 2, 4, 8, 9, 11 and 12. Notably, four major regions with overlapping major-effect QTLs were identified on chromosomes 1, 2, 4 and 8, and were responsible for acylation and glycosylation of anthocyanins in a substrate and sugar donor specific manner. Through comparative transcriptome analysis, multiple candidate genes were identified for these QTLs, including glucosyltransferases and acyltransferases. Overall, the study provides the first insights into the genetic basis controlling anthocyanins accumulation and composition, chlorogenic acid and fruit quality traits, and establishes a framework to advance genetic studies and molecular breeding for anthocyanins in blueberry.
Collapse
Affiliation(s)
- Molla Fentie Mengist
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Mary H. Grace
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Ted Mackey
- Horticultural Crops Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Corvallis, OR, United States
| | - Bryan Munoz
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
| | - Boas Pucker
- Institute of Plant Biology, TU Braunschweig, Braunschweig, Germany
- BRICS, TU Braunschweig, Braunschweig, Germany
| | - Nahla Bassil
- National Clonal Germplasm Repository, USDA-ARS, Corvallis, OR, United States
| | - Claire Luby
- Horticultural Crops Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Corvallis, OR, United States
| | - Mario Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Mary Ann Lila
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, United States
| | - Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, United States
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
19
|
Schilbert HM, Glover BJ. Analysis of flavonol regulator evolution in the Brassicaceae reveals MYB12, MYB111 and MYB21 duplications and MYB11 and MYB24 gene loss. BMC Genomics 2022; 23:604. [PMID: 35986242 PMCID: PMC9392221 DOI: 10.1186/s12864-022-08819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flavonols are the largest subgroup of flavonoids, possessing multiple functions in plants including protection against ultraviolet radiation, antimicrobial activities, and flower pigmentation together with anthocyanins. They are of agronomical and economical importance because the major off-taste component in rapeseed protein isolates is a flavonol derivative, which limits rapeseed protein use for human consumption. Flavonol production in Arabidopsis thaliana is mainly regulated by the subgroup 7 (SG7) R2R3-MYB transcription factors MYB11, MYB12, and MYB111. Recently, the SG19 MYBs MYB21, MYB24, and MYB57 were shown to regulate flavonol accumulation in pollen and stamens. The members of each subgroup are closely related, showing gene redundancy and tissue-specific expression in A. thaliana. However, the evolution of these flavonol regulators inside the Brassicaceae, especially inside the Brassiceae, which include the rapeseed crop species, is not fully understood. RESULTS We studied the SG7 and SG19 MYBs in 44 species, including 31 species of the Brassicaceae, by phylogenetic analyses followed by synteny and gene expression analyses. Thereby we identified a deep MYB12 and MYB111 duplication inside the Brassicaceae, which likely occurred before the divergence of Brassiceae and Thelypodieae. These duplications of SG7 members were followed by the loss of MYB11 after the divergence of Eruca vesicaria from the remaining Brassiceae species. Similarly, MYB21 experienced duplication before the emergence of the Brassiceae tribe, where the gene loss of MYB24 is also proposed to have happened. The members of each subgroup revealed frequent overlapping spatio-temporal expression patterns in the Brassiceae member B. napus, which are assumed to compensate for the loss of MYB11 and MYB24 in the analysed tissues. CONCLUSIONS We identified a duplication of MYB12, MYB111, and MYB21 inside the Brassicaceae and MYB11 and MYB24 gene loss inside the tribe Brassiceae. We propose that polyploidization events have shaped the evolution of the flavonol regulators in the Brassicaceae, especially in the Brassiceae.
Collapse
Affiliation(s)
- Hanna M Schilbert
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
- Genetics and Genomics of Plants, CeBiTec & Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Transcriptomics and Metabolomics Analyses Reveal Defensive Responses and Flavonoid Biosynthesis of Dracaena cochinchinensis (Lour.) S. C. Chen under Wound Stress in Natural Conditions. Molecules 2022; 27:molecules27144514. [PMID: 35889387 PMCID: PMC9320494 DOI: 10.3390/molecules27144514] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 12/27/2022] Open
Abstract
Dracaena cochinchinensis has special defensive reactions against wound stress. Under wound stress, D. cochinchinensis generates a resin that is an important medicine known as dragon’s blood. However, the molecular mechanism underlying the defensive reactions is unclear. Metabolomics and transcriptomics analyses were performed on stems of D. cochinchinensis at different timepoints from the short term to the long term after wounding. According to the 378 identified compounds, wound-induced secondary metabolic processes exhibited three-phase characteristics: short term (0–5 days), middle term (10 days–3 months), and long term (6–17 months). The wound-induced transcriptome profile exhibited characteristics of four stages: within 24 h, 1–5 days, 10–30 days, and long term. The metabolic regulation in response to wound stress mainly involved the TCA cycle, glycolysis, starch and sucrose metabolism, phenylalanine biosynthesis, and flavonoid biosynthesis, along with some signal transduction pathways, which were all well connected. Flavonoid biosynthesis and modification were the main reactions against wound stress, mainly comprising 109 flavonoid metabolites and 93 wound-induced genes. A group of 21 genes encoding CHS, CHI, DFR, PPO, OMT, LAR, GST, and MYBs were closely related to loureirin B and loureirin C. Wound-induced responses at the metabolome and transcriptome level exhibited phase characteristics. Complex responses containing primary metabolism and flavonoid biosynthesis are involved in the defense mechanism against wound stress in natural conditions, and flavonoid biosynthesis and modification are the main strategies of D. cochinchinensis in the long-term responses to wound stress.
Collapse
|
21
|
Wu Y, Wen J, Xia Y, Zhang L, Du H. Evolution and functional diversification of R2R3-MYB transcription factors in plants. HORTICULTURE RESEARCH 2022; 9:uhac058. [PMID: 35591925 PMCID: PMC9113232 DOI: 10.1093/hr/uhac058] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/24/2022] [Indexed: 05/31/2023]
Abstract
R2R3-MYB genes (R2R3-MYBs) form one of the largest transcription factor gene families in the plant kingdom, with substantial structural and functional diversity. However, the evolutionary processes leading to this amazing functional diversity have not yet been clearly established. Recently developed genomic and classical molecular technologies have provided detailed insights into the evolutionary relationships and functions of plant R2R3-MYBs. Here, we review recent genome-level and functional analyses of plant R2R3-MYBs, with an emphasis on their evolution and functional diversification. In land plants, this gene family underwent a large expansion by whole genome duplications and small-scale duplications. Along with this population explosion, a series of functionally conserved or lineage-specific subfamilies/groups arose with roles in three major plant-specific biological processes: development and cell differentiation, specialized metabolism, and biotic and abiotic stresses. The rapid expansion and functional diversification of plant R2R3-MYBs are highly consistent with the increasing complexity of angiosperms. In particular, recently derived R2R3-MYBs with three highly homologous intron patterns (a, b, and c) are disproportionately related to specialized metabolism and have become the predominant subfamilies in land plant genomes. The evolution of plant R2R3-MYBs is an active area of research, and further studies are expected to improve our understanding of the evolution and functional diversification of this gene family.
Collapse
Affiliation(s)
- Yun Wu
- Department of Landscape Architecture, School of Civil Engineering and Architecture, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wen
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Yiping Xia
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hai Du
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| |
Collapse
|
22
|
Garcia-Gimenez G, Schreiber M, Dimitroff G, Little A, Singh R, Fincher GB, Burton RA, Waugh R, Tucker MR, Houston K. Identification of candidate MYB transcription factors that influence CslF6 expression in barley grain. FRONTIERS IN PLANT SCIENCE 2022; 13:883139. [PMID: 36160970 PMCID: PMC9493323 DOI: 10.3389/fpls.2022.883139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/17/2022] [Indexed: 05/13/2023]
Abstract
(1,3;1,4)-β-Glucan is a non-cellulosic polysaccharide required for correct barley grain fill and plant development, with industrial relevance in the brewing and the functional food sector. Barley grains contain higher levels of (1,3;1,4)-β-glucan compared to other small grain cereals and this influences their end use, having undesirable effects on brewing and distilling and beneficial effects linked to human health. HvCslF6 is the main gene contributing to (1,3;1,4)-β-glucan biosynthesis in the grain. Here, the transcriptional regulation of HvCslF6 was investigated using an in-silico analysis of transcription factor binding sites (TFBS) in its putative promoter, and functional characterization in a barley protoplast transient expression system. Based on TFBS predictions, TF classes AP2/ERF, MYB, and basic helix-loop-helix (bHLH) were over-represented within a 1,000 bp proximal HvCslF6 promoter region. Dual luciferase assays based on multiple HvCslF6 deletion constructs revealed the promoter fragment driving HvCslF6 expression. Highest HvCslF6 promoter activity was narrowed down to a 51 bp region located -331 bp to -382 bp upstream of the start codon. We combined this with TFBS predictions to identify two MYB TFs: HvMYB61 and HvMYB46/83 as putative activators of HvCslF6 expression. Gene network analyses assigned HvMYB61 to the same co-expression module as HvCslF6 and other primary cellulose synthases (HvCesA1, HvCesA2, and HvCesA6), whereas HvMYB46/83 was assigned to a different module. Based on RNA-seq expression during grain development, HvMYB61 was cloned and tested in the protoplast system. The transient over-expression of HvMYB61 in barley protoplasts suggested a positive regulatory effect on HvCslF6 expression.
Collapse
Affiliation(s)
| | - Miriam Schreiber
- Plant Sciences Division, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - George Dimitroff
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Alan Little
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Rohan Singh
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Geoffrey B. Fincher
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Robbie Waugh
- The James Hutton Institute, Dundee, United Kingdom
- Plant Sciences Division, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Matthew R. Tucker
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Kelly Houston
- The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Kelly Houston,
| |
Collapse
|