1
|
Riddell A, Flynn A, Bergugnat H, Dowsett L, Miller A. SDMA as a marker and mediator in cerebrovascular disease. Clin Sci (Lond) 2024; 138:1305-1323. [PMID: 39391895 PMCID: PMC11479986 DOI: 10.1042/cs20241021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Symmetric dimethylarginine (SDMA) is a methylated derivative of arginine, generated by all cells as a by-product of cellular metabolism and eliminated via the kidney. For many years SDMA has been considered inert and of little biological significance. However, a growing body of evidence now suggests this view is outdated and that circulating SDMA levels may, in fact, be intricately linked to endothelial dysfunction and vascular risk. In this review, we specifically examine SDMA within the context of cerebrovascular disease, with a particular focus on ischaemic stroke. We first discuss pre-clinical evidence supporting the notion that SDMA has effects on nitric oxide signalling, inflammation, oxidative stress, and HDL function. We then appraise the most recent clinical studies that explore the relationship between circulating SDMA and cerebrovascular risk factors, such as chronic kidney disease, hypertension, atrial fibrillation, and atherosclerosis, exploring whether any associations may arise due to the existence of shared risk factors. Finally, we consider the evidence that elevated circulating SDMA is linked to poor outcomes following ischaemic and haemorrhagic stroke. We draw upon pre-clinical insights into SDMA function to speculate how SDMA may not only be a marker of cerebrovascular disease but could also directly influence cerebrovascular pathology, and we highlight the pressing need for more mechanistic pre-clinical studies alongside adequately powered, longitudinal clinical studies to fully evaluate SDMA as a marker/mediator of disease.
Collapse
Affiliation(s)
- Alexandra Riddell
- British Heart Foundation Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Arun Flynn
- British Heart Foundation Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Hugo Bergugnat
- British Heart Foundation Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura B. Dowsett
- British Heart Foundation Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alyson A. Miller
- British Heart Foundation Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Lester AB, Buckingham G, Bond B. The effects of partial sleep restriction and subsequent caffeine ingestion on neurovascular coupling. J Sleep Res 2024; 33:e14145. [PMID: 38228309 DOI: 10.1111/jsr.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/06/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
Habitual poor sleep is associated with cerebrovascular disease. Acute sleep deprivation alters the ability to match brain blood flow to metabolism (neurovascular coupling [NVC]) but it is not known how partial sleep restriction affects NVC. When rested, caffeine disrupts NVC, but its effects in the sleep-restricted state are unknown. The purpose of this study was therefore to investigate the effects of partial sleep restriction and subsequent caffeine ingestion on NVC. A total of 17 adults (mean [standard deviation] age 27 [5] years, nine females) completed three separate overnight conditions with morning supplementation: habitual sleep plus placebo (Norm_Pl), habitual sleep plus caffeine (Norm_Caf), and partial (50% habitual sleep) restriction plus caffeine (PSR_Caf). NVC responses were quantified as blood velocity through the posterior (PCAv) and middle (MCAv) cerebral arteries using transcranial Doppler ultrasound during a visual search task and cognitive function tests, respectively. NVC was assessed the evening before and twice the morning after each sleep condition-before and 1-h after caffeine ingestion. NVC responses as a percentage increase in PCAv and MCAv from resting baseline were not different at any timepoint, across all conditions (p > 0.053). MCAv at baseline, and PCAv at baseline, peak, and total area under the curve were lower 1-h after caffeine in both Norm_Caf and PSR_Caf as compared to Norm_Pl (p < 0.05), with no difference between Norm_Caf and PSR_Caf (p > 0.14). In conclusion, NVC was unaltered after 50% sleep loss, and caffeine did not modify the magnitude of the response in the rested or sleep-deprived state. Future research should explore how habitual poor sleep affects cerebrovascular function.
Collapse
Affiliation(s)
- Alice B Lester
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) Research Group, Department of Public Health and Sport Sciences, University of Exeter, Exeter, UK
| | - Gavin Buckingham
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) Research Group, Department of Public Health and Sport Sciences, University of Exeter, Exeter, UK
| | - Bert Bond
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) Research Group, Department of Public Health and Sport Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
3
|
Tripathi A, Pandey VK, Sharma G, Sharma AR, Taufeeq A, Jha AK, Kim JC. Genomic Insights into Dementia: Precision Medicine and the Impact of Gene-Environment Interaction. Aging Dis 2024; 15:2113-2135. [PMID: 38607741 PMCID: PMC11346410 DOI: 10.14336/ad.2024.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The diagnosis, treatment, and management of dementia provide significant challenges due to its chronic cognitive impairment. The complexity of this condition is further highlighted by the impact of gene-environment interactions. A recent strategy combines advanced genomics and precision medicine methods to explore the complex genetic foundations of dementia. Utilizing the most recent research in the field of neurogenetics, the importance of precise genetic data in explaining the variation seen in dementia patients can be investigated. Gene-environment interactions are important because they influence genetic susceptibilities and aid in the development and progression of dementia. Modified to each patient's genetic profile, precision medicine has the potential to detect groups at risk and make previously unheard-of predictions about the course of diseases. Precision medicine techniques have the potential to completely transform treatment and diagnosis methods. Targeted medications that target genetic abnormalities will probably appear, providing the possibility for more efficient and customized medical interventions. Investigating the relationship between genes and the environment may lead to preventive measures that would enable people to change their surroundings and minimize the risk of dementia, leading to the improved lifestyle of affected people. This paper provides a comprehensive overview of the genomic insights into dementia, emphasizing the pivotal role of precision medicine, and gene-environment interactions.
Collapse
Affiliation(s)
- Anjali Tripathi
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- Division of Research & Innovation (DRI), School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Anam Taufeeq
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
4
|
Wang X, Padawer-Curry JA, Bice AR, Kim B, Rosenthal ZP, Lee JM, Goyal MS, Macauley SL, Bauer AQ. Spatiotemporal relationships between neuronal, metabolic, and hemodynamic signals in the awake and anesthetized mouse brain. Cell Rep 2024; 43:114723. [PMID: 39277861 PMCID: PMC11523563 DOI: 10.1016/j.celrep.2024.114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 07/08/2024] [Accepted: 08/21/2024] [Indexed: 09/17/2024] Open
Abstract
Neurovascular coupling (NVC) and neurometabolic coupling (NMC) provide the basis for functional magnetic resonance imaging and positron emission tomography to map brain neurophysiology. While increases in neuronal activity are often accompanied by increases in blood oxygen delivery and oxidative metabolism, these observations are not the rule. This decoupling is important when interpreting brain network organization (e.g., resting-state functional connectivity [RSFC]) because it is unclear whether changes in NMC/NVC affect RSFC measures. We leverage wide-field optical imaging in Thy1-jRGECO1a mice to map cortical calcium activity in pyramidal neurons, flavoprotein autofluorescence (representing oxidative metabolism), and hemodynamic activity during wake and ketamine/xylazine anesthesia. Spontaneous dynamics of all contrasts exhibit patterns consistent with RSFC. NMC/NVC relative to excitatory activity varies over the cortex. Ketamine/xylazine profoundly alters NVC but not NMC. Compared to awake RSFC, ketamine/xylazine affects metabolic-based connectomes moreso than hemodynamic-based measures of RSFC. Anesthesia-related differences in NMC/NVC timing do not appreciably alter RSFC structure.
Collapse
Affiliation(s)
- Xiaodan Wang
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Jonah A Padawer-Curry
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA
| | - Annie R Bice
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byungchan Kim
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Zachary P Rosenthal
- Department of Psychiatry, University of Pennsylvania Health System Penn Medicine, Philadelphia, PA 19104, USA
| | - Jin-Moo Lee
- Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Manu S Goyal
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shannon L Macauley
- Department of Physiology, University of Kentucky, Lexington, KY 40508, USA
| | - Adam Q Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in Saint Louis, St. Louis, MO 63130, USA; Imaging Sciences Program, Washington University in Saint Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
5
|
Li L, Chen R, Zhang H, Li J, Huang H, Weng J, Tan H, Guo T, Wang M, Xie J. The epigenetic modification of DNA methylation in neurological diseases. Front Immunol 2024; 15:1401962. [PMID: 39376563 PMCID: PMC11456496 DOI: 10.3389/fimmu.2024.1401962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
Methylation, a key epigenetic modification, is essential for regulating gene expression and protein function without altering the DNA sequence, contributing to various biological processes, including gene transcription, embryonic development, and cellular functions. Methylation encompasses DNA methylation, RNA methylation and histone modification. Recent research indicates that DNA methylation is vital for establishing and maintaining normal brain functions by modulating the high-order structure of DNA. Alterations in the patterns of DNA methylation can exert significant impacts on both gene expression and cellular function, playing a role in the development of numerous diseases, such as neurological disorders, cardiovascular diseases as well as cancer. Our current understanding of the etiology of neurological diseases emphasizes a multifaceted process that includes neurodegenerative, neuroinflammatory, and neurovascular events. Epigenetic modifications, especially DNA methylation, are fundamental in the control of gene expression and are critical in the onset and progression of neurological disorders. Furthermore, we comprehensively overview the role and mechanism of DNA methylation in in various biological processes and gene regulation in neurological diseases. Understanding the mechanisms and dynamics of DNA methylation in neural development can provide valuable insights into human biology and potentially lead to novel therapies for various neurological diseases.
Collapse
Affiliation(s)
- Linke Li
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Rui Chen
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Hui Zhang
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jinsheng Li
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Hao Huang
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jie Weng
- College of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Huan Tan
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Tailin Guo
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Mengyuan Wang
- The Center of Obesity and Metabolic Diseases, Department of General Surgery, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
- Department of Stomatology, The Third People’s Hospital of Chengdu and The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Jiang Xie
- Key Laboratory of Drug Targeting and Drug Delivery of Ministry of Education (MOE), Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, West China School of Pharmacy, Sichuan University, Chengdu, China
- Department of Pediatrics, Chengdu Third People’s Hospital, Chengdu, China
| |
Collapse
|
6
|
Keifi Bajestani A, Alavi MS, Etemad L, Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur J Pharmacol 2024; 978:176762. [PMID: 38906238 DOI: 10.1016/j.ejphar.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress. There are still no adequate clinical protocols or pharmacological approaches to address the consequences of I/R damage. G protein-coupled receptors (GPCRs) are important therapeutic targets. They compose a large family of seven transmembrane-spanning proteins that are involved in many biological functions. Orphan GPCRs are a large subgroup of these receptors expressed in different organs. In the present review, we summarized the literature regarding the role of orphan GPCRs in I/R in different organs. We focused on the effect of these receptors on modulating cellular and molecular processes underlying ischemia including apoptosis, inflammation, and autophagy. The study showed that GPR3, GPR4, GPR17, GPR30, GPR31, GPR35, GPR37, GPR39, GPR55, GPR65, GPR68, GPR75, GPR81, and GPR91 are involved in ischemic events, mainly in the brain and heart. These receptors offer new possibilities for treating I/R injuries in the body.
Collapse
Affiliation(s)
- Alireza Keifi Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Liu S, Zhang C, Zhang Y, Wu Z, Wu P, Tian S, Zhang M, Lang L, Li L, Wang R, Liu H, Zhang J, Mao X, Li S. Causal association between blood leukocyte counts and vascular dementia: a two-sample bidirectional Mendelian randomization study. Sci Rep 2024; 14:19582. [PMID: 39179767 PMCID: PMC11344047 DOI: 10.1038/s41598-024-70446-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
While previous observational studies have suggested a link between leukocyte counts and vascular dementia (VD), the causal relationship between leukocyte counts and various subtypes of VD remains elusive. This study aimed to investigate the causal relationship between five types of leukocyte counts and VD, with the goal of improving prevention and treatment strategies. In this study, leukocyte counts were used as the exposure variable, with genome-wide association study (GWAS) data sourced from both the UK Biobank and the Blood Cell Consortium. Additionally, GWAS data for five subtypes of vascular dementia were obtained from the FinnGen database. We conducted rigorous statistical analysis and visualization using Mendelian randomization (MR) to elucidate the potential causal relationship between leukocyte counts and vascular dementia. This study, utilizing MR analysis with data from the UK Biobank and Blood Cell Consortium, identified significant causal associations between increased lymphocyte counts and VD. Specifically, lymphocyte counts were found to be causally related to multiple and mixed VD subtypes. Sensitivity analyses, including MR-Egger regression and MR-PRESSO tests, confirmed the robustness of these findings, with no evidence of reverse causality or significant horizontal pleiotropy detected. The results underscore a potential inflammatory or immunological mechanism in the pathogenesis of VD, highlighting lymphocytes as a key component in their etiology. This investigation establishes a robust association between elevated lymphocyte and leukocyte counts and an increased risk of VD, emphasizing the roles of inflammation, immune activation, and hematological factors in disease pathogenesis.
Collapse
Affiliation(s)
- Shufang Liu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chenwei Zhang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yukai Zhang
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ping Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shouyuan Tian
- Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, China
| | - Min Zhang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Limin Lang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Li Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruonan Wang
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | | | - Jingfen Zhang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolu Mao
- Shengjing Hospital of China Medical University, Shenyang , Liaoning, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Collaborative Innovation Center for Molecular Imaging of Precision Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
8
|
Ewees MG, El-Mahdy MA, Hannawi Y, Zweier JL. Tobacco cigarette smoking induces cerebrovascular dysfunction followed by oxidative neuronal injury with the onset of cognitive impairment. J Cereb Blood Flow Metab 2024:271678X241270415. [PMID: 39136181 DOI: 10.1177/0271678x241270415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
While chronic smoking triggers cardiovascular disease, controversy remains regarding its effects on the brain and cognition. We investigated the effects of long-term cigarette smoke (CS) exposure (CSE) on cerebrovascular function, neuronal injury, and cognition in a novel mouse exposure model. Longitudinal studies were performed in CS or air-exposed mice, 2 hours/day, for up to 60 weeks. Hypertension and carotid vascular endothelial dysfunction (VED) occurred by 16 weeks of CSE, followed by reduced carotid artery blood flow, with oxidative stress detected in the carotid artery, and subsequently in the brain of CS-exposed mice with generation of reactive oxygen species (ROS) and secondary protein and DNA oxidation, microglial activation and astrocytosis. Brain small vessels exhibited decreased levels of endothelial NO synthase (eNOS), enlarged perivascular spaces with blood brain barrier (BBB) leak and decreased levels of tight-junction proteins. In the brain, amyloid-β deposition and phosphorylated-tau were detected with increases out to 60 weeks, at which time mice exhibited impaired spatial learning and memory. Thus, long-term CSE initiates a cascade of ROS generation and oxidative damage, eNOS dysfunction with cerebral hypoperfusion, as well as cerebrovascular and BBB damage with intracerebral inflammation, and neuronal degeneration, followed by the onset of impaired cognition and memory.
Collapse
Affiliation(s)
- Mohamed G Ewees
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Mohamed A El-Mahdy
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Yousef Hannawi
- Division of Cerebrovascular Diseases and Neurocritical Care, Department of Neurology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jay L Zweier
- Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart & Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Hand LK, Taylor MK, Sullivan DK, Siengsukon CF, Morris JK, Martin LE, Hull HR. Pregnancy as a window of opportunity for dementia prevention: a narrative review. Nutr Neurosci 2024:1-13. [PMID: 38970804 DOI: 10.1080/1028415x.2024.2371727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Dementia is a debilitating condition with a disproportionate impact on women. While sex differences in longevity contribute to the disparity, the role of the female sex as a biological variable in disease progression is not yet fully elucidated. Metabolic dysfunctions are drivers of dementia etiology, and cardiometabolic diseases are among the most influential modifiable risk factors. Pregnancy is a time of enhanced vulnerability for metabolic disorders. Many dementia risk factors, such as hypertension or blood glucose dysregulation, often emerge for the first time in pregnancy. While such cardiometabolic complications in pregnancy pose a risk to the health trajectory of a woman, increasing her odds of developing type 2 diabetes or chronic hypertension, it is not fully understood how this relates to her risk for dementia. Furthermore, structural and functional changes in the maternal brain have been reported during pregnancy suggesting it is a time of neuroplasticity for the mother. Therefore, pregnancy may be a window of opportunity to optimize metabolic health and support the maternal brain. Healthy dietary patterns are known to reduce the risk of cardiometabolic diseases and have been linked to dementia prevention, yet interventions targeting cognitive function in late life have largely been unsuccessful. Earlier interventions are needed to address the underlying metabolic dysfunctions and potentially reduce the risk of dementia, and pregnancy offers an ideal opportunity to intervene. This review discusses current evidence regarding maternal brain health and the potential window of opportunity in pregnancy to use diet to address neurological health disparities for women.
Collapse
Affiliation(s)
- Lauren K Hand
- Department of Dietetics and Nutrition, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthew K Taylor
- Department of Dietetics and Nutrition, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA
| | - Debra K Sullivan
- Department of Dietetics and Nutrition, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA
| | - Catherine F Siengsukon
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jill K Morris
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura E Martin
- Department of Population Health, University of Kansas Medical Center, Kansas City, KS, USA
- Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Holly R Hull
- Department of Dietetics and Nutrition, School of Health Professions, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
10
|
Duval GT, Raud E, Gohier H, Dramé M, Tabue-Teguo M, Annweiler C. Orthostatic hypotension and cognitive impairment: Systematic review and meta-analysis of longitudinal studies. Maturitas 2024; 185:107866. [PMID: 38604094 DOI: 10.1016/j.maturitas.2023.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 09/22/2023] [Indexed: 04/13/2024]
Abstract
The association between cognitive disorders and orthostatic hypotension (OH) has been empirically explored, but the results have been divergent, casting doubt on the presence and direction of the association. The objective of this meta-analysis was to systematically review and quantitatively synthesize the association of OH and cognitive function, specifically mean score on the Mini-Mental State Examination (MMSE), cognitive impairment and incident dementia. A Medline search was conducted in May 2022 with no date limit, using the MeSH terms "orthostatic hypotension" OR "orthostatic intolerance" OR "hypotension" combined with the Mesh terms "cognitive dysfunction" OR "Alzheimer disease" OR "dementia" OR "cognition disorder" OR "neurocognitive disorder" OR "cognition" OR "neuropsychological test". Of the 746 selected studies, 15 longitudinal studies met the selection criteria, of which i) 5 studies were eligible for meta-analysis of mean MMSE score comparison, ii) 5 studies for the association of OH and cognitive impairment, and iii) 6 studies for the association between OH and incident dementia. The pooled effect size in fixed-effects meta-analysis was: i) -0.25 (-0.42; -0.07) for the mean MMSE score, which indicates that the MMSE score was lower for those with OH; ii) OR (95 % CI) = 1.278 (1.162; 1.405), P < 0.0001, indicating a 28 % greater risk of cognitive impairment for those with OH at baseline; and iii) HR (95 % CI) = 1.267 (1.156; 1.388), P < 0.0001, indicating a 27 % greater risk of incident dementia for those with OH at baseline. Patients with OH had a lower MMSE score and higher risk of cognitive impairment and incident dementia in this meta-analysis of longitudinal studies. This study confirmed the presence of an association between OH and cognitive disorders in older adults.
Collapse
Affiliation(s)
- Guillaume T Duval
- Department of Neuroscience, Division of Geriatric Medicine and Memory Clinic, UPRES EA 4638, UNAM, Angers University Hospital, Angers, France.
| | - Eve Raud
- Department of Neuroscience, Division of Geriatric Medicine and Memory Clinic, UPRES EA 4638, UNAM, Angers University Hospital, Angers, France
| | - Hugo Gohier
- Department of Neuroscience, Division of Geriatric Medicine and Memory Clinic, UPRES EA 4638, UNAM, Angers University Hospital, Angers, France
| | - Moustapha Dramé
- University of the French West Indies, EpiCliV Research Unit, Fort-de-France, Martinique; University Hospitals of Martinique, Department of Clinical Research and Innovation, Fort-de-France, Martinique
| | - Maturin Tabue-Teguo
- Department of Geriatrics, University Hospital of Martinique, Fort-de-France, Martinique
| | - Cédric Annweiler
- Department of Neuroscience, Division of Geriatric Medicine and Memory Clinic, UPRES EA 4638, UNAM, Angers University Hospital, Angers, France; Department of Medicine, Division of Geriatric Medicine, Parkwood Hospital, St. Joseph's Health Care London, Gait and Brain Lab, Lawson Health Research Institute, the University of Western Ontario, London, ON, Canada; Robarts Research Institute, Department of Medical Biophysics, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
11
|
He Y, He T, Li H, Chen W, Zhong B, Wu Y, Chen R, Hu Y, Ma H, Wu B, Hu W, Han Z. Deciphering mitochondrial dysfunction: Pathophysiological mechanisms in vascular cognitive impairment. Biomed Pharmacother 2024; 174:116428. [PMID: 38599056 DOI: 10.1016/j.biopha.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.
Collapse
Affiliation(s)
- Yuyao He
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Tiantian He
- Sichuan Academy of Chinese Medicine Sciences, China
| | - Hongpei Li
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Biying Zhong
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yue Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Runming Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuli Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huaping Ma
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bin Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wenyue Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
12
|
Ferreira J, Ferreira P, Azevedo E, Castro P. Assessment of Neurovascular Coupling by Spectral Analysis of Cerebral Blood Flow Velocity With Transcranial Doppler. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:751-759. [PMID: 38418342 DOI: 10.1016/j.ultrasmedbio.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Accepted: 02/04/2024] [Indexed: 03/01/2024]
Abstract
OBJECTIVE Neurovascular coupling (NVC) represents the increase in regional blood flow associated with neural activity. The aim here was to describe a new approach to non-invasive measurement of NVC by spectral analysis of the cerebral blood flow velocity (CBFV) with transcranial Doppler. METHODS In a sample of 20 healthy participants, we monitored systolic CBFV in the left posterior cerebral artery (PCA) during off (eyes closed) and on (flickering checkerboard) periods. The contralateral middle cerebral artery was simultaneously monitored as a control. Each participant was submitted to three experiments, each having five cycles, with increasing duration of the cycles, from 10 s (0.1 Hz) to 20 s (0.05 Hz) and lastly 40 s (0.025 Hz), half the time for on and for off periods, constituting a total of 6 min. The successive cycles were expected to cause oscillation in CBFV in a sinusoidal pattern that could be characterized by spectral analysis. We also measured the classic CBFV overshoot as the relative increase in percentage of systolic CBFV from baseline. The relationship and agreement between the two methods were analyzed by linear regression and Bland-Altman plots. In every participant, a clear peak of amplitude in the PCA CBFV spectrum was discernible at 0.1, 0.05 and 0.025 Hz of visual stimulation. RESULTS On average, this amplitude was 7.1 ± 2.3%, 10.9 ± 3.5% and 17.3 ± 6.5%, respectively. This response contrasted significantly with an absent peak in middle cerebral artery monitoring (p < 0.0001). The spectral amplitude and classic overshoot were highly correlated and linearly related (p < 0.0001). CONCLUSION NVC can be quantified by the spectral amplitude of PCA CBFV at slower and higher frequencies of visual stimulation. This method represents an alternative to classic overshoot without the need for stimulus marking or synchronization.
Collapse
Affiliation(s)
- Juliana Ferreira
- UnIC@RISE, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Elsa Azevedo
- UnIC@RISE, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Neurology, Centro Hospitalar Universitário de São João, Porto, Portugal
| | - Pedro Castro
- UnIC@RISE, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal; Department of Neurology, Centro Hospitalar Universitário de São João, Porto, Portugal.
| |
Collapse
|
13
|
Wu Z, Shu D, Wu S, Cai P, Liang T. Higher serum Lp-PLA2 is associated with cognitive impairment in Parkinson's disease patients. Front Neurosci 2024; 18:1374567. [PMID: 38533446 PMCID: PMC10963402 DOI: 10.3389/fnins.2024.1374567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Objective To explore the association between lipoprotein-associated phospholipase A2 (Lp-PLA2) and the risk of cognitive impairment in Parkinson's disease (PD-CI). Methods A case-control study involving 100 hospitalized PD patients and 60 healthy controls was carried out. Serum Lp-PLA2 level was detected by automatic biochemical analyzer. Based on whether Parkinson's patients have cognitive impairment, PD patients were subdivided to analyze the clinical value of Lp-PLA2. Relationship between Lp-PLA2 and PD-CI risk was analyzed by logistic regression. Diagnostic value of Lp-PLA2 in PD-CI patients was investigated using receiver's operator characteristic curves. Results The levels of serum Lp-PLA2 activity in Parkinson's disease with normal cognition (PD-NC) and PD-CI patients were significantly higher than those in healthy controls (HCs), respectively. Furthermore, compared to the PD-NC group, the serum Lp-PLA2 activity level was significantly higher in PD-CI patients. Multivariable logistic regression analysis indicated that higher Lp-PLA2 level was an independent risk factor for PD patients with cognitive impairment. Moreover, the area under the efficacy curve of Lp-PLA2 for predicting PD-CI is 0.659. Conclusion Our study shows that higher levels of Lp-PLA2 activity in PD patients are associated with the risk of developing cognitive impairment. Therefore, given the wide availability, safety, and convenience of monitoring serum Lp-PLA2 activity, it may serve as an early biomarker for cognitive impairment in PD patients.
Collapse
Affiliation(s)
- Zubo Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Defeng Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suyuan Wu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Lee H, Lee H, Choi J, Hwang G, Lee H, Lee H, Kim S, Kim M, Nam H, Shim J, Jaber H, Yim J. Investigation of the Approaches to Optimal Exercise Interventions Based on Dementia Type: A Theoretical Review. Healthcare (Basel) 2024; 12:576. [PMID: 38470687 PMCID: PMC10931380 DOI: 10.3390/healthcare12050576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/21/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study is to enhance comprehension of the different types and features of dementia, including their symptoms, diagnosis and medical treatment, and to propose various evidence-based exercise interventions and their clinical applications tailored to each specific type of dementia. The theoretical review includes the analysis of publications in the scientific databases PubMed/Medline, Ebsco, Scielo, and Google. A total of 177 articles were found, of which 84 were studied in depth. With the prevalence of all forms of dementia projected to increase from 57.4 million in 2019 to 152.8 million in 2050, personalized treatment strategies are needed. This review discusses various forms of dementia, including their pathologies, diagnostic criteria, and prevalence rates. The importance of accurate diagnosis and tailored care is emphasized, as well as the effectiveness of physical exercise in improving cognitive function in dementia patients. For Alzheimer's, a combination of drug therapies and exercises is recommended to enhance cerebral blood flow and neurotransmitter activity. To improve cognitive and motor functions in Lewy body dementia, a combination of pharmacological and physical therapies is recommended. For managing frontotemporal dementia, a mix of medication and exercises aimed at emotion regulation, including aerobic exercises, and a unified protocol, is suggested. For mild cognitive impairment, aerobic and functional exercises are important in delaying cognitive decline and enhancing cognitive performance. In conclusion, individualized care and treatment plans tailored to the specific characteristics of each disease type can improve the quality of life for individuals with this condition and effectively manage this growing global health issue.
Collapse
Affiliation(s)
- Hyun Lee
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul 01795, Republic of Korea; (H.L.); (H.L.); (J.C.); (G.H.); (H.L.); (H.L.); (S.K.); (M.K.); (H.N.); (J.S.)
| | - Hyeongmin Lee
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul 01795, Republic of Korea; (H.L.); (H.L.); (J.C.); (G.H.); (H.L.); (H.L.); (S.K.); (M.K.); (H.N.); (J.S.)
| | - Jinhyung Choi
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul 01795, Republic of Korea; (H.L.); (H.L.); (J.C.); (G.H.); (H.L.); (H.L.); (S.K.); (M.K.); (H.N.); (J.S.)
| | - Gyujeong Hwang
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul 01795, Republic of Korea; (H.L.); (H.L.); (J.C.); (G.H.); (H.L.); (H.L.); (S.K.); (M.K.); (H.N.); (J.S.)
| | - Hyemin Lee
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul 01795, Republic of Korea; (H.L.); (H.L.); (J.C.); (G.H.); (H.L.); (H.L.); (S.K.); (M.K.); (H.N.); (J.S.)
| | - Hyunmin Lee
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul 01795, Republic of Korea; (H.L.); (H.L.); (J.C.); (G.H.); (H.L.); (H.L.); (S.K.); (M.K.); (H.N.); (J.S.)
| | - Sujeong Kim
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul 01795, Republic of Korea; (H.L.); (H.L.); (J.C.); (G.H.); (H.L.); (H.L.); (S.K.); (M.K.); (H.N.); (J.S.)
| | - Minjeong Kim
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul 01795, Republic of Korea; (H.L.); (H.L.); (J.C.); (G.H.); (H.L.); (H.L.); (S.K.); (M.K.); (H.N.); (J.S.)
| | - Huiju Nam
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul 01795, Republic of Korea; (H.L.); (H.L.); (J.C.); (G.H.); (H.L.); (H.L.); (S.K.); (M.K.); (H.N.); (J.S.)
| | - Jaeyoon Shim
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul 01795, Republic of Korea; (H.L.); (H.L.); (J.C.); (G.H.); (H.L.); (H.L.); (S.K.); (M.K.); (H.N.); (J.S.)
| | - Hatem Jaber
- College of Rehabilitative Sciences, University of St. Augustine for Health Sciences, Austin, TX 78739, USA;
| | - Jongeun Yim
- Department of Physical Therapy, Graduate School of Sahmyook University, Seoul 01795, Republic of Korea; (H.L.); (H.L.); (J.C.); (G.H.); (H.L.); (H.L.); (S.K.); (M.K.); (H.N.); (J.S.)
| |
Collapse
|
15
|
Toribio-Fernandez R, Ceron C, Tristão-Pereira C, Fernandez-Nueda I, Perez-Castillo A, Fernandez-Ferro J, Moro MA, Ibañez B, Fuster V, Cortes-Canteli M. Oral anticoagulants: A plausible new treatment for Alzheimer's disease? Br J Pharmacol 2024; 181:760-776. [PMID: 36633908 DOI: 10.1111/bph.16032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) and cardiovascular disease (CVD) are strongly associated. Both are multifactorial disorders with long asymptomatic phases and similar risk factors. Indeed, CVD signatures such as cerebral microbleeds, micro-infarcts, atherosclerosis, cerebral amyloid angiopathy and a procoagulant state are highly associated with AD. However, AD and CVD co-development and the molecular mechanisms underlying such associations are not understood. Here, we review the evidence regarding the vascular component of AD and clinical studies using anticoagulants that specifically evaluated the development of AD and other dementias. Most studies reported a markedly decreased incidence of composite dementia in anticoagulated patients with atrial fibrillation, with the highest benefit for direct oral anticoagulants. However, sub-analyses by differential dementia diagnosis were scarce and inconclusive. We finally discuss whether anticoagulation could be a plausible preventive/therapeutic approach for AD and, if so, which would be the best drug and strategy to maximize clinical benefit and minimize potential risks. LINKED ARTICLES: This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Raquel Toribio-Fernandez
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Carlos Ceron
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Irene Fernandez-Nueda
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Perez-Castillo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Jose Fernandez-Ferro
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Stroke Unit, Neurology Service, Hospital Universitario Rey Juan Carlos (HURJC), Madrid, Spain
| | - Maria Angeles Moro
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Borja Ibañez
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de enfermedades cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marta Cortes-Canteli
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
16
|
Janoutová J, Machaczka O, Kovalová M, Zatloukalová A, Ambroz P, Koutná V, Mrázková E, Bar M, Roubec M, Bártová P, Novobilský R, Sabela M, Kušnierová P, Stejskal D, Faldynová L, Walczysková S, Vališ M, Školoudík L, Šolínová P, Školoudík D, Janout V. The relationship between atherosclerosis and dementia. Cent Eur J Public Health 2024; 32:9-15. [PMID: 38669152 DOI: 10.21101/cejph.a7848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 02/15/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE The main objective is to confirm a hypothesis that atherosclerosis, through various mechanisms, considerably influences cognitive impairment and significantly increases the risk for developing dementia. Complete sample should be 920 individuals. The present study aimed to analyse epidemiological data from a questionnaire survey. METHODS The work was carried out in the form of an epidemiological case control study. Subjects are enrolled in the study based on results of the following examinations carried out in neurology departments and outpatient centres during the project NU20-09-00119 from 2020 to 2023. Respondents were divided into four research groups according to the results of clinical examination for the presence of atherosclerosis and dementia. The survey was mainly concerned with risk factors for both atherosclerosis and dementia. It contained questions on lifestyle factors, cardiovascular risk factors, leisure activities, and hobbies. RESULTS Analysis of the as yet incomplete sample of 877 subjects has yielded the following selected results: on average, 16% of subjects without dementia had primary education while the proportion was 45.2% in the group with both dementia and atherosclerosis. Subjects with dementia did mainly physical work. Low physical activity was more frequently noted in dementia groups (Group 2 - 54.4% and Group 3 - 47.2%) than in subjects without dementia (Group 1 - 19.6% and Group 4 - 25.8%). Coronary heart disease was more frequently reported by dementia patients (33.95%) than those without dementia (16.05%). CONCLUSION Cognitively impaired individuals, in particular those with vascular cognitive impairment, have poorer quality of life and shorter survival. Risk factors contributing to such impairment are similar to those for ischaemic or haemorrhagic stroke. It may be concluded that most of the analysed risk factors play a role in the development of both atherosclerosis and dementia.
Collapse
Affiliation(s)
- Jana Janoutová
- Department of Public Health, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Ondřej Machaczka
- Science and Research Centre, Faculty of Health Sciences, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Health Management and Public Health, Faculty of Health Sciences, Palacky University Olomouc, Olomouc, Czech Republic
| | - Martina Kovalová
- Science and Research Centre, Faculty of Health Sciences, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Health Management and Public Health, Faculty of Health Sciences, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Anna Zatloukalová
- Science and Research Centre, Faculty of Health Sciences, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Health Management and Public Health, Faculty of Health Sciences, Palacky University Olomouc, Olomouc, Czech Republic
| | - Petr Ambroz
- Science and Research Centre, Faculty of Health Sciences, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Health Management and Public Health, Faculty of Health Sciences, Palacky University Olomouc, Olomouc, Czech Republic
| | - Veronika Koutná
- Department of Public Health, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Eva Mrázková
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Michal Bar
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Martin Roubec
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Petra Bártová
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Richard Novobilský
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Martin Sabela
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
- Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Pavlína Kušnierová
- Department of Laboratory Medicine, University Hospital Ostrava, Ostrava, Czech Republic
- Institute of Laboratory Medicine, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - David Stejskal
- Department of Laboratory Medicine, University Hospital Ostrava, Ostrava, Czech Republic
- Institute of Laboratory Medicine, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Lucie Faldynová
- Department of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Sylwia Walczysková
- Department of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Martin Vališ
- Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lukáš Školoudík
- Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
- University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petra Šolínová
- University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Školoudík
- Centre for Health Research, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Vladimír Janout
- Department of Public Health, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
17
|
Hernandez Torres LD, Rezende F, Peschke E, Will O, Hövener JB, Spiecker F, Özorhan Ü, Lampe J, Stölting I, Aherrahrou Z, Künne C, Kusche-Vihrog K, Matschl U, Hille S, Brandes RP, Schwaninger M, Müller OJ, Raasch W. Incidence of microvascular dysfunction is increased in hyperlipidemic mice, reducing cerebral blood flow and impairing remote memory. Front Endocrinol (Lausanne) 2024; 15:1338458. [PMID: 38469142 PMCID: PMC10925718 DOI: 10.3389/fendo.2024.1338458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction The development of cognitive dysfunction is not necessarily associated with diet-induced obesity. We hypothesized that cognitive dysfunction might require additional vascular damage, for example, in atherosclerotic mice. Methods We induced atherosclerosis in male C57BL/6N mice by injecting AAV-PCSK9DY (2x1011 VG) and feeding them a cholesterol-rich Western diet. After 3 months, mice were examined for cognition using Barnes maze procedure and for cerebral blood flow. Cerebral vascular morphology was examined by immunehistology. Results In AAV-PCSK9DY-treated mice, plaque burden, plasma cholesterol, and triglycerides are elevated. RNAseq analyses followed by KEGG annotation show increased expression of genes linked to inflammatory processes in the aortas of these mice. In AAV-PCSK9DY-treated mice learning was delayed and long-term memory impaired. Blood flow was reduced in the cingulate cortex (-17%), caudate putamen (-15%), and hippocampus (-10%). Immunohistological studies also show an increased incidence of string vessels and pericytes (CD31/Col IV staining) in the hippocampus accompanied by patchy blood-brain barrier leaks (IgG staining) and increased macrophage infiltrations (CD68 staining). Discussion We conclude that the hyperlipidemic PCSK9DY mouse model can serve as an appropriate approach to induce microvascular dysfunction that leads to reduced blood flow in the hippocampus, which could explain the cognitive dysfunction in these mice.
Collapse
Affiliation(s)
| | - Flavia Rezende
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Rhine-Main, Germany
| | - Eva Peschke
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Olga Will
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, Universitätsklinikum Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Frauke Spiecker
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Ümit Özorhan
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Josephine Lampe
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Ines Stölting
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Zouhair Aherrahrou
- Institute for Cardiogenetics, University Lübeck; University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Carsten Künne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Kristina Kusche-Vihrog
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
- Institute for Physiology, University Lübeck, Lübeck, Germany
| | - Urte Matschl
- Department Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Susanne Hille
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site Rhine-Main, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
- CBBM (Centre for Brain, Behavior and Metabolism), University of Lübeck, Lübeck, Germany
| | - Oliver J. Müller
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
- Department of Internal Medicine III, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Walter Raasch
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
- CBBM (Centre for Brain, Behavior and Metabolism), University of Lübeck, Lübeck, Germany
| |
Collapse
|
18
|
Li C, Liu Y, Liu J, Xu X. Editorial: Targeting neuron-non-neuronal interactions at the neurovascular unit in stroke and neurodegenerative disease models. Front Cell Neurosci 2024; 18:1353281. [PMID: 38344282 PMCID: PMC10853426 DOI: 10.3389/fncel.2024.1353281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Affiliation(s)
- Changxiang Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MA, United States
- Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MA, United States
| | - Jian Liu
- Peking University Health Science Center, Beijing, China
| | - Xiaoyu Xu
- College of Traditional Chinese Medicine, Southwest University, Chongqing, China
| |
Collapse
|
19
|
Zhang M, Zhang Z, Li H, Xia Y, Xing M, Xiao C, Cai W, Bu L, Li Y, Park TE, Tang Y, Ye X, Lin WJ. Blockage of VEGF function by bevacizumab alleviates early-stage cerebrovascular dysfunction and improves cognitive function in a mouse model of Alzheimer's disease. Transl Neurodegener 2024; 13:1. [PMID: 38173017 PMCID: PMC10763201 DOI: 10.1186/s40035-023-00388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder and the predominant type of dementia worldwide. It is characterized by the progressive and irreversible decline of cognitive functions. In addition to the pathological beta-amyloid (Aβ) deposition, glial activation, and neuronal injury in the postmortem brains of AD patients, increasing evidence suggests that the often overlooked vascular dysfunction is an important early event in AD pathophysiology. Vascular endothelial growth factor (VEGF) plays a critical role in regulating physiological functions and pathological changes in blood vessels, but whether VEGF is involved in the early stage of vascular pathology in AD remains unclear. METHODS We used an antiangiogenic agent for clinical cancer treatment, the humanized monoclonal anti-VEGF antibody bevacizumab, to block VEGF binding to its receptors in the 5×FAD mouse model at an early age. After treatment, memory performance was evaluated by a novel object recognition test, and cerebral vascular permeability and perfusion were examined by an Evans blue assay and blood flow scanning imaging analysis. Immunofluorescence staining was used to measure glial activation and Aβ deposits. VEGF and its receptors were analyzed by enzyme-linked immunosorbent assay and immunoblotting. RNA sequencing was performed to elucidate bevacizumab-associated transcriptional signatures in the hippocampus of 5×FAD mice. RESULTS Bevacizumab treatment administered from 4 months of age dramatically improved cerebrovascular functions, reduced glial activation, and restored long-term memory in both sexes of 5×FAD mice. Notably, a sex-specific change in different VEGF receptors was identified in the cortex and hippocampus of 5×FAD mice. Soluble VEGFR1 was decreased in female mice, while full-length VEGFR2 was increased in male mice. Bevacizumab treatment reversed the altered expression of receptors to be comparable to the level in the wild-type mice. Gene Set Enrichment Analysis of transcriptomic changes revealed that bevacizumab effectively reversed the changes in the gene sets associated with blood-brain barrier integrity and vascular smooth muscle contraction in 5×FAD mice. CONCLUSIONS Our study demonstrated the mechanistic roles of VEGF at the early stage of amyloidopathy and the protective effects of bevacizumab on cerebrovascular function and memory performance in 5×FAD mice. These findings also suggest the therapeutic potential of bevacizumab for the early intervention of AD.
Collapse
Affiliation(s)
- Min Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhan Zhang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Honghong Li
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuting Xia
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Mengdan Xing
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Chuan Xiao
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Wenbao Cai
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lulu Bu
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yi Li
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yamei Tang
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| | - Xiaojing Ye
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Wei-Jye Lin
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
20
|
Khaled M, Al-Jamal H, Tajer L, El-Mir R. Alzheimer's Disease in Lebanon: Exploring Genetic and Environmental Risk Factors-A Comprehensive Review. J Alzheimers Dis 2024; 99:21-40. [PMID: 38640157 DOI: 10.3233/jad-231432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that displays a high prevalence in Lebanon causing a local burden in healthcare and socio-economic sectors. Unfortunately, the lack of prevalence studies and clinical trials in Lebanon minimizes the improvement of AD patient health status. In this review, we include over 155 articles to cover the different aspects of AD ranging from mechanisms to possible treatment and management tools. We highlight some important modifiable and non-modifiable risk factors of the disease including genetics, age, cardiovascular diseases, smoking, etc. Finally, we propose a hypothetical genetic synergy model between APOE4 and TREM2 genes which constitutes a potential early diagnostic tool that helps in reducing the risk of AD based on preventative measures decades before cognitive decline. The studies on AD in Lebanon and the Middle East are scarce. This review points out the importance of genetic mapping in the understanding of disease pathology which is crucial for the emergence of novel diagnostic tools. Hence, we establish a rigid basis for further research to identify the most influential genetic and environmental risk factors for the purpose of using more specific diagnostic tools and possibly adopting a local management protocol.
Collapse
Affiliation(s)
| | - Hadi Al-Jamal
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Layla Tajer
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Reem El-Mir
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
21
|
Luo J, Thomassen JQ, Nordestgaard BG, Tybjærg-Hansen A, Frikke-Schmidt R. Neutrophil counts and cardiovascular disease. Eur Heart J 2023; 44:4953-4964. [PMID: 37950632 PMCID: PMC10719495 DOI: 10.1093/eurheartj/ehad649] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 11/13/2023] Open
Abstract
BACKGROUND AND AIMS Anti-inflammatory trials have shown considerable benefits for cardiovascular disease. High neutrophil counts, an easily accessible inflammation biomarker, are associated with atherosclerosis in experimental studies. This study aimed to investigate the associations between neutrophil counts and risk of nine cardiovascular endpoints using observational and genetic approaches. METHODS Observational studies were conducted in the Copenhagen General Population Study (n = 101 730). Genetic studies were firstly performed using one-sample Mendelian randomization (MR) with individual-level data from the UK Biobank (n = 365 913); secondly, two-sample MR analyses were performed using summary-level data from the Blood Cell Consortium (n = 563 085). Outcomes included ischaemic heart disease, myocardial infarction, peripheral arterial disease, ischaemic cerebrovascular disease, ischaemic stroke, vascular-related dementia, vascular dementia, heart failure, and atrial fibrillation. RESULTS Observational analyses showed associations between high neutrophil counts with high risks of all outcomes. In the UK Biobank, odds ratios (95% confidence intervals) per 1-SD higher genetically predicted neutrophil counts were 1.15 (1.08, 1.21) for ischaemic heart disease, 1.22 (1.12, 1.34) for myocardial infarction, and 1.19 (1.04, 1.36) for peripheral arterial disease; similar results were observed in men and women separately. In two-sample MR, corresponding estimates were 1.14 (1.05, 1.23) for ischaemic heart disease and 1.11 (1.02, 1.20) for myocardial infarction; multiple sensitivity analyses showed consistent results. No robust associations in two-sample MR analyses were found for other types of leucocytes. CONCLUSIONS Observational and genetically determined high neutrophil counts were associated with atherosclerotic cardiovascular disease, supporting that high blood neutrophil counts is a causal risk factor for atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Jesper Qvist Thomassen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Yang S, Webb AJS. Associations between neurovascular coupling and cerebral small vessel disease: A systematic review and meta-analysis. Eur Stroke J 2023; 8:895-903. [PMID: 37697725 PMCID: PMC10683738 DOI: 10.1177/23969873231196981] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 09/13/2023] Open
Abstract
PURPOSE The pathogenesis of cerebral small vessel disease (cSVD) remains elusive despite evidence of an association between white matter hyperintensities (WMH) and endothelial cerebrovascular dysfunction. Neurovascular coupling (NVC) may be a practical alternative measure of endothelial function. We performed a systematic review of reported associations between NVC and cSVD. METHODS EMBASE and PubMed were searched for studies reporting an association between any STRIVE-defined marker of cSVD and a measure of NVC during functional magnetic resonance imaging, transcranial Doppler, positron emission tomography, near-infrared spectroscopy or single-photon emission computed tomography, from inception to November 3rd, 2022. Where quantitative data was available from studies using consistent tests and analyses, results were combined by inverse-variance weighted random effects meta-analysis. FINDINGS Of 29 studies (19 case-controls; 10 cohorts), 26 reported decreased NVC with increasing severity of cSVD, of which 18 were individually significant. In 28 studies reporting associations with increasing WMH, 25 reported reduced NVC. Other markers of cSVD were associated with reduced NVC in: eight of nine studies with cerebral microbleeds (six showing a significant effect); three of five studies with lacunar stroke; no studies reported an association with enlarged perivascular spaces. Specific SVD diseases were particularly associated with reduced NVC, including six out of seven studies in cerebral amyloid angiopathy and all four studies in CADASIL. In limited meta-analyses, %BOLD occipital change to a visual stimulus was consistently reduced with more severe WMH (seven studies, SMD -1.51, p < 0.01) and increasing microbleeds (seven studies, SMD -1.31, p < 0.01). DISCUSSION AND CONCLUSION In multiple, small studies, neurovascular coupling was reduced in patients with increasing severity of all markers of cSVD in sporadic disease, CAA and CADASIL. Cerebrovascular endothelial dysfunction, manifest as impaired NVC, may be a common marker of physiological dysfunction due to small vessel injury that can be easily measured in large studies and clinical practice.
Collapse
Affiliation(s)
- Sheng Yang
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alastair John Stewart Webb
- Wolfson Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Sanda R, Yamashita K, Sawahata H, Sakamoto K, Yamagiwa S, Yokoyama S, Numano R, Koida K, Kawano T. Low-invasive neural recording in mouse models with diabetes via an ultrasmall needle-electrode. Biosens Bioelectron 2023; 240:115605. [PMID: 37669586 DOI: 10.1016/j.bios.2023.115605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
Diabetes is known to cause a variety of complications, having a high correlation with Alzheimer's disease. Electrophysiological recording using a microscale needle electrode is a promising technology for the study, however, diabetic brain tissue is more difficult to record neuronal activities than normal tissue due to these complications including the development of cerebrovascular disease. Here we show an electrophysiological methodology for diabetic db/db mice (+Leprdb/+Leprdb) using a 4-μm-tip diameter needle-electrode device. The needle electrode minimized the tissue injury when compared to a typical larger metal electrode, as confirmed by bleeding during penetration. The proposed electrode device showed both acute and chronic in vivo recording capabilities for diabetic mice while reducing the glial cells' responses. Because of these device characteristics, the 4-μm-tip diameter needle-electrode will allow electrophysiological studies on diabetes models of not only mice, as proven in this study, but also other animals.
Collapse
Affiliation(s)
- Rioki Sanda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Koji Yamashita
- Electronics-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Hirohito Sawahata
- National Institute of Technology, Ibaraki College, 866 Nakane, Hitachinaka, 312-8508, Japan
| | - Kensei Sakamoto
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Shota Yamagiwa
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Shohei Yokoyama
- TechnoPro, Inc., TechnoPro R&D Company, 6-10-1 Roppongi, Minato-ku, 106-6135, Japan
| | - Rika Numano
- Electronics-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Kowa Koida
- Electronics-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Takeshi Kawano
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Electronics-Interdisciplinary Research Institute (EIIRIS), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan.
| |
Collapse
|
24
|
Qin R, Li T, Li C, Li L, Wang X, Wang L. Investigating altered brain functional hubs and causal connectivity in coronary artery disease with cognitive impairment. PeerJ 2023; 11:e16408. [PMID: 38025718 PMCID: PMC10640849 DOI: 10.7717/peerj.16408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Background Coronary artery disease (CAD) and cognitive impairment (CI) have become significant global disease and medical burdens. There have been several reports documenting the alterations in regional brain function and their correlation with CI in CAD patients. However, there is limited research on the changes in brain network connectivity in CAD patients. To investigate the resting-state connectivity and further understand the effective connectivity strength and directionality in patients with CAD, we utilized degree centrality (DC) and spectral dynamic causal modeling (spDCM) to detect functional hubs in the whole brain network, followed by an analysis of directional connections. Using the aforementioned approaches, it is possible to investigate the hub regions and aberrant connections underlying the altered brain function in CAD patients, providing neuroimaging evidence for the cognitive decline in patients with coronary artery disease. Materials and Methods This study was prospectively conducted involving 24 patients diagnosed with CAD and 24 healthy controls (HC) who were matched in terms of age, gender, and education. Functional MRI (fMRI) scans were utilized to investigate brain activity in these individuals. Neuropsychological examinations were performed on all participants. DC analysis and spDCM were employed to investigate abnormal brain networks in patients with CAD. Additionally, the association between effective connectivity strength and cognitive function in patients with CAD was examined based on the aforementioned results. Results By assessing cognitive functions, we discovered that patients with CAD exhibited notably lower cognitive function compared to the HC group. By utilizing DC analysis and spDCM, we observed significant reductions in DC values within the left parahippocampal cortex (PHC) and the left medial temporal gyrus (MTG) in CAD patients when compared to the control group. In terms of effective connectivity, we observed the absence of positive connectivity between the right superior frontal gyrus (SFG) and PHC in CAD patients. Moreover, there was an increase in negative connectivity from PHC and MTG to SFG, along with a decrease in the strength of positive connectivity between PHC and MTG. Furthermore, we identified a noteworthy positive correlation (r = 0.491, p = 0.015) between the strength of connectivity between the PHC and the MTG and cognitive function in CAD patients. Conclusions These research findings suggest that alterations in the connectivity of the brain networks involving SFG, PHC, and MTG in CAD patients may mediate changes in cognitive function.
Collapse
Affiliation(s)
- Rui Qin
- Department of Radiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Tong Li
- Department of Radiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Cuicui Li
- Department of Radiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Lin Li
- Department of Radiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Li Wang
- Department of Health Management Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
25
|
Zhang XL, Hollander CM, Khan MY, D'silva M, Ma H, Yang X, Bai R, Keeter CK, Galkina EV, Nadler JL, Stanton PK. Myeloid cell deficiency of the inflammatory transcription factor Stat4 protects long-term synaptic plasticity from the effects of a high-fat, high-cholesterol diet. Commun Biol 2023; 6:967. [PMID: 37783748 PMCID: PMC10545833 DOI: 10.1038/s42003-023-05304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/30/2023] [Indexed: 10/04/2023] Open
Abstract
Neuroinflammation is associated with neurodegenerative diseases, including Alzheimer's and Parkinson's. The cytokine interleukin-12 activates signal transducer and activator of transcription 4 (Stat4), and consumption of a high-fat, high-cholesterol diet (HFD-C) and Stat4 activity are associated with inflammation, atherosclerosis, and a diabetic metabolic phenotype. In studies of in vitro hippocampal slices from control Stat4fl/flLdlr-/- mice fed a HFD-C diabetogenic diet, we show that Schaffer collateral-CA1 synapses exhibited larger reductions in activity-dependent, long-term potentiation (LTP) of synaptic transmission, compared to mice fed a standard diet. Glucose tolerance and insulin sensitivity shifts produced by HFD-C diet were reduced in Stat4ΔLysMLdlr-/- mice compared to Stat4fl/flLdlr-/- controls. Stat4ΔLysMLdlr-/- mice, which lack Stat4 under control of the LysMCre promoter, were resistant to HFD-C induced impairments in LTP. In contrast, Schaffer collateral-CA1 synapses in Stat4ΔLysMLdlr-/- mice fed the HFD-C diet showed larger LTP than control Stat4fl/flLdlr-/- mice. Expression of a number of neuroinflammatory and synaptic plasticity genes was reduced by HFD-C diet in control mice, and less affected by HFD-C diet in Stat4ΔLysMLdlr-/- mice. These data suggest that suppression of Stat4 activation may protect against effects of Western diet on cognition, type 2 diabetes, and reduce risk of Alzheimer's disease and other neurodegenerative disorders associated with neuroinflammation.
Collapse
Affiliation(s)
- Xiao-Lei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Callie M Hollander
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Mohammad Yasir Khan
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Melinee D'silva
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
| | - Haoqin Ma
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Xinyuan Yang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA
| | - Robin Bai
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Coles K Keeter
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Elena V Galkina
- Department of Microbiology & Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, 23507, USA
| | - Jerry L Nadler
- Department of Pharmacology, New York Medical College, Valhalla, NY, 10595, USA
- ACOS-Research VA Northern California Health Care System, Sacramento, CA, 95655, USA
| | - Patric K Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY, 10595, USA.
| |
Collapse
|
26
|
Xu Y, Zhang WH, Allen EM, Fedorov LM, Barnes AP, Qian ZY, Bah TM, Li Y, Wang RK, Shangraw RE, Alkayed NJ. GPR39 Knockout Worsens Microcirculatory Response to Experimental Stroke in a Sex-Dependent Manner. Transl Stroke Res 2023; 14:766-775. [PMID: 36181628 PMCID: PMC10065946 DOI: 10.1007/s12975-022-01093-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 10/07/2022]
Abstract
No current treatments target microvascular reperfusion after stroke, which can contribute to poor outcomes even after successful clot retrieval. The G protein-coupled receptor GPR39 is expressed in brain peri-capillary pericytes, and has been implicated in microvascular regulation, but its role in stroke is unknown. We tested the hypothesis that GPR39 plays a protective role after stroke, in part due to preservation of microvascular perfusion. We generated GPR39 knockout (KO) mice and tested whether GPR39 gene deletion worsens capillary blood flow and exacerbates brain injury and functional deficit after focal cerebral ischemia. Stroke was induced in male and female GPR39 KO and WT littermates by 60-min middle cerebral artery occlusion (MCAO). Microvascular perfusion was assessed via capillary red blood cell (RBC) flux in deep cortical layers in vivo using optical microangiography (OMAG). Brain injury was assessed by measuring infarct size by 2,3,5-triphenyltetrazolium chloride staining at 24 h or brain atrophy at 3 weeks after ischemia. Pole and cylinder behavior tests were conducted to assess neurological function deficit at 1 and 3 weeks post-stroke. Male but not female GPR39 KO mice exhibited larger infarcts and lower capillary RBC flux than WT controls after stroke. Male GPR39 KO mice also exhibited worse neurologic deficit at 1 week post-stroke, though functional deficit disappeared in both groups by 3 weeks. GPR39 deletion worsens brain injury, microvascular perfusion, and neurological function after experimental stroke. Results indicate that GPR39 plays a sex-dependent role in re-establishing microvascular flow and limiting ischemic brain damage after stroke.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Wenri H Zhang
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Elyse M Allen
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Lev M Fedorov
- Transgenic Mouse Models Shared Resource, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Anthony P Barnes
- Department of Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Zu Yuan Qian
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Thierno Madjou Bah
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Yuandong Li
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA, USA
| | - Robert E Shangraw
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Nabil J Alkayed
- Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.
- Department of Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97239, USA.
| |
Collapse
|
27
|
Butters E, Srinivasan S, O'Brien JT, Su L, Bale G. A promising tool to explore functional impairment in neurodegeneration: A systematic review of near-infrared spectroscopy in dementia. Ageing Res Rev 2023; 90:101992. [PMID: 37356550 DOI: 10.1016/j.arr.2023.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
This systematic review aimed to evaluate previous studies which used near-infrared spectroscopy (NIRS) in dementia given its suitability as a diagnostic and investigative tool in this population. From 800 identified records which used NIRS in dementia and prodromal stages, 88 studies were evaluated which employed a range of tasks testing memory (29), word retrieval (24), motor (8) and visuo-spatial function (4), and which explored the resting state (32). Across these domains, dementia exhibited blunted haemodynamic responses, often localised to frontal regions of interest, and a lack of task-appropriate frontal lateralisation. Prodromal stages, such as mild cognitive impairment, revealed mixed results. Reduced cognitive performance accompanied by either diminished functional responses or hyperactivity was identified, the latter suggesting a compensatory response not present at the dementia stage. Despite clear evidence of alterations in brain oxygenation in dementia and prodromal stages, a consensus as to the nature of these changes is difficult to reach. This is likely partially due to the lack of standardisation in optical techniques and processing methods for the application of NIRS to dementia. Further studies are required exploring more naturalistic settings and a wider range of dementia subtypes.
Collapse
Affiliation(s)
- Emilia Butters
- Department of Electrical Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK; Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - Sruthi Srinivasan
- Department of Electrical Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - John T O'Brien
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Li Su
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Department of Neuroscience, University of Sheffield, 385a Glossop Rd, Broomhall, Sheffield S10 2HQ, UK
| | - Gemma Bale
- Department of Physics, University of Cambridge, 19 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| |
Collapse
|
28
|
Tasaki S, Kim N, Truty T, Zhang A, Buchman AS, Lamar M, Bennett DA. Explainable deep learning approach for extracting cognitive features from hand-drawn images of intersecting pentagons. NPJ Digit Med 2023; 6:157. [PMID: 37612472 PMCID: PMC10447434 DOI: 10.1038/s41746-023-00904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Hand drawing, which requires multiple neural systems for planning and controlling sequential movements, is a useful cognitive test for older adults. However, the conventional visual assessment of these drawings only captures limited attributes and overlooks subtle details that could help track cognitive states. Here, we utilized a deep-learning model, PentaMind, to examine cognition-related features from hand-drawn images of intersecting pentagons. PentaMind, trained on 13,777 images from 3111 participants in three aging cohorts, explained 23.3% of the variance in the global cognitive scores, 1.92 times more than the conventional rating. This accuracy improvement was due to capturing additional drawing features associated with motor impairments and cerebrovascular pathologies. By systematically modifying the input images, we discovered several important drawing attributes for cognition, including line waviness. Our results demonstrate that deep learning models can extract novel drawing metrics to improve the assessment and monitoring of cognitive decline and dementia in older adults.
Collapse
Affiliation(s)
- Shinya Tasaki
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Namhee Kim
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Tim Truty
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Ada Zhang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Aron S Buchman
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Melissa Lamar
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
29
|
Wu Y, Li P, Bhat N, Fan H, Liu M. Effects of repeated sleep deprivation on brain pericytes in mice. Sci Rep 2023; 13:12760. [PMID: 37550395 PMCID: PMC10406921 DOI: 10.1038/s41598-023-40138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023] Open
Abstract
The damaging effects of sleep deprivation (SD) on brain parenchyma have been extensively studied. However, the specific influence of SD on brain pericytes, a primary component of the blood-brain barrier (BBB) and the neurovascular unit (NVU), is still unclear. The present study examined how acute or repeated SD impairs brain pericytes by measuring the cerebrospinal fluid (CSF) levels of soluble platelet-derived growth factor receptor beta (sPDGFRβ) and quantifying pericyte density in the cortex, hippocampus, and subcortical area of the PDGFRβ-P2A-CreERT2/tdTomato mice, which predominantly express the reporter tdTomato in vascular pericytes. Our results showed that a one-time 4 h SD did not significantly change the CSF sPDGFRβ level. In contrast, repeated SD (4 h/day for 10 consecutive days) significantly elevated the CSF sPDGFRβ level, implying explicit pericyte damages due to repeated SD. Furthermore, repeated SD significantly decreased the pericyte densities in the cortex and hippocampus, though the pericyte apoptosis status remained unchanged as measured with Annexin V-affinity assay and active Caspase-3 staining. These results suggest that repeated SD causes brain pericyte damage and loss via non-apoptosis pathways. These changes to pericytes may contribute to SD-induced BBB and NVU dysfunctions. The reversibility of this process implies that sleep improvement may have a protective effect on brain pericytes.
Collapse
Affiliation(s)
- Yan Wu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Pengfei Li
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Narayan Bhat
- Neuroscience, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hongkuan Fan
- Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Meng Liu
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
30
|
Wang Y, Zhang H, Liu L, Li Z, Zhou Y, Wei J, Xu Y, Zhou Y, Tang Y. Cognitive function and cardiovascular health in the elderly: network analysis based on hypertension, diabetes, cerebrovascular disease, and coronary heart disease. Front Aging Neurosci 2023; 15:1229559. [PMID: 37600511 PMCID: PMC10436622 DOI: 10.3389/fnagi.2023.1229559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Cognitive decline in the elderly population is a growing concern, and vascular factors, such as hypertension, diabetes, cerebrovascular disease, and coronary heart disease, have been associated with cognitive impairments. This study aims to provide deeper insights into the structure of cognitive function networks under these different vascular factors and explore their potential associations with specific cognitive domains. Methods Cognitive function was assessed using a modified Chinese version of the mini-mental state examination (MMSE) scale, and intensity centrality and side weights were estimated by network modeling. The network structure of cognitive function was compared across subgroups by including vascular factors as subgroup variables while controlling for comorbidities and confounders. Results The results revealed that cerebrovascular disease and coronary heart disease had a more significant impact on cognitive function. Cerebrovascular disease was associated with weaker centrality in memory and spatial orientation, and a sparser cognitive network structure. Coronary heart disease was associated with weaker centrality in memory, repetition, executive function, recall, attention, and calculation, as well as a sparser cognitive network structure. The NCT analyses further highlighted significant differences between the cerebrovascular disease and coronary heart disease groups compared to controls in terms of overall network structure and connection strength. Conclusion Our findings suggest that specific cognitive domains may be more vulnerable to impairments in patients with cerebrovascular disease and coronary heart disease. These insights could be used to improve the accuracy and sensitivity of cognitive screening in these patient populations, inform personalized cognitive intervention strategies, and provide a better understanding of the potential mechanisms underlying cognitive decline in patients with vascular diseases.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
- School of Public Health, China Medical University, Shenyang, China
| | - Huanrui Zhang
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Linzi Liu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Zijia Li
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yang Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
- School of Basic Medicine of Peking Union Medical College, Beijing, China
| | - Jiayan Wei
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yixiao Xu
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
| | - Yifang Zhou
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
- Brain Function Research Section, The First Hospital of China Medical University, Shenyang, China
| | - Yanqing Tang
- Department of Psychiatry, The First Hospital of China Medical University, Shenyang, China
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Llido JP, Jayanti S, Tiribelli C, Gazzin S. Bilirubin and Redox Stress in Age-Related Brain Diseases. Antioxidants (Basel) 2023; 12:1525. [PMID: 37627520 PMCID: PMC10451892 DOI: 10.3390/antiox12081525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Cellular redox status has a crucial role in brain physiology, as well as in pathologic conditions. Physiologic senescence, by dysregulating cellular redox homeostasis and decreasing antioxidant defenses, enhances the central nervous system's susceptibility to diseases. The reduction of free radical accumulation through lifestyle changes, and the supplementation of antioxidants as a prophylactic and therapeutic approach to increase brain health, are strongly suggested. Bilirubin is a powerful endogenous antioxidant, with more and more recognized roles as a biomarker of disease resistance, a predictor of all-cause mortality, and a molecule that may promote health in adults. The alteration of the expression and activity of the enzymes involved in bilirubin production, as well as an altered blood bilirubin level, are often reported in neurologic conditions and neurodegenerative diseases (together denoted NCDs) in aging. These changes may predict or contribute both positively and negatively to the diseases. Understanding the role of bilirubin in the onset and progression of NCDs will be functional to consider the benefits vs. the drawbacks and to hypothesize the best strategies for its manipulation for therapeutic purposes.
Collapse
Affiliation(s)
- John Paul Llido
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
- Department of Science and Technology, Philippine Council for Health Research and Development, Bicutan, Taguig City 1631, Philippines
- Department of Life Sciences, University of Trieste, 34139 Trieste, Italy
| | - Sri Jayanti
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16911, Indonesia
| | - Claudio Tiribelli
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
| | - Silvia Gazzin
- Liver Brain Unit “Rita Moretti”, Italian Liver Foundation, Bldg. Q, AREA Science Park, Basovizza, 34149 Trieste, Italy; (J.P.L.); or (S.J.); (S.G.)
| |
Collapse
|
32
|
Owens CD, Pinto CB, Detwiler S, Mukli P, Peterfi A, Szarvas Z, Hoffmeister JR, Galindo J, Noori J, Kirkpatrick AC, Dasari TW, James J, Tarantini S, Csiszar A, Ungvari Z, Prodan CI, Yabluchanskiy A. Cerebral small vessel disease pathology in COVID-19 patients: A systematic review. Ageing Res Rev 2023; 88:101962. [PMID: 37224885 PMCID: PMC10202464 DOI: 10.1016/j.arr.2023.101962] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Cerebral small vessel disease (CSVD) is the leading cause of vascular cognitive impairment and is associated with COVID-19. However, contributing factors that often accompany CSVD pathology in COVID-19 patients may influence the incidence of cerebrovascular complications. Thus, a mechanism linking COVID-19 and CSVD has yet to be uncovered and differentiated from age-related comorbidities (i.e., hypertension), and medical interventions during acute infection. We aimed to evaluate CSVD in acute and recovered COVID-19 patients and to differentiate COVID-19-related cerebrovascular pathology from the above-mentioned contributing factors by assessing the localization of microbleeds and ischemic lesions/infarctions in the cerebrum, cerebellum, and brainstem. A systematic search was performed in December 2022 on PubMed, Web of Science, and Embase using a pre-established search criterion related to history of, or active COVID-19 with CSVD pathology in adults. From a pool of 161 studies, 59 met eligibility criteria and were included. Microbleeds and ischemic lesions had a strong predilection for the corpus callosum and subcortical/deep white matter in COVID-19 patients, suggesting a distinct CSVD pathology. These findings have important implications for clinical practice and biomedical research as COVID-19 may independently, and through exacerbation of age-related mechanisms, contribute to increased incidence of CSVD.
Collapse
Affiliation(s)
- Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Camila Bonin Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sam Detwiler
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Jordan R Hoffmeister
- Department of Psychiatry and Behavioral Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Juliette Galindo
- Department of Psychiatry and Behavioral Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jila Noori
- Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Angelia C Kirkpatrick
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Tarun W Dasari
- Cardiovascular Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Judith James
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Departments of Public Health, Translational Medicine and Physiology, Semmelweis University, Budapest, Hungary; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Calin I Prodan
- Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; The Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
33
|
Daniel JM, Lindsey SH, Mostany R, Schrader LA, Zsombok A. Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging. Front Neuroendocrinol 2023; 70:101068. [PMID: 37061205 PMCID: PMC10725785 DOI: 10.1016/j.yfrne.2023.101068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/23/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Collapse
Affiliation(s)
- Jill M Daniel
- Department of Psychology and Brain Institute, Tulane University, New Orleans, LA, United States.
| | - Sarah H Lindsey
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Ricardo Mostany
- Department of Pharmacology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Laura A Schrader
- Department of Cell & Molecular Biology and Brain Institute, Tulane University, New Orleans, LA, United States
| | - Andrea Zsombok
- Department of Physiology and Brain Institute, Tulane University, New Orleans, LA, United States
| |
Collapse
|
34
|
Ruan Z, Sun D, Zhou X, Yu M, Li S, Sun W, Li Y, Gao L, Xu H. Altered neurovascular coupling in patients with vascular cognitive impairment: a combined ASL-fMRI analysis. Front Aging Neurosci 2023; 15:1224525. [PMID: 37416325 PMCID: PMC10320594 DOI: 10.3389/fnagi.2023.1224525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Background and objective This study aims to examine the role of neurovascular coupling (NVC) in vascular cognitive impairment (VCI) by investigating the relationship between white matter lesion (WML) burden, NVC, and cognitive deficits. Additionally, we aim to explore the potential of NVC as a tool for understanding the neural mechanisms underlying VCI. Methods This study included thirty-eight small vessel disease cognitive impairment (SVCI) patients, 34 post-stroke cognitive impairment (PSCI) patients, and 43 healthy controls (HC). Comprehensive assessments, including neuroimaging and neuropsychological testing, were conducted to evaluate cognitive function. WML burden was measured and correlated with NVC coefficients to examine the relationship between white matter pathology and NVC. Mediation analysis was employed to explore the link relationship between NVC, WML burden, and cognitive function. Results The present study showed that NVC was significantly reduced in the SVCI and PSCI groups compared with HCs at both whole-brain and brain region level. The analysis revealed notable findings regarding NVC in relation to WML burden and cognitive function in VCI patients. Specifically, reduced NVC coefficients were observed within higher order brain systems responsible for cognitive control and emotion regulation. Mediation analysis demonstrated that NVC played a mediating role in the relationship between WML burden and cognitive impairment. Conclusion This study reveals the mediating role of NVC in the relationship between WML burden and cognitive function in VCI patients. The results demonstrate the potential of the NVC as an accurate measure of cognitive impairment and its ability to identify specific neural circuits affected by WML burden.
Collapse
Affiliation(s)
- Zhao Ruan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dong Sun
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiaoli Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yidan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
35
|
Rajeev V, Chai YL, Poh L, Selvaraji S, Fann DY, Jo DG, De Silva TM, Drummond GR, Sobey CG, Arumugam TV, Chen CP, Lai MKP. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment. Acta Neuropathol Commun 2023; 11:93. [PMID: 37309012 PMCID: PMC10259064 DOI: 10.1186/s40478-023-01590-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023] Open
Abstract
Vascular cognitive impairment (VCI) describes a wide spectrum of cognitive deficits related to cerebrovascular diseases. Although the loss of blood flow to cortical regions critically involved in cognitive processes must feature as the main driver of VCI, the underlying mechanisms and interactions with related disease processes remain to be fully elucidated. Recent clinical studies of cerebral blood flow measurements have supported the role of chronic cerebral hypoperfusion (CCH) as a major driver of the vascular pathology and clinical manifestations of VCI. Here we review the pathophysiological mechanisms as well as neuropathological changes of CCH. Potential interventional strategies for VCI are also reviewed. A deeper understanding of how CCH can lead to accumulation of VCI-associated pathology could potentially pave the way for early detection and development of disease-modifying therapies, thus allowing preventive interventions instead of symptomatic treatments.
Collapse
Affiliation(s)
- Vismitha Rajeev
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Yuek Ling Chai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Luting Poh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Sharmelee Selvaraji
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- Integrative Sciences and Engineering Programme, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - David Y Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher P Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Memory Aging and Cognition Centre, National University Health System, Singapore, Singapore.
- NUS Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
36
|
Shaikh SA, Muthuraman A. Tocotrienol-Rich Fraction Ameliorates the Aluminium Chloride-Induced Neurovascular Dysfunction-Associated Vascular Dementia in Rats. Pharmaceuticals (Basel) 2023; 16:828. [PMID: 37375775 DOI: 10.3390/ph16060828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/11/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Neurovascular dysfunction leads to the second most common type of dementia, i.e., vascular dementia (VaD). Toxic metals, such as aluminium, increase the risk of neurovascular dysfunction-associated VaD. Hence, we hypothesized that a natural antioxidant derived from palm oil, i.e., tocotrienol-rich fraction (TRF), can attenuate the aluminium chloride (AlCl3)-induced VaD in rats. Rats were induced with AlCl3 (150 mg/kg) intraperitoneally for seven days followed by TRF treatment for twenty-one days. The elevated plus maze test was performed for memory assessment. Serum nitrite and plasma myeloperoxidase (MPO) levels were measured as biomarkers for endothelial dysfunction and small vessel disease determination. Thiobarbituric acid reactive substance (TBARS) was determined as brain oxidative stress marker. Platelet-derived growth factor-C (PDGF-C) expression in the hippocampus was identified using immunohistochemistry for detecting the neovascularisation process. AlCl3 showed a significant decrease in memory and serum nitrite levels, while MPO and TBARS levels were increased; moreover, PDGF-C was not expressed in the hippocampus. However, TRF treatment significantly improved memory, increased serum nitrite, decreased MPO and TBARS, and expressed PDGF-C in hippocampus. Thus, the results imply that TRF reduces brain oxidative stress, improves endothelial function, facilitates hippocampus PDGF-C expression for neovascularisation process, protects neurons, and improves memory in neurovascular dysfunction-associated VaD rats.
Collapse
Affiliation(s)
- Sohrab A Shaikh
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| | - Arunachalam Muthuraman
- Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
| |
Collapse
|
37
|
Heutz R, Claassen J, Feiner S, Davies A, Gurung D, Panerai RB, Heus RD, Beishon LC. Dynamic cerebral autoregulation in Alzheimer's disease and mild cognitive impairment: A systematic review. J Cereb Blood Flow Metab 2023:271678X231173449. [PMID: 37125762 PMCID: PMC10369144 DOI: 10.1177/0271678x231173449] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Dynamic cerebral autoregulation (dCA) is a key mechanism that regulates cerebral blood flow (CBF) in response to transient changes in blood pressure (BP). Impairment of dCA could increase vulnerability to hypertensive vascular damage, but also to BP lowering effects of antihypertensive treatment. The literature remains conflicted on whether dCA is altered in Alzheimer's disease (AD) and mild cognitive impairment (MCI). We summarized available data on dCA in AD and MCI, by searching PubMed, Embase, PsycINFO and Web of Science databases (inception-January 2022). Eight studies (total n = 443) were included in the qualitative synthesis of which seven were eligible for meta-analysis. All studies used Transcranial Doppler (TCD) ultrasonography and transfer function analysis or the autoregulatory index to assess dCA during spontaneous or induced BP fluctuations. Meta-analysis indicated no significant difference between AD, MCI and healthy controls in dCA parameters for spontaneous fluctuations. For induced fluctuations, the available data were limited, but indicative of at least preserved and possibly better autoregulatory functioning in AD and MCI compared to controls. In summary, current evidence does not suggest poorer dCA efficiency in AD or MCI. Further work is needed to investigate dCA in dementia with induced fluctuations controlling for changes in end-tidal carbon dioxide.
Collapse
Affiliation(s)
- Rachel Heutz
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Geriatric Medicine, Radboudumc Alzheimer Center, Nijmegen, The Netherlands
| | - Jurgen Claassen
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Geriatric Medicine, Radboudumc Alzheimer Center, Nijmegen, The Netherlands
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Sanne Feiner
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Geriatric Medicine, Radboudumc Alzheimer Center, Nijmegen, The Netherlands
| | - Aaron Davies
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Dewakar Gurung
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Rianne de Heus
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Geriatric Medicine, Radboudumc Alzheimer Center, Nijmegen, The Netherlands
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
38
|
Tasaki S, Kim N, Truty T, Zhang A, Buchman AS, Lamar M, Bennett DA. Interpretable deep learning approach for extracting cognitive features from hand-drawn images of intersecting pentagons in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537358. [PMID: 37131841 PMCID: PMC10153174 DOI: 10.1101/2023.04.18.537358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hand drawing involves multiple neural systems for planning and precise control of sequential movements, making it a valuable cognitive test for older adults. However, conventional visual assessment of drawings may not capture intricate nuances that could help track cognitive states. To address this issue, we utilized a deep-learning model, PentaMind, to examine cognition-related features from hand-drawn images of intersecting pentagons. PentaMind, trained on 13,777 images from 3,111 participants in three aging cohorts, explained 23.3% of the variance in global cognitive scores, a comprehensive hour-long cognitive battery. The model’s performance, which was 1.92 times more accurate than conventional visual assessment, significantly improved the detection of cognitive decline. The improvement in accuracy was due to capturing additional drawing features that we found to be associated with motor impairments and cerebrovascular pathologies. By systematically modifying the input images, we discovered several important drawing attributes for cognition, including line waviness. Our results demonstrate that hand-drawn images can provide rich cognitive information, enabling rapid assessment of cognitive decline and suggesting potential clinical implications in dementia.
Collapse
|
39
|
Lv X, Zhang M, Cheng Z, Wang Q, Wang P, Xie Q, Ni M, Shen Y, Tang Q, Gao F. Changes in CSF sPDGFRβ level and their association with blood-brain barrier breakdown in Alzheimer's disease with or without small cerebrovascular lesions. Alzheimers Res Ther 2023; 15:51. [PMID: 36915135 PMCID: PMC10012584 DOI: 10.1186/s13195-023-01199-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND CSF-soluble platelet-derived growth factor receptor beta (sPDGFRβ) is closely associated with pericyte damage. However, the changes in CSF sPDGFRβ levels and their role in blood-brain barrier (BBB) leakage at different stages of Alzheimer's disease (AD), with or without cerebral small vessel disease (CSVD) burden, remain unclear. METHODS A total of 158 individuals from the China Aging and Neurodegenerative Disorder Initiative cohort were selected, including 27, 48, and 83 individuals with a clinical dementia rating (CDR) score of 0, 0.5, and 1-2, respectively. CSF total tau, phosphorylated tau181 (p-tau181), Aβ40, and Aβ42 were measured using the Simoa assay. Albumin and CSF sPDGFRβ were measured by commercial assay kits. CSVD burden was assessed by magnetic resonance imaging. RESULTS CSF sPDGFRβ was the highest level in the CDR 0.5 group. CSF sPDGFRβ was significantly correlated with the CSF/serum albumin ratio (Q-alb) in the CDR 0-0.5 group (β = 0.314, p = 0.008) but not in the CDR 1-2 group (β = - 0.117, p = 0.317). In the CDR 0-0.5 group, CSF sPDGFRβ exhibited a significant mediating effect between Aβ42/Aβ40 levels and Q-alb (p = 0.038). Q-alb, rather than CSF sPDGFRβ, showed a significant difference between individuals with or without CSVD burden. Furthermore, in the CDR 0.5 group, CSF sPDGFRβ was higher in subjects with progressive mild cognitive impairment than in those with stable mild cognitive impairment subjects (p < 0.001). Meanwhile, CSF sPDGFRβ was significantly associated with yearly changes in MMSE scores in the CDR 0.5 group (β = - 0.400, p = 0.020) and CDR 0.5 (A+) subgroup (β = - 0.542, p = 0.019). CONCLUSIONS We provide evidence that increased CSF sPDGFRβ is associated with BBB leakage in the early cognitive impairment stage of AD, which may contribute to cognitive impairment in AD progression.
Collapse
Affiliation(s)
- Xinyi Lv
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengguo Zhang
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhaozhao Cheng
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiong Wang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming Ni
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, China
| | - Qiqiang Tang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Feng Gao
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, China.
| | | |
Collapse
|
40
|
St-Pierre MK, Carrier M, González Ibáñez F, Khakpour M, Wallman MJ, Parent M, Tremblay MÈ. Astrocytes display ultrastructural alterations and heterogeneity in the hippocampus of aged APP-PS1 mice and human post-mortem brain samples. J Neuroinflammation 2023; 20:73. [PMID: 36918925 PMCID: PMC10015698 DOI: 10.1186/s12974-023-02752-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
The past decade has witnessed increasing evidence for a crucial role played by glial cells, notably astrocytes, in Alzheimer's disease (AD). To provide novel insights into the roles of astrocytes in the pathophysiology of AD, we performed a quantitative ultrastructural characterization of their intracellular contents and parenchymal interactions in an aged mouse model of AD pathology, as aging is considered the main risk factor for developing AD. We compared 20-month-old APP-PS1 and age-matched C57BL/6J male mice, among the ventral hippocampus CA1 strata lacunosum-moleculare and radiatum, two hippocampal layers severely affected by AD pathology. Astrocytes in both layers interacted more with synaptic elements and displayed more ultrastructural markers of increased phagolysosomal activity in APP-PS1 versus C57BL6/J mice. In addition, we investigated the ultrastructural heterogeneity of astrocytes, describing in the two examined layers a dark astrocytic state that we characterized in terms of distribution, interactions with AD hallmarks, and intracellular contents. This electron-dense astrocytic state, termed dark astrocytes, was observed throughout the hippocampal parenchyma, closely associated with the vasculature, and possessed several ultrastructural markers of cellular stress. A case study exploring the hippocampal head of an aged human post-mortem brain sample also revealed the presence of a similar electron-dense, dark astrocytic state. Overall, our study provides the first ultrastructural quantitative analysis of astrocytes among the hippocampus in aged AD pathology, as well as a thorough characterization of a dark astrocytic state conserved from mouse to human.
Collapse
Affiliation(s)
- Marie-Kim St-Pierre
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Fernando González Ibáñez
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada.,Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Mohammadparsa Khakpour
- Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada
| | - Marie-Josée Wallman
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada.,CERVO Brain Research Center, Quebec City, QC, Canada
| | - Martin Parent
- Département de Psychiatrie et de Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada.,CERVO Brain Research Center, Quebec City, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada. .,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC, Canada. .,Division of Medical Sciences, Medical Sciences Building, University of Victoria, Victoria, BC, Canada. .,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada. .,Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada. .,Institute on Aging and Lifelong Health, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
41
|
Kang YJ, Xue Y, Shin JH, Cho H. Human mini-brains for reconstituting central nervous system disorders. LAB ON A CHIP 2023; 23:964-981. [PMID: 36644973 DOI: 10.1039/d2lc00897a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neurological disorders in the central nervous system (CNS) are progressive and irreversible diseases leading to devastating impacts on patients' life as they cause cognitive impairment, dementia, and even loss of essential body functions. The development of effective medicines curing CNS disorders is, however, one of the most ambitious challenges due to the extremely complex functions and structures of the human brain. In this regard, there are unmet needs to develop simplified but physiopathologically-relevant brain models. Recent advances in the microfluidic techniques allow multicellular culture forming miniaturized 3D human brains by aligning parts of brain regions with specific cells serving suitable functions. In this review, we overview designs and strategies of microfluidics-based human mini-brains for reconstituting CNS disorders, particularly Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), vascular dementia (VD), and environmental risk factor-driven dementia (ERFD). Afterward, the applications of the mini-brains in the area of medical science are introduced in terms of the clarification of pathogenic mechanisms and identification of promising biomarkers. We also present expanded model systems ranging from the CNS to CNS-connecting organ axes to study the entry pathways of pathological risk factors into the brain. Lastly, the advantages and potential challenges of current model systems are addressed with future perspectives.
Collapse
Affiliation(s)
- You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yingqi Xue
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hee Shin
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
42
|
Understanding Cognitive Deficits in People with Coronary Heart Disease (CHD). J Pers Med 2023; 13:jpm13020307. [PMID: 36836541 PMCID: PMC9966537 DOI: 10.3390/jpm13020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Coronary heart disease (CHD) is one of the main cardiovascular diseases that can cause disability and death across the globe. Although previous research explored the links between CHD and cognitive deficits, only a subset of cognitive abilities was analyzed and a small clinical sample size was used. Thus, the aim of the current study is to assess how CHD can affect the cognitive domains of episodic memory, semantic verbal fluency, fluid reasoning, and numerical ability in a large cohort of participants from the United Kingdom. Results revealed that episodic memory, semantic verbal fluency, fluid reasoning, and numerical ability are negatively affected by CHD. Prevention and intervention should be developed to preserve cognitive abilities in people with CHD, but more studies should explore specific ways of doing so.
Collapse
|
43
|
Ebinger JE, Driver MP, Botting P, Wang M, Cheng S, Tan ZS. Association of blood pressure variability during acute care hospitalization and incident dementia. Front Neurol 2023; 14:1085885. [PMID: 36824417 PMCID: PMC9941567 DOI: 10.3389/fneur.2023.1085885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Background and objectives Recognized as a potential risk factor for Alzheimer's disease and related dementias (ADRD), blood pressure variability (BPV) could be leveraged to facilitate identification of at-risk individuals at a population level. Granular BPV data are available during acute care hospitalization periods for potentially high-risk patients, but the incident ADRD risk association with BPV measured in this setting is unknown. Our objective was to evaluate the relation of BPV, measured during acute care hospitalization, and incidence of ADRD. Methods We retrospectively studied adults, without a prior ADRD diagnosis, who were admitted to a large quaternary care medical center in Southern California between January 1, 2013 and December 31, 2019. For all patients, determined BPV, calculated as variability independent of the mean (VIM), using blood pressure readings obtained as part of routine clinical care. We used multivariable Cox proportional hazards regression to examine the association between BP VIM during hospitalization and the development of incident dementia, determined by new ICD-9/10 coding or the new prescription of dementia medication, occurring at least 2 years after the index hospitalization. Results Of 81,892 adults hospitalized without a prior ADRD diagnosis, 2,442 (2.98%) went on to develop ADRD (2.6 to 5.2 years after hospitalization). In multivariable-adjusted Cox models, both systolic (HR 1.05, 95% CI 1.00-1.09) and diastolic (1.06, 1.02-1.10) VIM were associated with incident ADRD. In pre-specified stratified analyses, the VIM associations with incident ADRD were most pronounced in individuals over age 60 years and among those with renal disease or hypertension. Results were similar when repeated to include incident ADRD diagnoses made at least 1 or 3 years after index hospitalization. Discussion We found that measurements of BPV from acute care hospitalizations can be used to identify individuals at risk for developing a diagnosis of ADRD within approximately 5 years. Use of the readily accessible BPV measure may allow healthcare systems to risk stratify patients during periods of intense patient-provider interaction and, in turn, facilitate engagement in ADRD screening programs.
Collapse
Affiliation(s)
- Joseph E. Ebinger
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States,*Correspondence: Joseph E. Ebinger ✉
| | - Matthew P. Driver
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Patrick Botting
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Minhao Wang
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Zaldy S. Tan
- Department of Neurology and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States,David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
44
|
de Liyis BG, Sutedja JC, Kesuma PMI, Liyis S, Widyadharma IPE. A review of literature on Compound 21-loaded gelatin nanoparticle: a promising nose-to-brain therapy for multi-infarct dementia. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2023. [DOI: 10.1186/s41983-023-00621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
AbstractMulti-infarct dementia (MID) is described as a chronic progressive decline in cortical cognitive function due to the occurrence of multiple infarcts in the cerebral vascularization throughout the gray and white matter. Current therapies of MID mostly focus only on slowing down MID progression and symptomatic medications. A novel therapy which is able to provide both preventive and curative properties for MID is of high interest. The purpose of this review is to identify the potential of Compound 21 (C21) gelatin nanoparticle through the nose-to-brain route as therapy for MID. C21, an angiotensin II type 2 receptor (AT2R) agonist, has shown to reduce the size of cerebral infarct in rodent models, resulting in the preservation and improvement of overall cognitive function and prevention of secondary neurodegenerative effects. It is also shown that C21 decreases neuronal apoptosis, improves damaged axons, and encourage synapse development. The challenge remains in preventing systemic AT2R activation and increasing its low oral bioavailability which can be overcome through nose-to-brain administration of C21. Nose-to-brain drug delivery of C21 significantly increases drug efficiency and limits C21 exposure in order to specifically target the multiple infarcts located in the cerebral cortex. Adhering C21 onto gelatin nanoparticles may enable longer contact time with the olfactory and the trigeminal nerve endings, increasing the potency of C21. In summary, treatment of C21 gelatin nanoparticle through nose-to-brain delivery shows high potential as therapy for vascular dementia. However, clinical trials must be further studied in order to test the safety and efficacy of C21.
Collapse
|
45
|
Analysis of Potential Mechanism of Herbal Formula Taohong Siwu Decoction against Vascular Dementia Based on Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1235552. [PMID: 36726841 PMCID: PMC9886489 DOI: 10.1155/2023/1235552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Vascular dementia (VaD) is the second most prevalent dementia, which is attributable to neurovascular dysfunction. Currently, no approved pharmaceuticals are available. Taohong Siwu decoction (TSD) is a traditional Chinese medicine prescription with powerful antiapoptosis and anti-inflammatory properties. In this study, a network pharmacology approach together with molecular docking validation was used to explore the probable mechanism of action of TSD against VaD. A total of 44 active components, 202 potential targets of components, and 3,613 VaD-related targets including 161 intersecting were obtained. The potential chemical components including kaempferol, baicalein, beta-carotene, luteolin, quercetin, and beta-sitosterol involved in the inflammatory response, oxidative stress, and apoptosis might have potential therapeutic effects on the treatment of VaD. The potential core targets including AKT1, CASP3, IL1β, JUN, and TP53 associated with cell apoptosis and inflammatory might account for the essential therapeutic effects of TSD in VaD. The results indicated that TSD protected against VaD through multicomponent and multitarget modes. Though the detailed mechanism of action of various active ingredients needs to be further illustrated, TSD still showed a promising therapeutic agent for VaD due to its biological activity.
Collapse
|
46
|
Grant WB, Blake SM. Diet's Role in Modifying Risk of Alzheimer's Disease: History and Present Understanding. J Alzheimers Dis 2023; 96:1353-1382. [PMID: 37955087 PMCID: PMC10741367 DOI: 10.3233/jad-230418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 11/14/2023]
Abstract
Diet is an important nonpharmacological risk-modifying factor for Alzheimer's disease (AD). The approaches used here to assess diet's role in the risk of AD include multi-country ecological studies, prospective and cross-sectional observational studies, and laboratory studies. Ecological studies have identified fat, meat, and obesity from high-energy diets as important risk factors for AD and reported that AD rates peak about 15-20 years after national dietary changes. Observational studies have compared the Western dietary pattern with those of the Dietary Approaches to Stop Hypertension (DASH), Mediterranean (MedDi), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) diets. Those studies identified AD risk factors including higher consumption of saturated and total fats, meat, and ultraprocessed foods and a lower risk of AD with higher consumption of fruits, legumes, nuts, omega-3 fatty acids, vegetables, and whole grains. Diet-induced factors associated with a significant risk of AD include inflammation, insulin resistance, oxidative stress, elevated homocysteine, dietary advanced glycation end products, and trimethylamine N-oxide. The molecular mechanisms by which dietary bioactive components and specific foods affect risk of AD are discussed. Given most countries' entrenched food supply systems, the upward trends of AD rates would be hard to reverse. However, for people willing and able, a low-animal product diet with plenty of anti-inflammatory, low-glycemic load foods may be helpful.
Collapse
Affiliation(s)
- William B. Grant
- Sunlight, Nutrition, and Health Research Center, San Francisco, CA, USA
| | - Steven M. Blake
- Nutritional Neuroscience, Maui Memory Clinic, Wailuku, HI, USA
| |
Collapse
|
47
|
Sun R, Shang J, Yan X, Zhao J, Wang W, Wang W, Li W, Gao C, Wang F, Zhang H, Wang Y, Cao H, Zhang J. VCAM1 Drives Vascular Inflammation Leading to Continuous Cortical Neuronal Loss Following Chronic Cerebral Hypoperfusion. J Alzheimers Dis 2023; 91:1541-1555. [PMID: 36641679 DOI: 10.3233/jad-221059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Chronic cerebral hypoperfusion (CCH) is associated with neuronal loss and blood-brain barrier (BBB) impairment in vascular dementia (VaD). However, the relationship and the molecular mechanisms between BBB dysfunction and neuronal loss remain elusive. OBJECTIVE We explored the reasons for neuron loss following CCH. METHODS Using permanent bilateral common carotid artery occlusion (2VO) rat model, we observed the pathological changes of cortical neurons and BBB in the sham group as well as rats 3d, 7d, 14d and 28d post 2VO. In order to further explore the factors influencing neuron loss following CCH with regard to cortical blood vessels, we extracted cortical brain microvessels at five time points for transcriptome sequencing. Finally, integrin receptor a4β1 (VLA-4) inhibitor was injected into the tail vein, and cortical neuron loss was detected again. RESULTS We found that cortical neuron loss following CCH is a continuous process, but damage to the BBB is acute and transient. Results of cortical microvessel transcriptome analysis showed that biological processes related to vascular inflammation mainly occurred in the chronic phase. Meanwhile, cell adhesion molecules, cytokine-cytokine receptor interaction were significantly changed at this phase. Among them, the adhesion molecule VCAM1 plays an important role. Using VLA-4 inhibitor to block VCAM1-VLA-4 interaction, cortical neuron damage was ameliorated at 14d post 2VO. CONCLUSION Injury of the BBB may not be the main reason for persistent loss of cortical neurons following CCH. The continuous inflammatory response within blood vessels maybe an important factor in the continuous loss of cortical neurons following CCH.
Collapse
Affiliation(s)
- Ruihua Sun
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Neurology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Junkui Shang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xi Yan
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jingran Zhao
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Neurology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wan Wang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Neurology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjing Wang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Wei Li
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Chenhao Gao
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Fengyu Wang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Haohan Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yanliang Wang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| | - Huixia Cao
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial Clinical Research Center for Kidney Disease, Zhengzhou, Henan, China
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China.,Department of Neurology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
48
|
Saavedra J, Nascimento M, Liz MA, Cardoso I. Key brain cell interactions and contributions to the pathogenesis of Alzheimer's disease. Front Cell Dev Biol 2022; 10:1036123. [PMID: 36523504 PMCID: PMC9745159 DOI: 10.3389/fcell.2022.1036123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 06/22/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide, with the two major hallmarks being the deposition of extracellular β-amyloid (Aβ) plaques and of intracellular neurofibrillary tangles (NFTs). Additionally, early pathological events such as cerebrovascular alterations, a compromised blood-brain barrier (BBB) integrity, neuroinflammation and synaptic dysfunction, culminate in neuron loss and cognitive deficits. AD symptoms reflect a loss of neuronal circuit integrity in the brain; however, neurons do not operate in isolation. An exclusively neurocentric approach is insufficient to understand this disease, and the contribution of other brain cells including astrocytes, microglia, and vascular cells must be integrated in the context. The delicate balance of interactions between these cells, required for healthy brain function, is disrupted during disease. To design successful therapies, it is critical to understand the complex brain cellular connections in AD and the temporal sequence of their disturbance. In this review, we discuss the interactions between different brain cells, from physiological conditions to their pathological reactions in AD, and how this basic knowledge can be crucial for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Joana Saavedra
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Márcia A. Liz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
49
|
Xie C, Hu J, Cheng Y, Yao Z. Researches on cognitive sequelae of burn injury: Current status and advances. Front Neurosci 2022; 16:1026152. [PMID: 36408414 PMCID: PMC9672468 DOI: 10.3389/fnins.2022.1026152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/20/2022] [Indexed: 09/29/2023] Open
Abstract
Burn injury is a devastating disease with high incidence of disability and mortality. The cognitive dysfunctions, such as memory defect, are the main neurological sequelae influencing the life quality of burn-injured patients. The post-burn cognitive dysfunctions are related to the primary peripheral factors and the secondary cerebral inflammation, resulting in the destruction of blood-brain barrier (BBB), as is shown on Computed Tomography (CT) and magnetic resonance imaging examinations. As part of the neurovascular unit, BBB is vital to the nutrition and homeostasis of the central nervous system (CNS) and undergoes myriad alterations after burn injury, causing post-burn cognitive defects. The diagnosis and treatment of cognitive dysfunctions as burn injury sequelae are of great importance. In this review, we address the major manifestations and interventions of post-burn cognitive defects, as well as the mechanisms involved in memory defect, including neuroinflammation, destruction of BBB, and hormone imbalance.
Collapse
Affiliation(s)
- Chenchen Xie
- Department of Neurology, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Hu
- Department of Neurology, First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yong Cheng
- Department of Neurology, General Hospital of Central Theater Command of PLA, Wuhan, China
| | - Zhongxiang Yao
- Department of Physiology, Army Medical University, Chongqing, China
| |
Collapse
|
50
|
Wan C, Zong RY, Chen XS. The new mechanism of cognitive decline induced by hypertension: High homocysteine-mediated aberrant DNA methylation. Front Cardiovasc Med 2022; 9:928701. [PMID: 36352848 PMCID: PMC9637555 DOI: 10.3389/fcvm.2022.928701] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
The prevalence and severity of hypertension-induced cognitive impairment increase with the prolonging of hypertension. The mechanisms of cognitive impairment induced by hypertension primarily include cerebral blood flow perfusion imbalance, white and gray matter injury with blood-brain barrier disruption, neuroinflammation and amyloid-beta deposition, genetic polymorphisms and variants, and instability of blood pressure. High homocysteine (HHcy) is an independent risk factor for hypertension that also increases the risk of developing early cognitive impairment. Homocysteine (Hcy) levels increase in patients with cognitive impairment induced by hypertension. This review summarizes a new mechanism whereby HHcy-mediated aberrant DNA methylation and exacerbate hypertension. It involves changes in Hcy-dependent DNA methylation products, such as methionine adenosyltransferase, DNA methyltransferases, S-adenosylmethionine, S-adenosylhomocysteine, and methylenetetrahydrofolate reductase (MTHFR). The mechanism also involves DNA methylation changes in the genes of hypertension patients, such as brain-derived neurotrophic factor, apolipoprotein E4, and estrogen receptor alpha, which contribute to learning, memory, and attention deficits. Studies have shown that methionine (Met) induces hypertension in mice. Moreover, DNA hypermethylation leads to cognitive behavioral changes alongside oligodendroglial and/or myelin deficits in Met-induced mice. Taken together, these studies demonstrate that DNA methylation regulates cognitive dysfunction in patients with hypertension. A better understanding of the function and mechanism underlying the effect of Hcy-dependent DNA methylation on hypertension-induced cognitive impairment will be valuable for early diagnosis, interventions, and prevention of further cognitive defects induced by hypertension.
Collapse
Affiliation(s)
- Chong Wan
- Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Rui-Yi Zong
- Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
- NCO School, Army Medical University, Shijiazhuang, China
| | - Xing-Shu Chen
- Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|