1
|
Ko S, Nguyen HMT, Lee W, Kim D. Developing the PIP-eco: An integrated genomic pipeline for identification and characterization of Escherichia coli pathotypes encompassing hybrid forms. Comput Struct Biotechnol J 2024; 23:3040-3049. [PMID: 39175796 PMCID: PMC11340603 DOI: 10.1016/j.csbj.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/24/2024] Open
Abstract
Pathogenic Escherichia coli (E. coli) strains are distinguished by their diverse virulence factors, which contribute to a wide spectrum of diseases. These pathogens evolve through the horizontal transfer of virulence factors, resulting in the emergence of hybrid pathotypes with complex and heterogeneous characteristics. Recognizing their profound impact on public health, this study introduces the PIP-eco pipeline, a comprehensive analytical tool designed for the precise identification and characterization of E. coli pathotypes. This PIP-eco pipeline advances beyond traditional molecular techniques by facilitating detailed analysis of both single and hybrid pathotypes. It integrates targeted marker gene analysis, virulence factor-based phylogenetic analysis, and pathogenicity islands (PAIs) profiling to elucidate the genetic diversity of E. coli pathotypes and support their accurate classification. This integrative approach enables PIP-eco to uncover connections among various E. coli pathotypes, highlight shared virulence factors, and provide insights into their evolutionary trajectories. By utilizing experimentally validated marker genes, the pipeline ensures robust identification of pathotypes, particularly those of hybrid pathotypes. Additionally, PAI analysis offers comprehensive genetic investigations, revealing strain-specific variations and potential virulence mechanisms. As a result, the PIP-eco pipeline emerges as a useful tool for dissecting the evolutionary dynamics of E. coli and characterizing complex pathotypes, addressing the critical need for accurate detection and understanding of hybrid pathotypes.
Collapse
Affiliation(s)
- Seyoung Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Huynh Minh Triet Nguyen
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Woojung Lee
- Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju 28159, Republic of Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Nketiah A, Quansah JK, Kunadu APH. Presence of carbapenem resistance in hybrid Escherichia coli pathovars from ready-to-eat fresh-cut fruits in Accra, Ghana. J Appl Microbiol 2024; 135:lxae239. [PMID: 39264048 DOI: 10.1093/jambio/lxae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
AIM This study reports the presence of carbapenem-resistant Escherichia coli hybrid pathovars and its prevalence in 200 fresh-cut fruits from Accra. METHODS AND RESULTS Standard culture methods were used to quantify microbial indicators and E. coli on fresh-cut fruits retailed in formal and informal outlets in Accra. The Kirby-Bauer disc diffusion method was used to determine the antibiotic resistance profile of E. coli, while multiplex PCR was employed to identify the virulence and carbapenem-resistance genes. Escherichia coli prevalence in cut fruits was 17%, with pawpaw, watermelon, and mixed fruit having higher prevalence than pineapple. Of the 34 E. coli isolates from fresh-cut fruits, 44% showed broad resistance to beta-lactam antibiotics, while 5.9% showed carbapenem resistance. The study identified virulence genes associated with all E. coli isolates, including stx1, stx2, escV, and ipaH, of which 97% were hybrid pathovars bearing genes for Shiga toxin-producing E. coli/enteropathogenic E. coli/enteroinvasive E. coli. The carbapenemase gene, blaIMP, was associated with both carbapenem-resistant E. coli phenotypes identified. CONCLUSION Despite a low-carbapenem-resistance prevalence observed among E. coli isolates, hypervirulent hybrid strains of E. coli is present in fresh-cut fruits in the sampling area, posing a potential public health risk to fresh-cut fruit consumers.
Collapse
Affiliation(s)
- Agnes Nketiah
- Department of Nutrition and Food Science, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG134, Legon, Accra, Ghana
| | - Joycelyn K Quansah
- Department of Nutrition and Food Science, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG134, Legon, Accra, Ghana
| | - Angela Pary-Hanson Kunadu
- Department of Nutrition and Food Science, College of Basic and Applied Sciences, University of Ghana, P. O. Box LG134, Legon, Accra, Ghana
- Institute for Advancing Health Through Agriculture, Texas A&M AgriLife Research, College Station, TX 77843, USA
| |
Collapse
|
3
|
Usein CR, Oprea M, Dinu S, Popa LI, Cristea D, Militaru CM, Ghiță A, Costin M, Popa IL, Croitoru A, Bologa C, Rusu LC. Shiga Toxin-Producing Escherichia coli Strains from Romania: A Whole Genome-Based Description. Microorganisms 2024; 12:1469. [PMID: 39065242 PMCID: PMC11278934 DOI: 10.3390/microorganisms12071469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The zoonotic Shiga toxin-producing Escherichia coli (STEC) group is unanimously regarded as exceptionally hazardous for humans. This study aimed to provide a genomic perspective on the STEC recovered sporadically from humans and have a foundation of internationally comparable data. Fifty clinical STEC isolates, representing the culture-confirmed infections reported by the STEC Reference Laboratory between 2016 and 2023, were subjected to whole-genome sequencing (WGS) analysis and sequences were interpreted using both commercial and public free bioinformatics tools. The WGS analysis revealed a genetically diverse population of STEC dominated by non-O157 serogroups commonly reported in human STEC infections in the European Union. The O26:H11 strains of ST21 lineage played a major role in the clinical disease resulting in hospitalisation and cases of paediatric HUS in Romania surpassing the O157:H7 strains. The latter were all clade 7 and mostly ST1804. Notably, among the Romanian isolates was a stx2a-harbouring cryptic clade I strain associated with a HUS case, stx2f- and stx2e-positive strains, and hybrid strains displaying a mixture of intestinal and extraintestinal virulence genes were found. As a clearer picture emerges of the STEC strains responsible for infections in Romania, further surveillance efforts are needed to uncover their prevalence, sources, and reservoirs.
Collapse
Affiliation(s)
- Codruța-Romanița Usein
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Mihaela Oprea
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Sorin Dinu
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Laura-Ioana Popa
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Daniela Cristea
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Cornelia-Mădălina Militaru
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Andreea Ghiță
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Mariana Costin
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
- Discipline Pediatrics—Emergency Clinical Hospital for Children M.S. Curie, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Ionela-Loredana Popa
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
- Discipline Pediatrics—Emergency Clinical Hospital for Children M.S. Curie, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Anca Croitoru
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
- Discipline Pediatrics—Emergency Clinical Hospital for Children M.S. Curie, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Cristina Bologa
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
| | - Lavinia-Cipriana Rusu
- National Centre for Communicable Diseases Prevention and Control, National Public Health Institute, 050463 Bucharest, Romania;
| |
Collapse
|
4
|
Li X, Hu H, Zhu Y, Wang T, Lu Y, Wang X, Peng Z, Sun M, Chen H, Zheng J, Tan C. Population structure and antibiotic resistance of swine extraintestinal pathogenic Escherichia coli from China. Nat Commun 2024; 15:5811. [PMID: 38987310 PMCID: PMC11237156 DOI: 10.1038/s41467-024-50268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Extraintestinal Pathogenic Escherichia coli (ExPEC) pose a significant threat to human and animal health. However, the diversity and antibiotic resistance of animal ExPEC, and their connection to human infections, remain largely unexplored. The study performs large-scale genome sequencing and antibiotic resistance testing of 499 swine-derived ExPEC isolates from China. Results show swine ExPEC are phylogenetically diverse, with over 80% belonging to phylogroups B1 and A. Importantly, 15 swine ExPEC isolates exhibit genetic relatedness to human-origin E. coli strains. Additionally, 49 strains harbor toxins typical of enteric E. coli pathotypes, implying hybrid pathotypes. Notably, 97% of the total strains are multidrug resistant, including resistance to critical human drugs like third- and fourth-generation cephalosporins. Correspondingly, genomic analysis unveils prevalent antibiotic resistance genes (ARGs), often associated with co-transfer mechanisms. Furthermore, analysis of 20 complete genomes illuminates the transmission pathways of ARGs within swine ExPEC and to human pathogens. For example, the transmission of plasmids co-harboring fosA3, blaCTX-M-14, and mcr-1 genes between swine ExPEC and human-origin Salmonella enterica is observed. These findings underscore the importance of monitoring and controlling ExPEC infections in animals, as they can serve as a reservoir of ARGs with the potential to affect human health or even be the origin of pathogens infecting humans.
Collapse
Affiliation(s)
- Xudong Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huifeng Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Yongwei Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Taiquan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youlan Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
5
|
Imklin N, Sriprasong P, Thanantong N, Lekcharoensuk P, Nasanit R. Two Novel Bacteriophage Species Against Hybrid Intestinal Pathogenic Escherichia coli/Extraintestinal Pathogenic Escherichia coli Strains. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:107-116. [PMID: 39119207 PMCID: PMC11304831 DOI: 10.1089/phage.2023.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Background Colibacillosis caused by Escherichia coli is one of the main problems in the swine industry. In addition, the emergence of antimicrobial resistance and the combination of virulence genes among pathotypes have led to the emergence of more virulent pathogenic E. coli strains. Phage therapy has become a promising approach to address these issues. Materials and Methods Virulence genes for intestinal pathogenic E. coli (IPEC) and extraintestinal pathogenic E. coli (ExPEC) were investigated in pathogenic E. coli isolated from pigs. In addition, two potential phages, vB_EcoM-RPN187 and vB_EcoM-RPN226, isolated in our previous study, were further characterized in this study. Results Both phages were lytic and were highly effective at 20-37°C. Interestingly, they infected the hybrid IPEC/ExPEC strains. vB_EcoM-RPN187 and vB_EcoM-RPN226 possess 167 kbp of linear double-stranded DNA without virulence or antibiotic resistance genes and may be classified as new phage species in the genera Mosigvirus and Tequatrovirus, respectively. Conclusion Both phages could be promising candidates for phage therapy against pathogenic E. coli.
Collapse
Affiliation(s)
- Napakhwan Imklin
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Pattaraporn Sriprasong
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Narut Thanantong
- Department of Farm Resources and Production Medicine, Faculty of Veterinary Medicine, Kasetsart University, Nakhon Pathom, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Agriculture and Food, Kasetsart University Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| | - Rujikan Nasanit
- Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| |
Collapse
|
6
|
Kanje LE, Kumburu H, Kuchaka D, Shayo M, Juma MA, Kimu P, Beti M, van Zwetselaar M, Wadugu B, Mmbaga BT, Mkumbaye SI, Sonda T. Short reads-based characterization of pathotype diversity and drug resistance among Escherichia coli isolated from patients attending regional referral hospitals in Tanzania. BMC Med Genomics 2024; 17:110. [PMID: 38671498 PMCID: PMC11055328 DOI: 10.1186/s12920-024-01882-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Escherichia coli is known to cause about 2 million deaths annually of which diarrhea infection is leading and typically occurs in children under 5 years old. Although Africa is the most affected region there is little information on their pathotypes diversity and their antimicrobial resistance. OBJECTIVE To determine the pathotype diversity and antimicrobial resistance among E. coli from patients attending regional referral hospitals in Tanzania. MATERIALS AND METHODS A retrospective cross-section laboratory-based study where a total of 138 archived E. coli isolates collected from 2020 to 2021 from selected regional referral hospitals in Tanzania were sequenced using the Illumina Nextseq550 sequencer platform. Analysis of the sequences was done in the CGE tool for the identification of resistance genes and virulence genes. SPSS version 20 was used to summarize data using frequency and proportion. RESULTS Among all 138 sequenced E. coli isolates, the most prevalent observed pathotype virulence genes were of extraintestinal E. coli UPEC fyuA gene 82.6% (114/138) and NMEC irp gene 81.9% (113/138). Most of the E. coli pathotypes observed exist as a hybrid due to gene overlapping, the most prevalent pathotypes observed were NMEC/UPEC hybrid 29.7% (41/138), NMEC/UPEC/EAEC hybrid 26.1% (36/138), NMEC/UPEC/DAEC hybrid 18.1% (25/138) and EAEC 15.2% (21/138). Overall most E. coli carried resistance gene to ampicillin 90.6% (125/138), trimethoprim 85.5% (118/138), tetracycline 79.9% (110/138), ciprofloxacin 76.1% (105/138) and 72.5% (100/138) Nalidixic acid. Hybrid pathotypes were more resistant than non-hybrid pathotypes. CONCLUSION Whole genome sequencing reveals the presence of hybrid pathotypes with increased drug resistance among E. coli isolated from regional referral hospitals in Tanzania.
Collapse
Affiliation(s)
- Livin E Kanje
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania.
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania.
| | - Happiness Kumburu
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Clinical Laboratory, Kilimanjaro Christian Medical Center, Kilimanjaro, Tanzania
| | - Davis Kuchaka
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Mariana Shayo
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Masoud A Juma
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- State University of Zanzibar, Zanzibar, Tanzania
| | - Patrick Kimu
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Melkiory Beti
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | | | - Boaz Wadugu
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
| | - Blandina T Mmbaga
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Clinical Laboratory, Kilimanjaro Christian Medical Center, Kilimanjaro, Tanzania
| | - Sixbert Isdory Mkumbaye
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Clinical Laboratory, Kilimanjaro Christian Medical Center, Kilimanjaro, Tanzania
| | - Tolbert Sonda
- Department of Microbiology and Immunology, Kilimanjaro Christian Medical University College, Kilimanjaro, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro, Tanzania
- Clinical Laboratory, Kilimanjaro Christian Medical Center, Kilimanjaro, Tanzania
| |
Collapse
|
7
|
Kubiak-Szeligowska AB, Majchrzak M, Parniewski P. TRS-PCR profiles correlate with polymorphisms of the genomic o454-nlpD region, virulence factors repertoire, and phylogenetic groups among uropathogenic Escherichia coli strains isolated from patients from Lodz region, Poland. Gut Pathog 2024; 16:11. [PMID: 38395935 PMCID: PMC10885528 DOI: 10.1186/s13099-024-00603-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Extraintestinal urinary tract infections are mainly caused by uropathogenic strains of E. coli. UPECs are a heterogeneous group of strains possessing various genes associated with virulence traits. It was demonstrated that changes in the composition of the o454-nlpD region and genetic variation in the mutS-rpoS chromosomal region in ExPEC strains are correlated with their virulence, particularly in those with the pattern III o454-nlpD region and belonging to phylogenetic group B2. In this study, we investigated the presence and distribution of the o454-nlpD genomic polymorphism in our collection of 124 uropathogenic E. coli strains, examining the correlation of o454-nlpD region types with the virulence factors studied. Our findings revealed a positive association between certain virulence factors in UPEC strains and the presence of pattern III in the o454-nlpD region. Additionally, all these strains were classified under phylogenetic group B2. We also showed that the highly pathogenic group of E. coli identified by examining the polymorphism of the o454-nlpD region coincides with the highly pathogenic group of uropathogens we identified in the averaged TRS-PCR analysis.
Collapse
Affiliation(s)
| | - Marta Majchrzak
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232, Lodz, Poland.
| | - Pawel Parniewski
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232, Lodz, Poland.
| |
Collapse
|
8
|
Rakhalaru P, Munzhedzi L, Abia ALK, Kabue JP, Potgieter N, Traore AN. Prevalence and Antimicrobial Resistance Profile of Diarrheagenic Escherichia coli from Fomites in Rural Households in South Africa. Antibiotics (Basel) 2023; 12:1345. [PMID: 37627765 PMCID: PMC10451885 DOI: 10.3390/antibiotics12081345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Diarrheagenic Escherichia coli (DEC) pathotypes are the leading cause of mortality and morbidity in South Asia and sub-Saharan Africa. Daily interaction between people contributes to the spreading of Escherichia coli (E. coli), and fomites are a common source of community-acquired bacterial infections. The spread of bacterial infectious diseases from inanimate objects to the surrounding environment and humans is a serious problem for public health, safety, and development. This study aimed to determine the prevalence and antibiotic resistance of diarrheagenic E. coli found in toilets and kitchen cloths in the Vhembe district, South Africa. One hundred and five samples were cultured to isolate E. coli: thirty-five samples were kitchen cloths and seventy-five samples were toilet swabs. Biochemical tests, API20E, and the VITEK®-2 automated system were used to identify E. coli. Pathotypes of E. coli were characterised using Multiplex Polymerase Chain Reaction (mPCR). Nine amplified gene fragments were sequenced using partial sequencing. A total of eight antibiotics were used for the antibiotic susceptibility testing of E. coli isolates using the Kirby-Bauer disc diffusion method. Among the collected samples, 47% were positive for E. coli. DEC prevalence was high (81%), with ETEC (51%) harboring lt and st genes being the most dominant pathotype found on both kitchen cloths and toilet surfaces. Diarrheagenic E. coli pathotypes were more prevalent in the kitchen cloths (79.6%) compared with the toilet surfaces. Notably, hybrid pathotypes were detected in 44.2% of the isolates, showcasing the co-existence of multiple pathotypes within a single E. coli strain. The antibiotic resistance testing of E. coli isolates from kitchen cloths and toilets showed high resistance to ampicillin (100%) and amoxicillin (100%). Only E. coli isolates with hybrid pathotypes were found to be resistant to more than three antibiotics. This study emphasizes the significance of fomites as potential sources of bacterial contamination in rural settings. The results highlight the importance of implementing proactive measures to improve hygiene practices and antibiotic stewardship in these communities. These measures are essential for reducing the impact of DEC infections and antibiotic resistance, ultimately safeguarding public health.
Collapse
Affiliation(s)
| | | | | | | | | | - Afsatou Ndama Traore
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (P.R.); (L.M.); (A.L.K.A.); (J.P.K.); (N.P.)
| |
Collapse
|
9
|
BABINES-OROZCO L, BALBUENA-ALONSO MG, BARRIOS-VILLA E, LOZANO-ZARAIN P, MARTÍNEZ-LAGUNA Y, DEL CARMEN ROCHA-GRACIA R, CORTÉS-CORTÉS G. Antimicrobial resistance in food-associated Escherichia coli in Mexico and Latin America. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 43:4-12. [PMID: 38188662 PMCID: PMC10767319 DOI: 10.12938/bmfh.2023-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/11/2023] [Indexed: 01/09/2024]
Abstract
The World Health Organization (WHO) considers antimicrobial resistance to be one of the critical global public health priorities to address. Escherichia coli is a commensal bacterium of the gut microbiota in humans and animals; however, some strains cause infections and are resistant to antibiotics. One of the most common ways of acquiring pathogenic E. coli strains is through food. This review analyzes multidrug-resistant E. coli isolated from food, emphasizing Latin America and Mexico, and the mobile genetic elements (MGEs) responsible for spreading antibiotic resistance determinants among bacteria in different environments and hosts. We conducted a systematic search of the literature published from 2015 to 2022 in open access databases and electronic repositories. The prevalence of 11 E. coli pathotypes was described, with diarrheagenic E. coli pathotypes being the most frequently associated with foodborne illness in different Latin American countries, highlighting the presence of different antibiotic resistance genes mostly carried by IncF-type plasmids or class 1 integrons. Although the global incidence of foodborne illness is high, there have been few studies in Mexico and Latin America, which highlights the need to generate updated epidemiological data from the "One Health" approach, which allows monitoring of the multidrug-resistance phenomenon in E. coli from a common perspective in the interaction of human, veterinary, and environmental health.
Collapse
Affiliation(s)
- Lorena BABINES-OROZCO
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - María Guadalupe BALBUENA-ALONSO
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - Edwin BARRIOS-VILLA
- Departamento de Ciencias Químico Biológicas y Agropecuarias,
Unidad Regional Norte, Campus Caborca, Universidad de Sonora, Col. Eleazar Ortiz C.P.
83621 H. Caborca, Sonora, México
| | - Patricia LOZANO-ZARAIN
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - Ygnacio MARTÍNEZ-LAGUNA
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - Rosa DEL CARMEN ROCHA-GRACIA
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
| | - Gerardo CORTÉS-CORTÉS
- Posgrado en Microbiología, Centro de Investigaciones en
Ciencias Microbiológicas, Instituto de Ciencias de la Benemérita Universidad Autónoma de
Puebla. Instituto de Ciencias, Ciudad Universitaria, San Manuel C.P. 72570 Puebla,
México
- Department of Microbiology and Environmental Toxicology,
University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
10
|
Jalil A, Masood S, Ain Q, Andleeb S, Dudley EG, Adnan F. High resistance of fluoroquinolone and macrolide reported in avian pathogenic Escherichia coli isolates from the humid subtropical regions of Pakistan. J Glob Antimicrob Resist 2023; 33:5-17. [PMID: 36764657 DOI: 10.1016/j.jgar.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVES This study aimed to assess the antimicrobial resistance profile, virulence potential, and genetic characterization of avian pathogenic Escherichia coli (APEC) that cause colibacillosis in poultry. METHODS Antibiotic susceptibility testing (AST) was measured via the Kirby-Bauer disc diffusion method against 27 commonly used antibiotics. Phylogrouping, virulence-associated gene detection, and hybrid strain detection via multiplex polymerase chain reaction (PCR) and genetic diversity were analysed via ERIC-PCR fingertyping method. RESULTS AST analysis showed 100% of isolates were multidrug-resistant (MDR) and highest resistance was against penicillin, tetracycline, and macrolide classes of antibiotics. The mcr-1 gene was present in 40% of the isolates, though only 4% of isolates were showing phenotypic resistance. Despite the scarce use of fluoroquinolone, carbapenem, and cephalosporin in the poultry sector, resistance was evident because of the high prevalence of extended-spectrum β-lactamase (ESBL) (53.7%) and other β-lactamases in APEC isolates. β-lactamase genotyping of APEC isolates revealed that 85.7% of isolates contained either blaCTX or blaTEM and around 38% of isolates were complement resistant. Growth in human urine was evident in 67.3% of isolates. Phylogroup B1 (51%) was the most prevalent group followed by phylogroups A (30.6%), D (13.61%), and B2 (4.76%). The most prevalent virulence-associated genes were fimH, iss, and tatT. Results showed that 26 isolates (17.69%) can be termed hybrid strains and APEC/EHEC (enterohemorrhagic E. coli) was the most prevalent hybrid E. coli pathotype. ERIC-PCR fingerprinting genotype analysis clustered APEC isolates in 40 groups (E1-E40). This study provides insights into the antibiotic resistance and virulence profiling of the APEC isolates in Pakistan. CONCLUSIONS The findings of this study provide insights into that the antibiotic resistance and virulence profiling of the APEC isolates in Pakistan. This data can inform future studies designed to better estimate the severity of the colibacillosis in poultry farms.
Collapse
Affiliation(s)
- Amna Jalil
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saleha Masood
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Quratul Ain
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Andleeb
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Edward G Dudley
- Department of Food Sciences, Pennsylvania State University, University Park, Pennsylvania; Escherichia coli Reference Centre, Pennsylvania State University, University Park, Pennsylvania
| | - Fazal Adnan
- Atta Ur Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
11
|
Grudlewska-Buda K, Bauza-Kaszewska J, Wiktorczyk-Kapischke N, Budzyńska A, Gospodarek-Komkowska E, Skowron K. Antibiotic Resistance in Selected Emerging Bacterial Foodborne Pathogens-An Issue of Concern? Antibiotics (Basel) 2023; 12:antibiotics12050880. [PMID: 37237783 DOI: 10.3390/antibiotics12050880] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Antibiotic resistance (AR) and multidrug resistance (MDR) have been confirmed for all major foodborne pathogens: Campylobacter spp., Salmonella spp., Escherichia coli and Listeria monocytogenes. Of great concern to scientists and physicians are also reports of antibiotic-resistant emerging food pathogens-microorganisms that have not previously been linked to food contamination or were considered epidemiologically insignificant. Since the properties of foodborne pathogens are not always sufficiently recognized, the consequences of the infections are often not easily predictable, and the control of their activity is difficult. The bacteria most commonly identified as emerging foodborne pathogens include Aliarcobacter spp., Aeromonas spp., Cronobacter spp., Vibrio spp., Clostridioides difficile, Escherichia coli, Mycobacterium paratuberculosis, Salmonella enterica, Streptocccus suis, Campylobacter jejuni, Helicobacter pylori, Listeria monocytogenes and Yersinia enterocolitica. The results of our analysis confirm antibiotic resistance and multidrug resistance among the mentioned species. Among the antibiotics whose effectiveness is steadily declining due to expanding resistance among bacteria isolated from food are β-lactams, sulfonamides, tetracyclines and fluoroquinolones. Continuous and thorough monitoring of strains isolated from food is necessary to characterize the existing mechanisms of resistance. In our opinion, this review shows the scale of the problem of microbes related to health, which should not be underestimated.
Collapse
Affiliation(s)
- Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, Bydgoszcz University of Science and Technology, 85-029 Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| |
Collapse
|
12
|
Ribeiro J, Silva V, Monteiro A, Vieira-Pinto M, Igrejas G, Reis FS, Barros L, Poeta P. Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals (Basel) 2023; 13:1362. [PMID: 37106925 PMCID: PMC10135345 DOI: 10.3390/ani13081362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Chickens can acquire bacteria at different stages, and bacterial diversity can occur due to production practices, diet, and environment. The changes in consumer trends have led to increased animal production, and chicken meat is one of the most consumed meats. To ensure high levels of production, antimicrobials have been used in livestock for therapeutic purposes, disease prevention, and growth promotion, contributing to the development of antimicrobial resistance across the resident microbiota. Enterococcus spp. and Escherichia coli are normal inhabitants of the gastrointestinal microbiota of chickens that can develop strains capable of causing a wide range of diseases, i.e., opportunistic pathogens. Enterococcus spp. isolated from broilers have shown resistance to at least seven classes of antibiotics, while E. coli have shown resistance to at least four. Furthermore, some clonal lineages, such as ST16, ST194, and ST195 in Enterococcus spp. and ST117 in E. coli, have been identified in humans and animals. These data suggest that consuming contaminated animal-source food, direct contact with animals, or environmental exposure can lead to the transmission of antimicrobial-resistant bacteria. Therefore, this review focused on Enterococcus spp. and E. coli from the broiler industry to better understand how antibiotic-resistant strains have emerged, which antibiotic-resistant genes are most common, what clonal lineages are shared between broilers and humans, and their impact through a One Health perspective.
Collapse
Affiliation(s)
- Jessica Ribeiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Andreia Monteiro
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Madalena Vieira-Pinto
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Gilberto Igrejas
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisbon, 2829-516 Lisbon, Portugal
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Filipa S. Reis
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| |
Collapse
|
13
|
Emery A, Hocquet D, Bonnet R, Bertrand X. Genotypic Characteristics and Antimicrobial Resistance of Escherichia coli ST141 Clonal Group. Antibiotics (Basel) 2023; 12:antibiotics12020382. [PMID: 36830293 PMCID: PMC9952247 DOI: 10.3390/antibiotics12020382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Escherichia coli ST141 is one of the ExPEC lineages whose incidence is rising in France, even if no epidemic situation involving multidrug resistant isolates has been reported so far. Nonetheless, in a 2015-2017 monocentric study conducted in our French University hospital, ST141 was the most frequent lineage after ST131 in our collection of phylogroup B2 ESBL-producing E. coli. The genomes of 187 isolates representing ST141 group, including 170 genomes from public databases and 17 from our local collection, of which 13 produced ESBL, were analyzed to infer the maximum likelihood phylogeny SNP-based (Single Nucleotide Polymorphism) free-recombinant tree defining the ST141 population structure. Genomes were screened for genes encoding virulence factors (VFs) and antimicrobial resistance (AMR). We also evaluated the distribution of isolates according to their origin (host, disease, country) and the distribution of VFs or AMR genes. Finally, the phylogenic tree revealed that ST141 isolates clustered into two main sublineages, with low genetic diversity. Contrasting with a highly virulent profile, as many isolates accumulated VFs, the prevalence of AMR was limited, with no evidence of multidrug resistant emerging lineage. However, our results suggest that surveillance of this clonal group, which has the potential to spread widely in the community, would be essential.
Collapse
Affiliation(s)
- Audrey Emery
- Hygiène Hospitalière, CHU, 25030 Besançon, France
- Bactériologie, CHU Nice, 06202 Nice, France
- Correspondence: ; Tel.: +33-370-632-136
| | - Didier Hocquet
- Hygiène Hospitalière, CHU, 25030 Besançon, France
- Chrono-Environnement, UMR 6249, CNRS Université de Franche-Comté, 25000 Besançon, France
| | - Richard Bonnet
- UMR 1071, Université d’Auvergne, 63000 Clermont-Ferrand, France
- Bactériologie, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Xavier Bertrand
- Hygiène Hospitalière, CHU, 25030 Besançon, France
- Chrono-Environnement, UMR 6249, CNRS Université de Franche-Comté, 25000 Besançon, France
| |
Collapse
|
14
|
Buberg ML, Wasteson Y, Lindstedt BA, Witsø IL. In vitro digestion of ESC-resistant Escherichia coli from poultry meat and evaluation of human health risk. Front Microbiol 2023; 14:1050143. [PMID: 36846779 PMCID: PMC9947789 DOI: 10.3389/fmicb.2023.1050143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The spread of antimicrobial resistance (AMR) has become a threat against human and animal health. Third and fourth generation cephalosporins have been defined as critically important antimicrobials by The World Health Organization. Exposure to Extended spectrum cephalosporin-resistant E. coli may result in consumers becoming carriers if these bacteria colonize the human gut or their resistance genes spread to other bacteria in the gut microbiota. In the case that these resistant bacteria at later occasions cause disease, their resistance characteristics may lead to failure of treatment and increased mortality. We hypothesized that ESC-resistant E. coli from poultry can survive digestion and thereby cause infections and/or spread their respective resistance traits within the gastro-intestinal tract. Methods In this study, a selection of 31 ESC-resistant E. coli isolates from retail chicken meat was exposed to a static in vitro digestion model (INFOGEST). Their survival, alteration of colonizing characteristics in addition to conjugational abilities were investigated before and after digestion. Whole genome data from all isolates were screened through a custom-made virulence database of over 1100 genes for virulence- and colonizing factors. Results and discussion All isolates were able to survive digestion. Most of the isolates (24/31) were able to transfer their bla CMY2-containing plasmid to E. coli DH5-á, with a general decline in conjugation frequency of digested isolates compared to non-digested. Overall, the isolates showed a higher degree of cell adhesion than cell invasion, with a slight increase after digestion compared non-digested, except for three isolates that displayed a major increase of invasion. These isolates also harbored genes facilitating invasion. In the virulence-associated gene analysis two isolates were categorized as UPEC, and one isolate was considered a hybrid pathogen. Altogether the pathogenic potential of these isolates is highly dependent on the individual isolate and its characteristics. Poultry meat may represent a reservoir and be a vehicle for dissemination of potential human pathogens and resistance determinants, and the ESC-resistance may complicate treatment in the case of an infection.
Collapse
Affiliation(s)
- May Linn Buberg
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Yngvild Wasteson
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Bjørn Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Ingun Lund Witsø
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway,*Correspondence: Ingun Lund Witsø ✉
| |
Collapse
|
15
|
Yousefipour M, Rezatofighi SE, Ardakani MR. Detection and characterization of hybrid uropathogenic Escherichia coli strains among E. coli isolates causing community-acquired urinary tract infection. J Med Microbiol 2023; 72. [PMID: 36753429 DOI: 10.1099/jmm.0.001660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Introduction. The main aetiological agent of urinary tract infection (UTI) is Escherichia coli, categorized as uropathogenic E. coli (UPEC). The genome of UPEC shows a high degree of plasticity, which leads to the emergence of 'intermediary strains' with different traits from the parental pathotypes.Gap Statement/Aim. We aimed to assess the frequency and types of the hybrid UPEC among isolates causing UTI and characterize virulence properties of these hybrid isolates molecularly and phenotypically.Methodology. After detection of intestinal pathogenic E. coli (IPEC) virulence markers among 200 UPEC isolates, they were assessed for the presence of 40 virulence genes (VGs) of extraintestinal, uropathogenic and diarrhoeagenic E. coli, phylogenetic group typing, phenotypic traits including biofilm formation, adherence and invasion to HeLa cells, haemolysis activity and antimicrobial resistance.Results. The analysis showed 21 (10.5 %) UPEC isolates carried enteroaggregative E. coli (EAEC) and enteropathogenic E. coli (EPEC) virulence markers. Twenty isolates carried the aggR (EAEC) and one the eae and escV genes (EPEC), which were classified as hybrid strains. The most commonly identified genes were fimH (71.5 %), fyuA (66.7 %), iutA (62 %), chuA (57.1) and traT (47.6 %). Biofilm production, adhesion and invasion were found among 17 (81), 18 (85.7) and 11 (52.4 %) hybrids, respectively. Investigation of the genetic characteristics, phylogenetic group and virulence profile of the detected hybrids revealed that they have genetic diversity and do not belong to a particular clonal lineage.Conclusion. The present study reveals that some UPEC may carry virulence markers of IPEC pathotypes. EAEC and EPEC seem to have a greater tendency to form hybrids and cause UTI. Further studies are needed to elucidate what factors contributed to survival in the urinary tract system and facilitate infection and whether these combinations lead to an increase in pathogenicity or not.
Collapse
Affiliation(s)
- Mahta Yousefipour
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | |
Collapse
|
16
|
Orsi H, Guimarães FF, Leite DS, Guerra ST, Joaquim SF, Pantoja JCF, Hernandes RT, Lucheis SB, Ribeiro MG, Langoni H, Rall VLM. Characterization of mammary pathogenic Escherichia coli reveals the diversity of Escherichia coli isolates associated with bovine clinical mastitis in Brazil. J Dairy Sci 2023; 106:1403-1413. [PMID: 36567244 DOI: 10.3168/jds.2022-22126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022]
Abstract
Mammary pathogenic Escherichia coli (MPEC) is one of the most common pathogens associated with clinical mastitis. We analyzed isolates obtained from milk samples of cows with clinical mastitis, collected from 10 farms in Brazil, to verify molecular and phenotypic characteristics. A total of 192 (4.5%) mammary pathogenic E. coli isolates were obtained from 4,275 milk samples analyzed, but we tested 161. We assigned most of these isolates to E. coli phylogroups B1 (52.8%) and A (36.6%), although phylogroups B2, C, D, E, and unknown also occurred. All isolates were assessed for the presence of several genes encoding virulence factors, such as adhesins (sfaDE, papC, afaBC III, ecpA, fimH, papA, and iha), toxins (hlyA, cnf1, sat, vat, and cdt), siderophores (iroN, irp2, iucD, ireA, and sitA), an invasion protein (ibeA), and serum resistance proteins (traT, KpsMTII, and ompT), and isolates from phylogroups B1, B2, and E showed up to 8 genes. Two isolates harbored the locus of enterocyte effacement (escN+) and lack the bundle-forming pilus (bfpB-) operon, which corresponds to a molecular profile of a subgroup of diarrheagenic E. coli (aEPEC), thus being classified as hybrid MPEC/aEPEC isolates. These isolates displayed a localized adherence-like pattern of adherence in HeLa cells and were able to promote F-actin polymerization underneath adherent bacteria. Based on the pulsed-field gel electrophoresis analyses, considerable genetic variability was observed. A low index of antimicrobial resistance was observed and 2 extended-spectrum β-lactamase-producing E. coli were identified, both harboring blaCTX-M15 gene, and were classified as ST10 and ST993 using multilocus sequence typing. A total of 148 (91.2%) isolates were weak biofilm producers or formed no biofilm. Because raw milk is still frequently consumed in Brazil, the occurrence of virulence factor-encoding genes from extraintestinal or diarrheagenic E. coli added to the presence of extended-spectrum β-lactamase-producing isolates can turn this veterinary medicine problem into a public health concern.
Collapse
Affiliation(s)
- Henrique Orsi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Felipe F Guimarães
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Domingos S Leite
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, SP 13083 970, Brazil
| | - Simony T Guerra
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Sâmea F Joaquim
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Jose C F Pantoja
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Rodrigo T Hernandes
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil
| | - Simone B Lucheis
- Paulista Agency of Agribusiness Technology, Bauru, SP 17030 000, Brazil
| | - Márcio G Ribeiro
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Helio Langoni
- Department of Animal Production and Preventive Veterinary Medicine, School of Veterinary Medicine and Animal Sciences, São Paulo State University, Botucatu, SP 18618 681, Brazil
| | - Vera L M Rall
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, SP 18618 689, Brazil.
| |
Collapse
|
17
|
Xing Y, Clark JR, Chang JD, Chirman DM, Green S, Zulk JJ, Jelinski J, Patras KA, Maresso AW. Broad protective vaccination against systemic Escherichia coli with autotransporter antigens. PLoS Pathog 2023; 19:e1011082. [PMID: 36800400 PMCID: PMC9937491 DOI: 10.1371/journal.ppat.1011082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/26/2022] [Indexed: 02/18/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is the leading cause of adult life-threatening sepsis and urinary tract infections (UTI). The emergence and spread of multidrug-resistant (MDR) ExPEC strains result in a considerable amount of treatment failure and hospitalization costs, and contribute to the spread of drug resistance amongst the human microbiome. Thus, an effective vaccine against ExPEC would reduce morbidity and mortality and possibly decrease carriage in healthy or diseased populations. A comparative genomic analysis demonstrated a gene encoding an invasin-like protein, termed sinH, annotated as an autotransporter protein, shows high prevalence in various invasive ExPEC phylogroups, especially those associated with systemic bacteremia and UTI. Here, we evaluated the protective efficacy and immunogenicity of a recombinant SinH-based vaccine consisting of either domain-3 or domains-1,2, and 3 of the putative extracellular region of surface-localized SinH. Immunization of a murine host with SinH-based antigens elicited significant protection against various strains of the pandemic ExPEC sequence type 131 (ST131) as well as multiple sequence types in two distinct models of infection (colonization and bacteremia). SinH immunization also provided significant protection against ExPEC colonization in the bladder in an acute UTI model. Immunized cohorts produced significantly higher levels of vaccine-specific serum IgG and urinary IgG and IgA, findings consistent with mucosal protection. Collectively, these results demonstrate that autotransporter antigens such as SinH may constitute promising ExPEC phylogroup-specific and sequence-type effective vaccine targets that reduce E. coli colonization and virulence.
Collapse
Affiliation(s)
- Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - James D. Chang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Dylan M. Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Sabrina Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jacob J. Zulk
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Joseph Jelinski
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- TAILOR Labs, Vaccine Development Group, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|
18
|
Fonseca EL, Morgado SM, Caldart RV, Vicente AC. Global Genomic Epidemiology of Escherichia coli (ExPEC) ST38 Lineage Revealed a Virulome Associated with Human Infections. Microorganisms 2022; 10:microorganisms10122482. [PMID: 36557735 PMCID: PMC9787326 DOI: 10.3390/microorganisms10122482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Most of the extraintestinal human infections worldwide are caused by specific extraintestinal pathogenic Escherichia coli (ExPEC) lineages, which also present a zoonotic character. One of these lineages belongs to ST38, a high-risk globally disseminated ExPEC. To get insights on the aspects of the global ST38 epidemiology and evolution as a multidrug-resistant and pathogenic lineage concerning the three axes of the One Health concept (humans, animals, and natural environments), this study performed a global phylogenomic analysis on ST38 genomes. METHODS A phylogenetic reconstruction based on 376 ST38 genomes recovered from environments, humans, livestock, and wild and domestic animals in all continents throughout three decades was performed. The global information concerning the ST38 resistome and virulome was also approached by in silico analyses. RESULTS In general, the phylogenomic analyses corroborated the zoonotic character of the ExPEC ST38, since clonal strains were recovered from both animal and human sources distributed worldwide. Moreover, our findings revealed that, independent of host sources and geographic origin, the genomes were distributed in two major clades (Clades 1 and 2). However, the ST38 accessory genome was not strictly associated with clades and sub-clades, as found for the type 2 T3SS ETT2 that was evenly distributed throughout Clades 1 and 2. Of note was the presence of the Yersinia pestis-like high-pathogenicity island (HPI) exclusively in the major Clade 2, in which prevails most of the genomes from human origin recovered worldwide (2000 to 2020). CONCLUSIONS This evidence corroborates the HPI association with successful E. coli ST38 establishment in human infections.
Collapse
Affiliation(s)
- Erica L. Fonseca
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
- Correspondence: ; Tel.: +55-21-3865-8176
| | - Sergio M. Morgado
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
| | - Raquel V. Caldart
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Boa Vista 69300-000, RR, Brazil
| | - Ana Carolina Vicente
- Laboratório de Genética Molecular de Microrganismos, Instituto Oswaldo Cruz—FIOCRUZ, Rio de Janeiro 21040-360, RJ, Brazil
| |
Collapse
|
19
|
Chen H, Lu Q, An H, Li J, Shen S, Zheng X, Chen W, Wang L, Li J, Du Y, Wang Y, Liu X, Baumann M, Tacke M, Zou L, Wang J. The synergistic activity of SBC3 in combination with Ebselen against Escherichia coli infection. Front Pharmacol 2022; 13:1080281. [PMID: 36588729 PMCID: PMC9797518 DOI: 10.3389/fphar.2022.1080281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli ranks as the number one clinical isolate in the past years in China according to The China Antimicrobial Surveillance Network (CHINET), and its multidrug-resistant (MDR) pathogenic strains account for over 160 million cases of dysentery and one million deaths per year. Here, our work demonstrates that E. coli is highly sensitive to the synergistic combination of SBC3 [1,3-Dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver (I) acetate] and Ebselen, which shows no synergistic toxicity on mammalian cells. The proposed mechanism for the synergistic antibacterial effect of SBC3 in combination with Ebselen is based on directly inhibiting E. coli thioredoxin reductase and rapidly depleting glutathione, resulting in the increase of reactive oxygen species that cause bacterial cell death. Furthermore, the bactericidal efficacy of SBC3 in combination with Ebselen has been confirmed in mild and acute peritonitis mice. In addition, the five most difficult to treat Gram-negative bacteria (including E. coli, Acinetobacter baumannii, Enterobacter cloacae, Klebsiella pneumoniae, and Pseudomonas aeruginosa) are also highly sensitive to a synergistic combination of SBC3 and Ebselen. Thus, SBC3 in combination with Ebselen has potential as a treatment for clinically important Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Hao Chen
- The Second People’s Hospital of China Three Gorges University, Yichang, Hubei, China,The Second People’s Hospital of Yichang, Yichang, Hubei, China
| | - Qianqian Lu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Haoyue An
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Juntong Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Shuchu Shen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Xi Zheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Wei Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Lu Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jihong Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Youqin Du
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yueqing Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Marcus Baumann
- The School of Chemistry, University College Dublin, Belfield, Dublin, Ireland
| | - Matthias Tacke
- The School of Chemistry, University College Dublin, Belfield, Dublin, Ireland,*Correspondence: Lili Zou, ; Jun Wang, ; Matthias Tacke,
| | - Lili Zou
- The Second People’s Hospital of China Three Gorges University, Yichang, Hubei, China,The Second People’s Hospital of Yichang, Yichang, Hubei, China,Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,The Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China,*Correspondence: Lili Zou, ; Jun Wang, ; Matthias Tacke,
| | - Jun Wang
- The People’s Hospital of China Three Gorges University, Yichang, Hubei, China,*Correspondence: Lili Zou, ; Jun Wang, ; Matthias Tacke,
| |
Collapse
|
20
|
Geurtsen J, de Been M, Weerdenburg E, Zomer A, McNally A, Poolman J. Genomics and pathotypes of the many faces of Escherichia coli. FEMS Microbiol Rev 2022; 46:fuac031. [PMID: 35749579 PMCID: PMC9629502 DOI: 10.1093/femsre/fuac031] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/22/2022] [Indexed: 01/09/2023] Open
Abstract
Escherichia coli is the most researched microbial organism in the world. Its varied impact on human health, consisting of commensalism, gastrointestinal disease, or extraintestinal pathologies, has generated a separation of the species into at least eleven pathotypes (also known as pathovars). These are broadly split into two groups, intestinal pathogenic E. coli (InPEC) and extraintestinal pathogenic E. coli (ExPEC). However, components of E. coli's infinite open accessory genome are horizontally transferred with substantial frequency, creating pathogenic hybrid strains that defy a clear pathotype designation. Here, we take a birds-eye view of the E. coli species, characterizing it from historical, clinical, and genetic perspectives. We examine the wide spectrum of human disease caused by E. coli, the genome content of the bacterium, and its propensity to acquire, exchange, and maintain antibiotic resistance genes and virulence traits. Our portrayal of the species also discusses elements that have shaped its overall population structure and summarizes the current state of vaccine development targeted at the most frequent E. coli pathovars. In our conclusions, we advocate streamlining efforts for clinical reporting of ExPEC, and emphasize the pathogenic potential that exists throughout the entire species.
Collapse
Affiliation(s)
- Jeroen Geurtsen
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | - Mark de Been
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| | | | - Aldert Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 Utrecht, the Netherlands
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - Jan Poolman
- Janssen Vaccines and Prevention B.V., 2333 Leiden, the Netherlands
| |
Collapse
|
21
|
Kremer A, Whitmer G, Diaz A, Sajwani A, Navarro A, Arshad M. ESBL Escherichia coli Isolates Have Enhanced Gut Colonization Capacity Compared to Non-ESBL Strains in Neonatal Mice. Microbiol Spectr 2022; 10:e0058222. [PMID: 36121240 PMCID: PMC9603109 DOI: 10.1128/spectrum.00582-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022] Open
Abstract
Extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli can cause invasive infections in infants and immunocompromised children with high associated morbidity and mortality. The gut is a major reservoir of these strains in the community. Current dogma dictates that antimicrobial resistance is associated with a fitness cost. However, recent data show that some contemporary ESBL E. coli strains may be more "fit" compared to nonresistant E. coli strains. Here, we use whole-genome sequencing to first characterize 15 ESBL E. coli strains isolated from infants in a Pakistani community, a clinical extraintestinal pathogenic ESBL E. coli ST131 strain, and a non-ESBL commensal E. coli strain, and then use a novel animal model of early life gut colonization to assess the ability of these strains to colonize the infant mouse gut. We determined that CTX-M-15 was present in all the ESBL strains, as well as additional beta-lactamases and genes conferring resistance to multiple antibiotic classes. In the animal model, 11/16 ESBL E. coli strains had significantly higher burden of colonization at week four of life compared to commensal strains, even in the absence of selective antibiotic pressure, suggesting that these strains may have enhanced fitness despite being highly antimicrobial resistant. IMPORTANCE Antimicrobial resistance is a global public health emergency. Infants, especially preterm infants and those in the neonatal intensive care unit, immunocompromised hosts, and those with chronic illnesses are at highest risk of adverse outcomes from invasive infections with antimicrobial-resistant strains. It has long been thought that resistance is associated with a fitness cost, i.e., antimicrobial-resistant strains are not able to colonize the gut as well as nonresistant strains, and that antibiotic exposure is a key risk factor for persistent colonization with resistant strains. Here, we use a novel infant mouse model to add to the growing body of literature that some highly-resistant contemporary Escherichia coli strains can persist in the gut with a significant burden of colonization despite absence of antibiotic exposure.
Collapse
Affiliation(s)
- Aspen Kremer
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Grant Whitmer
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alondra Diaz
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Alima Sajwani
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
| | - Alexis Navarro
- University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehreen Arshad
- Ann and Robert H. Lurie Children’s Hospital, Chicago, Illinois, USA
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
22
|
Sokolovic M, Šimpraga B, Amšel-Zelenika T, Berendika M, Krstulović F. Prevalence and Characterization of Shiga Toxin Producing Escherichia coli Isolated from Animal Feed in Croatia. Microorganisms 2022; 10:1839. [PMID: 36144441 PMCID: PMC9505133 DOI: 10.3390/microorganisms10091839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
A survey on prevalence and number of Shiga toxin-producing Escherichia (E.) coli (STEC) in animal feed was carried out over a period of nine years in the Republic of Croatia. A total of 1688 feed samples were collected from feed factories and poultry farms. Analysis included two standard procedures: sample enrichment and (a) immunomagnetic separation and plating on two selective media; or (b) plating on two selective media. Confirmation of STEC included morphological examination, biochemical tests, serotyping, and polymerase chain reaction. Morphological and biochemical characterization revealed 629 E. coli strains. Further serological screening method revealed 78 STEC and EPEC serotypes, while only 27 strains were confirmed as STEC with PCR. All positive samples (1.6%) originated from poultry farms and contained combination of virulence genes: eaeA, stx1, and/or stx2. Since the presence of stx (especially stx2) and eae are identified as risk factors for development of severe diseases in humans, results of this survey indicate that avian sources of STEC infections might be one of those "undefined sources" of human illnesses. Further research is necessary for evaluation of risks posed by contaminated feed, poultry, and environment.
Collapse
Affiliation(s)
- Marijana Sokolovic
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, 10000 Zagreb, Croatia
| | - Borka Šimpraga
- Croatian Veterinary Institute, Poultry Centre, Heinzelova 55, 10000 Zagreb, Croatia
| | | | | | | |
Collapse
|
23
|
Antibiotic Resistance in Bacteria—A Review. Antibiotics (Basel) 2022; 11:antibiotics11081079. [PMID: 36009947 PMCID: PMC9404765 DOI: 10.3390/antibiotics11081079] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background: A global problem of multi-drug resistance (MDR) among bacteria is the cause of hundreds of thousands of deaths every year. In response to the significant increase of MDR bacteria, legislative measures have widely been taken to limit or eliminate the use of antibiotics, including in the form of feed additives for livestock, but also in metaphylaxis and its treatment, which was the subject of EU Regulation in 2019/6. Numerous studies have documented that bacteria use both phenotypis and gentic strategies enabling a natural defence against antibiotics and the induction of mechanisms in increasing resistance to the used antibacterial chemicals. The mechanisms presented in this review developed by the bacteria have a significant impact on reducing the ability to combat bacterial infections in humans and animals. Moreover, the high prevalence of multi-resistant strains in the environment and the ease of transmission of drug-resistance genes between the different bacterial species including commensal flora and pathogenic like foodborne pathogens (E. coli, Campylobacter spp., Enterococcus spp., Salmonella spp., Listeria spp., Staphylococcus spp.) favor the rapid spread of multi-resistance among bacteria in humans and animals. Given the global threat posed by the widespread phenomenon of multi-drug resistance among bacteria which are dangerous for humans and animals, the subject of this study is the presentation of the mechanisms of resistance in most frequent bacteria called as “foodborne pathoges” isolated from human and animals. In order to present the significance of the global problem related to multi-drug resistance among selected pathogens, especially those danger to humans, the publication also presents statistical data on the percentage range of occurrence of drug resistance among selected bacteria in various regions of the world. In addition to the phenotypic characteristics of pathogen resistance, this review also presents detailed information on the detection of drug resistance genes for specific groups of antibiotics. It should be emphasized that the manuscript also presents the results of own research i.e., Campylobacter spp., E. coli or Enetrococcus spp. This subject and the presentation of data on the risks of drug resistance among bacteria will contribute to initiating research in implementing the prevention of drug resistance and the development of alternatives for antimicrobials methods of controlling bacteria.
Collapse
|
24
|
Harrison L, Tyson GH, Strain E, Lindsey RL, Strockbine N, Ceric O, Fortenberry GZ, Harris B, Shaw S, Tillman G, Zhao S, Dessai U. Use of Large-Scale Genomics to Identify the Role of Animals and Foods as Potential Sources of Extraintestinal Pathogenic Escherichia coli That Cause Human Illness. Foods 2022; 11:foods11131975. [PMID: 35804790 PMCID: PMC9265580 DOI: 10.3390/foods11131975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) cause urinary tract and potentially life-threatening invasive infections. Unfortunately, the origins of ExPEC are not always clear. We used genomic data of E. coli isolates from five U.S. government organizations to evaluate potential sources of ExPEC infections. Virulence gene analysis of 38,032 isolates from human, food animal, retail meat, and companion animals classified the subset of 8142 non-diarrheagenic isolates into 40 virulence groups. Groups were identified as low, medium, and high relative risk of containing ExPEC strains, based on the proportion of isolates recovered from humans. Medium and high relative risk groups showed a greater representation of sequence types associated with human disease, including ST-131. Over 90% of food source isolates belonged to low relative risk groups, while >60% of companion animal isolates belonged to medium or high relative risk groups. Additionally, 18 of the 26 most prevalent antimicrobial resistance determinants were more common in high relative risk groups. The associations between antimicrobial resistance and virulence potentially limit treatment options for human ExPEC infections. This study demonstrates the power of large-scale genomics to assess potential sources of ExPEC strains and highlights the importance of a One Health approach to identify and manage these human pathogens.
Collapse
Affiliation(s)
- Lucas Harrison
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD 20708, USA; (G.H.T.); (E.S.); (O.C.); (S.Z.)
- Correspondence: (L.H.); (U.D.)
| | - Gregory H. Tyson
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD 20708, USA; (G.H.T.); (E.S.); (O.C.); (S.Z.)
| | - Errol Strain
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD 20708, USA; (G.H.T.); (E.S.); (O.C.); (S.Z.)
| | - Rebecca L. Lindsey
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.L.L.); (N.S.)
| | - Nancy Strockbine
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; (R.L.L.); (N.S.)
| | - Olgica Ceric
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD 20708, USA; (G.H.T.); (E.S.); (O.C.); (S.Z.)
| | - Gamola Z. Fortenberry
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250, USA; (G.Z.F.); (S.S.)
| | - Beth Harris
- U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Ames, IA 50010, USA;
| | - Sheryl Shaw
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250, USA; (G.Z.F.); (S.S.)
| | - Glenn Tillman
- U.S. Department of Agriculture, Food Safety and Inspection Service, Athens, GA 30605, USA;
| | - Shaohua Zhao
- U.S. Food and Drug Administration, Center for Veterinary Medicine, Laurel, MD 20708, USA; (G.H.T.); (E.S.); (O.C.); (S.Z.)
| | - Uday Dessai
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, DC 20250, USA; (G.Z.F.); (S.S.)
- Correspondence: (L.H.); (U.D.)
| |
Collapse
|
25
|
Hamdi Abdulkareem M, Abbas Abood I, Munis Dakheel M. Antimicrobial Resistance of Tannin Extract against E. coli Isolates from Sheep. ARCHIVES OF RAZI INSTITUTE 2022; 77:697-701. [PMID: 36284977 PMCID: PMC9548284 DOI: 10.22092/ari.2022.356982.1955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/16/2022] [Indexed: 06/16/2023]
Abstract
Plants have been long valuable sources of natural materials that have served to preserve human and animal health; as a result, pharmacological purposes have arisen from the use of plant compounds in most countries, according to a World Health Organization report. The present study aimed to assess the antimicrobial resistance of tannin extract against Escherichia coli (E. coli) isolates in sheep. A total of 100 samples from sheep were used to isolate E. coli and treated with tannin extract (90% purity) to investigate the in vitro effect, as compared to some antibiotics (Clindamycin, Cephalexin, Kanamycin, Tetracycline, and Vancomycin). The bacterial samples were cultured in a selective and differential medium, and Gram staining was used to examine them. The biochemical assays were performed to purify and expose these cultures; moreover, the API 20E system and RapidTM ONE kits were utilized to confirm the bacterial strain. Based on the findings, 50% of the samples showed a positive result for the presence of E. coli. The well diffusion technique was used to investigate the antibacterial activity to confirm the antibacterial action of tannin extract (from pomegranate peel) in different concentrations against E. coli. The highest zone of inhibition for the bacteria ranged from 12±0.5 to 30.3±0.2 at 50% concentrations, proving that tannins extract was significantly effective against E. coli. The presence of E. coli was detected in 50 % of the samples. The well-diffusion technique was used to evaluate the antimicrobial property of tannin extract through various concentrations with the highest zone of inhibition for the bacteria ranging from 12.5 to 30.30.2 at 50%, demonstrating that tannin extract was significantly effective on E. coli.
Collapse
Affiliation(s)
- M Hamdi Abdulkareem
- Microbiology Department, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - I Abbas Abood
- Microbiology Department, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - M Munis Dakheel
- Zoonosis Research Unit, Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
26
|
Agosta M, Bencardino D, Argentieri M, Pansani L, Sisto A, Ciofi Degli Atti ML, D’Amore C, Putignani L, Bagolan P, Iacobelli BD, Dotta A, Martini L, Di Chiara L, Magnani M, Perno CF, Andreoni F, Bernaschi P. Prevalence and Molecular Typing of Carbapenemase-Producing Enterobacterales among Newborn Patients in Italy. Antibiotics (Basel) 2022; 11:antibiotics11040431. [PMID: 35453183 PMCID: PMC9032973 DOI: 10.3390/antibiotics11040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/10/2022] Open
Abstract
The spread of carbapenemase-producing Enterobacterales (CPE), especially Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli), is a serious public health threat in pediatric hospitals. The associated risk in newborns is due to their underdeveloped immune system and limited treatment options. The aim was to estimate the prevalence and circulation of CPE among the neonatal intensive units of a major pediatric hospital in Italy and to investigate their molecular features. A total of 124 CPE were isolated from rectal swabs of 99 newborn patients at Bambino Gesù Children’s Hospital between July 2016 and December 2019. All strains were characterized by antimicrobial susceptibility testing, detection of resistance genes, and PCR-based replicon typing (PBRT). One strain for each PBRT profile of K. pneumoniae or E. coli was characterized by multilocus-sequence typing (MLST). Interestingly, the majority of strains were multidrug-resistant and carried the blaNDM gene. A large part was characterized by a multireplicon status, and FII, A/C, FIA (15%) was the predominant. Despite the limited size of collection, MLST analysis revealed a high number of Sequence Types (STs): 14 STs among 28 K. pneumoniae and 8 STs among 11 E. coli, with the prevalence of the well-known clones ST307 and ST131, respectively. This issue indicated that some strains shared the same circulating clone. We identified a novel, so far never described, ST named ST10555, found in one E. coli strain. Our investigation showed a high heterogeneity of CPE circulating among neonatal units, confirming the need to monitor their dissemination in the hospital also through molecular methods.
Collapse
Affiliation(s)
- Marilena Agosta
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (M.A.); (L.P.); (A.S.); (C.F.P.)
| | - Daniela Bencardino
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Fano, Italy; (D.B.); (M.M.); (F.A.)
| | - Marta Argentieri
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (M.A.); (L.P.); (A.S.); (C.F.P.)
| | - Laura Pansani
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (M.A.); (L.P.); (A.S.); (C.F.P.)
| | - Annamaria Sisto
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (M.A.); (L.P.); (A.S.); (C.F.P.)
| | - Marta Luisa Ciofi Degli Atti
- Clinical Pathways and Epidemiology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.C.D.A.); (C.D.)
| | - Carmen D’Amore
- Clinical Pathways and Epidemiology Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.L.C.D.A.); (C.D.)
| | - Lorenza Putignani
- Human Microbiome Unit, Department of Diagnostics and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Pietro Bagolan
- Neonatal Surgery Unit, Medical and Surgical Department of the Fetus-Newborn-Infant, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (B.D.I.)
| | - Barbara Daniela Iacobelli
- Neonatal Surgery Unit, Medical and Surgical Department of the Fetus-Newborn-Infant, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (P.B.); (B.D.I.)
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Medical and Surgical Department of the Fetus-Newborn-Infant, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.D.); (L.M.)
| | - Ludovica Martini
- Neonatal Intensive Care Unit, Medical and Surgical Department of the Fetus-Newborn-Infant, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (A.D.); (L.M.)
| | - Luca Di Chiara
- Pediatric Cardiac Intensive Care Unit, Department of Cardiology and Cardiac Surgery, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Fano, Italy; (D.B.); (M.M.); (F.A.)
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (M.A.); (L.P.); (A.S.); (C.F.P.)
| | - Francesca Andreoni
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61032 Fano, Italy; (D.B.); (M.M.); (F.A.)
| | - Paola Bernaschi
- Microbiology and Diagnostic Immunology Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.A.); (M.A.); (L.P.); (A.S.); (C.F.P.)
- Correspondence: ; Tel.: +39-06-6859-2205
| |
Collapse
|
27
|
Bong CW, Low KY, Chai LC, Lee CW. Prevalence and Diversity of Antibiotic Resistant Escherichia coli From Anthropogenic-Impacted Larut River. Front Public Health 2022; 10:794513. [PMID: 35356018 PMCID: PMC8960044 DOI: 10.3389/fpubh.2022.794513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Aquatic environments, under frequent anthropogenic pressure, could serve as reservoirs that provide an ideal condition for the acquisition and dissemination of antibiotic resistance genetic determinants. We investigated the prevalence and diversity of antibiotic-resistant Escherichia coli by focusing on their genetic diversity, virulence, and resistance genes in anthropogenic-impacted Larut River. The abundance of E. coli ranged from (estimated count) Est 1 to 4.7 × 105 (colony-forming units per 100 ml) CFU 100 ml−1 to Est 1 to 4.1 × 105 CFU 100 ml−1 with phylogenetic group B1 (46.72%), and A (34.39%) being the most predominant. The prevalence of multiple antibiotic resistance phenotypes of E. coli, with the presence of tet and sul resistance genes, was higher in wastewater effluents than in the river waters. These findings suggested that E. coli could be an important carrier of the resistance genes in freshwater river environments. The phylogenetic composition of E. coli and resistance genes was associated with physicochemical properties and antibiotic residues. These findings indicated that the anthropogenic inputs exerted an effect on the E. coli phylogroup composition, diversification of multiple antibiotic resistance phenotypes, and the distribution of resistance genes in the Larut River.
Collapse
Affiliation(s)
- Chui Wei Bong
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
- *Correspondence: Chui Wei Bong ;
| | - Kyle Young Low
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
- Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lay Ching Chai
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choon Weng Lee
- Institute of Biological Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences (IOES), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Nascimento JAS, Santos FF, Santos-Neto JF, Trovão LO, Valiatti TB, Pinaffi IC, Vieira MAM, Silva RM, Falsetti IN, Santos ACM, Gomes TAT. Molecular Epidemiology and Presence of Hybrid Pathogenic Escherichia coli among Isolates from Community-Acquired Urinary Tract Infection. Microorganisms 2022; 10:microorganisms10020302. [PMID: 35208757 PMCID: PMC8874565 DOI: 10.3390/microorganisms10020302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Urinary tract infections (UTI) affect community and healthcare patients worldwide and may have different clinical outcomes. We assessed the phylogenetic origin, the presence of 43 virulence factors (VFs) of diarrheagenic and extraintestinal pathogenic Escherichia coli, and the occurrence of hybrid strains among E. coli isolates from 172 outpatients with different types of UTI. Isolates from phylogroup B2 (46%) prevailed, followed by phylogroups A (15.7%) and B1 (12.2%), with similar phylogenetic distribution in symptomatic and asymptomatic patients. The most frequent VFs according to their functional category were fimA (94.8%), ompA (83.1%), ompT (63.3%), chuA (57.6%), and vat (22%). Using published molecular criteria, 34.3% and 18.0% of the isolates showed intrinsic virulence and uropathogenic potential, respectively. Two strains carried the eae and escV genes and one the aggR gene, which classified them as hybrid strains. These hybrid strains interacted with renal and bladder cells, reinforcing their uropathogenic potential. The frequency of UPEC strains bearing a more pathogenic potential in the outpatients studied was smaller than reported in other regions. Our data contribute to deepening current knowledge about the mechanisms involved in UTI pathogenesis, especially among hybrid UPEC strains, as these could colonize the host’s intestine, leading to intestinal infections followed by UTI.
Collapse
Affiliation(s)
- Júllia A. S. Nascimento
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Fernanda F. Santos
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (F.F.S.); (T.B.V.)
| | - José F. Santos-Neto
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Liana O. Trovão
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Tiago B. Valiatti
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (F.F.S.); (T.B.V.)
| | - Isabel C. Pinaffi
- Laboratório Santa Cruz Medicina Diagnóstica, Mogi Guaçu 13840-052, Brazil; (I.C.P.); (I.N.F.)
| | - Mônica A. M. Vieira
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Rosa M. Silva
- Laboratório de Enterobactérias, Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil;
| | - Ivan N. Falsetti
- Laboratório Santa Cruz Medicina Diagnóstica, Mogi Guaçu 13840-052, Brazil; (I.C.P.); (I.N.F.)
| | - Ana C. M. Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
| | - Tânia A. T. Gomes
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (J.F.S.-N.); (L.O.T.); (M.A.M.V.); (A.C.M.S.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|
29
|
Virulence Profiles and Antibiotic Susceptibility of Escherichia coli Strains from Pet Reptiles. Pathogens 2022; 11:pathogens11020127. [PMID: 35215071 PMCID: PMC8880193 DOI: 10.3390/pathogens11020127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/06/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Exotic reptiles are increasingly being bred as pets in many countries around the world, including Poland. However, the close contact between reptiles and their owners provides favourable conditions for the transmission of zoonotic pathogens. In this work, we examined E. coli isolates from 67 captive reptiles regarding their virulence, antibiotic susceptibility, phylogenetic affiliation, and genetic diversity. The incidence of E. coli was highest in snakes (51.6%, 16 isolates/31 samples), and slightly lower in turtles (44.4%, 8/18) and lizards (44.4%, 8/18). Genes encoding virulence factors were confirmed in 50% of isolates and the most common were the traT (37.5%, n = 12), fyuA (21.87%, n = 7), and irp-2 (15.62%, n = 5). The majority (71.87%, n = 23) of E. coli isolates were susceptible to all of the antimicrobial substances used in the study. Streptomycin resistance (21.87%, n = 7) was the most frequent, while resistance to other antimicrobial substances was sporadic. One strain (3.12%) was classified as multidrug-resistant. The presence of resistance genes (aadA, tetA, tetB, tetM, and blaTEM) was confirmed in 12.5% (n = 4) of the isolates. The majority (65.6%, n = 21) of E. coli isolates represented the B1 phylogenetic group. (GTG)5-PCR fingerprinting showed considerable genetic variation in the pool of tested isolates. The frequency of E. coli in reptiles is much lower than in mammals or birds. Due to the presence of virulence genes, characteristic of both intestinal pathogenic E. coli (IPEC) and extraintestinal pathogenic E. coli (ExPEC), reptilian strains of E. coli have pathogenic potential, and therefore people in contact with these animals should follow good hygiene practices.
Collapse
|
30
|
Bessaiah H, Anamalé C, Sung J, Dozois CM. What Flips the Switch? Signals and Stress Regulating Extraintestinal Pathogenic Escherichia coli Type 1 Fimbriae (Pili). Microorganisms 2021; 10:5. [PMID: 35056454 PMCID: PMC8777976 DOI: 10.3390/microorganisms10010005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens are exposed to a multitude of harmful conditions imposed by the environment of the host. Bacterial responses against these stresses are pivotal for successful host colonization and pathogenesis. In the case of many E. coli strains, type 1 fimbriae (pili) are an important colonization factor that can contribute to diseases such as urinary tract infections and neonatal meningitis. Production of type 1 fimbriae in E. coli is dependent on an invertible promoter element, fimS, which serves as a phase variation switch determining whether or not a bacterial cell will produce type 1 fimbriae. In this review, we present aspects of signaling and stress involved in mediating regulation of type 1 fimbriae in extraintestinal E. coli; in particular, how certain regulatory mechanisms, some of which are linked to stress response, can influence production of fimbriae and influence bacterial colonization and infection. We suggest that regulation of type 1 fimbriae is potentially linked to environmental stress responses, providing a perspective for how environmental cues in the host and bacterial stress response during infection both play an important role in regulating extraintestinal pathogenic E. coli colonization and virulence.
Collapse
Affiliation(s)
- Hicham Bessaiah
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Carole Anamalé
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
| | - Jacqueline Sung
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3G 0B1, Canada
| | - Charles M. Dozois
- Institut National de Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada; (H.B.); (C.A.); (J.S.)
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
31
|
Hayajneh AA, Jaradat ZW, Alsatari ES, Alboom MH. Predictors of growth of Escherichia coli on lab coats as part of hospital-acquired infection transmission through healthcare personnel attire. Int J Clin Pract 2021; 75:e14815. [PMID: 34486786 DOI: 10.1111/ijcp.14815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 09/03/2021] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVES Previous research has documented the presence of microbes on healthcare personnel (HCP) attire. This study aimed to explore the bacterial contamination and predictors of Escherichia coli (E coli) growth, as well as, hygiene and handling practices of HCP attire that could influence growth of E coli. METHODS Descriptive, cross-sectional study was used in this study. Convenience sampling of the 188 HCP was recruited from a main comprehensive hospital in the northern part of Jordan. Three swab samples were collected from three different parts of lab coats used by each participant. The generalised mixed linear model was used for the categorical variables and to identify the predictors of E coli growth on HCP attire. RESULTS Enterococcus faecalis was the most common species of bacteria found on lab coat. The HCP attire coming from the emergency department (ED) was highlighted with slightly higher contamination of E coli compared with other departments, such as critical care units. Factors associated with significant E coli growth on HCP attire were lab coat use over scrubs and borrowing of lab coats. The predictors of positive E coli growth were working in the ED, storing HCP attire in hospital lockers, believing the transmission of pathogens by HCP attire and carrying attire wrapped around arms. IMPLICATIONS Hygiene practices and policies, including a washing facility on the hospital premises, are a must to keep the lab coats clean. CONCLUSION HCP should be cautious about the method of use and storage of lab coats they wear.
Collapse
Affiliation(s)
- Audai A Hayajneh
- Adult Health-Nursing Department, Faculty of Nursing, Jordan University of Science and Technology, Irbid, Jordan
| | - Ziad W Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Eman S Alsatari
- Faculty of Nursing, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad H Alboom
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
32
|
Benameur Q, Gervasi T, Giarratana F, Vitale M, Anzà D, La Camera E, Nostro A, Cicero N, Marino A. Virulence, Antimicrobial Resistance and Biofilm Production of Escherichia coli Isolates from Healthy Broiler Chickens in Western Algeria. Antibiotics (Basel) 2021; 10:antibiotics10101157. [PMID: 34680738 PMCID: PMC8532970 DOI: 10.3390/antibiotics10101157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to assess the virulence, antimicrobial resistance and biofilm production of Escherichia coli strains isolated from healthy broiler chickens in Western Algeria. E. coli strains (n = 18) were identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Susceptibility to 10 antibiotics was determined by standard methods. Virulence and extended-spectrum β-lactamase (ESBL) genes were detected by PCR. The biofilm production was evaluated by microplate assay. All the isolates were negative for the major virulence/toxin genes tested (rfbE, fliC, eaeA, stx1), except one was stx2-positive. However, all were resistant to at least three antibiotics. Ten strains were ESBL-positive. Seven carried the β-lactamase blaTEM gene only and two co-harbored blaTEM and blaCTX-M-1 genes. One carried the blaSHV gene. Among the seven strains harboring blaTEM only, six had putative enteroaggregative genes. Two contained irp2, two contained both irp2 and astA, one contained astA and another contained aggR, astA and irp2 genes. All isolates carrying ESBL genes were non-biofilm producers, except one weak producer. The ESBL-negative isolates were moderate biofilm producers and, among them, two harbored astA, two irp2, and one aggR, astA and irp2 genes. This study highlights the spread of antimicrobial-resistant E. coli strains from healthy broiler chickens in Western Algeria.
Collapse
Affiliation(s)
- Qada Benameur
- Nursing Department, Faculty of Nature and Life Sciences, University of Mostaganem, Mostaganem 27000, Algeria;
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy;
- Correspondence: ; Tel.: +39-090-676-2870
| | - Filippo Giarratana
- Department of Veterinary Sciences, University of Messina, 98100 Messina, Italy;
| | - Maria Vitale
- Istituto Zooprofilattico Sperimentale della Sicilia “Adelmo Mirri”, 90141 Palermo, Italy; (M.V.); (D.A.)
| | - Davide Anzà
- Istituto Zooprofilattico Sperimentale della Sicilia “Adelmo Mirri”, 90141 Palermo, Italy; (M.V.); (D.A.)
| | - Erminia La Camera
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (E.L.C.); (A.N.); (A.M.)
| | - Antonia Nostro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (E.L.C.); (A.N.); (A.M.)
| | - Nicola Cicero
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98100 Messina, Italy;
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy; (E.L.C.); (A.N.); (A.M.)
| |
Collapse
|
33
|
Zhang S, Chen S, Rehman MU, Yang H, Yang Z, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huan J, Ou X, Mao S, Gao Q, Sun D, Tian B, Cheng A. Distribution and association of antimicrobial resistance and virulence traits in Escherichia coli isolates from healthy waterfowls in Hainan, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112317. [PMID: 34049228 DOI: 10.1016/j.ecoenv.2021.112317] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
There are rising concerns about microbes harboring antibiotic resistance genes (ARGs) and virulence-associated genes (VAGs) in humans and food-producing animals. Moreover, ARGs are considered as emerging environmental pollutants, posing probable life-threatening complications in humans and animals. Commensal Escherichia coli (E. coli) strain can carry a large number of VAGs, which may become opportunistic pathogen. The objective of this study was to determine the prevalence and possible association of ARGs and VAGs in E. coli isolates from clinically healthy waterfowls in China's tropical island, Hainan. For this purpose, 311 non-repeating E. coli isolates were evaluated for phenotypic drug resistance linked with ARGs. Additionally, strains were examined for subsequent resistance and virulence genes by uniplex or multiplex PCR and sequencing. Overall, 89 types of antibiotic resistance patterns were analysed, while 25 ARGs and 23 VAGs were observed, of which qnrS (99.4%) and iucD (99.7%) were the most commonly found genes, respectively. Significant positive associations were observed among ARGs and VAGs (p<0.05, OR>1). The strongest association between resistance and virulence gene was observed for qnrS and iss (OR, 76.25; 95% CI, 4.02-1445.42). Our results propose that waterfowls serve as a reservoir of E. coli carrying multi ARGs and various ExPEC associated VAGs. Therefore, this study provides necessary information on the occurrence and possible associations of ARGs and VAGs in healthy waterfowls, which may act as a reference for the regulatory use of antibiotics to stop the direct or indirect spread of these resistant and potential virulent microbes to natural environment.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| | - Shuling Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mujeeb Ur Rehman
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hong Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Zhishuang Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Juan Huan
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Sai Mao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Qun Gao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
34
|
Hernández-Chiñas U, Chávez-Berrocal ME, Ahumada-Cota RE, Navarro-Ocaña A, Rocha-Ramírez LM, Pérez-del Mazo Y, Alvarado-Cabello M, Pérez-Soto G, León-Alamilla LA, Acevedo-Monroy SE, Esquiliano D, Raya-Rivera AM, Eslava CA. Prospective Study in Children with Complicated Urinary Tract Infection Treated with Autologous Bacterial Lysates. Microorganisms 2021; 9:1811. [PMID: 34576707 PMCID: PMC8470462 DOI: 10.3390/microorganisms9091811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 08/11/2021] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial bacteria resistance is an important problem in children with recurrent urinary tract infections (rUTI), thus it is crucial to search for alternative therapies. Autologous bacterial lysates (ABL) may be a potential treatment for rUTI. Twenty-seven children with rUTI were evaluated for one year, urine and stool cultures were performed, 10 colonies of each culture were selected and those identified as Escherichia coli were characterized by serology. For patients who presented ≥105 UFC/mL, an ABL was manufactured and administered orally (1 mL/day) for a month. Twelve children were monitored for ≥1-year, 218 urine and 11 stool samples were analyzed. E. coli (80.5%) was the main bacteria isolated from urine and feces (72%). E. coli of classical urinary serotypes (UPEC), O25:H4, O75:HNM, and O9:HNM were identified in patients with persistent urinary infection (pUTI). In 54% of patients treated with ABL, the absence of bacteria was observed in urine samples after 3 months of treatment, 42% of these remained without UTI between 10-12 months. It was observed that the use of ABL controlled the infection for almost 1 year in more than 60% of the children. We consider it necessary to develop a polyvalent immunogen for the treatment and control of rUTI.
Collapse
Affiliation(s)
- Ulises Hernández-Chiñas
- Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Public Health Department, Research Division, Faculty of Medicine Universidad Nacional Autónoma de México, Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Dr. Márquez 162, Col. De los Doctores, Mexico City 06720, Mexico; (U.H.-C.); (M.E.C.-B.); (R.E.A.-C.); (S.E.A.-M.)
| | - María E. Chávez-Berrocal
- Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Public Health Department, Research Division, Faculty of Medicine Universidad Nacional Autónoma de México, Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Dr. Márquez 162, Col. De los Doctores, Mexico City 06720, Mexico; (U.H.-C.); (M.E.C.-B.); (R.E.A.-C.); (S.E.A.-M.)
| | - Ricardo E. Ahumada-Cota
- Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Public Health Department, Research Division, Faculty of Medicine Universidad Nacional Autónoma de México, Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Dr. Márquez 162, Col. De los Doctores, Mexico City 06720, Mexico; (U.H.-C.); (M.E.C.-B.); (R.E.A.-C.); (S.E.A.-M.)
| | - Armando Navarro-Ocaña
- Bacteriology Laboratory, Public Health Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Mexico City 04510, Mexico; (A.N.-O.); (G.P.-S.); (L.A.L.-A.)
| | - Luz M. Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infeccionas, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Dr. Márquez 162, Col. Doctores, Mexico City 06720, Mexico;
| | - Yolanda Pérez-del Mazo
- Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Faculty of Medicine Universidad Nacional Autónoma de México, Dr. Márquez 162, Col. De los Doctores, Mexico City 06720, Mexico; (Y.P.-d.M.); (M.A.-C.)
| | - Maribel Alvarado-Cabello
- Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Faculty of Medicine Universidad Nacional Autónoma de México, Dr. Márquez 162, Col. De los Doctores, Mexico City 06720, Mexico; (Y.P.-d.M.); (M.A.-C.)
| | - Gabriel Pérez-Soto
- Bacteriology Laboratory, Public Health Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Mexico City 04510, Mexico; (A.N.-O.); (G.P.-S.); (L.A.L.-A.)
| | - Luis A. León-Alamilla
- Bacteriology Laboratory, Public Health Department, Faculty of Medicine, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Mexico City 04510, Mexico; (A.N.-O.); (G.P.-S.); (L.A.L.-A.)
| | - Salvador E. Acevedo-Monroy
- Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Public Health Department, Research Division, Faculty of Medicine Universidad Nacional Autónoma de México, Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Dr. Márquez 162, Col. De los Doctores, Mexico City 06720, Mexico; (U.H.-C.); (M.E.C.-B.); (R.E.A.-C.); (S.E.A.-M.)
| | - Diego Esquiliano
- Tissue Engineering Laboratory, Children’s Hospital of Mexico Federico Gómez, Dr. Márquez 162, Col. De los Doctores, Mexico City 06720, Mexico;
| | - Atlántida M. Raya-Rivera
- Tissue Engineering Laboratory, Children’s Hospital of Mexico Federico Gómez, Dr. Márquez 162, Col. De los Doctores, Mexico City 06720, Mexico;
| | - Carlos A. Eslava
- Peripheral Unit of Basic and Clinical Research in Infectious Diseases, Public Health Department, Research Division, Faculty of Medicine Universidad Nacional Autónoma de México, Bacterial Pathogenicity Laboratory, Hemato-Oncology and Research Unit, Children’s Hospital of Mexico Federico Gómez, Dr. Márquez 162, Col. De los Doctores, Mexico City 06720, Mexico; (U.H.-C.); (M.E.C.-B.); (R.E.A.-C.); (S.E.A.-M.)
| |
Collapse
|
35
|
Díaz-Jiménez D, García-Meniño I, Herrera A, Lestón L, Mora A. Microbiological risk assessment of Turkey and chicken meat for consumer: Significant differences regarding multidrug resistance, mcr or presence of hybrid aEPEC/ExPEC pathotypes of E. coli. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Nascimento JAS, Santos FF, Valiatti TB, Santos-Neto JF, M. Santos AC, Cayô R, Gales AC, A. T. Gomes T. Frequency and Diversity of Hybrid Escherichia coli Strains Isolated from Urinary Tract Infections. Microorganisms 2021; 9:microorganisms9040693. [PMID: 33801702 PMCID: PMC8065829 DOI: 10.3390/microorganisms9040693] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/20/2022] Open
Abstract
(1) Background: Hybrid uropathogenic Escherichia coli (UPEC) strains carry virulence markers of the diarrheagenic E. coli (DEC) pathotypes, which may increase their virulence potential. This study analyzed the frequency and virulence potential of hybrid strains among 452 UPEC strains. (2) Methods: Strains were tested for the DEC virulence diagnostic genes’ presence by polymerase chain reaction (PCR). Those carrying at least one gene were classified as hybrid and further tested for 10 UPEC and extraintestinal pathogenic E. coli (ExPEC) virulence genes and phylogenetic classification. Also, their ability to produce hemolysis, adhere to HeLa and renal HEK 293T cells, form a biofilm, and antimicrobial susceptibility were evaluated. (3) Results: Nine (2%) hybrid strains were detected; seven of them carried aggR and two, eae, and were classified as UPEC/EAEC (enteroaggregative E. coli) and UPEC/aEPEC (atypical enteropathogenic E. coli), respectively. They belonged to phylogroups A (five strains), B1 (three), and D (one), and adhered to both cell lineages tested. Only the UPEC/EAEC strains were hemolytic (five strains) and produced biofilm. One UPEC/aEPEC strain was resistant to third-generation cephalosporins and carried blaCTX-M-15. (4) Conclusions: Our findings contribute to understanding the occurrence and pathogenicity of hybrid UPEC strains, which may cause more severe infections.
Collapse
Affiliation(s)
- Júllia A. S. Nascimento
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (F.F.S.); (T.B.V.); (J.F.S.-N.); (A.C.M.S.)
| | - Fernanda F. Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (F.F.S.); (T.B.V.); (J.F.S.-N.); (A.C.M.S.)
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (R.C.); (A.C.G.)
| | - Tiago B. Valiatti
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (F.F.S.); (T.B.V.); (J.F.S.-N.); (A.C.M.S.)
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (R.C.); (A.C.G.)
| | - José F. Santos-Neto
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (F.F.S.); (T.B.V.); (J.F.S.-N.); (A.C.M.S.)
| | - Ana Carolina M. Santos
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (F.F.S.); (T.B.V.); (J.F.S.-N.); (A.C.M.S.)
| | - Rodrigo Cayô
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (R.C.); (A.C.G.)
- Laboratório de Imunologia e Microbiologia (LIB), Setor de Biologia Molecular, Microbiologia e Imunologia, Departamento de Ciências Biológicas (DCB), Instituto de Ciências Ambientais, Químicas e Farmacêuticas (ICAQF), Universidade Federal de São Paulo (UNIFESP), Diadema 09972-270, Brazil
| | - Ana C. Gales
- Laboratório Alerta, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (R.C.); (A.C.G.)
| | - Tânia A. T. Gomes
- Laboratório Experimental de Patogenicidade de Enterobactérias (LEPE), Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia (DMIP), Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-062, Brazil; (J.A.S.N.); (F.F.S.); (T.B.V.); (J.F.S.-N.); (A.C.M.S.)
- Correspondence: ; Tel.: +55-11-5576-4848
| |
Collapse
|
37
|
Antimicrobial Resistance Profile and ExPEC Virulence Potential in Commensal Escherichia coli of Multiple Sources. Antibiotics (Basel) 2021; 10:antibiotics10040351. [PMID: 33810387 PMCID: PMC8067153 DOI: 10.3390/antibiotics10040351] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
We recently described the genetic antimicrobial resistance and virulence profile of a collection of 279 commensal E. coli of food-producing animal (FPA), pet, wildlife and human origin. Phenotypic antimicrobial resistance (AMR) and the role of commensal E. coli as reservoir of extra-intestinal pathogenic Escherichia coli (ExPEC) virulence-associated genes (VAGs) or as potential ExPEC pathogens were evaluated. The most common phenotypic resistance was to tetracycline (76/279, 27.24%), sulfamethoxazole/trimethoprim (73/279, 26.16%), streptomycin and sulfisoxazole (71/279, 25.45% both) among the overall collection. Poultry and rabbit were the sources mostly associated to AMR, with a significant resistance rate (p > 0.01) to quinolones, streptomycin, sulphonamides, tetracycline and, only for poultry, to ampicillin and chloramphenicol. Finally, rabbit was the source mostly associated to colistin resistance. Different pandemic (ST69/69*, ST95, ST131) and emerging (ST10/ST10*, ST23, ST58, ST117, ST405, ST648) ExPEC sequence types (STs) were identified among the collection, especially in poultry source. Both ST groups carried high number of ExPEC VAGs (pandemic ExPEC STs, mean = 8.92; emerging ExPEC STs, mean = 6.43) and showed phenotypic resistance to different antimicrobials (pandemic ExPEC STs, mean = 2.23; emerging ExPEC STs, mean = 2.43), suggesting their role as potential ExPEC pathogens. Variable phenotypic resistance and ExPEC VAG distribution was also observed in uncommon ExPEC lineages, suggesting commensal flora as a potential reservoir of virulence (mean = 3.80) and antimicrobial resistance (mean = 1.69) determinants.
Collapse
|
38
|
Braz VS, Melchior K, Moreira CG. Escherichia coli as a Multifaceted Pathogenic and Versatile Bacterium. Front Cell Infect Microbiol 2020; 10:548492. [PMID: 33409157 PMCID: PMC7779793 DOI: 10.3389/fcimb.2020.548492] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic plasticity promotes evolution and a vast diversity in Escherichia coli varying from avirulent to highly pathogenic strains, including the emergence of virulent hybrid microorganism. This ability also contributes to the emergence of antimicrobial resistance. These hybrid pathogenic E. coli (HyPEC) are emergent threats, such as O104:H4 from the European outbreak in 2011, aggregative adherent bacteria with the potent Shiga-toxin. Here, we briefly revisited the details of these E. coli classic and hybrid pathogens, the increase in antimicrobial resistance in the context of a genetically empowered multifaceted and versatile bug and the growing need to advance alternative therapies to fight these infections.
Collapse
Affiliation(s)
- Vânia Santos Braz
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Karine Melchior
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Cristiano Gallina Moreira
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
39
|
Ramos S, Silva V, Dapkevicius MDLE, Caniça M, Tejedor-Junco MT, Igrejas G, Poeta P. Escherichia coli as Commensal and Pathogenic Bacteria Among Food-Producing Animals: Health Implications of Extended Spectrum β-lactamase (ESBL) Production. Animals (Basel) 2020; 10:ani10122239. [PMID: 33260303 PMCID: PMC7761174 DOI: 10.3390/ani10122239] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary This revision is about the problem of Escherichia coli as a commensal and pathogenic bacterium among food-producing animals and health implications. Escherichia coli may play an important ecological role and can be used as a bioindicator of antimicrobial resistance. All animal species used for food production, as well as humans, carry E. coli in their intestinal tract; plus, the genetic flexibility and adaptability of this bacteria to constantly changing environments allows it to acquire a great number of antimicrobial resistance mechanisms. The majority of E. coli strains are commensals inhabiting the intestinal tract of humans and warm-blooded animals and rarely causes diseases. However, E. coli also remains as one of the most frequent causes of several common bacterial infections in humans and animals. All over the word, antibiotic resistance is commonly detected among commensal bacteria from food-producing animals, raising important questions on the potential impact of antibiotic use in animals and the possible transmission of these resistant bacteria to humans through the food chain. The use, in food-producing animals, of antibiotics that are critically important in human medicine has been implicated in the emergence of new forms of resistant bacteria, including new strains of multidrug-resistant foodborne bacteria, such as extended spectrum β-lactamase (ESBL)-producing E. coli. Abstract Escherichia coli are facultative, anaerobic Gram-negative rods with many facets. Within resistant bacterial populations, they play an important ecological role and can be used as a bioindicator of antimicrobial resistance. All animal species used for food production, as well as humans, carry E. coli in their intestinal tracts; plus, the genetic flexibility and adaptability of this bacteria to constantly changing environments allows it to acquire a great number of antimicrobial resistance mechanisms. Thus, the prevalence of antimicrobial resistance in these commensal bacteria (or others, such as enterococci) can be a good indicator for the selective pressure caused by the use of antimicrobial agents, providing an early warning of the emergence of antimicrobial resistance in pathogens. As many as 90% of E. coli strains are commensals inhabiting the intestinal tracts of humans and warm-blooded animals. As a commensal, it lives in a mutually beneficial association with its hosts and rarely causes diseases. However, E. coli also remains as one of the most frequent causes of several common bacterial infections in humans and animals. In humans, it is the prominent cause of enteritis, community- and hospital-acquired urinary tract infection (UTI), septicemia, postsurgical peritonitis, and other clinical infections, such as neonatal meningitis, while, in farm animals, it is more prominently associated with diarrhea. On a global scale, E. coli can be considered the most important human pathogen, causing severe infection along with other major bacterial foodborne agents, such as Salmonella spp. and Campylobacter. Thus, the importance of resistance in E. coli, typically considered a benign commensal, should not be underestimated.
Collapse
Affiliation(s)
- Sónia Ramos
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
| | - Vanessa Silva
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Maria de Lurdes Enes Dapkevicius
- Faculty of Agricultural and Environmental Sciences, University of the Azores, 9500-321 Angra do Heroísmo, Portugal;
- Institute of Agricultural and Environmental Research and Technology (IITAA), University of the Azores, 9500-321 Angra do Heroísmo, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections (NRL-AMR/HAI), Department of Infectious Diseases, National Institute of Health Dr Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, Oporto University, 4051-401 Oporto, Portugal
| | - María Teresa Tejedor-Junco
- Research Institute of Biomedical and Health Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain;
- Department of Clinical Sciences, University of Las Palmas de Gran Canaria, 35001 Canary Islands, Spain
| | - Gilberto Igrejas
- Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal;
- Functional Genomics and Proteomics Unit, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro (UTAD), 5001-801 Vila Real, Portugal; (S.R.); (V.S.)
- Associated Laboratory for Green Chemistry (LAQV-REQUIMTE), University NOVA of Lisboa, 2829-516 Lisbon, Portugal
- Correspondence: ; Tel./Fax: +351-259-350-466
| |
Collapse
|
40
|
Massella E, Reid CJ, Cummins ML, Anantanawat K, Zingali T, Serraino A, Piva S, Giacometti F, Djordjevic SP. Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Antibiotics (Basel) 2020; 9:antibiotics9110782. [PMID: 33172096 PMCID: PMC7694828 DOI: 10.3390/antibiotics9110782] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, blaCTX-M1,15,55, blaCMY-2, gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified.
Collapse
Affiliation(s)
- Elisa Massella
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Cameron J. Reid
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Max L. Cummins
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Kay Anantanawat
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Tiziana Zingali
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Silvia Piva
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy; (E.M.); (A.S.); (S.P.); (F.G.)
| | - Steven P. Djordjevic
- The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia; (C.J.R.); (M.L.C.); (K.A.); (T.Z.)
- Correspondence:
| |
Collapse
|
41
|
Valiatti TB, Santos FF, Santos ACM, Nascimento JAS, Silva RM, Carvalho E, Sinigaglia R, Gomes TAT. Genetic and Virulence Characteristics of a Hybrid Atypical Enteropathogenic and Uropathogenic Escherichia coli (aEPEC/UPEC) Strain. Front Cell Infect Microbiol 2020; 10:492. [PMID: 33134184 PMCID: PMC7550682 DOI: 10.3389/fcimb.2020.00492] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/08/2020] [Indexed: 12/23/2022] Open
Abstract
Hybrid strains of Escherichia coli combine virulence traits of diarrheagenic (DEC) and extraintestinal pathogenic E. coli (ExPEC), but it is poorly understood whether these combined features improve the virulence potential of such strains. We have previously identified a uropathogenic E. coli (UPEC) strain (UPEC 252) harboring the eae gene that encodes the adhesin intimin and is located in the locus of enterocyte effacement (LEE) pathogenicity island. The LEE-encoded proteins allow enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) to form attaching and effacing (A/E) lesions in enterocytes. We sought to characterize UPEC 252 through whole-genome sequencing and phenotypic virulence assays. Genome analysis unveiled that this strain harbors a complete LEE region, with more than 97% of identity comparing to E2348/69 (EPEC) and O157:H7 Sakai (EHEC) prototype strains, which was functional, since UPEC 252 expressed the LEE-encoded proteins EspB and intimin and induced actin accumulation foci in HeLa cells. Phylogenetic analysis performed comparing 1,000 single-copy shared genes clustered UPEC 252 with atypical EPEC strains that belong to the sequence type 10, phylogroup A. Additionally, UPEC 252 was resistant to the bactericidal power of human serum and colonized cells of the urinary (T24 and HEK293-T) and intestinal (Caco-2 and LS174T) tracts. Our findings suggest that UPEC 252 is an atypical EPEC strain that emerges as a hybrid strain (aEPEC/UPEC), which could colonize new niches and potentially cause intestinal and extraintestinal infections.
Collapse
Affiliation(s)
- Tiago B Valiatti
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda F Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana C M Santos
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Júllia A S Nascimento
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rosa M Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Rita Sinigaglia
- Centro de Microscopia Eletrônica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tânia A T Gomes
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Chen Z, Erickson DL, Meng J. Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing. BMC Genomics 2020; 21:631. [PMID: 32928108 PMCID: PMC7490894 DOI: 10.1186/s12864-020-07041-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Background We benchmarked the hybrid assembly approaches of MaSuRCA, SPAdes, and Unicycler for bacterial pathogens using Illumina and Oxford Nanopore sequencing by determining genome completeness and accuracy, antimicrobial resistance (AMR), virulence potential, multilocus sequence typing (MLST), phylogeny, and pan genome. Ten bacterial species (10 strains) were tested for simulated reads of both mediocre- and low-quality, whereas 11 bacterial species (12 strains) were tested for real reads. Results Unicycler performed the best for achieving contiguous genomes, closely followed by MaSuRCA, while all SPAdes assemblies were incomplete. MaSuRCA was less tolerant of low-quality long reads than SPAdes and Unicycler. The hybrid assemblies of five antimicrobial-resistant strains with simulated reads provided consistent AMR genotypes with the reference genomes. The MaSuRCA assembly of Staphylococcus aureus with real reads contained msr(A) and tet(K), while the reference genome and SPAdes and Unicycler assemblies harbored blaZ. The AMR genotypes of the reference genomes and hybrid assemblies were consistent for the other five antimicrobial-resistant strains with real reads. The numbers of virulence genes in all hybrid assemblies were similar to those of the reference genomes, irrespective of simulated or real reads. Only one exception existed that the reference genome and hybrid assemblies of Pseudomonas aeruginosa with mediocre-quality long reads carried 241 virulence genes, whereas 184 virulence genes were identified in the hybrid assemblies of low-quality long reads. The MaSuRCA assemblies of Escherichia coli O157:H7 and Salmonella Typhimurium with mediocre-quality long reads contained 126 and 118 virulence genes, respectively, while 110 and 107 virulence genes were detected in their MaSuRCA assemblies of low-quality long reads, respectively. All approaches performed well in our MLST and phylogenetic analyses. The pan genomes of the hybrid assemblies of S. Typhimurium with mediocre-quality long reads were similar to that of the reference genome, while SPAdes and Unicycler were more tolerant of low-quality long reads than MaSuRCA for the pan-genome analysis. All approaches functioned well in the pan-genome analysis of Campylobacter jejuni with real reads. Conclusions Our research demonstrates the hybrid assembly pipeline of Unicycler as a superior approach for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing.
Collapse
Affiliation(s)
- Zhao Chen
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, and Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - David L Erickson
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, and Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Jianghong Meng
- Joint Institute for Food Safety and Applied Nutrition, Center for Food Safety and Security Systems, and Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
43
|
Rahmani HK, Tabar GH, Badouei MA, Khoramian B. Development of three multiplex-PCR assays for virulence profiling of different iron acquisition systems in Escherichia coli. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:281-288. [PMID: 32994898 PMCID: PMC7502150 DOI: 10.18502/ijm.v12i4.3930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Escherichia coli is responsible for various enteric and extraintestinal infections in animals and humans. Iron as an essential nutrient, has a proven role in pathogenicity of E. coli. Pathogenic E. coli benefits of having complicated systems for iron acquisition but our current knowledge is limited because of complexity of these systems. In the present study, three multiplex-PCR assays were developed to screen nine different virulence genes related to diverse iron acquisition systems in E. coli. MATERIALS AND METHODS The multiplex-PCR systems were designed and optimized in three panels. Each panel includes a triplex-PCR cocktail. The panels are as follow: panel 1: iroN, iutA and fecA; panel 2: fyuA, sitA and irp2; and panel 3: iucD, chuA and tonB. A total of 39 pathogenic E. coli was screened according to the designed multiplex-PCR. RESULTS In total, the top three frequent genes were tonB (100%), fecA (66.6%) and sitA (58.9%). With the exception of fecA and tonB, comparing the prevalence of genes among different origin of isolates (human, cattle, poultry and pigeon) showed significant associations (P < 0.05). Moreover, the iroN, sitA and iucD genes were significantly prevalent (P < 0.05) among members of extraintestinal pathogenic E. coli in comparison with the group of diarrheagenic E. coli. CONCLUSION The current multiplex-PCR assays could be a valuable, rapid and economic tool to investigate diverse iron acquisition systems in E. coli for more precise virulence typing of pathogenic or commensal strains.
Collapse
Affiliation(s)
- Hamideh Kalateh Rahmani
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Hashemi Tabar
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Askari Badouei
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Babak Khoramian
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
44
|
Santos ACDM, Santos FF, Silva RM, Gomes TAT. Diversity of Hybrid- and Hetero-Pathogenic Escherichia coli and Their Potential Implication in More Severe Diseases. Front Cell Infect Microbiol 2020; 10:339. [PMID: 32766163 PMCID: PMC7381148 DOI: 10.3389/fcimb.2020.00339] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
Although extraintestinal pathogenic Escherichia coli (ExPEC) are designated by their isolation site and grouped based on the type of host and the disease they cause, most diarrheagenic E. coli (DEC) are subdivided into several pathotypes based on the presence of specific virulence traits directly related to disease development. This scenario of a well-categorized E. coli collapsed after the German outbreak of 2011, caused by one strain bearing the virulence factors of two different DEC pathotypes (enteroaggregative E. coli and Shiga toxin-producing E. coli). Since the outbreak, many studies have shown that this phenomenon is more frequent than previously realized. Therefore, the terms hybrid- and hetero-pathogenic E. coli have been coined to describe new combinations of virulence factors among the classic E. coli pathotypes. In this review, we provide an overview of these classifications and highlight the E. coli genomic plasticity that results in some mixed E. coli pathotypes displaying novel pathogenic strategies, which lead to a new symptomatology related to E. coli diseases. In addition, as the capacity for genome interrogation has grown in the last few years, it is clear that genes encoding some virulence factors, such as Shiga toxin, are found among different E. coli pathotypes to which they have not traditionally been associated, perhaps foreshowing their emergence in new and severe outbreaks caused by such hybrid strains. Therefore, further studies regarding hetero-pathogenic and hybrid-pathogenic E. coli isolates are necessary to better understand and control the spread of these pathogens.
Collapse
Affiliation(s)
- Ana Carolina de Mello Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rosa Maria Silva
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tânia Aparecida Tardelli Gomes
- Disciplina de Microbiologia, Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Finton MD, Meisal R, Porcellato D, Brandal LT, Lindstedt BA. Whole Genome Sequencing and Characterization of Multidrug-Resistant (MDR) Bacterial Strains Isolated From a Norwegian University Campus Pond. Front Microbiol 2020; 11:1273. [PMID: 32625184 PMCID: PMC7311804 DOI: 10.3389/fmicb.2020.01273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 11/16/2022] Open
Abstract
The presence of extended-spectrum β-lactamase (ESBL)-producing bacteria in environmental sources has been reported worldwide and constitutes a serious risk of community-acquired infections with limited treatment options. The current study aimed to explore the presence of these worrisome bacteria in a pond located at the Norwegian University of Life Sciences in Ås, Norway. A total of 98 bacterial isolates survived growth on selective chromogenic media and were identified by 16S rRNA Sanger sequencing. All strains were evaluated for the presence of the most commonly found β-lactamases and ESBLs in clinical settings (blaCTX–M groups 1, 2, and 9, blaCMY, blaSHV, and blaTEM) and carbapenemases (blaIMP, blaKPC, blaNDM, blaOXA, blaSFC1, blaVIM) through multiplex PCR. A total of eight strains were determined to contain one or more genes of interest. Phenotypic resistance to 18 antimicrobial agents was assessed and isolates were subjected to whole genome sequencing through a combination of Oxford Nanopore’s MinION and Illumina’s MiSeq. Results revealed the presence of β-lactamase and ESBL-producing Escherichia coli, Klebsiella pneumoniae, Stenotrophomonas maltophilia, and a Paraburkholderia spp. Identified β-lactamases and ESBLs include blaCTX–M, blaTEM, blaCMY, blaSHV and a possible blaKPC-like gene, with both documented and novel sequences established. In addition, two inducible β-lactamases were found, a class A β-lactamase (L1) and a cephalosporinase (L2). All strains were determined to be multidrug resistant and numerous resistance genes to non-β-lactams were observed. In conclusion, this study demonstrates that environmental sources are a potential reservoir of clinically relevant ESBL-producing bacteria that may pose a health risk to humans upon exposure.
Collapse
Affiliation(s)
- Misti D Finton
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Roger Meisal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Lin T Brandal
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, Norway
| | - Bjørn-Arne Lindstedt
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
46
|
Apostolakos I, Feudi C, Eichhorn I, Palmieri N, Fasolato L, Schwarz S, Piccirillo A. High-resolution characterisation of ESBL/pAmpC-producing Escherichia coli isolated from the broiler production pyramid. Sci Rep 2020; 10:11123. [PMID: 32636426 PMCID: PMC7341882 DOI: 10.1038/s41598-020-68036-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
The presence of extended-spectrum β-lactamase (ESBL) or plasmid-mediated AmpC β-lactamase (pAmpC)-producing Escherichia coli (ESBL/pAmpC-EC) in livestock is a public health risk given the likelihood of their transmission to humans via the food chain. We conducted whole genome sequencing on 100 ESBL/pAmpC-EC isolated from the broiler production to explore their resistance and virulence gene repertoire, characterise their plasmids and identify transmission events derived from their phylogeny. Sequenced isolates carried resistance genes to four antimicrobial classes in addition to cephalosporins. Virulence gene analysis assigned the majority of ESBL/pAmpC-EC to defined pathotypes. In the complex genetic background of ESBL/pAmpC-EC, clusters of closely related isolates from various production stages were identified and indicated clonal transmission. Phylogenetic comparison with publicly available genomes suggested that previously uncommon ESBL/pAmpC-EC lineages could emerge in poultry, while others might contribute to the maintenance and dissemination of ESBL/pAmpC genes in broilers. The majority of isolates from diverse E. coli lineages shared four dominant plasmids (IncK2, IncI1, IncX3 and IncFIB/FII) with identical ESBL/pAmpC gene insertion sites. These plasmids have been previously reported in diverse hosts, including humans. Our findings underline the importance of specific plasmid groups in the dissemination of cephalosporin resistance genes within the broiler industry and across different reservoirs.
Collapse
Affiliation(s)
- Ilias Apostolakos
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020, Padua, Italy
| | - Claudia Feudi
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Nicola Palmieri
- Department for Farm Animals and Veterinary Public Health, University Clinic for Poultry and Fish Medicine, University of Veterinary Medicine, 1210, Vienna, Austria
| | - Luca Fasolato
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020, Padua, Italy
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, 14163, Berlin, Germany
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020, Padua, Italy.
| |
Collapse
|
47
|
La-Ongkham O, Nakphaichit M, Nakayama J, Keawsompong S, Nitisinprasert S. Age-related changes in the gut microbiota and the core gut microbiome of healthy Thai humans. 3 Biotech 2020; 10:276. [PMID: 32537376 DOI: 10.1007/s13205-020-02265-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
The gut microbial diversity of Thai people was investigated between two large cohorts, adult and elderly subjects, from the middle region of Thailand; the cohorts were divided into different age groups of healthy adult (73) and elderly subjects (47). The diversities of the groups were characterized using a pyrosequencing technique with primers targeting the V6-V8 region of the 16S rRNA gene, and a significant decrease in the Firmicutes and Bacteroidetes ratio from 7.3 to 4.5 was observed with increased age. The microbiota of the adult and elderly groups had a significantly higher abundance of the phylum Actinobacteria, including the three species Bifidobacterium adolescentis, Bifidobacterium longum and Bifidobacterium pseudocatenulatum, and the phylum Bacteroidetes containing the four species Bacteroides uniformis, Bacteroides ovatus, Bacteroides caccae and Bacteroides thetaiotaomicron. Firmicutes showed no significant differences between the two groups. Eleven species belonging to Firmicutes, Bacteroidetes and Proteobacteria were shared by at least 90% of all subjects and defined as core gut microbiota of healthy Thai, among which a high abundance of Escherichia coli was particularly characterized in Thai elderly individuals. Multiple linear regression analysis of age, gender, BMI and diet consumption frequency showed the correlation of age with Bacteroides and Bifidobacterium. Rice consumption frequency showed a significant positive correlation with Bacteroides, while no correlation was found for other factors. Taken together, in the gut of Thai adults, Bifidobacterium decreased and Bacteroides increased with age, while rice consumption increased the abundance of Bacteroides. These link of age and food, especially rice carbohydrate, to gut microbiota and health could be ultimately proposed as the Thai feature.
Collapse
Affiliation(s)
- Orawan La-Ongkham
- Specialized Research Unit: Probiotics and Prebiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Lat Yao Chatuchak, Bangkok, 10900 Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies (CASAF, NRU-KU, Thailand), Kasetsart University, Bangkok, 10900 Thailand
- Institution of Food Research and Product Development, Kasetsart University, 50 Ngam Wong Wan Rd., Chatuchak, Bangkok, 10900 Thailand
| | - Massalin Nakphaichit
- Specialized Research Unit: Probiotics and Prebiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Lat Yao Chatuchak, Bangkok, 10900 Thailand
- Center for Agricultural Biotechnology, Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Cumpus, Nakhon Pathom, 73140 Thailand
| | - Jiro Nakayama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Suttipun Keawsompong
- Specialized Research Unit: Probiotics and Prebiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Lat Yao Chatuchak, Bangkok, 10900 Thailand
- Center for Agricultural Biotechnology, Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Cumpus, Nakhon Pathom, 73140 Thailand
| | - Sunee Nitisinprasert
- Specialized Research Unit: Probiotics and Prebiotics for Health, Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Lat Yao Chatuchak, Bangkok, 10900 Thailand
- Center for Advanced Studies for Agriculture and Food, KU Institute for Advanced Studies (CASAF, NRU-KU, Thailand), Kasetsart University, Bangkok, 10900 Thailand
- Center for Agricultural Biotechnology, Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Cumpus, Nakhon Pathom, 73140 Thailand
| |
Collapse
|
48
|
Díaz-Jiménez D, García-Meniño I, Herrera A, García V, López-Beceiro AM, Alonso MP, Blanco J, Mora A. Genomic Characterization of Escherichia coli Isolates Belonging to a New Hybrid aEPEC/ExPEC Pathotype O153:H10-A-ST10 eae-beta1 Occurred in Meat, Poultry, Wildlife and Human Diarrheagenic Samples. Antibiotics (Basel) 2020; 9:antibiotics9040192. [PMID: 32316613 PMCID: PMC7235894 DOI: 10.3390/antibiotics9040192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
Different surveillance studies (2005–2015) in northwest Spain revealed the presence of eae-positive isolates of Escherichia coli O153:H10 in meat for human consumption, poultry farm, wildlife and human diarrheagenic samples. The aim of this study was to explore the genetic and genomic relatedness between human and animal/meat isolates, as well as the mechanism of its persistence. We also wanted to know whether it was a geographically restricted lineage, or whether it was also reported elsewhere. Conventional typing showed that 32 isolates were O153:H10-A-ST10 fimH54, fimAvMT78, traT and eae-beta1. Amongst these, 21 were CTX-M-32 or SHV-12 producers. The PFGE XbaI-macrorestriction comparison showed high similarity (>85%). The plasmidome analysis revealed a stable combination of IncF (F2:A-:B-), IncI1 (STunknown) and IncX1 plasmid types, together with non-conjugative Col-like plasmids. The core genome investigation based on the cgMLST scheme from EnteroBase proved close relatedness between isolates of human and animal origin. Our results demonstrate that a hybrid MDR aEPEC/ExPEC of the clonal group O153:H10-A-ST10 (CH11-54) is circulating in our region within different hosts, including wildlife. It seems implicated in human diarrhea via meat transmission, and in the spreading of ESBL genes (mainly of CTX-M-32 type). We found genomic evidence of a related hybrid aEPEC/ExPEC in at least one other country.
Collapse
Affiliation(s)
- Dafne Díaz-Jiménez
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Isidro García-Meniño
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Alexandra Herrera
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
| | - Vanesa García
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Ana María López-Beceiro
- Departamento de Anatomía, Produción Animal e Ciencias Clínicas Veterinarias, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain;
| | - María Pilar Alonso
- Unidade de Microbioloxía, Hospital Universitario Lucus Augusti (HULA), 27003 Lugo, Spain;
| | - Jorge Blanco
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
| | - Azucena Mora
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain; (D.D.-J.); (I.G.-M.); (A.H.); (V.G.); (J.B.)
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), 15706 Santiago, Spain
- Correspondence: ; Tel.: +34-982822110
| |
Collapse
|
49
|
Gati NS, Middendorf-Bauchart B, Bletz S, Dobrindt U, Mellmann A. Origin and Evolution of Hybrid Shiga Toxin-Producing and Uropathogenic Escherichia coli Strains of Sequence Type 141. J Clin Microbiol 2019; 58:e01309-19. [PMID: 31619530 PMCID: PMC6935910 DOI: 10.1128/jcm.01309-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Hybrid Shiga toxin-producing Escherichia coli (STEC) and uropathogenic E. coli (UPEC) strains of multilocus sequence type 141 (ST141) cause both urinary tract infections and diarrhea in humans and are phylogenetically positioned between STEC and UPEC strains. We used comparative genomic analysis of 85 temporally and spatially diverse ST141 E. coli strains, including 14 STEC/UPEC hybrids, collected in Germany (n = 13) and the United States (n = 1) to reconstruct their molecular evolution. Whole-genome sequencing data showed that 89% of the ST141 E. coli strains either were STEC/UPEC hybrids or contained a mixture of virulence genes from other pathotypes. Core genome analysis and ancestral reconstruction revealed that the ST141 E. coli strains clustered into two lineages that evolved from a common ancestor in the mid-19th century. The STEC/UPEC hybrid emerged ∼100 years ago by acquiring an stx prophage, which integrated into previously unknown insertion site between rcsB and rcsD, followed by the insertion of a pathogenicity island (PAI) similar to PAI II of UPEC strain 536 (PAI II536-like). The two variants of PAI II536-like were associated with tRNA genes leuX and pheU, respectively. Finally, microevolution within PAI II536-like and acquisition of the enterohemorrhagic E. coli plasmid were observed. Our data suggest that intestinal pathogenic E. coli (IPEC)/extraintestinal pathogenic E. coli (ExPEC) hybrids are widespread and that selection pressure within the ST141 E. coli population led to the emergence of the STEC/UPEC hybrid as a clinically important subgroup. We hypothesize that ST141 E. coli strains serve as a melting pot for pathogroup conversion between IPEC and ExPEC, contrasting the classical theory of pathogen emergence from nonpathogens and corroborating our recent phenomenon of heteropathogenicity among pathogenic E. coli strains.
Collapse
Affiliation(s)
- Noble Selasi Gati
- University Hospital Münster, Institute of Hygiene, National Consulting Laboratory for Hemolytic Uremic Syndrome (HUS), Münster, Germany
| | - Barbara Middendorf-Bauchart
- University Hospital Münster, Institute of Hygiene, National Consulting Laboratory for Hemolytic Uremic Syndrome (HUS), Münster, Germany
| | - Stefan Bletz
- University Hospital Münster, Institute of Hygiene, National Consulting Laboratory for Hemolytic Uremic Syndrome (HUS), Münster, Germany
| | - Ulrich Dobrindt
- University Hospital Münster, Institute of Hygiene, Microbial Genome-Plasticity, Münster, Germany
| | - Alexander Mellmann
- University Hospital Münster, Institute of Hygiene, National Consulting Laboratory for Hemolytic Uremic Syndrome (HUS), Münster, Germany
| |
Collapse
|