1
|
Liang L, Zhu J, Huang D, Ai S, Xue L, Yin X, Lin-Wang K, Allan A, Chen K, Xu C. Molecular mechanisms underlying natural deficient and ultraviolet-induced accumulation of anthocyanin in the peel of 'Jinxiu' peach. PLANT, CELL & ENVIRONMENT 2024; 47:4833-4848. [PMID: 39101482 DOI: 10.1111/pce.15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Peach varieties that differ in red coloration due to varied anthocyanin accumulation result from transcriptional regulation by PpMYB10s, a group of specific R2R3 MYBs. Here we investigated the mechanisms driving a lack of anthocyanin in yellow-skinned 'Jinxiu' peach peel, as well as accumulation induced by UV irradiance. It was found that PpMYB10.1, PpMYB10.2 and PpMYB10.3 were positive regulators of anthocyanin accumulation, but the stimulation by PpMYB10.2 was weak. Low expression of PpMYB10.1 causes natural anthocyanin deficiency in 'Jinxiu' peel. However, the promoter sequences of PpMYB10.1 were identical in 'Jinxiu' and a naturally red-coloured peach 'Hujingmilu'. Therefore, potential negative regulator(s) upstream of PpMYB10.1 were explored. A novel R2R3-MYB repressor termed PpMYB80 was identified through comparative transcriptomic analysis and then functionally confirmed via transiently overexpressing and silencing in peach fruit, as well as transformation in tobacco. PpMYB80 directly binds to the promoter of PpMYB10.1 and inhibits its expression, but does not affect PpMYB10.3. In UV-exposed 'Jinxiu' fruit, expression of PpMYB10.3 was upregulated, while PpMYB10.1 remained low and PpMYB80 enhanced, which results in accumulation of anthocyanin in peel. This study revealed a transcriptional cascade involving PpMYB activators and repressors in regulating basal and UV-induced anthocyanin accumulation in peach peel.
Collapse
Affiliation(s)
- Ling Liang
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Jiazhen Zhu
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Dan Huang
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Shaojie Ai
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Lei Xue
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Xueren Yin
- School of Horticulture, Anhui Agricultural University, Hefei, China
| | - Kui Lin-Wang
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Andrew Allan
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zijingang Campus, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Changjie Xu
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zijingang Campus, Zhejiang University, Hangzhou, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Crop Growth and Development, Zijingang Campus, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Dai J, Xu Z, Fang Z, Zheng X, Cao L, Kang T, Xu Y, Zhang X, Zhan Q, Wang H, Hu Y, Zhao C. NAC Transcription Factor PpNAP4 Promotes Chlorophyll Degradation and Anthocyanin Synthesis in the Skin of Peach Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19826-19837. [PMID: 39213503 DOI: 10.1021/acs.jafc.4c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chlorophyll (Chl) catabolism and anthocyanin synthesis play pivotal roles in determining the final skin color of fruits during maturation. However, in peach (Prunus persica) fruit, the regulatory mechanism governing skin color, especially the Chl catabolism, remains largely elusive. In this study, we identified ten Chl catabolic genes (CCGs), with PpSGR emerging as a key regulator in Chl degradation in peaches. Furthermore, a NAC-like, activated by AP3/P1 (NAP) transcription factor (TF), PpNAP4, was identified as a positive modulator of Chl breakdown. PpNAP4 induced the expression of PpSGR and other CCGs, including PpPPH, PpPAO, and PpTIC55-2, by directly binding to their promoters. Overexpression of PpNAP4 resulted in a heightened expression of these genes and accelerated Chl degradation. Notably, PpNAP4 also positively regulated the expression of PpANS and PpMYB10.1, one key structural gene and a core transcriptional regulator of anthocyanin synthesis, thereby contributing to fruit coloration. In summary, our findings elucidate that PpNAP4 serves as a pivotal regulator in determining the final skin color of peach by orchestrating Chl degradation and anthocyanin accumulation through direct activation of multiple CCGs and anthocyanin related genes.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Ze Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, P.R. China
| | - Zhouheng Fang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xuyang Zheng
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Lijun Cao
- Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, United States
- Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708, United States
| | - Tongyang Kang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Yuting Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xingzhen Zhang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Qianjin Zhan
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Hong Wang
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Anning, Lanzhou 730070, P.R. China
| | - Yanan Hu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| |
Collapse
|
3
|
Yang G, Xue Z, Lin-Wang K, Chen G, Zhao Y, Chang Y, Xu S, Sun M, Xue C, Li J, Allan AC, Espley RV, Wu J. An 'activator-repressor' loop controls the anthocyanin biosynthesis in red-skinned pear. MOLECULAR HORTICULTURE 2024; 4:26. [PMID: 38945997 PMCID: PMC11215833 DOI: 10.1186/s43897-024-00102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024]
Abstract
The color of red-skinned pear (Pyrus spp.) is primarily attributed to accumulation of anthocyanins, which provide nutritional benefits for human health and are closely associated with the commercial value of fruits. Here, we reported the functional characterization of a R2R3-MYB repressor PyMYB107, which forms an 'activator-repressor' loop to control anthocyanin accumulation in the red-skinned pear. PyMYB107 overexpression inhibited anthocyanin biosynthesis in both pear calli and fruits, while virus-induced gene silencing of PyMYB107 increased anthocyanin accumulation in pear fruits. Furthermore, ectopic expression of PyMYB107 decreased anthocyanin accumulation in tomato, strawberry and tobacco. PyMYB107 can competitively bind to PybHLH3 with PyMYB10/MYB114, thereby suppressing the transcriptional activation of key anthocyanin biosynthesis genes, PyANS and PyUFGT. Site-directed mutagenesis showed that mutations within the R3 domain and EAR motif of PyMYB107 eliminated its repressive activity. Additionally, PyMYB107 exhibited a comparable expression pattern to PyMYB10/MYB114 and was transcriptionally activated by them. Our finding advanced comprehension of the repression mechanism underlying anthocyanin accumulation, providing valuable molecular insights into improving quality of pear fruits.
Collapse
Affiliation(s)
- Guangyan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Zhaolong Xue
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited, Auckland, 1025, New Zealand
| | - Guosong Chen
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Yongqi Zhao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Yaojun Chang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaozhuo Xu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manyi Sun
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Jiaming Li
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, 1025, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Limited, Auckland, 1025, New Zealand
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, Jiangsu, China.
| |
Collapse
|
4
|
Zhao X, Feng Y, Ke D, Teng Y, Yuan Z. Comparative transcriptomic and metabolomic profiles reveal fruit peel color variation in two red pomegranate cultivars. PLANT MOLECULAR BIOLOGY 2024; 114:51. [PMID: 38691187 DOI: 10.1007/s11103-024-01446-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024]
Abstract
Pomegranate (Punica granatum L.) which belongs to family Lythraceae, is one of the most important fruit crops of many tropical and subtropical regions. A high variability in fruit color is observed among different pomegranate accessions, which arises from the qualitative and quantitative differences in anthocyanins. However, the mechanism of fruit color variation is still not fully elucidated. In the present study, we investigated the red color mutation between a red-skinned pomegranate 'Hongbaoshi' and a purple-red-skinned cultivar 'Moshiliu', by using transcriptomic and metabolomic approaches. A total of 51 anthocyanins were identified from fruit peels, among which 3-glucoside and 3,5-diglucoside of cyanidin (Cy), delphinidin (Dp), and pelargonidin (Pg) were dominant. High proportion of Pg in early stages of 'Hongbaoshi' but high Dp in late stages of 'Moshiliu' were characterized. The unique high levels of Cy and Dp anthocyanins accumulating from early developmental stages accounted for the purple-red phenotype of 'Moshiliu'. Transcriptomic analysis revealed an early down-regulated and late up-regulated of anthocyanin-related structure genes in 'Moshiliu' compared with 'Hongbaoshi'. Alao, ANR was specially expressed in 'Hongbaoshi', with extremely low expression levels in 'Moshiliu'. For transcription factors R2R3-MYB, the profiles demonstrated a much higher transcription levels of three subgroup (SG) 5 MYBs and a sharp decrease in expression of SG6 MYB LOC116202527 in high-anthocyanin 'Moshiliu'. SG4 MYBs exhibited two entirely different patterns, LOC116203744 and LOC116212505 were down-regulated whereas LOC116205515 and LOC116212778 were up-regulated in 'Moshiliu' pomegranate. The results indicate that specific SG members of the MYB family might promote the peel coloration in different manners and play important roles in color mutation in pomegranate.
Collapse
Affiliation(s)
- Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yingyi Feng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Ding Ke
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Yingfen Teng
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
5
|
Xue L, Liu X, Wang W, Huang D, Ren C, Huang X, Yin X, Lin-Wang K, Allan AC, Chen K, Xu C. MYB transcription factors encoded by diversified tandem gene clusters cause varied Morella rubra fruit color. PLANT PHYSIOLOGY 2024; 195:598-616. [PMID: 38319742 DOI: 10.1093/plphys/kiae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
Chinese bayberry (Morella rubra) is a fruit tree with a remarkable variation in fruit color, ranging from white to dark red as determined by anthocyanin content. In dark red "Biqi" (BQ), red "Dongkui" (DK), pink "Fenhong" (FH), and white "Shuijing" (SJ), we identified an anthocyanin-related MYB transcription factor-encoding gene cluster of four members, i.e. MrMYB1.1, MrMYB1.2, MrMYB1.3, and MrMYB2. Collinear analysis revealed that the MYB tandem cluster may have occurred in a highly conserved region of many eudicot genomes. Two alleles of MrMYB1.1 were observed; MrMYB1.1-1 (MrMYB1.1n) was a full-length allele and homozygous in "BQ", MrMYB1.1-2 (MrMYB1.1d) was a nonfunctional allele with a single base deletion and homozygous in "SJ", and MrMYB1.1n/MrMYB1.1d were heterozygous in "DK" and "FH". In these four cultivars, expression of MrMYB1.1, MrMYB1.2, and MrMYB2 was enhanced during ripening. Both alleles were equally expressed in MrMYB1.1n/MrMYB1.1d heterozygous cultivars as revealed by a cleaved amplified polymorphic sequence marker. Expression of MrMYB1.3 was restricted to some dark red cultivars only. Functional characterization revealed that MrMYB1.1n and MrMYB1.3 can induce anthocyanin accumulation while MrMYB1.1d, MrMYB1.2, and MrMYB2 cannot. DNA-protein interaction assays indicated that MrMYB1.1n and MrMYB1.3 can directly bind to and activate the promoters of anthocyanin-related genes via interaction with a MYC-like basic helix-loop-helix protein MrbHLH1. We concluded that the specific genotype of MrMYB1.1 alleles, as well as the exclusive expression of MrMYB1.3 in some dark red cultivars, contributes to fruit color variation. The study provides insights into the mechanisms for regulation of plant anthocyanin accumulation by MYB tandem clusters.
Collapse
Affiliation(s)
- Lei Xue
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xiaofen Liu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Wenli Wang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Dan Huang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Chuanhong Ren
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xiaorong Huang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Xueren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Kui Lin-Wang
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Andrew C Allan
- New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Xu C, Xue X, Li Z, Chen M, Yang Y, Wang S, Shang M, Qiu L, Zhao X, Hu W. The PpMYB75-PpDFR module reveals the difference between 'SR' and its bud variant 'RMHC' in peach red flesh. JOURNAL OF PLANT RESEARCH 2024; 137:241-254. [PMID: 38194204 DOI: 10.1007/s10265-023-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024]
Abstract
'Red Meat Honey Crisp (RMHC)' has been widely cultivated by growers in recent years due to its early maturity, and red meat type characteristics. As a bud variant of 'Super Red (SR)' peach, red flesh is the most distinctive characteristic of 'Red Meat Honey Crisp (RMHC)'. However, the mechanism of red flesh formation in 'RMHC' remains unclear. In this study, 79 differentially produced metabolites were identified by metabolomics analysis. The anthocyanin content in 'RMHC' was significantly higher than that in 'SR' during the same period, such as cyanidin O-syringic acid and cyanidin 3-O-glucoside. Other flavonoids also increased during the formation of red flesh, including flavonols (6-hydroxykaempferol-7-O-glucoside, hyperin), flavanols (protocatechuic acid, (+)-gallocatechin), and flavonoids (chrysoeriol 5-O-hexoside, tricetin). In addition, transcriptomic analysis and RT-qPCR showed that the expression levels of the flavonoid synthesis pathway transcription factor MYB75 and some structural genes, such as PpDFR, PpCHS, PpC4H, and PpLDOX increased significantly in 'RMHC'. Subcellular localization analysis revealed that MYB75 was localized to the nucleus. Yeast single hybridization assays showed that MYB75 bound to the cis-acting element CCGTTG of the PpDFR promoter region. The MYB75-PpDFR regulatory network was identified to be a key pathway in the reddening of 'RMHC' flesh. Moreover, this is the first study to describe the cause for red meat reddening in 'RMHC' compared to 'SR' peaches using transcriptomics, metabolomics and molecular methods. Our study identified a key transcription factor involved in the regulation of the flavonoid synthetic pathway and contributes to peach breeding-related efforts as well as the identification of genes involved in color formation in other species.
Collapse
Affiliation(s)
- Chao Xu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Xiaomin Xue
- Pomology Institute of Shandong Province, Taian, Shandong, 271000, China
| | - Zhixing Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Mingguang Chen
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Yating Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Siyu Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Mingrui Shang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Lei Qiu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Xianyan Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China.
| | - Wenxiao Hu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Jinan, Shandong, 250353, PR China.
| |
Collapse
|
7
|
de los Cobos FP, García-Gómez BE, Orduña-Rubio L, Batlle I, Arús P, Matus JT, Eduardo I. Exploring large-scale gene coexpression networks in peach ( Prunus persica L.): a new tool for predicting gene function. HORTICULTURE RESEARCH 2024; 11:uhad294. [PMID: 38487296 PMCID: PMC10939413 DOI: 10.1093/hr/uhad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/17/2023] [Indexed: 03/17/2024]
Abstract
Peach is a model for Prunus genetics and genomics, however, identifying and validating genes associated to peach breeding traits is a complex task. A gene coexpression network (GCN) capable of capturing stable gene-gene relationships would help researchers overcome the intrinsic limitations of peach genetics and genomics approaches and outline future research opportunities. In this study, we created four GCNs from 604 Illumina RNA-Seq libraries. We evaluated the performance of every GCN in predicting functional annotations using an algorithm based on the 'guilty-by-association' principle. The GCN with the best performance was COO300, encompassing 21 956 genes. To validate its performance predicting gene function, we performed two case studies. In case study 1, we used two genes involved in fruit flesh softening: the endopolygalacturonases PpPG21 and PpPG22. Genes coexpressing with both genes were extracted and referred to as melting flesh (MF) network. Finally, we performed an enrichment analysis of MF network and compared the results with the current knowledge regarding peach fruit softening. The MF network mostly included genes involved in cell wall expansion and remodeling, and with expressions triggered by ripening-related phytohormones, such as ethylene, auxin, and methyl jasmonate. In case study 2, we explored potential targets of the anthocyanin regulator PpMYB10.1 by comparing its gene-centered coexpression network with that of its grapevine orthologues, identifying a common regulatory network. These results validated COO300 as a powerful tool for peach and Prunus research. This network, renamed as PeachGCN v1.0, and the scripts required to perform a function prediction analysis are available at https://github.com/felipecobos/PeachGCN.
Collapse
Affiliation(s)
- Felipe Pérez de los Cobos
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA) , Mas Bové, Ctra. Reus-El Morell Km 3,8 43120 Constantí Tarragona, Spain
- Centre de Recerca en Agrigenòmica (CRAG), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Beatriz E García-Gómez
- Centre de Recerca en Agrigenòmica (CRAG), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Luis Orduña-Rubio
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Paterna, 46908, Valencia, Spain
| | - Ignasi Batlle
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA) , Mas Bové, Ctra. Reus-El Morell Km 3,8 43120 Constantí Tarragona, Spain
| | - Pere Arús
- Centre de Recerca en Agrigenòmica (CRAG), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - José Tomás Matus
- Institute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, Paterna, 46908, Valencia, Spain
| | - Iban Eduardo
- Centre de Recerca en Agrigenòmica (CRAG), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), CSIC-IRTA-UAB-UB. Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
8
|
Zhou P, Lei S, Zhang X, Wang Y, Guo R, Yan S, Jin G, Zhang X. Genome sequencing revealed the red-flower trait candidate gene of a peach landrace. HORTICULTURE RESEARCH 2023; 10:uhad210. [PMID: 38023475 PMCID: PMC10681006 DOI: 10.1093/hr/uhad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
Peach (Prunus persica) is an economically important fruit crop globally and an excellent material for genomic studies. While considerable progress has been made in unveiling trait-associated genes within cultivars and wild relatives, certain novel genes controlling valuable traits in peach landraces, such as the red-flowering gene, remained unclear. In this study, we sequenced and assembled the diploid genome of the red-flower landrace 'Yingzui' (abbreviated as 'RedY'). Multi-omics profiling of red petals of 'RedY' revealed the intensified red coloration associated with anthocyanins accumulation and concurrent decline in flavonols. This phenomenon is likely attributed to a natural variant of Flavonol Synthase (FLS) harboring a 9-bp exonic insertion. Intriguingly, the homozygous allelic configurations of this FLS variant were only observed in red-flowered peaches. Furthermore, the 9-bp sequence variation tightly associated with pink/red petal color in genome-wide association studies (GWAS) of collected peach germplasm resources. Functional analyses of the FLS variant, purified from procaryotic expression system, demonstrated its diminished enzymatic activity in flavonols biosynthesis, impeccably aligning with the cardinal trait of red flowers. Therefore, the natural FLS variant was proposed as the best candidate gene for red-flowering trait in peach. The pioneering unveiling of the red-flowered peach genome, coupled with the identification of the candidate gene, expanded the knowledge boundaries of the genetic basis of peach traits and provided valuable insights for future peach breeding efforts.
Collapse
Affiliation(s)
- Ping Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou 350013, China
| | - Siru Lei
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaodan Zhang
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Yinghao Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Rui Guo
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou 350013, China
| | - Shaobin Yan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou 350013, China
| | - Guang Jin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
- Research Centre for Engineering Technology of Fujian Deciduous Fruits, Fuzhou 350013, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
9
|
De Mori G, Cipriani G. Marker-Assisted Selection in Breeding for Fruit Trait Improvement: A Review. Int J Mol Sci 2023; 24:ijms24108984. [PMID: 37240329 DOI: 10.3390/ijms24108984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Breeding fruit species is time-consuming and expensive. With few exceptions, trees are likely the worst species to work with in terms of genetics and breeding. Most are characterized by large trees, long juvenile periods, and intensive agricultural practice, and environmental variability plays an important role in the heritability evaluations of every single important trait. Although vegetative propagation allows for the production of a significant number of clonal replicates for the evaluation of environmental effects and genotype × environment interactions, the spaces required for plant cultivation and the intensity of work necessary for phenotypic surveys slow down the work of researchers. Fruit breeders are very often interested in fruit traits: size, weight, sugar and acid content, ripening time, fruit storability, and post-harvest practices, among other traits relevant to each individual species. The translation of trait loci and whole-genome sequences into diagnostic genetic markers that are effective and affordable for use by breeders, who must choose genetically superior parents and subsequently choose genetically superior individuals among their progeny, is one of the most difficult tasks still facing tree fruit geneticists. The availability of updated sequencing techniques and powerful software tools offered the opportunity to mine tens of fruit genomes to find out sequence variants potentially useful as molecular markers. This review is devoted to analysing what has been the role of molecular markers in assisting breeders in selection processes, with an emphasis on the fruit traits of the most important fruit crops for which examples of trustworthy molecular markers have been developed, such as the MDo.chr9.4 marker for red skin colour in apples, the CCD4-based marker CPRFC1, and LG3_13.146 marker for flesh colour in peaches, papayas, and cherries, respectively.
Collapse
Affiliation(s)
- Gloria De Mori
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| | - Guido Cipriani
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
| |
Collapse
|
10
|
Zhao L, Zhang Y, Sun J, Yang Q, Cai Y, Zhao C, Wang F, He H, Han Y. PpHY5 is involved in anthocyanin coloration in the peach flesh surrounding the stone. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:951-964. [PMID: 36919360 DOI: 10.1111/tpj.16189] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 05/27/2023]
Abstract
Red coloration around the stone (Cs) is an important trait of canned peaches (Prunus persica). In this study, an elongated hypocotyl 5 gene in peach termed PpHY5 was identified to participate in the regulation of the Cs trait. The E3 ubiquitin ligase PpCOP1 was expressed in the flesh around the stone and could interact with PpHY5. Although HY5 is known to be degraded by COP1 in darkness, the PpHY5 gene was activated in the flesh tissue surrounding the stone at the ripening stages and its expression was consistent with anthocyanin accumulation. PpHY5 was able to promote the transcription of PpMYB10.1 through interacting with its partner PpBBX10. Silencing of PpHY5 in the flesh around the stone caused a reduction in anthocyanin pigmentation, while transient overexpression of PpHY5 and PpBBX10 resulted in anthocyanin accumulation in peach fruits. Moreover, transgenic Arabidopsis seedlings overexpressing PpHY5 showed increased anthocyanin accumulation in leaves. Our results improve our understanding of the mechanisms of anthocyanin coloration in plants.
Collapse
Affiliation(s)
- Lei Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Botanical Garden, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yuanqiang Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Botanical Garden, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Juanli Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Botanical Garden, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Qiurui Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Botanical Garden, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Botanical Garden, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Caiping Zhao
- College of horticulture, Northwest Agriculture and Forestry University, Yangling, 712100, China
| | - Furong Wang
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430209, China
| | - Huaping He
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430209, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, Botanical Garden, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
11
|
Zuo X, Miao C, Li M, Gu L, Yang X, Song C, Li M, Du J, Xie C, Liu X, Sun H, Li L, Zhang Z, Wang F. Purple Rehmannnia : investigation of the activation of R2R3-MYB transcription factors involved in anthocyanin biosynthesis. PHYSIOLOGIA PLANTARUM 2023; 175:e13920. [PMID: 37097722 DOI: 10.1111/ppl.13920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/04/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
Engineering anthocyanin biosynthesis in herbs could provide health-promoting foods for improving human health. Rehmannia glutinosa is a popular medicinal herb in Asia, and was a health food for the emperors of the Han Dynasty (59 B.C.). In this study, we revealed the differences in anthocyanin composition and content between three Rehmannia species. On the 250, 235 and 206 identified MYBs in the respective species, six could regulate anthocyanin biosynthesis by activating the ANTHOCYANIDIN SYNTHASE (ANS) gene expression. Permanent overexpression of the Rehmannia MYB genes in tobacco strongly promoted anthocyanin content and expression levels of NtANS and other genes. A red appearance of leaves and tubers/roots was observed, and the total anthocyanin content and the cyanidin-3-O-glucoside content were significantly higher in the lines overexpressing RgMYB41, RgMYB42 and RgMYB43 from R. glutinosa,as well as RcMYB1 and RcMYB3 in R. chingii and RhMYB1 from R. henryi plants. Knocking out of RcMYB3 by CRISPR/Cas9 gene editing resulted in the discoloration of the R. chingii corolla lobes, and decreased the content of anthocyanin. R. glutinosa overexpressing RcMYB3 displayed a distinct purple color in the whole plants, and the antioxidant activity of the transgenic plants was significantly enhanced compared to WT. These results indicate that Rehmannia MYBs can be used to engineer anthocyanin biosynthesis in herbs to improve their additional value, such as increased antioxidant contents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xin Zuo
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Chunyan Miao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Mingming Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Li Gu
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Ci Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Mingjie Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiafang Du
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Caixia Xie
- School of medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiangyang Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Hongzheng Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lianzhen Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhongyi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fengqing Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
12
|
Chromosome-Level Assembly of Flowering Cherry ( Prunus campanulata) Provides Insight into Anthocyanin Accumulation. Genes (Basel) 2023; 14:genes14020389. [PMID: 36833316 PMCID: PMC9957189 DOI: 10.3390/genes14020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The flowering cherries (genus Prunus, subgenus Cerasus) are popular ornamental trees in China, Japan, Korea, and elsewhere. Prunus campanulata Maxim. is an important species of flowering cherry native to Southern China, which is also distributed in Taiwan, the Ryukyu Islands of Japan, and Vietnam. It produces bell-shaped flowers with colors ranging from bright pink to crimson during the Chinese Spring Festival from January to March each year. We selected the P. campanulata cultivar "Lianmeiren", with only 0.54% of heterozygosity, as the focus of this study, and generated a high-quality chromosome-scale genome assembly of P. campanulata by combining Pacific Biosciences (PacBio) single-molecule sequencing, 10× Genomics sequencing, and high-throughput chromosome conformation capture (Hi-C) technology. We first assembled a 300.48 Mb genome assembly with a contig N50 length of 2.02 Mb. In total, 28,319 protein-coding genes were predicted from the genome, 95.8% of which were functionally annotated. Phylogenetic analyses indicated that P. campanulata diverged from a common ancestor of cherry approximately 15.1 million years ago. Comparative genomic analyses showed that the expanded gene families were significantly involved in ribosome biogenesis, diterpenoid biosynthesis, flavonoid biosynthesis, and circadian rhythm. Furthermore, we identified 171 MYB genes from the P. campanulata genome. Based on the RNA-seq of five organs at three flowering stages, expression analyses revealed that the majority of the MYB genes exhibited tissue-specific expression patterns, and some genes were identified as being associated with anthocyanin accumulation. This reference sequence is an important resource for further studies of floral morphology and phenology, and comparative genomics of the subgenera Cerasus and Prunus.
Collapse
|
13
|
Sylvia C, Sun J, Zhang Y, Ntini C, Ogutu C, Zhao Y, Han Y. Genome-Wide Analysis of ATP Binding Cassette (ABC) Transporters in Peach ( Prunus persica) and Identification of a Gene PpABCC1 Involved in Anthocyanin Accumulation. Int J Mol Sci 2023; 24:ijms24031931. [PMID: 36768256 PMCID: PMC9916050 DOI: 10.3390/ijms24031931] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The ATP-binding cassette (ABC) transporter family is a large and diverse protein superfamily that plays various roles in plant growth and development. Although the ABC transporters are known to aid in the transport of a wide range of substrates across biological membranes, their role in anthocyanin transport remains elusive. In this study, we identified a total of 132 putative ABC genes in the peach genome, and they were phylogenetically classified into eight subfamilies. Variations in spatial and temporal gene expression levels resulted in differential expression patterns of PpABC family members in various tissues of peach. PpABCC1 was identified as the most likely candidate gene essential for anthocyanin accumulation in peach. Transient overexpression of PpABCC1 caused a significant increase in anthocyanin accumulation in tobacco leaves and peach fruit, whereas virus-induced gene silencing of PpABCC1 in the blood-fleshed peach resulted in a significant decrease in anthocyanin accumulation. The PpABCC1 promoter contained an MYB binding cis-element, and it could be activated by anthocyanin-activator PpMYB10.1 based on yeast one-hybrid and dual luciferase assays. Thus, it seems that PpABCC1 plays a crucial role in anthocyanin accumulation in peach. Our results provide a new insight into the vacuolar transport of anthocyanins in peach.
Collapse
Affiliation(s)
- Cherono Sylvia
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanli Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanqiang Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Charmaine Ntini
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Collins Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yun Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Correspondence: (Y.Z.); (Y.H.)
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (Y.Z.); (Y.H.)
| |
Collapse
|
14
|
Ding Y, Yang Q, Waheed A, Zhao M, Liu X, Kahar G, Haxim Y, Wen X, Zhang D. Genome-wide characterization and functional identification of MYB genes in Malus sieversii infected by Valsa mali. FRONTIERS IN PLANT SCIENCE 2023; 14:1112681. [PMID: 37089647 PMCID: PMC10113540 DOI: 10.3389/fpls.2023.1112681] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Among the most important transcription factors in plants, the v-myb avian myeloblastosis viral oncogene homolog (MYB) regulates the expression network of response genes under stresses such as fungal infection. In China, the canker disease Valsa mali threatens the survival of Malus sieversii, an ancestor of cultivated apples. Using the M. sieversii genome, we identified 457 MsMYB and 128 R2R3-MsMYB genes that were randomly distributed across 17 chromosomes. Based on protein sequence and structure, the R2R3-MsMYB genes were phylogenetically divided into 29 categories, and 26 conserved motifs were identified. We further predicted cis-elements in the 2000-kb promoter region of R2R3-MsMYBs based on the genome. Transcriptome analysis of M. sieversii under V. mali infection showed that 27 R2R3-MsMYBs were significantly differentially expressed, indicating their key role in the response to V. mali infection. Using transient transformation, MsMYB14, MsMYB24, MsMYB39, MsMYB78, and MsMYB108, which were strongly induced by V. mali infection, were functionally identified. Among the five MsMYBs, MsMYB14 and MsMYB78 were both important in enhancing resistance to diseases, whereas MsMYB24 inhibited resistance. Based on the results of this study, we gained a better understanding of the MsMYB transcription factor family and laid the foundation for a future research program on disease prevention strategies in M. sieversii.
Collapse
Affiliation(s)
- Yu Ding
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Qihang Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Abdul Waheed
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Mingqi Zhao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xiaojie Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yakupjan Haxim
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xuejing Wen
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
- *Correspondence: Daoyuan Zhang, ; Xuejing Wen,
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
- *Correspondence: Daoyuan Zhang, ; Xuejing Wen,
| |
Collapse
|
15
|
Wang G, Weng W, Jia Z, Zhang J, Wang T, Xuan J. Identification of Candidate Genes Associated with Pulp Color by Transcriptomic Analysis of 'Huaxiu' Plum ( Prunus salicina Lindl.) during Fruit-Ripening. Curr Issues Mol Biol 2022; 44:6368-6384. [PMID: 36547095 PMCID: PMC9776821 DOI: 10.3390/cimb44120434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The plum (Prunus salicina Lindl.) is one of the traditional and economically important stone fruit trees in China. Anthocyanins are important pigments in plums. However, little is known about the molecular mechanisms underlying anthocyanin accumulation in plum fruits, which has hindered research on the molecular mechanism of its utilization. Our research shows that the chlorophyll content was gradually decreased and the contents of anthocyanin and flavonoid increased during the coloring process of the pulp in 'Huaxiu' plums (P. salicina). Then, the RNA-Seq technique was used to analyze the transcriptome of pulp color changes with three different stages (yellow, orange, and red) in the 'Huaxiu' plum (P. salicina). A total of 57,119 unigenes with a mean length of 953 bp were generated, and 61.6% of them were annotated to public databases. The Gene Ontology (GO) database assigned 21,438 unigenes with biological process, cellular components, and molecular function. In addition, 32,146 unigenes were clustered into 25 categories for functional classification by the COG database, and 7595 unigenes were mapped to 128 KEGG pathways by the KEGG pathway database. Of these, 1095 (YS-versus-OS), 4947 (YS-versus-RS), and 3414 (OS-versus-RS) genes were significantly expressed differentially between two coloration stages. The GO and KEGG pathway enrichment analysis revealed that 20 and 1 differentially expressed genes (DEG) are involved in flavonoid biosynthesis and anthocyanin biosynthesis, respectively. Finally, we mainly identified three structural genes as candidate genes. The transcriptome information in this study provide a basis for further studies of pulp colors in plum and contribute to our understanding of the molecular mechanisms underlying anthocyanin biosynthesis in pulp.
Collapse
|
16
|
Wang R, Mao C, Ming F. PeMYB4L interacts with PeMYC4 to regulate anthocyanin biosynthesis in Phalaenopsis orchid. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111423. [PMID: 35995112 DOI: 10.1016/j.plantsci.2022.111423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/07/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Phalaenopsis spp., one genus of Orchidaceae, have become very popular worldwide for their fascinating flowers with various colors and pigmentation patterns. Several R2R3-MYB transcription factors have been reported to function in anthocyanin accumulation in Phalaenopsis spp. However, its molecular mechanism underlying the detailed regulatory pathway remains poorly understood. In this study, we identified a novel subgroup 2 R2R3-MYB transcription factor PeMYB4L, the expression profile of which was concomitant with red color formation in Phalaenopsis spp. flowers. Virus-induced gene silencing (VIGS) and transient overexpression assay verified that PeMYB4L promotes anthocyanin accumulation in flower tissues. In addition, PeMYB4L could directly regulates the expression of Phalaenopsis spp. chalcone synthase gene (PeCHS) through MYBST1 (GGATA) binding site. It's interesting that the basic-helix-loop-helix (bHLH) protein PeMYC4 shows opposite expression pattern from PeMYB4L in anthocyanin accumulation. Furthermore, PeMYC4 was verified to form MYB-bHLH complex with PeMYB4L, and attenuated the expression of PeCHS and weakened anthocyanin production, indicating a novel regulatory model of MYB-bHLH complex. Our findings uncover the detailed regulatory pathway of MYB-bHLH, and might provide a new insight into the complicated anthocyanin pigmentation in Phalaenopsis spp.
Collapse
Affiliation(s)
- Rui Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Chanjuan Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Feng Ming
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; The Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| |
Collapse
|
17
|
Wang Y, Song Y, Wang D. Transcriptomic and Metabolomic Analyses Providing Insights into the Coloring Mechanism of Docynia delavayi. Foods 2022; 11:foods11182899. [PMID: 36141027 PMCID: PMC9498648 DOI: 10.3390/foods11182899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/22/2022] Open
Abstract
The metabolome and transcriptome profiles of three different variations of mature Docynia delavayi fruit were synthesized to reveal their fruit color formation mechanism. A total of 787 secondary metabolites containing 149 flavonoid metabolites, most of which were flavonoids and flavonols, were identified in the three variations using ultra performance liquid chromatography- tandem mass spectrometry (UPLC-MS/MS), and we found that the secondary metabolites cyanidin-3-O-galactoside and cyanidin-3-O-glucoside were the major coloring substances in D. delavayi. This was associated with the significant upregulation of the structural genes F3H and F3′H in the anthocyanin synthesis pathway and the control genes WRKY, MYB, bZIP, bHLH, and NAC in RP. F3′H expression may play a significant role in the selection of components for anthocyanin synthesis. Our results contribute to breeding and nutritional research in D. delavayi and provide insight into metabolite studies of the anthocyanin biosynthetic pathway.
Collapse
Affiliation(s)
- Yuchang Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
| | - Yuyang Song
- Department of Forestry, Agricultural College, Xinjiang Shihezi University, Shihezi 832003, China
- Correspondence: (Y.S.); (D.W.); Tel.: +86-135-7967-9010 (Y.S.); +86-138-8891-5161 (D.W.)
| | - Dawei Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Genetic and Tree Improvement and Propagation in Universities of Yunnan Province, Southwest Forestry University, Kunming 650224, China
- Correspondence: (Y.S.); (D.W.); Tel.: +86-135-7967-9010 (Y.S.); +86-138-8891-5161 (D.W.)
| |
Collapse
|
18
|
Fiol A, García S, Dujak C, Pacheco I, Infante R, Aranzana MJ. An LTR retrotransposon in the promoter of a PsMYB10.2 gene associated with the regulation of fruit flesh color in Japanese plum. HORTICULTURE RESEARCH 2022; 9:uhac206. [PMID: 36467274 PMCID: PMC9715577 DOI: 10.1093/hr/uhac206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Japanese plums exhibit wide diversity of fruit coloration. The red to black hues are caused by the accumulation of anthocyanins, while their absence results in yellow, orange or green fruits. In Prunus, MYB10 genes are determinants for anthocyanin accumulation. In peach, QTLs for red plant organ traits map in an LG3 region with three MYB10 copies (PpMYB10.1, PpMYB10.2 and PpMYB10.3). In Japanese plum the gene copy number in this region differs with respect to peach: there are at least three copies of PsMYB10.1, with the expression of one of them (PsMYB10.1a) correlating with fruit skin color. The objective of this study was to determine a possible role of LG3-PsMYB10 genes in the natural variability of the flesh color trait and to develop a molecular marker for marker-assisted selection (MAS). We explored the variability within the LG3-PsMYB10 region using long-range sequences obtained in previous studies through CRISPR-Cas9 enrichment sequencing. We found that the PsMYB10.2 gene was only expressed in red flesh fruits. Its role in promoting anthocyanin biosynthesis was validated by transient overexpression in Japanese plum fruits. The analysis of long-range sequences identified an LTR retrotransposon in the promoter of the expressed PsMYB10.2 gene that explained the trait in 93.1% of the 145 individuals analyzed. We hypothesize that the LTR retrotransposon may promote the PsMYB10.2 expression and activate the anthocyanin biosynthesis pathway. We propose for the first time the PsMYB10.2 gene as candidate for the flesh color natural variation in Japanese plum and provide a molecular marker for MAS.
Collapse
Affiliation(s)
- Arnau Fiol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Sergio García
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Christian Dujak
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Igor Pacheco
- Instituto de Nutrición y Tecnología de Alimentos (INTA), Universidad de Chile, El Líbano 5524, Santiago, Chile
| | - Rodrigo Infante
- Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago, Chile
| | | |
Collapse
|
19
|
Luan Y, Tang Y, Wang X, Xu C, Tao J, Zhao D. Tree Peony R2R3-MYB Transcription Factor PsMYB30 Promotes Petal Blotch Formation by Activating the Transcription of the Anthocyanin Synthase Gene. PLANT & CELL PHYSIOLOGY 2022; 63:1101-1116. [PMID: 35713501 DOI: 10.1093/pcp/pcac085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Petal blotches are commonly observed in many angiosperm families and not only influence plant-pollinator interactions but also confer high ornamental value. Tree peony (Paeonia suffruticosa Andr.) is an important cut flower worldwide, but few studies have focused on its blotch formation. In this study, anthocyanins were found to be the pigment basis for blotch formation of P. suffruticosa, and peonidin-3,5-di-O-glucoside (Pn3G5G) was the most important component of anthocyanins, while the dihydroflavonol-4-reductase gene was the key factor contributing to blotch formation. Then, the R2R3-myeloblastosis (MYB) transcription factor PsMYB30 belonging to subgroup 1 was proven as a positive anthocyanin regulator with transcriptional activation and nuclear expression. Furthermore, silencing PsMYB30 in P. suffruticosa petals reduced blotch size by 37.9%, faded blotch color and decreased anthocyanin and Pn3G5G content by 23.6% and 32.9%, respectively. Overexpressing PsMYB30 increased anthocyanin content by 14.5-fold in tobacco petals. In addition, yeast one-hybrid assays, dual-luciferase assays and electrophoretic mobility shift assays confirmed that PsMYB30 could bind to the promoter of the anthocyanin synthase (ANS) gene and enhance its expression. Altogether, a novel MYB transcription factor, PsMYB30, was identified to promote petal blotch formation by activating the expression of PsANS involved in anthocyanin biosynthesis, which provide new insights for petal blotch formation in plants.
Collapse
Affiliation(s)
- Yuting Luan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Yuhan Tang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Xin Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cong Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Jun Tao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
20
|
Monitoring Apricot ( Prunus armeniaca L.) Ripening Progression through Candidate Gene Expression Analysis. Int J Mol Sci 2022; 23:ijms23094575. [PMID: 35562966 PMCID: PMC9105867 DOI: 10.3390/ijms23094575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed at the monitoring of the apricot (Prunus armeniaca L.) ripening progression through the expression analysis of 25 genes related to fruit quality traits in nine cultivars with great differences in fruit color and ripening date. The level of pigment compounds, such as anthocyanins and carotenoids, is a key factor in food taste, and is responsible for the reddish blush color or orange skin and flesh color in apricot fruit, which are desirable quality traits in apricot breeding programs. The construction of multiple linear regression models to predict anthocyanins and carotenoids content from gene expression allows us to evaluate which genes have the strongest influence over fruit color, as these candidate genes are key during biosynthetic pathways or gene expression regulation, and are responsible for the final fruit phenotype. We propose the gene CHS as the main predictor for anthocyanins content, CCD4 and ZDS for carotenoids content, and LOX2 and MADS-box for the beginning and end of the ripening process in apricot fruit. All these genes could be applied as RNA markers to monitoring the ripening stage and estimate the anthocyanins and carotenoids content in apricot fruit during the ripening process.
Collapse
|
21
|
PpMYB39 Activates PpDFR to Modulate Anthocyanin Biosynthesis during Peach Fruit Maturation. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anthocyanins are a class of water-soluble flavonoids widely present in fruits and vegetablesresponsible for the red flesh formation of peach fruit. Previously, several genes of the MYB family have been reported as transcriptional regulators of the anthocyanin biosynthetic pathway of structural genes in plants. In this study, through comparative transcriptome analysis of the white and red flesh peach cultivars of Harrow Blood and Asama Hakuto, a predicted transcription factor of the R2R3MYB family, PpMYB39, was identified to be associated with anthocyanin biosynthesis in peach fruit. In red-fleshed peach cultivars, the maximum amount of anthocyanin accumulated 95 days after full bloom (DAFB), at full maturity near ripening. Our results showed that, at this stage, PpMYB39 had the highest expression level among the 13 differentially expressed genes (DEGs) found in both red- and white-fleshed fruits, as well as a high correlation with total anthocyanin content throughout fruit development. Moreover, the expression analysis of the structural genes of the anthocyanin biosynthetic pathway in peach fruit revealed that Prunus persica Dihydroflavonol-4-reductase (PpDFR) was co-expressed and up-regulated with PpMYB39 at 95 DAFB, suggesting its possible role as a transcriptional activator of MYB39. This was further confirmed by a yeast one-hybrid assay and a dual luciferase reporter assay. Our results will be helpful in the breeding of peach cultivars and the identification and significance of color in peaches and related fruit species, in addition to providing an understanding of color formation in peach fruit for future research.
Collapse
|
22
|
Tang T, Zhou H, Wang L, Zhao J, Ma L, Ling J, Li G, Huang W, Li P, Zhang Y. Post-harvest Application of Methyl Jasmonate or Prohydrojasmon Affects Color Development and Anthocyanins Biosynthesis in Peach by Regulation of Sucrose Metabolism. Front Nutr 2022; 9:871467. [PMID: 35479735 PMCID: PMC9037146 DOI: 10.3389/fnut.2022.871467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
The roles of methyl jasmonate (MeJA) and prohydrojasmon (PDJ) in postharvest color development and anthocyanins biosynthesis in the skin of peach fruit remain unclear. In this study, peach fruit were infiltrated with MeJA (200 μM) or PDJ (40 μM) and stored at 22°C for 7 days. The results showed that treatment with MeJA or PDJ had a positive effect on red color formation in peach fruits due to anthocyanins accumulation (∼120% increase). This was attributed to increased enzyme activities, and enhanced transcript abundance of the genes associated with anthocyanins biosynthesis, induced by MeJA or PDJ. Both MeJA and PDJ promoted sucrose biosynthesis, and the subsequently elevated levels of the sucrose during storage were positively correlated with anthocyanins accumulation (0.49) and the activities of key biosynthesis enzymes (0.42-0.79). Based on these findings, we proposed that MeJA or PDJ treatments promote anthocyanins biosynthesis by regulating sucrose metabolism during the postharvest storage of peach fruit.
Collapse
Affiliation(s)
- Tingting Tang
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Hongsheng Zhou
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Libin Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Jing Zhao
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Lijie Ma
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Jun Ling
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guofeng Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wen Huang
- Nanjing Institute of Vegetable Science, Nanjing, China
| | - Pengxia Li
- Department of Food Science, Shenyang Agricultural University, Shenyang, China
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Yingtong Zhang
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
23
|
Khan IA, Cao K, Guo J, Li Y, Wang Q, Yang X, Wu J, Fang W, Wang L. Identification of key gene networks controlling anthocyanin biosynthesis in peach flower. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111151. [PMID: 35151460 DOI: 10.1016/j.plantsci.2021.111151] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Flavonoids, particularly anthocyanin is the main pigment that determined the red color of peach flowers, and help the plant to attract pollinators, protect the reproductive organs of flower from photo-oxidative effects of light and various non-communicable diseases. Through weightage gene coexpression network analysis (WGCNA) we identified a network of 15 hub genes that co-expressed throughout peach flower development including 5 genes coded for the key enzymes (CHI, F3'H, DFR, LAR and UFGT) of flavonoid biosynthetic pathway and 1 gene Prupe.1G111700 identified as R2R3 family transcription factor MYB108. Over expression of PpMYB108 significantly increased anthocyanin biosynthesis in Tobacco flowers. Moreover, the expression correlation between PpMYB108 and PpDFR, suggests that PpMYB108 play the role of transcriptional activator for PpDFR. This was further supported by a 6 bp insertion of MYB biding site in the core promoter region of PpDFR in red flower. The positive interaction of PpMYB108 with PpDFR promoter from red flower was confirmed in yeast one hybrid assay. These findings may be helpful in peach breeding programs as well as in identifying anthocyanin related genes in other species.
Collapse
Affiliation(s)
- Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| | - Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China; State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xuanwen Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
24
|
Liu C, Li M, Ren T, Wang J, Niu C, Zheng F, Li Q. Effect of Saccharomyces cerevisiae and non-Saccharomyces strains on alcoholic fermentation behavior and aroma profile of yellow-fleshed peach wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Abubakar AS, Feng X, Gao G, Yu C, Chen J, Chen K, Wang X, Mou P, Shao D, Chen P, Zhu A. Genome wide characterization of R2R3 MYB transcription factor from Apocynum venetum revealed potential stress tolerance and flavonoid biosynthesis genes. Genomics 2022; 114:110275. [PMID: 35108591 DOI: 10.1016/j.ygeno.2022.110275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
Abstract
MYB transcription factors are crucial in regulating stress tolerance and expression of major genes involved in flavonoid biosynthesis. The functions of MYBs is well explored in a number of plants, yet no studies is reported in Apocynum venetum. We identified a total of 163 MYB candidates, that comprised of 101 (61.96%) R2R3, 6 3R, 1 4R and 55 1R. Syntenic analysis of A. venetum R2R3 (AvMYB) showed highest orthologous pairs with Vitis vinifera MYBs followed by Arabidopsis thaliana among the four species evaluated. Thirty segmental duplications and 6 tandem duplications were obtained among AvMYB gene pairs signifying their role in the MYB gene family expansion. Nucleotide substitution analysis (Ka/Ks) showed the AvMYBs to be under the influence of strong purifying selection. Expression analysis of selected AvMYB under low temperature and cadmium stresses resulted in the identification of AvMYB48, AvMYB97, AvMYB8,AvMYB4 as potential stress responsive genes and AvMYB10 and AvMYB11 in addition, proanthocyanidin biosynthesis regulatory genes which is consistent with their annotated homologues in Arabidopsis. Tissue specific expression profile analysis of AvMYBs further supported the qPCR analysis result. MYBs with higher transcript levels in root, stem and leaf like AvMYB4 forexample, was downregulated under the stresses and such with low transcript level such as AvMYB48 which had low transcript in the leaf was upregulated under both stresses. Transcriptome and phylogenetic analysis suggested AvMYB42 as a potential regulator of anthocyanin biosynthesis. Thus, this study provided valuable information on AvR2R3-MYB gene family with respect to stress tolerance and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Department of Agronomy, Bayero University, Kano, PMB 3011, Kano, Nigeria
| | - Xinkang Feng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chunming Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Pan Mou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Deyi Shao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
26
|
Zhang YL, Lin-Wang K, Albert NW, Elborough C, Espley RV, Andre CM, Fang ZZ. Identification of a Strong Anthocyanin Activator, VbMYBA, From Berries of Vaccinium bracteatum Thunb. FRONTIERS IN PLANT SCIENCE 2021; 12:697212. [PMID: 34938303 PMCID: PMC8685453 DOI: 10.3389/fpls.2021.697212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/09/2021] [Indexed: 05/27/2023]
Abstract
Wufanshu (Vaccinium bracteatum Thunb.), which is a wild member of the genus Vaccinium, accumulates high concentration of anthocyanin in its berries. In this study, the accumulated anthocyanins and their derivatives in Wufanshu berries were identified through UHPLC-MS/MS analysis. Candidate anthocyanin biosynthetic genes were identified from the transcriptome of Wufanshu berries. qRT-PCR analyses showed that the expression of anthocyanin structural genes correlated with anthocyanin accumulation in berries. The R2R3-MYB, VbMYBA, which is a homolog of anthocyanin promoting R2R3-MYBs from other Vaccinium species, was also identified. Transient expression of VbMYBA in Nicotiana tabacum leaves confirmed its role as an anthocyanin regulator, and produced a higher anthocyanin concentration when compared with blueberry VcMYBA expression. Dual-luciferase assays further showed that VbMYBA can activate the DFR and UFGT promoters from other Vaccinium species. VbMYBA has an additional 23 aa at the N terminus compared with blueberry VcMYBA, but this was shown not to affect the ability to regulate anthocyanins. Taken together, our results provide important information on the molecular mechanisms responsible for the high anthocyanin content in Wufanshu berries.
Collapse
Affiliation(s)
- Ya-Ling Zhang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Caitlin Elborough
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Christelle M. Andre
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Zhi-Zhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
27
|
Molecular Insights of Fruit Quality Traits in Peaches, Prunus persica. PLANTS 2021; 10:plants10102191. [PMID: 34686000 PMCID: PMC8541108 DOI: 10.3390/plants10102191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/04/2023]
Abstract
Fleshy fruits are the most demanded fruits because of their organoleptic qualities and nutritional values. The genus Prunus is a rich source of diversified stone/drupe fruits such as almonds, apricots, plums, sweet cherries, peaches, and nectarines. The fruit-ripening process in Prunus involves coordinated biochemical and physiological changes resulting in changes in fruit texture, aroma gain, color change in the pericarp, sugar/organic acid balance, fruit growth, and weight gain. There are different varieties of peaches with unique palatable qualities and gaining knowledge in the genetics behind these quality traits helps in seedling selection for breeding programs. In addition, peaches have shorter post-harvest life due to excessive softening, resulting in fruit quality reduction and market loss. Many studies have been executed to understand the softening process at the molecular level to find the genetic basis. To summarize, this review focused on the molecular aspects of peach fruit quality attributes and their related genetics to understand the underlying mechanisms.
Collapse
|
28
|
He Y, Li D, Li S, Liu Y, Chen H. SmBICs Inhibit Anthocyanin Biosynthesis in Eggplant (Solanum melongena L.). PLANT & CELL PHYSIOLOGY 2021; 62:1001-1011. [PMID: 34043001 DOI: 10.1093/pcp/pcab070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/13/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Eggplant is rich in anthocyanins, which are thought to be highly beneficial for human health. It has been reported that blue light inhibitors of cryptochromes (BICs) act as negative regulators in light signal transduction, but little is known about their role in anthocyanin biosynthesis. In this study, yeast one-hybrid analysis showed that SmBICs could bind to the promoter of SmCHS, indicating that they could directly participate in eggplant anthocyanin biosynthesis. In SmBICs-silenced eggplants, more anthocyanins were accumulated, while SmBIC1-overexpression (OE) and SmBIC2-OE Arabidopsis and eggplants synthesized less anthocyanin. Quantitative real-time polymerase chain reaction also revealed that the anthocyanin structural genes, which were downregulated in SmBIC1-OE and SmBIC2-OE lines, were upregulated in SmBICs-silenced eggplants. In addition, transcriptome analysis further confirmed that differentially expressed genes of SmBICs-OE plants were enriched mainly in the pathways related to anthocyanin biosynthesis and the key transcription factors and structural genes for anthocyanin biosynthesis, such as SmMYB1, SmTT8, SmHY5, SmCHS, SmCHI, SmDFR and SmANS, were suppressed significantly. Finally, bimolecular fluorescence complementation and blue-light-dependent degradation assay suggested that SmBICs interacted with photo-excited SmCRY2 to inhibit its photoreaction, thereby inhibiting the expression of genes related to anthocyanin biosynthesis and reducing anthocyanin accumulation. Collectively, our study suggests that SmBICs repress anthocyanin biosynthesis by inhibiting photoactivation of SmCRY2. This study provides a new working model for anthocyanin biosynthesis in eggplant.
Collapse
Affiliation(s)
- Yongjun He
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - DaLu Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - ShaoHang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| |
Collapse
|
29
|
Chen Z, Lu X, Li Q, Li T, Zhu L, Ma Q, Wang J, Lan W, Ren J. Systematic analysis of MYB gene family in Acer rubrum and functional characterization of ArMYB89 in regulating anthocyanin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6319-6335. [PMID: 33993245 DOI: 10.1093/jxb/erab213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The v-myb avian myeloblastosis viral oncogene homolog (MYB) family of transcription factors is extensively distributed across the plant kingdom. However, the functional significance of red maple (Acer rubrum) MYB transcription factors remains unclear. Our research identified 393 MYB transcription factors in the Acer rubrum genome, and these ArMYB members were unevenly distributed across 34 chromosomes. Among them, R2R3 was the primary MYB sub-class, which was further divided into 21 sub-groups with their Arabidopsis homologs. The evolution of the ArMYB family was also investigated, with the results revealing several R2R3-MYB sub-groups with expanded membership in woody species. Here, we report on the isolation and characterization of ArMYB89 in red maple. Quantitative real-time PCR analysis revealed that ArMYB89 expression was significantly up-regulated in red leaves in contrast to green leaves. Sub-cellular localization experiments indicated that ArMYB89 was localized in the nucleus. Further experiments revealed that ArMYB89 could interact with ArSGT1 in vitro and in vivo. Overexpression of ArMYB89 in tobacco enhances the anthocyanin content of transgenic plants. In conclusion, our results contribute to the elucidation of a theoretical basis for the ArMYB gene family, and provide a foundation for further characterization of the biological roles of MYB genes in the regulation of Acer rubrum leaf color.
Collapse
Affiliation(s)
- Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiaoyu Lu
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Qianzhong Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tingchun Li
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiuyue Ma
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingjing Wang
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang Anhui, China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
30
|
Lu Z, Cao H, Pan L, Niu L, Wei B, Cui G, Wang L, Yao JL, Zeng W, Wang Z. Two loss-of-function alleles of the glutathione S-transferase (GST) gene cause anthocyanin deficiency in flower and fruit skin of peach (Prunus persica). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1320-1331. [PMID: 33964100 DOI: 10.1111/tpj.15312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Flower and fruit colors are important agronomic traits. To date, there is no forward genetic evidence that the glutathione S-transferase (GST) gene is responsible for the white flower color in peach (Prunus persica). In this study, genetic analysis indicated that the white-flower trait is monogenetic, is recessive to the non-white allele, and shows pleiotropic effects with non-white-flowered types. The genetic locus underpinning this trait was mapped onto chromosome 3 between 0.421951 and 3.227115 Mb by using bulked segregant analysis in conjunction with whole-genome sequencing, and was further mapped between 0 and 1.178149 Mb by using the backcross 1 (BC1 ) population. Finally, the locus was fine-mapped within 535.974- and 552.027-kb intervals by using 151 F2 individuals and 75 individuals from a BC1 self-pollinated (BC1 S1 ) population, respectively. Pp3G013600, encoding a GST that is known to transport anthocyanin, was identified within the mapping interval. The analysis of genome sequence data showed Pp3G013600 in white flowers has a 2-bp insertion or a 5-bp deletion in the third exon. These variants likely render the GST non-functional because of early stop codons that reduce the protein length from 215 amino acids to 167 and 175 amino acids, respectively. Genetic markers based on these variants validated a complete correlation between the GST loss-of-function alleles and white flower in 128 peach accessions. This correlation was further confirmed by silencing of Pp3G013600 using virus-induced gene silencing technology, which reduced anthocyanin accumulation in peach fruit. The new knowledge from this study is useful for designing peach breeding programs to generate cultivars with white flower and fruit skin.
Collapse
Affiliation(s)
- Zhenhua Lu
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Huihui Cao
- Tangshan Food and Drug Comprehensive Testing Center, Tangshan, China
| | - Lei Pan
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liang Niu
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Bin Wei
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - GuoChao Cui
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Luwei Wang
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Wenfang Zeng
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhiqiang Wang
- National Peach and Grape Improvement Center/Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
31
|
Valderrama-Soto D, Salazar J, Sepúlveda-González A, Silva-Andrade C, Gardana C, Morales H, Battistoni B, Jiménez-Muñoz P, González M, Peña-Neira Á, Infante R, Pacheco I. Detection of Quantitative Trait Loci Controlling the Content of Phenolic Compounds in an Asian Plum ( Prunus salicina L.) F1 Population. FRONTIERS IN PLANT SCIENCE 2021; 12:679059. [PMID: 34305977 PMCID: PMC8299277 DOI: 10.3389/fpls.2021.679059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/08/2021] [Indexed: 06/13/2023]
Abstract
Consumption of fresh fruit is known to protect against non-communicable diseases due to the fruit's content in compounds with an antioxidant capacity, among them is polyphenols. Asian plums (Prunus salicina L.) accumulate more than 40 phenolic compounds, with a remarkable diversity in their profiles, depending on the variety and environmental conditions. Although candidate genes have been indicated to control this trait, the loci controlling its phenotypic variation have not yet been defined in this species. The aim of this work was to identify the quantitative trait Loci (QTL) controlling the phenolic compounds content in the Asian plum skin and flesh. Using UHPLC-DAD-Orbitrap-MS, we determined that cyanidin-3-glucoside and cyanidin-3-rutinoside are the main anthocyanins in Asian plums. Other anthocyanins found to a lesser extent were tentatively identified as cyanidin bound to different sugar and procyanidin moieties. Then we phenotyped fruits of 92 and 80 F1 seedlings from the cross < "98.99" × "Angeleno"> (98 Ang) for two harvest seasons. We used HPLC-DAD to quantify single anthocyanin and spectrophotometric techniques to determine the total content of phenols, flavonoids, procyanidins, and antioxidant activity (DPPH and FRAP). To determine the phenotype-genotype association of phenolic compounds content, phenotypic values (adjusted by linear mixed-effects models), genotypic data and linkage maps were analyzed with the multiple QTL model (MQM) approach. We found a total of 21 significant trait-marker associations: 13 QTLs segregating from "98.99" and 8 QTLs from "Angeleno." From these associations, 8 corresponded to phenolic compound content in the flesh and 13 in the skin. Phenotype variance was explained by the detected loci, ranging from 12.4 to 27.1%. The identified loci are related to the content of cyanidin-3-glucoside (LG4), cyanidin-3-rutinoside (LG4), total flavonoids and procyanidins (LG5 and LG8), and minor anthocyanin compounds (LG3 and LG4). These results will help improve the efficiency of breeding programs for the generation of Asian plum varieties with high phenolic compound content.
Collapse
Affiliation(s)
- Diego Valderrama-Soto
- Instituto de Nutrición y Tecnología de Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Juan Salazar
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas (CEBAS-CSIC), Murcia, Spain
| | | | - Claudia Silva-Andrade
- Laboratorio de Biología de Redes, Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Claudio Gardana
- Dipartimento di Scienze per gli Alimenti, la Nutrizione, l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Héctor Morales
- Departamento de Agroindustria y Enología, Universidad de Chile, Santiago, Chile
| | - Benjamin Battistoni
- Instituto de Nutrición y Tecnología de Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santiago, Chile
| | - Pablo Jiménez-Muñoz
- Instituto de Nutrición y Tecnología de Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Departamento de Producción Agrícola, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- Instituto de Nutrición y Tecnología de Alimentos (INTA), Universidad de Chile, Santiago, Chile
- Center for Genome Regulation (CGR), Santiago, Chile
| | - Álvaro Peña-Neira
- Departamento de Agroindustria y Enología, Universidad de Chile, Santiago, Chile
| | - Rodrigo Infante
- Departamento de Producción Agrícola, Universidad de Chile, Santiago, Chile
| | - Igor Pacheco
- Instituto de Nutrición y Tecnología de Alimentos (INTA), Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Li X, Yu R, Fan Y. Genome-wide analysis of ARF transcription factors reveals HcARF5 expression profile associated with the biosynthesis of β-ocimene synthase in Hedychium coronarium. PLANT CELL REPORTS 2021. [PMID: 34052884 DOI: 10.1007/s00299021-02709-2701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Herein, 37 ARF genes were identified and analyzed in Hedychium coronarium and HcARF5 showed a potential role in the regulation of HcTPS3. Auxin is an important plant hormone, implicated in various aspects of plant growth and development processes especially in the biosynthesis of various secondary metabolites. Auxin response factors (ARF) belong to the transcription factors (TFs) gene family and play a crucial role in transcriptional activation/repression of auxin-responsive genes by directly binding to their promoter region. Nevertheless, whether ARF genes are involved in the regulatory mechanism of volatile compounds in flowering plants is largely unknown. β-ocimene is a key floral volatile compound synthesized by terpene synthase 3 (HcTPS3) in Hedychium coronarium. A comprehensive analysis of H. coronarium genome reveals 37 candidate ARF genes in the whole genome. Tissue-specific expression patterns of HcARFs family members were assessed using available transcriptome data. Among them, HcARF5 showed a higher expression level in flowers, and significantly correlated with the key structural β-ocimene synthesis gene (HcTPS3). Furthermore, transcript levels of both genes were associated with the flower development. Under hormone treatments, the response of HcARF5 and HcTPS3, and the emission level of β-ocimene contents were evaluated. Subcellular and transcriptional activity assay showed that HcARF5 localizes to the nucleus and possesses transcriptional activity. Yeast one-hybrid (Y1H) and dual-luciferase assays revealed that HcARF5 directly regulates the transcriptional activity of HcTPS3. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that HcARF5 interacts with scent-related HcIAA4, HcIAA6, and HcMYB1 in vivo. Overall, these results indicate that HcARF5 is potentially involved in the regulation of β-ocimene synthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- College of Economics and Management, Kunming University, Kunming, 650214, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Li X, Yu R, Fan Y. Genome-wide analysis of ARF transcription factors reveals HcARF5 expression profile associated with the biosynthesis of β-ocimene synthase in Hedychium coronarium. PLANT CELL REPORTS 2021; 40:1269-1284. [PMID: 34052884 DOI: 10.1007/s00299-021-02709-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 05/19/2023]
Abstract
Herein, 37 ARF genes were identified and analyzed in Hedychium coronarium and HcARF5 showed a potential role in the regulation of HcTPS3. Auxin is an important plant hormone, implicated in various aspects of plant growth and development processes especially in the biosynthesis of various secondary metabolites. Auxin response factors (ARF) belong to the transcription factors (TFs) gene family and play a crucial role in transcriptional activation/repression of auxin-responsive genes by directly binding to their promoter region. Nevertheless, whether ARF genes are involved in the regulatory mechanism of volatile compounds in flowering plants is largely unknown. β-ocimene is a key floral volatile compound synthesized by terpene synthase 3 (HcTPS3) in Hedychium coronarium. A comprehensive analysis of H. coronarium genome reveals 37 candidate ARF genes in the whole genome. Tissue-specific expression patterns of HcARFs family members were assessed using available transcriptome data. Among them, HcARF5 showed a higher expression level in flowers, and significantly correlated with the key structural β-ocimene synthesis gene (HcTPS3). Furthermore, transcript levels of both genes were associated with the flower development. Under hormone treatments, the response of HcARF5 and HcTPS3, and the emission level of β-ocimene contents were evaluated. Subcellular and transcriptional activity assay showed that HcARF5 localizes to the nucleus and possesses transcriptional activity. Yeast one-hybrid (Y1H) and dual-luciferase assays revealed that HcARF5 directly regulates the transcriptional activity of HcTPS3. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that HcARF5 interacts with scent-related HcIAA4, HcIAA6, and HcMYB1 in vivo. Overall, these results indicate that HcARF5 is potentially involved in the regulation of β-ocimene synthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- College of Economics and Management, Kunming University, Kunming, 650214, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Punjab, Pakistan
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
34
|
Fang ZZ, Lin-Wang K, Zhou DR, Lin YJ, Jiang CC, Pan SL, Espley RV, Andre CM, Ye XF. Activation of PsMYB10.2 Transcription Causes Anthocyanin Accumulation in Flesh of the Red-Fleshed Mutant of 'Sanyueli' ( Prunus salicina Lindl.). FRONTIERS IN PLANT SCIENCE 2021; 12:680469. [PMID: 34239526 PMCID: PMC8259629 DOI: 10.3389/fpls.2021.680469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/21/2021] [Indexed: 05/31/2023]
Abstract
Plum is one of the most important stone fruits in the world and anthocyanin-rich plums are increasingly popular due to their health-promoting potential. In this study, we investigated the mechanisms of anthocyanin accumulation in the flesh of the red-fleshed mutant of the yellow-fleshed plum 'Sanyueli'. RNA-Seq and qRT-PCR showed that anthocyanin biosynthetic genes and the transcription factor PsMYB10.2 were upregulated in the flesh of the mutant. Functional testing in tobacco leaves indicated that PsMYB10.2 was an anthocyanin pathway activator and can activate the promoter of the anthocyanin biosynthetic genes PsUFGT and PsGST. The role of PsMYB10.2 in anthocyanin accumulation in the flesh of plum was further confirmed by virus-induced gene silencing. These results provide information for further elucidating the underlying mechanisms of anthocyanin accumulation in the flesh of plum and for the breeding of new red-fleshed plum cultivars.
Collapse
Affiliation(s)
- Zhi-Zhen Fang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Dan-Rong Zhou
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yan-Juan Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Cui-Cui Jiang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Shao-Lin Pan
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Richard V. Espley
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Christelle M. Andre
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland, New Zealand
| | - Xin-Fu Ye
- Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fujian Engineering and Technology Research Center for Deciduous Fruit Trees, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
35
|
Fiol A, García-Gómez BE, Jurado-Ruiz F, Alexiou K, Howad W, Aranzana MJ. Characterization of Japanese Plum ( Prunus salicina) PsMYB10 Alleles Reveals Structural Variation and Polymorphisms Correlating With Fruit Skin Color. FRONTIERS IN PLANT SCIENCE 2021; 12:655267. [PMID: 34168666 PMCID: PMC8217863 DOI: 10.3389/fpls.2021.655267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/10/2021] [Indexed: 05/07/2023]
Abstract
The red to blue hue of plant organs is caused due to anthocyanins, which are water-soluble flavonoid pigments. The accumulation of these pigments is regulated by a complex of R2R3-MYB transcription factors (TFs), basic-helix-loop-helix (bHLH), and WD-repeat (WDR) proteins (MBW complex). In Rosaceae species, R2R3-MYBs, particularly MYB10 genes, are responsible for part of the natural variation in anthocyanin colors. Japanese plum cultivars, which are hybrids of Prunus salicina, have high variability in the color hue and pattern, going from yellow-green to red and purple-blue, probably as a result of the interspecific hybridization origin of the crop. Because of such variability, Japanese plum can be considered as an excellent model to study the color determination in Rosaceae fruit tree species. Here, we cloned and characterized the alleles of the PsMYB10 genes in the linkage group LG3 region where quantitative trait loci (QTLs) for the organ color have been mapped to other Prunus species. Allele segregation in biparental populations as well as in a panel of varieties, combined with the whole-genome sequence of two varieties with contrasting fruit color, allowed the organization of the MYB10 alleles into haplotypes. With the help of this strategy, alleles were assigned to genes and at least three copies of PsMYB10.1 were identified in some varieties. In total, we observed six haplotypes, which were able to characterize 91.36% of the cultivars. In addition, two alleles of PsMYB10.1 were found to be highly associated with anthocyanin and anthocyanin-less skin. Their expression during the fruit development confirms their role in the fruit skin coloration. Here, we provide a highly efficient molecular marker for the early selection of colored or non-colored fruits in Japanese plum breeding programs.
Collapse
Affiliation(s)
- Arnau Fiol
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Beatriz E. García-Gómez
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Federico Jurado-Ruiz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Konstantinos Alexiou
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Werner Howad
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| | - Maria José Aranzana
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries, Barcelona, Spain
| |
Collapse
|
36
|
Liu Y, Ma K, Qi Y, Lv G, Ren X, Liu Z, Ma F. Transcriptional Regulation of Anthocyanin Synthesis by MYB-bHLH-WDR Complexes in Kiwifruit ( Actinidia chinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3677-3691. [PMID: 33749265 DOI: 10.1021/acs.jafc.0c07037] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The anthocyanin synthetic pathway is regulated centrally by an MYB-bHLH-WD40 (MBW) complex. Anthocyanin pigmentation is an important fruit quality trait in red-fleshed kiwifruit; however, the underlying regulatory mechanisms involving the MBW complex are not well understood. In this study, one R2R3MYB (AcMYBF110 expressed in fruit characteristically), one bHLH (AcbHLH1), two upstream regulators of AcbHLH1 (AcbHLH4 and AcbHLH5), and one WDR (AcWDR1) are characterized as being involved in the regulation of anthocyanin synthesis in kiwifruit. AcMYBF110 plays an important role in the regulation of anthocyanin accumulation by specifically activating the promoters of several anthocyanin pathway genes including AcCHS, AcF3'H, AcANS, AcUFGT3a, AcUFGT6b, and AcGST1. Coexpression of AcbHLH1, AcbHLH4, or AcbHLH5 together with AcMYBF110 induces much greater anthocyanin accumulation in both tobacco leaves and in Actinidia arguta fruit compared with AcMYBF110 alone. Moreover, this activation is further enhanced by adding AcWDR1. We found that both AcMYBF110 and AcWDR1 interact with all three AcbHLH factors, while AcMYBF110 also interacts with AcWDR1 to form three different MBW complexes that have different regulatory roles in anthocyanin accumulation of kiwifruit. The AcMYBF110-AcbHLH1-AcWDR1 complex directly targets the promoters of anthocyanin synthetic genes. Other features of the regulatory pathways identified include promotion of AcMYBF110, AcbHLH1,and AcWDR1 activities by this MBW complex, providing for both reinforcement and feedback regulation, whereas the AcMYBF110-AcbHLH4/5-AcWDR1 complex is indirectly involved in the regulation of anthocyanin synthesis by activating the promoters of AcbHLH1 and AcWDR1 to amplify the regulation signals of the first MBW complex.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
- College of Life Science, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Kangxun Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Yingwei Qi
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610 Guangdong, China
| | - Guowen Lv
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| |
Collapse
|
37
|
Yan H, Pei X, Zhang H, Li X, Zhang X, Zhao M, Chiang VL, Sederoff RR, Zhao X. MYB-Mediated Regulation of Anthocyanin Biosynthesis. Int J Mol Sci 2021; 22:3103. [PMID: 33803587 PMCID: PMC8002911 DOI: 10.3390/ijms22063103] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins are natural water-soluble pigments that are important in plants because they endow a variety of colors to vegetative tissues and reproductive plant organs, mainly ranging from red to purple and blue. The colors regulated by anthocyanins give plants different visual effects through different biosynthetic pathways that provide pigmentation for flowers, fruits and seeds to attract pollinators and seed dispersers. The biosynthesis of anthocyanins is genetically determined by structural and regulatory genes. MYB (v-myb avian myeloblastosis viral oncogene homolog) proteins are important transcriptional regulators that play important roles in the regulation of plant secondary metabolism. MYB transcription factors (TFs) occupy a dominant position in the regulatory network of anthocyanin biosynthesis. The TF conserved binding motifs can be combined with other TFs to regulate the enrichment and sedimentation of anthocyanins. In this study, the regulation of anthocyanin biosynthetic mechanisms of MYB-TFs are discussed. The role of the environment in the control of the anthocyanin biosynthesis network is summarized, the complex formation of anthocyanins and the mechanism of environment-induced anthocyanin synthesis are analyzed. Some prospects for MYB-TF to modulate the comprehensive regulation of anthocyanins are put forward, to provide a more relevant basis for further research in this field, and to guide the directed genetic modification of anthocyanins for the improvement of crops for food quality, nutrition and human health.
Collapse
Affiliation(s)
- Huiling Yan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiaona Pei
- Harbin Research Institute of Forestry Machinery, State Administration of Forestry and Grassland, Harbin 150086, China;
- Research Center of Cold Temperate Forestry, CAF, Harbin 150086, China
| | - Heng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xiang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Xinxin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Minghui Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Ronald Ross Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA;
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (H.Y.); (H.Z.); (X.L.); (X.Z.); (M.Z.); (V.L.C.)
| |
Collapse
|
38
|
Genetic Mapping and Identification of the Candidate Gene for White Seed Coat in Cucurbita maxima. Int J Mol Sci 2021; 22:ijms22062972. [PMID: 33804065 PMCID: PMC8000038 DOI: 10.3390/ijms22062972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022] Open
Abstract
Seed coat color is an important agronomic trait of edible seed pumpkin in Cucurbita maxima. In this study, the development pattern of seed coat was detected in yellow and white seed coat accessions Wuminglv and Agol. Genetic analysis suggested that a single recessive gene white seed coat (wsc) is involved in seed coat color regulation in Cucurbita maxima. An F2 segregating population including 2798 plants was used for fine mapping and a candidate region containing nine genes was identified. Analysis of 54 inbred accessions revealed four main Insertion/Deletion sites in the promoter of CmaCh15G005270 encoding an MYB transcription factor were co-segregated with the phenotype of seed coat color. RNA-seq analysis and qRT-PCR revealed that some genes involved in phenylpropanoid/flavonoid metabolism pathway displayed remarkable distinction in Wuminglv and Agol during the seed coat development. The flanking InDel marker S1548 was developed to predict the seed coat color in the MAS breeding with an accuracy of 100%. The results may provide valuable information for further studies in seed coat color formation and structure development in Cucurbitaceae crops and help the molecular breeding of Cucurbita maxima.
Collapse
|
39
|
Minamikawa MF, Kunihisa M, Noshita K, Moriya S, Abe K, Hayashi T, Katayose Y, Matsumoto T, Nishitani C, Terakami S, Yamamoto T, Iwata H. Tracing founder haplotypes of Japanese apple varieties: application in genomic prediction and genome-wide association study. HORTICULTURE RESEARCH 2021; 8:49. [PMID: 33642580 PMCID: PMC7917097 DOI: 10.1038/s41438-021-00485-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 05/21/2023]
Abstract
Haplotypes provide useful information for genomics-based approaches, genomic prediction, and genome-wide association study. As a small number of superior founders have contributed largely to the breeding history of fruit trees, the information of founder haplotypes may be relevant for performing the genomics-based approaches in these plants. In this study, we proposed a method to estimate 14 haplotypes from 7 founders and automatically trace the haplotypes forward to apple parental (185 varieties) and breeding (659 F1 individuals from 16 full-sib families) populations based on 11,786 single-nucleotide polymorphisms, by combining multiple algorithms. Overall, 92% of the single-nucleotide polymorphisms information in the parental and breeding populations was characterized by the 14 founder haplotypes. The use of founder haplotype information improved the accuracy of genomic prediction in 7 traits and the resolution of genome-wide association study in 13 out of 27 fruit quality traits analyzed in this study. We also visualized the significant propagation of the founder haplotype with the largest genetic effect in genome-wide association study over the pedigree tree of the parental population. These results suggest that the information of founder haplotypes can be useful for not only genetic improvement of fruit quality traits in apples but also for understanding the selection history of founder haplotypes in the breeding program of Japanese apple varieties.
Collapse
Affiliation(s)
- Mai F Minamikawa
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Miyuki Kunihisa
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan
| | - Koji Noshita
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Shigeki Moriya
- Division of Apple Research, Institute of Fruit Tree and Tea Science, NARO, 92-24 Shimokuriyagawa Nabeyashiki, Morioka, Iwate, 020-0123, Japan
| | - Kazuyuki Abe
- Division of Apple Research, Institute of Fruit Tree and Tea Science, NARO, 92-24 Shimokuriyagawa Nabeyashiki, Morioka, Iwate, 020-0123, Japan
| | - Takeshi Hayashi
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yuichi Katayose
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Toshimi Matsumoto
- Institute of Crop Science, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
- Institute of Agrobiological Sciences, NARO, 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Chikako Nishitani
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan
| | - Shingo Terakami
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan
| | - Toshiya Yamamoto
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan
| | - Hiroyoshi Iwata
- Laboratory of Biometry and Bioinformatics, Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
40
|
Zhao Y, Min T, Chen M, Wang H, Zhu C, Jin R, Allan AC, Lin-Wang K, Xu C. The Photomorphogenic Transcription Factor PpHY5 Regulates Anthocyanin Accumulation in Response to UVA and UVB Irradiation. FRONTIERS IN PLANT SCIENCE 2021; 11:603178. [PMID: 33537042 PMCID: PMC7847898 DOI: 10.3389/fpls.2020.603178] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/28/2020] [Indexed: 05/25/2023]
Abstract
Red coloration contributes to fruit quality and is determined by anthocyanin content in peach (Prunus persica). Our previous study illustrated that anthocyanin accumulation is strongly regulated by light, and the effect of induction differs according to light quality. Here we showed that both ultraviolet-A (UVA) and ultraviolet-B (UVB) irradiation promoted anthocyanin biosynthesis in "Hujingmilu" peach fruit, and a combination of UVA and UVB had additional effects. The expression of anthocyanin biosynthesis and light signaling related genes, including transcription factor genes and light signaling elements, were induced following UV irradiation as early as 6 h post-treatment, earlier than apparent change in coloration which occurred at 72 h. To investigate the molecular mechanisms for UVA- and UVB-induced anthocyanin accumulation, the genes encoding ELONGATED HYPOCOTYL 5 (HY5), CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), Cryptochrome (CRY), and UV RESISTANCE LOCUS 8 (UVR8) in peach were isolated and characterized through functional complementation in corresponding Arabidopsis (Arabidopsis thaliana) mutants. PpHY5 and PpCOP1.1 restored hypocotyl length and anthocyanin content in Arabidopsis mutants under white light; while PpCRY1 and PpUVR8.1 restored AtHY5 expression in Arabidopsis mutants in response to UV irradiation. Arabidopsis PpHY5/hy5 transgenic lines accumulated higher amounts of anthocyanin under UV supplementation (compared with weak white light only), especially when UVA and UVB were applied together. These data indicated that PpHY5, acting as AtHY5 counterpart, was a vital regulator in UVA and UVB signaling pathway. In peach, the expression of PpHY5 was up-regulated by UVA and UVB, and PpHY5 positively regulated both its own transcription by interacting with an E-box in its own promoter, and the transcription of the downstream anthocyanin biosynthetic genes chalcone synthase 1 (PpCHS1), chalcone synthase 2 (PpCHS2), and dihydroflavonol 4-reductase (PpDFR1) as well as the transcription factor gene PpMYB10.1. In summary, functional evidence supports the role of PpHY5 in UVA and UVB light transduction pathway controlling anthocyanin biosynthesis. In peach this is via up-regulation of expression of genes encoding biosynthetic enzymes, as well as the transcription factor PpMYB10.1 and PpHY5 itself.
Collapse
Affiliation(s)
- Yun Zhao
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Ting Min
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Miaojin Chen
- Fenghua Institute of Honey Peach, Fenghua, China
| | - Hongxun Wang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Changqing Zhu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Rong Jin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| | - Andrew C. Allan
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kui Lin-Wang
- New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Abbas F, Ke Y, Zhou Y, Yu Y, Waseem M, Ashraf U, Wang C, Wang X, Li X, Yue Y, Yu R, Fan Y. Genome-Wide Analysis Reveals the Potential Role of MYB Transcription Factors in Floral Scent Formation in Hedychium coronarium. FRONTIERS IN PLANT SCIENCE 2021; 12:623742. [PMID: 33719296 PMCID: PMC7952619 DOI: 10.3389/fpls.2021.623742] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/11/2021] [Indexed: 05/19/2023]
Abstract
The MYB gene family is one of the largest groups of transcription factors (TFs) playing diverse roles in several biological processes. Hedychium coronarium (white ginger lily) is a renowned ornamental plant both in tropical and subtropical regions due to its flower shape and strong floral scent mainly composed of terpenes and benzenoids. However, there is no information available regarding the role of the MYB gene family in H. coronarium. In the current study, the MYB gene family was identified and extensively analyzed. The identified 253 HcMYB genes were unevenly mapped on 17 chromosomes at a different density. Promoter sequence analysis showed numerous phytohormones related to cis-regulatory elements. The majority of HcMYB genes contain two to three introns and motif composition analysis showed their functional conservation. Phylogenetic analysis revealed that HcMYBs could be classified into 15 distinct clades, and the segmental duplication events played an essential role in the expansion of the HcMYB gene family. Tissue-specific expression patterns of HcMYB genes displayed spatial and temporal expression. Furthermore, seven HcMYB (HcMYB7/8/75/79/145/238/248) were selected for further investigation. Through RT-qPCR, the response of candidates HcMYB genes toward jasmonic acid methyl ester (MeJA), abscisic acid (ABA), ethylene, and auxin was examined. Yeast one-hybrid (Y1H) assays revealed that candidate genes directly bind to the promoter of bottom structural volatile synthesis genes (HcTPS1, HcTPS3, HcTPS10, and HcBSMT2). Moreover, yeast two-hybrid (Y2H) assay showed that HcMYB7/8/75/145/248 interact with HcJAZ1 protein. In HcMYB7/8/79/145/248-silenced flowers, the floral volatile contents were decreased and downregulated the expression of key structural genes, suggesting that these genes might play crucial roles in floral scent formation in H. coronarium by regulating the expression of floral scent biosynthesis genes. Collectively, these findings indicate that HcMYB genes might be involved in the regulatory mechanism of terpenoids and benzenoid biosynthesis in H. coronarium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Economics and Management, Kunming University, Kunming, China
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yunyi Yu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Muhammad Waseem
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Punjab, Pakistan
| | - Chutian Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xinyue Li
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, China
- *Correspondence: Yanping Fan,
| |
Collapse
|
42
|
Xu P, Wu L, Cao M, Ma C, Xiao K, Li Y, Lian H. Identification of MBW Complex Components Implicated in the Biosynthesis of Flavonoids in Woodland Strawberry. FRONTIERS IN PLANT SCIENCE 2021; 12:774943. [PMID: 34819941 PMCID: PMC8606683 DOI: 10.3389/fpls.2021.774943] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/20/2021] [Indexed: 05/02/2023]
Abstract
Flavonoids belong to the family of polyphenolic secondary metabolites and contribute to fruit quality traits. It has been shown that MBW complexes (MYB-bHLH-WD40) regulate the flavonoids biosynthesis in different plants, but only a limited number of MBW complexes have been identified in strawberry species in general. In this study, we identified 112 R2R3-MYB proteins in woodland strawberry; 12 of them were found to have potential functions in regulating flavonoids biosynthesis by phylogenetic analysis. qRT-PCR assays showed that FvMYB3, FvMYB9, FvMYB11, FvMYB22, FvMYB64, and FvMYB105 mostly expressed at green stage of fruit development, aligned with proanthocyanidins accumulation; FvMYB10 and FvMYB41 showed higher expression levels at turning and ripe stages, aligned with anthocyanins accumulation. These results suggest that different MYBs might be involved in flavonoids biosynthesis at specific stages. Furthermore, FvMYB proteins were demonstrated to interact with FvbHLH proteins and induce expression from the promoters of CHS2 and DFR2 genes, which encode key enzymes in flavonoids biosynthesis. The co-expression of FvMYB and FvbHLH proteins in strawberry fruits also promoted the accumulation of proanthocyanidins. These findings confirmed and provided insights into the biofunction of MBW components in the regulation of flavonoid biosynthesis in woodland strawberry.
Collapse
Affiliation(s)
- Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Wu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Minghao Cao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Ma
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Xiao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yanbang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Hongli Lian,
| |
Collapse
|
43
|
Deng J, Li J, Su M, Lin Z, Chen L, Yang P. A bHLH gene NnTT8 of Nelumbo nucifera regulates anthocyanin biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:518-523. [PMID: 33272791 DOI: 10.1016/j.plaphy.2020.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Lotus is an important aquatic ornamental plant, whose flower color is one of the key horticultural traits that determines its ornamental value. Previous studies revealed that anthocyanins largely determined the red color of lotus flower, which are also the main component that has beneficial effects on human health. However, the regulation mechanism of flower pigmentation in lotus flower remains unclear. In the present study, in order to further understand the regulatory mechanism underlying the anthocyanin biosynthesis, a bHLH gene NnTT8 was characterized to be phylogenetically close to AtTT8 and the bHLH proteins from other plant species that have been indicated to be involved in the positive regulation of anthocyanin biosynthesis. Complementation analysis in Arabidopsis tt8 mutant showed that NnTT8 could function similarly to AtTT8 in regulating anthocyanin and proanthocyanin biosynthesis. An MYB transcription factor capable of interacting with NnTT8 was also characterized from lotus. The identification of a bHLH transcription factor playing regulatory roles in anthocyanin biosynthesis is crucial, as it might help to obtain more in-depth insight into the coloration of lotus and help in breeding high anthocyanin content lotus variety that can be explored for lotus flower beverages.
Collapse
Affiliation(s)
- Jiao Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China; Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, 550001, China.
| | - Juanjuan Li
- Hubei Province Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, College of Life Science and Technology, Hubei Engineering University, Xiaogan, Hubei, 432000, China.
| | - Mengyue Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Zhongyuan Lin
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Lei Chen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, PR China.
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
44
|
Xiang Z, Lin C, Zhu Y, Deng J, Xia C, Chen J. Phytochemical profiling of antioxidative polyphenols and anthocyanins in the wild plant Campanumoea lancifolia (Roxb.) Merr. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2020.1867570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Zhuoya Xiang
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Changbin Lin
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yongqing Zhu
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Junlin Deng
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Jian Chen
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
45
|
Guo J, Cao K, Deng C, Li Y, Zhu G, Fang W, Chen C, Wang X, Wu J, Guan L, Wu S, Guo W, Yao JL, Fei Z, Wang L. An integrated peach genome structural variation map uncovers genes associated with fruit traits. Genome Biol 2020; 21:258. [PMID: 33023652 PMCID: PMC7539501 DOI: 10.1186/s13059-020-02169-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genome structural variations (SVs) have been associated with key traits in a wide range of agronomically important species; however, SV profiles of peach and their functional impacts remain largely unexplored. RESULTS Here, we present an integrated map of 202,273 SVs from 336 peach genomes. A substantial number of SVs have been selected during peach domestication and improvement, which together affect 2268 genes. Genome-wide association studies of 26 agronomic traits using these SVs identify a number of candidate causal variants. A 9-bp insertion in Prupe.4G186800, which encodes a NAC transcription factor, is shown to be associated with early fruit maturity, and a 487-bp deletion in the promoter of PpMYB10.1 is associated with flesh color around the stone. In addition, a 1.67 Mb inversion is highly associated with fruit shape, and a gene adjacent to the inversion breakpoint, PpOFP1, regulates flat shape formation. CONCLUSIONS The integrated peach SV map and the identified candidate genes and variants represent valuable resources for future genomic research and breeding in peach.
Collapse
Affiliation(s)
- Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liping Guan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Shan Wu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Wenwu Guo
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA.
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
46
|
Lara MV, Bonghi C, Famiani F, Vizzotto G, Walker RP, Drincovich MF. Stone Fruit as Biofactories of Phytochemicals With Potential Roles in Human Nutrition and Health. FRONTIERS IN PLANT SCIENCE 2020; 11:562252. [PMID: 32983215 PMCID: PMC7492728 DOI: 10.3389/fpls.2020.562252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 05/07/2023]
Abstract
Phytochemicals or secondary metabolites present in fruit are key components contributing to sensory attributes like aroma, taste, and color. In addition, these compounds improve human nutrition and health. Stone fruits are an important source of an array of secondary metabolites that may reduce the risk of different diseases. The first part of this review is dedicated to the description of the main secondary organic compounds found in plants which include (a) phenolic compounds, (b) terpenoids/isoprenoids, and (c) nitrogen or sulfur containing compounds, and their principal biosynthetic pathways and their regulation in stone fruit. Then, the type and levels of bioactive compounds in different stone fruits of the Rosaceae family such as peach (Prunus persica), plum (P. domestica, P. salicina and P. cerasifera), sweet cherries (P. avium), almond kernels (P. dulcis, syn. P. amygdalus), and apricot (P. armeniaca) are presented. The last part of this review encompasses pre- and postharvest treatments affecting the phytochemical composition in stone fruit. Appropriate management of these factors during pre- and postharvest handling, along with further characterization of phytochemicals and the regulation of their synthesis in different cultivars, could help to increase the levels of these compounds, leading to the future improvement of stone fruit not only to enhance organoleptic characteristics but also to benefit human health.
Collapse
Affiliation(s)
- María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Giannina Vizzotto
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
47
|
Chen G, Xu P, Pan J, Li Y, Zhou J, Kuang H, Lian H. Inhibition of FvMYB10 transcriptional activity promotes color loss in strawberry fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110578. [PMID: 32771176 DOI: 10.1016/j.plantsci.2020.110578] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
FvMYB10 protein has been proved to be a transcriptional switch for anthocyanin biosynthesis in strawberry. A single nucleotide mutation in R2 domain of FvMYB10, named as FvmMYB10, is found to be responsible for the white color in strawberry variety 'Yellow Wonder'. However, the mechanism of FvmMYB10 suppresses anthocyanin biosynthesis in strawberry is largely unknown. Here, we show that the transcriptional level of FvMYB10 and key enzyme genes involved in anthocyanin biosynthesis in 'Yellow Wonder' were lower than that in red color variety 'Ruegen', especially at turning to ripening stage. The low expression level of FvmMYB10 may due to his inability to bind to its promoter region and activate its own expression. We found FvMYB10-overexpressing, but not FvmMYB10-overexpressing, promote anthocyanin accumulation in Arabidopsis and strawberry fruit despite of their similar expression levels. In addition, subcellular localization assay indicated that FvMYB10-YFP, but not FvmMYB10-YFP, localized to sub-nucleus foci (speckles) in the nucleus, implying the mutation of FvMYB10 might inhibit its transcription factor activity and eventually interfere with its function. Subsequently, we confirmed that FvMYB10 bind to the promoter region of some specific key enzyme genes, including FvCHS2 and FvDFR1 and activated their expression. While FvmMYB10 failed to binding and transcriptional activating these genes. Our findings provide insights into molecular mechanism of anthocyanin biosynthesis regulated by MYB10 in strawberry fruits.
Collapse
Affiliation(s)
- Guanqun Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Junhui Zhou
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Huiyun Kuang
- Shanghai Shumei Agriculture Investment Co., Ltd, Shanghai, 201711, China.
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
48
|
Wang M, Chen L, Liang Z, He X, Liu W, Jiang B, Yan J, Sun P, Cao Z, Peng Q, Lin Y. Metabolome and transcriptome analyses reveal chlorophyll and anthocyanin metabolism pathway associated with cucumber fruit skin color. BMC PLANT BIOLOGY 2020; 20:386. [PMID: 32831013 PMCID: PMC7444041 DOI: 10.1186/s12870-020-02597-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/12/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Fruit skin color play important role in commercial value of cucumber, which is mainly determined by the content and composition of chlorophyll and anthocyanins. Therefore, understanding the related genes and metabolomics involved in composition of fruit skin color is essential for cucumber quality and commodity value. RESULTS The results showed that chlorophyll a, chlorophyll b and carotenoid content in fruit skin were higher in Lv (dark green skin) than Bai (light green skin) on fruit skin. Cytological observation showed more chloroplast existed in fruit skin cells of Lv. A total of 162 significantly different metabolites were found between the fruit skin of the two genotypes by metabolome analysis, including 40 flavones, 9 flavanones, 8 flavonols, 6 anthocyanins, and other compounds. Crucial anthocyanins and flavonols for fruit skin color, were detected significantly decreased in fruit skin of Bai compared with Lv. By RNA-seq assay, 4516 differentially expressed genes (DEGs) were identified between two cultivars. Further analyses suggested that low expression level of chlorophyll biosynthetic genes, such as chlM, por and NOL caused less chlorophylls or chloroplast in fruit skin of Bai. Meanwhile, a predicted regulatory network of anthocyanin biosynthesis was established to illustrate involving many DEGs, especially 4CL, CHS and UFGT. CONCLUSIONS This study uncovered significant differences between two cucumber genotypes with different fruit color using metabolome and RNA-seq analysis. We lay a foundation to understand molecular regulation mechanism on formation of cucumber skin color, by exploring valuable genes, which is helpful for cucumber breeding and improvement on fruit skin color.
Collapse
Affiliation(s)
- Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Xiaoming He
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Piaoyun Sun
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Zhenqiang Cao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China
| | - Qingwu Peng
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China.
| | - Yu'e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou, 510640, China.
| |
Collapse
|
49
|
Liu C, Hao J, Qiu M, Pan J, He Y. Genome-wide identification and expression analysis of the MYB transcription factor in Japanese plum (Prunus salicina). Genomics 2020; 112:4875-4886. [PMID: 32818635 DOI: 10.1016/j.ygeno.2020.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 01/20/2023]
Abstract
MYB proteins constitute one of the largest transcription factor families in plants, members of which are involved in various plant physiological and biochemical processes. Japanese plum (Prunus salicina) is one of the important stone fruit crops worldwide. To date, no comprehensive study of the MYB family in Japanese plum has been reported. In this study, we performed genome-wide analysis of MYB genes in Japanese plum including the phylogeny, gene structures, protein motifs, chromosomal locations, collinearity and expression patterns analysis. A total of 96 Japanese plum R2R3-MYB (PsMYB) genes were characterized and distributed on 8 chromosomes at various densities. Collinearity analysis indicated that the segmental duplication events played a crucial role in the expansion of PsMYB genes, and the interspecies synteny analysis revealed the orthologous gene pairs between Japanese plum and other four selected Rosaceae species. The 96 PsMYB genes could be classified into 27 subgroups based on phylogenetic topology, as supported by the conserved gene structures and motif compositions. Further comparative phylogenetic analysis revealed the functional divergence of MYB gene family during evolution, and three subgroups which included only Rasaceae MYB genes were identified. Expression analysis revealed the distinct expression profiles of the PsMYB genes, and further functional predictions found some of them might be associated with the plum fruit quality traits. Our researches provide a global insight into the organization, phylogeny, evolution and expression patterns of the PsMYB genes, and contribute to the greater understanding of their functional roles in Japanese plum.
Collapse
Affiliation(s)
- Chaoyang Liu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, Maoming 525000, China
| | - Jingjing Hao
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, Maoming 525000, China
| | - Mengqing Qiu
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, Maoming 525000, China
| | - Jianjun Pan
- Agricultural Technology Extension Center of Conghua District, Guangdong Province, Guangzhou 510900, China
| | - Yehua He
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Horticulture, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Maoming Branch, Maoming 525000, China.
| |
Collapse
|
50
|
Jiang S, Wang N, Chen M, Zhang R, Sun Q, Xu H, Zhang Z, Wang Y, Sui X, Wang S, Fang H, Zuo W, Su M, Zhang J, Fei Z, Chen X. Methylation of MdMYB1 locus mediated by RdDM pathway regulates anthocyanin biosynthesis in apple. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1736-1748. [PMID: 31930634 PMCID: PMC7336386 DOI: 10.1111/pbi.13337] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/05/2020] [Indexed: 05/07/2023]
Abstract
Methylation at the MdMYB1 promoter in apple sports has been reported as a regulator of the anthocyanin pathway, but little is known about how the locus is recognized by the methylation machinery to regulate anthocyanin accumulation. In this study, we analysed three differently coloured 'Fuji' apples and found that differences in the transcript levels of MdMYB1, which encodes a key regulator of anthocyanin biosynthesis, control the anthocyanin content (and therefore colour) in fruit skin. The CHH methylation levels in the MR3 region (-1246 to -780) of the MdMYB1 promoter were found to be negatively correlated with MdMYB1 expression. Thus, they were ideal materials to study DNA methylation in apple sports. The protein of RNA-directed DNA methylation (RdDM) pathway responsible for CHH methylation, MdAGO4, was found to interact with the MdMYB1 promoter. MdAGO4s can interact with MdRDM1 and MdDRM2s to form an effector complex, fulfilling CHH methylation. When MdAGO4s and MdDRM2s were overexpressed in apple calli and Arabidopsis mutants, those proteins increase the CHH methylation of AGO4-binding sites. In electrophoretic mobility shift assays, MdAGO4s were found to specifically bind to sequence containing ATATCAGA. Knockdown of MdNRPE1 did not affect the binding of MdAGO4s to the c3 region of the MdMYB1 promoter in 35S::AGO4 calli. Taken together, our data show that the MdMYB1 locus is methylated through binding of MdAGO4s to the MdMYB1 promoter to regulate anthocyanin biosynthesis by the RdDM pathway.
Collapse
Affiliation(s)
- Shenghui Jiang
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Nan Wang
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Min Chen
- Chinese Academy of SciencesYantai Institute of Coastal Zone ResearchYantaiChina
| | | | - Qingguo Sun
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Haifeng Xu
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Zongying Zhang
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Yicheng Wang
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Xiuqi Sui
- Yantai Modern Fruit Industry Development CompanyYantai Modern Fruit Industry Research InstituteYantaiChina
| | | | - Hongcheng Fang
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Weifang Zuo
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Mengyu Su
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Jing Zhang
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| | - Zhangjun Fei
- Boyce Thompson InstituteCornell UniversityIthacaNYUSA
| | - Xuesen Chen
- College of Horticulture Science and EngineeringState Key Laboratory of Crop BiologyCollaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in ShandongShandong Agricultural UniversityTai'anChina
| |
Collapse
|