1
|
Alsenousy AHA, Sharker SA, Gowayed MA, Elblehi SS, Kamel MA. Aptamer-targeted anti-miR RNA construct based on 3WJ as a new approach for the treatment of chronic kidney disease in an experimental model. Gene Ther 2025:10.1038/s41434-025-00544-7. [PMID: 40514411 DOI: 10.1038/s41434-025-00544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 05/06/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025]
Abstract
The treatment of chronic disease (CKD) is a great challenge in healthcare that requires an innovative approach to address its complex nature. RNA nanotechnology has emerged rapidly and received attention in the last few years because of its significant aptitude for therapies. Hence, the present study aimed to design, construct, and characterize a multifunctional (anti-miR-34a DNA aptamer-kidney targeted) RNA nanoparticle (RNPs) based on bacteriophage phi29 packaging RNA three-way junction (pRNA-3WJ), and then explore their in vivo toxicity and therapeutic potentials in mice model of CKD. After confirming the safety and specific targeting capability of the prepared core 3WJ (3WJ) and the therapeutic 3WJ (3WJ-Kapt/anti-miR-34a) RNPs to renal tissue using healthy mice, CKD was induced in C57BL/6 mice using adenine. CKD mice were treated with a single intravenous injection of 3WJ or 3WJ-Kapt/anti-miR-34a. Every week, 5 mice of each group were selected randomly for sample collection for 4 weeks post-treatment. The anti-miR-34a 3WJ-RNPs have shown stability, safety, and efficacy in renal targeting using DNA aptamer, by targeting miR-34a in renal tissue, 3WJ-Kapt/anti-miR-34a suppressed profibrotic gene expression and induced anti-fibrotic pathways' expression. Our present study provides preliminary and pioneering evidence for the promising treatment of renal fibrosis and CKD through targeting miR-34a in the renal tissue by 3WJ-RNPs. The CKD mice showed marked time-dependent up-regulation of the renal profibrotic pathways, including TGF-β, FGF2, and WNT/β-catenin pathways. The same mice showed suppressed renal expression of the antifibrotic pathways, including α and β Klotho, SMAD7, and SIRT1. The prepared anti-miR-34a 3WJ-RNPs have shown stability, safety, and efficacy in renal targeting using DNA aptamer. By targeting miR-34a in renal tissue, 3WJ-Kapt/anti-miR-34a suppressed profibrotic gene expression and induced anti-fibrotic pathways' expression. Our present study provides preliminary and pioneer evidence for the promising treatment of renal fibrosis and CKD through targeting miR-34a in the renal tissue by 3WJ-RNPs.
Collapse
Affiliation(s)
- Aisha H A Alsenousy
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt.
| | - Sara A Sharker
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy and Drug Manufacturing, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
- Research Projects unit, Pharos University in Alexandria, 21648, Alexandria, Egypt
| |
Collapse
|
2
|
Mohanty SK, Sahu VK, Singh BP, Suchiang K. Bidirectional upregulation of Klotho by triiodothyronine and baicalein: mitigating chronic kidney disease and associated complications in aged BALB/c mice. Biogerontology 2025; 26:114. [PMID: 40418372 DOI: 10.1007/s10522-025-10257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025]
Abstract
Chronic kidney disease (CKD) is a global health challenge marked by progressive renal decline and increased mortality. The interplay between CKD and hypothyroidism, particularly nonthyroidal low-triiodothyronine (T3) syndrome, exacerbates disease progression, driven by HPT axis dysfunction and reduced Klotho levels due to the Wnt/β-catenin pathway activation. This study explored Klotho as a link between CKD and hypothyroidism using an adenine-induced CKD aged mouse model. Exogenous T3 and baicalein (BAI), targeting the Wnt pathway, were used to upregulate Klotho expression. Combined T3 and BAI treatment significantly increased Klotho levels, surpassing individual effects, and suppressed key signaling molecules (TGF, NFκB, GSK3), mitigating renal fibrosis and CKD complications, including cardiovascular disorders and dyslipidemia. This bidirectional approach, enhancing Klotho via T3 and sustained Wnt pathway inhibition, offers a novel and effective strategy for CKD management, particularly in elderly patients with hypothyroidism.
Collapse
Affiliation(s)
- Saswat Kumar Mohanty
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, 605 014, India.
| | - Vikas Kumar Sahu
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, 605 014, India
| | - Bhanu Pratap Singh
- Department of Biochemistry and Molecular Biology, Pondicherry University, Pondicherry, 605 014, India
| | - Kitlangki Suchiang
- Department of Biochemistry, North Eastern Hill University, Shillong, 793022, India
| |
Collapse
|
3
|
Rana R, Mukherjee R, Mehan S, Khan Z, Das Gupta G, Narula AS. Molecular mechanisms of neuroprotection: The interplay of Klotho, SIRT-1, Nrf2, and HO-1 in neurological health. Behav Brain Res 2025; 485:115545. [PMID: 40120944 DOI: 10.1016/j.bbr.2025.115545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/06/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Neurological disorders significantly impair neuronal function and lead to cognitive and motor deficits. This review manuscript explores the therapeutic potential of key proteins-Klotho, SIRT-1, Nrf2, and HO-1-in combating these disorders. Neurological conditions encompass neurotraumatic, neurodegenerative, and neuropsychiatric diseases, all characterized by neuronal loss and dysfunction. The complex functions of Klotho, an anti-aging protein, and SIRT-1, a histone deacetylase, highlight their roles in neuronal survival and neuroprotection through the enhancement of antioxidant defences and the modulation of stress responses. Nrf2 functions as the principal regulator of the antioxidant response, whereas HO-1 facilitates the control of oxidative stress and the resolution of inflammation. Evidence suggests that the interplay between these proteins facilitates neuroprotection by decreasing oxidative damage and promoting cognitive function. The study emphasises the significance of signalling pathways, particularly the Nrf2/HO-1 axis, which are essential in mitigating oxidative stress and inflammation linked to neurodegenerative disorders. Future therapeutic strategies must consider personalized approaches, innovative drug delivery systems, and early intervention to optimize outcomes. This review provides a comprehensive framework for understanding how targeting these pathways can mitigate the burden of neurological disorders, advancing the development of effective interventions for enhancing brain health.
Collapse
Affiliation(s)
- Ravi Rana
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ritam Mukherjee
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
4
|
Lai Y, Zhu Y, Zhang X, Ding S, Wang F, Hao J, Wang Z, Shi C, Xu Y, Zheng L, Huang W. Gut microbiota-derived metabolites: Potential targets for cardiorenal syndrome. Pharmacol Res 2025; 214:107672. [PMID: 40010448 DOI: 10.1016/j.phrs.2025.107672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
The characteristic of cardiorenal syndrome (CRS) is simultaneous damage to both the heart and kidneys. CRS has caused a heavy burden of mortality and incidence rates worldwide. The regulation of host microbiota metabolism that triggers heart and kidney damage is an emerging research field that promotes a new perspective on cardiovascular risk. We summarize current studies from bench to bedside of gut microbiota-derived metabolites to better understand CRS in the context of gut microbiota-derived metabolites. We focused on the involvement of gut microbiota-derived metabolites in the pathophysiology of CRS, including lipid and cholesterol metabolism disorders, coagulation abnormalities and platelet aggregation, oxidative stress, endothelial dysfunction, inflammation, mitochondrial damage and energy metabolism disorders, vascular calcification and renal fibrosis, as well as emerging therapeutic approaches targeting CRS metabolism in gut microbiota-derived metabolites which provides an innovative treatment approach for CRS to improve patient prognosis and overall quality of life.
Collapse
Affiliation(s)
- Yuchen Lai
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yujie Zhu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Xihui Zhang
- Department of Blood Purification, General Hospital of Central Theater Command(Hankou Campus), No.68, Huangpu Avenue, Wuhan, 430010, China
| | - Shifang Ding
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China
| | - Fang Wang
- Department of Blood Purification, General Hospital of Central Theater Command(Hankou Campus), No.68, Huangpu Avenue, Wuhan, 430010, China
| | - Jincen Hao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China
| | - Zhaomeng Wang
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China
| | - Congqi Shi
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yongjin Xu
- School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, Beijing 100191, China; Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Beijing Institute of Brain Disorders, The Capital Medical University, Beijing 100050, China.
| | - Wei Huang
- Department of Cardiology, General Hospital of Central Theater Command, No.627, Wuluo Road, Wuhan 430070, China.
| |
Collapse
|
5
|
Prabhahar A, Batta A, Hatwal J, Kumar V, Ramachandran R, Batta A. Endothelial dysfunction in the kidney transplant population: Current evidence and management strategies. World J Transplant 2025; 15:97458. [PMID: 40104196 PMCID: PMC11612885 DOI: 10.5500/wjt.v15.i1.97458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 11/04/2024] [Indexed: 11/26/2024] Open
Abstract
The endothelium modulates vascular homeostasis owing to a variety of vasoconstrictors and vasodilators. Endothelial dysfunction (ED), characterized by impaired vasodilation, inflammation, and thrombosis, triggers future cardiovascular (CV) diseases. Chronic kidney disease, a state of chronic inflammation caused by oxidative stress, metabolic abnormalities, infection, and uremic toxins damages the endothelium. ED is also associated with a decline in estimated glomerular filtration rate. After kidney transplantation, endothelial functions undergo immediate but partial restoration, promising graft longevity and enhanced CV health. However, the anticipated CV outcomes do not happen due to various transplant-related and unrelated risk factors for ED, culminating in poor CV health and graft survival. ED in kidney transplant recipients is an under-recognized and poorly studied entity. CV diseases are the leading cause of death among kidney transplant candidates with functioning grafts. ED contributes to the pathogenesis of many of the CV diseases. Various biomarkers and vasoreactivity tests are available to study endothelial functions. With an increasing number of transplants happening every year, and improved graft rejection rates due to the availability of effective immunosuppressants, the focus has now shifted to endothelial protection for the prevention, early recognition, and treatment of CV diseases.
Collapse
Affiliation(s)
- Arun Prabhahar
- Department of Telemedicine (Internal Medicine and Nephrology), Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Akshey Batta
- Department of Urology and Renal Transplant, Neelam Hospital, Rajpura 140401, Punjab, India
| | - Juniali Hatwal
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vivek Kumar
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Raja Ramachandran
- Department of Nephrology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana 141001, Punjab, India
| |
Collapse
|
6
|
Abdelfattah AM, Mohammed ZA, Talaat A, Samy W, Eldesoqui M, Elgarhi RI. A PDE1 inhibitor, vinpocetine, ameliorates epithelial-mesenchymal transition and renal fibrosis in adenine-induced chronic kidney injury in rats by targeting the DNMT1/Klotho/β-catenin/Snail 1 and MMP-7 pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2769-2781. [PMID: 39276250 PMCID: PMC11919975 DOI: 10.1007/s00210-024-03393-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/16/2024] [Indexed: 09/16/2024]
Abstract
Tubulointerstitial fibrosis (TIF) is present with chronic kidney disease (CKD). Vinpocetine (Vinpo) is used for treating cerebrovascular deficits, exhibiting some kidney-beneficial effects; however, its role in TIF is uncertain. So, the aim of this study was to investigate its potential impact on adenine-induced fibrotic CKD and explore the underlying mechanistic aspects. Eighteen male Wistar rats were categorized into three groups (n = 6 each). Group I was kept as controls and given saline; group II received adenine (300 mg/kg, twice weekly, i.p.) for induction of the CKD model; and group III was administered Vinpo (20 mg/kg/d, orally) concurrently with adenine. All treatments were administered for 4 weeks. Vinpo revealed an improvement in renal function and an alleviation of inflammation triggered by adenine via diminishing serum tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) levels. Further, Vinpo repressed the epithelial-mesenchymal transition (EMT) with preserved E-cadherin mRNA expression and lowered gene and immune expression of fibronectin and vimentin, respectively, besides attenuating the elevated G2/M arrest-related molecules (renal Ki67 protein contents and p21 gene expression). Renal pathological alterations caused by adenine were attenuated upon Vinpo administration. Interestingly, Vinpo suppressed abnormal renal β-catenin immunoreactivity, Snail 1, and MMP-7 gene expression while simultaneously restored Klotho protein expression by downregulating DNA methyltransferase 1 enzyme (DNMT1) protein expression in the kidney. These data indicated that Vinpo effectively mitigated EMT and G2/M arrest-induced renal fibrosis in adenine-induced CKD rats by targeting DNMT1-associated Klotho suppression, subsequently inhibiting β-catenin and its fibrotic downstream genes.
Collapse
Affiliation(s)
| | - Zeinab A Mohammed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Aliaa Talaat
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa Samy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, 11597, Riyadh, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Reham I Elgarhi
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
7
|
Shahzamani K, Amooyi A, Karampoor S, Khanizadeh S, Farahmand M. Klotho protein: A key modulator of aging and COVID-19 severity. Int J Biol Macromol 2025; 296:139234. [PMID: 39798764 DOI: 10.1016/j.ijbiomac.2024.139234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/04/2024] [Accepted: 12/24/2024] [Indexed: 01/15/2025]
Abstract
The COVID-19 pandemic has drawn significant attention to factors affecting disease severity, especially in older adults. This study explores the relationship between Klotho, an anti-aging protein, and COVID-19 severity. Conducted at Tehran's Firouzgar Hospital, this case-control study involved 279 participants, assessing serum levels of Klotho, inflammatory markers (C-reactive protein (CRP), Interleukin 6 (IL-6)), and Vitamin D. The findings indicate significantly lower Klotho levels in COVID-19 patients, especially those in the ICU, which correlate with elevated inflammatory markers and reduced Vitamin D levels. This inverse relationship between Klotho levels and disease severity underscores the protein's potential modulatory role in the inflammatory response to COVID-19. The study not only highlights the importance of Klotho as a biomarker for aging and disease severity but also suggests its potential therapeutic value in managing COVID-19, offering a novel perspective on targeting aging-related pathways to mitigate the impact of the disease. These insights open new avenues for research and intervention strategies to leverage anti-aging mechanisms to combat COVID-19 and potentially other age-related diseases.
Collapse
Affiliation(s)
- Kiana Shahzamani
- Lorestan University of Medical Sciences, Islamic Republic of Iran.
| | - Atefeh Amooyi
- Lorestan University of Medical Sciences, Islamic Republic of Iran
| | - Sajad Karampoor
- Iran University of Medical Sciences, Islamic Republic of Iran
| | | | | |
Collapse
|
8
|
Vig A, Pathak M, Sharma S, Jadhav A, Nayak S, Sinha A. Role of Emerging Urinary Biomarkers in Predicting Progressive Deterioration of Kidney Function in Congenital Anomalies of Kidney and Urinary Tract: Trefoil Family Factor 3, Alpha Soluble Klotho and Urinary Microalbuminuria. J Pediatr Surg 2025; 60:162019. [PMID: 39477750 DOI: 10.1016/j.jpedsurg.2024.162019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 02/26/2025]
Abstract
INTRODUCTION Chronic kidney disease is an irreversible fate of many CAKUT (Congenital Abnormalities of the Kidneys and Urinary Tract) patients. Biomarkers involved in the disease progression are raised early in the disease process and aid in identifying the individuals at risk of progressive renal function decline. AIMS To determine and compare the initial levels of urinary biomarkers in patients of CAKUT with asymptomatic controls and to correlate the same with progression of renal disease. RESULTS This study includes 66 children with CAKUT and 22 healthy controls. Initial levels of three urinary Biomarkers: Trefoil family factor 3 (TFF3), Alpha soluble Klotho and Albumin-to-creatinine ratio (ACR) was recorded. Kidney function was assessed initially and at the end of 1 y follow up. Progressive deterioration of renal disease was noted in 26 (fall in GFR by >10 ml/min/m2). Median levels of urinary TFF3, alpha soluble Klotho and ACR was higher in patients with CAKUT (263, 18, 56 mcg/gCr) as compared to controls (15, 5, 6 mcg/gCr) and was further higher in patients having a progressive kidney disease (586, 40, 182 mcg/gCr). The cut-off value of the TEF3 to diagnose progressive renal disease was 178 mcg/g Cr with sensitivity and specificity of 95 % and 96 %, respectively. Using a cut-off of 29 mg/g Cr for ACR, sensitivity and specificity were 97 and 96 %, respectively. Urinary soluble Klotho was a relatively poor urinary biomarker with sensitivity and specificity of only 70 and 78 %, respectively, at a cut-off value of 18 mcg/g Cr. CONCLUSION TFF3 and ACR are useful biomarkers which can be included in the biomarker panel to identify patients having a progressive renal disease and are at a risk of developing CKD.
Collapse
Affiliation(s)
- Ayushi Vig
- Department of Pediatric Surgery, All India Institute of Medical Sciences Jodhpur, India.
| | - Manish Pathak
- Department of Pediatric Surgery, All India Institute of Medical Sciences Jodhpur, India.
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences Jodhpur, India.
| | - Avinash Jadhav
- Department of Pediatric Surgery, All India Institute of Medical Sciences Jodhpur, India.
| | - Shubhalaxmi Nayak
- Department of Pediatric Surgery, All India Institute of Medical Sciences Jodhpur, India.
| | - Arvind Sinha
- Department of Pediatric Surgery, All India Institute of Medical Sciences Jodhpur, India.
| |
Collapse
|
9
|
Razzaque MS, Mohammadi M. Can targeting the FGF23-αKlotho signaling system delay phosphate-driven organ damage? Expert Opin Ther Targets 2025; 29:93-100. [PMID: 40152642 DOI: 10.1080/14728222.2025.2482552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
INTRODUCTION Inexorable high serum phosphate levels in chronic kidney disease (CKD) patients deteriorate the functionality of the musculoskeletal, renal, and cardiovascular systems, thereby contributing to increased morbidity and mortality. Higher phosphate balance has also been correlated with increased mortality rates in individuals with normal renal function, independent of other comorbidities. Clinical and epidemiological studies of CKD patients and healthy subjects, alongside evidence of accelerated aging in murine models induced by excessive phosphate loading, indicate that phosphate toxicity is a driver of premature aging and age-related organ damage. AREA COVERED This article briefly discusses the causes and consequences of phosphate toxicity in the context of organ damage and aging while also elaborating on the therapeutic potential of the fibroblast growth factor 23 (FGF23) hormone signaling system in alleviating phosphate toxicity in patients with normal kidney function and CKD. EXPERT OPINION Human age-associated disorders may be delayed through dietary programs or pharmacological interventions capable of modulating the activity of FGF23 signaling to reduce the systemic phosphate burden.
Collapse
Affiliation(s)
- Mohammed S Razzaque
- Department of Medical Education, School of Medicine, University of Texas Rio Grande Valley (UTRGV), Edinburg, TX, USA
| | - Moosa Mohammadi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
10
|
Zhu LN, Xiang DL, Zuo JC, Wang GY, Xiao N. Potential of Klotho as a Biomarker for Overwork: A Study of Frontline Medical Workers. J Occup Environ Med 2025; 67:79-82. [PMID: 39805121 PMCID: PMC11801441 DOI: 10.1097/jom.0000000000003263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
OBJECTIVE This study evaluates the utility of serum s-αKlotho levels as a quantifiable biomarker for overwork. METHODS Frontline medical workers aged 20-55 years from Yiling People's Hospital of Yichang were recruited. Criteria included nonsmokers, non-heavy drinkers, no chronic medication use, and no acute illnesses recently. Participants worked over 10 hours per day, 60 hours weekly, and had at least 3 years of experience. A control group was matched except for work conditions. Data were collected through surveys, and serum levels were measured. RESULTS Significant differences in serum Klotho were found between overwork and control groups. The overwork group had higher median s-αKlotho levels (49.99 pg/mL) compared to controls (27.88 pg/mL). CONCLUSION Overworked medical workers exhibited elevated serum s-αKlotho, suggesting s-αKlotho as a potential biomarker for overwork. Future research should use multicenter designs with larger samples to validate findings.
Collapse
|
11
|
Salah TM, Rabie MA, El Sayed NS. Renoprotective effect of berberine in cisplatin-induced acute kidney injury: Role of Klotho and the AMPK/mtor/ULK1/Beclin-1 pathway. Food Chem Toxicol 2025; 196:115179. [PMID: 39645019 DOI: 10.1016/j.fct.2024.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Cisplatin (Cisp) is a potent cancer drug, but its use is limited by acute kidney injury (AKI). Autophagy, a process that removes damaged proteins and maintains cellular homeostasis, has been shown to alleviate Cisp-induced AKI. The balance between autophagy and apoptosis is crucial to kidney protection. Treatment with Berberine, known for its antioxidant and anti-inflammatory effects in nephrotoxicity models, was studied for its potential to enhance autophagy in Cisp-induced AKI. Treatment with Berberine (Berb) upregulated Klotho gene expression, enhancing autophagy as indicated by elevated protein levels of pS486-AMPK, pS638-ULK1, and Beclin-1, accompanied by a decrease in pS248-mTOR protein expression. Also, Berb mitigated oxidative stress by reducing elevated MDA levels and boosting SOD activity, which in turn suppressed inflammation by down-regulating HMGB1 and RAGE gene expression, as well as reducing pS536-NF-κB and IL-6 protein contents. Additionally, Berb reduced apoptosis by increasing Bcl-2 and decreasing Bax. This coordinated action preserved kidney function, evidenced by reductions in early injury markers (cystatin C, KIM-1, NGAL) and late markers (creatinine, BUN), along with attenuation of histopathological alterations. The use 3-MA, autophagy inhibitor, nullified these protective effects, highlighting Berb's role in promoting autophagy, reducing oxidative stress, inflammation, and apoptosis, and preserving renal health in Cisp-induced AKI.
Collapse
Affiliation(s)
- Tasneem M Salah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| | - Mostafa A Rabie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt.
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, 11562, Cairo, Egypt
| |
Collapse
|
12
|
Ortega MA, Boaru DL, De Leon-Oliva D, De Castro-Martinez P, Minaya-Bravo AM, Casanova-Martín C, Barrena-Blázquez S, Garcia-Montero C, Fraile-Martinez O, Lopez-Gonzalez L, Saez MA, Alvarez-Mon M, Diaz-Pedrero R. The Impact of Klotho in Cancer: From Development and Progression to Therapeutic Potential. Genes (Basel) 2025; 16:128. [PMID: 40004457 PMCID: PMC11854833 DOI: 10.3390/genes16020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Klotho, initially identified as an anti-aging gene, has been shown to play significant roles in cancer biology. Alongside α-Klotho, the β-Klotho and γ-Klotho isoforms have also been studied; these studies showed that Klotho functions as a potential tumor suppressor in many different cancers by inhibiting cancer cell proliferation, inducing apoptosis and modulating critical signaling pathways such as the Wnt/β-catenin and PI3K/Akt pathways. In cancers such as breast cancer, colorectal cancer, hepatocellular carcinoma, ovarian cancer, and renal cell carcinoma, reduced Klotho expression often correlates with a poor prognosis. In addition, Klotho's role in enhancing chemotherapy sensitivity and its epigenetic regulation further underscores its potential as a target for cancer treatments. This review details Klotho's multifaceted contributions to cancer suppression and its potential as a therapeutic target, enhancing the understanding of its significance in cancer treatment and prognoses.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Patricia De Castro-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Ana M. Minaya-Bravo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Carlos Casanova-Martín
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of General and Digestive Surgery, Príncipe de Asturias, University Hospital, 28805 Alcala de Henares, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, Network Biomedical Research Center for Liver and Digestive Diseases (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain; (D.L.B.); (D.D.L.-O.); (P.D.C.-M.); (A.M.M.-B.); (S.B.-B.); (C.G.-M.); (O.F.-M.); (M.A.S.); (M.A.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.L.-G.); (R.D.-P.)
- Department of General and Digestive Surgery, Príncipe de Asturias, University Hospital, 28805 Alcala de Henares, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| |
Collapse
|
13
|
Zhou X, Luo Y, Guo Y, Jia M, Zhang C, Shi Z, Du Y. Predictive value of circulating fibroblast growth factor-23 and Klotho on protein-energy wasting in patients undergoing hemodialysis. Front Nutr 2025; 11:1497869. [PMID: 39839279 PMCID: PMC11747596 DOI: 10.3389/fnut.2024.1497869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Background As a state of metabolic and nutritional derangements, protein-energy wasting (PEW) is highly prevalent and associated with increased morbidity and mortality in hemodialysis patients. Fibroblast growth factor-23 (FGF-23) and Klotho have been proven to contribute to chronic kidney disease-mineral and bone disorder (CKD-MBD) in patients undergoing hemodialysis. Previous evidence suggested that FGF-23 and Klotho may also contribute to the malnutritional status among these patients; however, the inter-relationship between the FGF-23-Klotho axis and PEW remains unclear. Therefore, we conducted this cross-sectional study to evaluate the association between plasma FGF-23 and Klotho levels and PEW in hemodialysis patients and to explore whether these markers could predict the presence of PEW. Methods Plasma concentrations of FGF-23 and Klotho were measured, and their associations with PEW were assessed. PEW was evaluated based on body weight, muscle mass, biochemical data, and protein and energy intake, according to the 2008 criteria from the International Society of Renal Nutrition and Metabolism (ISRNM). Results In this study, 147 hemodialysis patients (mean age 61.05 ± 13.32 years) were enrolled, of whom 66 (44.90%) had PEW. PEW was significant positively correlated with FGF-23 (r = 0.403, p < 0.001), age (r = 0.225, p = 0.006), C-reactive protein (r = 0.236, p = 0.004), intact parathyroid hormone (r = 0.237, p = 0.004), and single-pool Kt/V (r = 0.170, p = 0.040), while it was negatively correlated with Klotho (r = -0.361, p < 0.001), hemoglobin (r = -0.215, p = 0.009), and serum creatinine (r = -0.278, p = 0.001). Logistic regression analyses showed that plasma FGF-23 and Klotho were independently associated with PEW, even after adjusting for covariables. The area under the ROC curve (AUC) of FGF-23 and Klotho in predicting PEW was 0.734 and 0.710 (p < 0.001), respectively. When the combination of FGF-23 and Klotho was used to predict PEW, its sensitivity was 81.8%, specificity was 60.5%, and the AUC was 0.746. Conclusion Plasma levels of FGF-23 and Klotho are associated with PEW in hemodialysis patients. Higher plasma FGF-23 levels and lower Klotho levels may serve as valuable predictors of PEW in these patients.
Collapse
Affiliation(s)
- Xiaoling Zhou
- Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yang Luo
- Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yidan Guo
- Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Meng Jia
- Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chunxia Zhang
- Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhihua Shi
- Department of Nephrology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ye Du
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University and Beijing Tuberculosis and Tumor Research Institute, Beijing, China
| |
Collapse
|
14
|
Kumar N. Unveiling the Emerging Role of Klotho: A Comprehensive Narrative Review of an Anti-aging Factor in Human Fertility. Curr Protein Pept Sci 2025; 26:105-112. [PMID: 39225223 DOI: 10.2174/0113892037329291240827113808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Klotho, an anti-aging protein, plays a vital role in diverse biological functions, such as regulating calcium and vitamin D levels, preventing chronic fibrosis, acting as an antioxidant and anti-inflammatory agent, safeguarding against cardiovascular and neurodegenerative conditions, as well as exerting anti-apoptotic, anti-senescence effects. Additionally, it contributes to metabolic processes associated with diabetes and exhibits anti-cancer properties. This protein is commonly expressed in organs, such as kidneys, brain, pancreas, parathyroid glands, ovaries, and testes. Recent research has highlighted its significance in human fertility. This narrative review provides insight into the involvement of Klotho protein in male and female fertility, as well as its potential role in managing human infertility in the future. In this study, a search was conducted on literature spanning from November 1997 to June 2024 across multiple databases, including PUBMED, SCOPUS, and Google Scholar, focusing on Klotho proteins. The search utilized keywords, such as "discovery of Klotho proteins," "Biological functions of Klotho," "Klotho in female fertility," "Klotho and PCOS," "Klotho and cryopreservation," and "Klotho in male infertility." Inclusion criteria comprised full-length original or review articles, as well as abstracts, discussing the role of Klotho protein in human fertility, published in English in various peer-reviewed journals. Exclusion criteria involved articles published in languages other than English. Hence, due to its anti-aging characteristics, Klotho protein presents potential roles in male and female fertility and holds promising prospects for reproductive medicine. Further, it holds the potential to become a valuable asset in addressing infertility concerns for both males and females.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar 508126, Hyderabad, Telangana, India
| |
Collapse
|
15
|
Li Z, Li J, Li L, Wang Q, Zhang Q, Tian L, Li C. Klotho enhances stability of chronic kidney disease atherosclerotic plaques by inhibiting GRK2/PLC-β-mediated endoplasmic reticulum stress in macrophages via modulation of the ROS/SHP1 pathway. Sci Rep 2024; 14:32091. [PMID: 39738381 PMCID: PMC11685394 DOI: 10.1038/s41598-024-83596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
Klotho has been importantly linked to atherosclerosis, but little is known about its specific role. This study investigates the mechanism by which Klotho enhances the stability of atherosclerotic plaques in chronic kidney disease. apoE-/- knockout mice and C57BL/6 mice underwent 5/6 nephrectomy and then klotho-NC and klotho-mimic groups were set up to be fed a high-fat chow diet and a dummy group was created to be fed a normal chow diet. qPCR detected relative mRNA expression of klotho. Oil Red O and HE staining assessed lipid proportion in the aorta. Masson staining evaluated renal failure pathology in mice. Immunohistochemistry measured MAC-2 and α-SMA expression in the aorta. ELISA quantified urea, cholesterol, calcium ions, and triglycerides in mouse plasma. Western blotting detected associated protein expression, followed by cell-based experiments for validation. Compared with the Klotho-NC group, the plaque area and aortic lipid and renal fibrosis area were reduced in the Klotho-mimic group. Klotho-mimic reduced macrophage area, plasma urea, cholesterol, calcium ions, and triglyceride levels, and decreased the expression of p-PERK, NOX2, NOX4, Caspase-3, Caspase-9, Bax, p-GRK2, p-PLCβ, p-Src, and p-IP3R. Without ox-LDL stimulation, Klotho expression increased in the Klotho-mimic group, with no significant differences in NOX2, p-SHP1, p-Src, p-PERK, p-GRK2, and p-PLCβ. With ox-LDL in high-calcium medium, Klotho and p-SHP1 increased, while NOX2, p-Src, p-PERK, p-GRK2, and p-PLCβ decreased in the Klotho-mimic group. After ox-LDL and TPI-1 treatment, Klotho increased, NOX2 decreased, and other proteins showed no significant changes. Adding shRNA-GRK2 reduced NOX2, p-Src, and p-PERK, increased p-SHP1, with no changes in p-GRK2 and p-PLCβ. Differences in NOX2, p-GRK2, p-PLCβ, and p-PERK between groups were reduced in high-calcium medium, while p-SHP1 differences increased. Klotho enhances chronic kidney disease atherosclerotic plaque stability by inhibiting GRK2/PLC-β-mediated endoplasmic reticulum stress in macrophages via the ROS/SHP1 pathway.
Collapse
Affiliation(s)
- Zhe Li
- Division of Nephrology, Affiliated Hospital of Hebei University, Baoding, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, Baoding, China
| | - Jing Li
- Division of Nephrology, Affiliated Hospital of Hebei University, Baoding, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, Baoding, China
| | - Lin Li
- Division of Nephrology, Affiliated Hospital of Hebei University, Baoding, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, Baoding, China
| | - Qian Wang
- Division of Nephrology, Affiliated Hospital of Hebei University, Baoding, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, Baoding, China
| | - Qian Zhang
- Division of Nephrology, Affiliated Hospital of Hebei University, Baoding, China
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, Baoding, China
| | - Ling Tian
- Division of Nephrology, Affiliated Hospital of Hebei University, Baoding, China.
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, Baoding, China.
| | - Chenchen Li
- Division of Nephrology, Affiliated Hospital of Hebei University, Baoding, China.
- Key Laboratory of Bone Metabolism and Physiology in Chronic Kidney Disease of Hebei Province, Baoding, China.
| |
Collapse
|
16
|
Pangrazzi L, Meryk A. Molecular and Cellular Mechanisms of Immunosenescence: Modulation Through Interventions and Lifestyle Changes. BIOLOGY 2024; 14:17. [PMID: 39857248 PMCID: PMC11760833 DOI: 10.3390/biology14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Immunosenescence, the age-related decline in immune function, is a complex biological process with profound implications for health and longevity. This phenomenon, characterized by alterations in both innate and adaptive immunity, increases susceptibility to infections, reduces vaccine efficacy, and contributes to the development of age-related diseases. At the cellular level, immunosenescence manifests as decreased production of naive T and B cells, accumulation of memory and senescent cells, thymic involution, and dysregulated cytokine production. Recent advances in molecular biology have shed light on the underlying mechanisms of immunosenescence, including telomere attrition, epigenetic alterations, mitochondrial dysfunction, and changes in key signaling pathways such as NF-κB and mTOR. These molecular changes lead to functional impairments in various immune cell types, altering their proliferative capacity, differentiation, and effector functions. Emerging research suggests that lifestyle factors may modulate the rate and extent of immunosenescence at both cellular and molecular levels. Physical activity, nutrition, stress management, and sleep patterns have been shown to influence immune cell function, inflammatory markers, and oxidative stress in older adults. This review provides a comprehensive analysis of the molecular and cellular mechanisms underlying immunosenescence and explores how lifestyle interventions may impact these processes. We will examine the current understanding of immunosenescence at the genomic, epigenomic, and proteomic levels, and discuss how various lifestyle factors can potentially mitigate or partially reverse aspects of immune aging. By integrating recent findings from immunology, gerontology, and molecular biology, we aim to elucidate the intricate interplay between lifestyle and immune aging at the molecular level, potentially informing future strategies for maintaining immune competence in aging populations.
Collapse
Affiliation(s)
- Luca Pangrazzi
- Institute for Biomedical Aging Research, Faculty of Biology, University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andreas Meryk
- Department of Pediatrics, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Morena-Carrere M, Jaussent I, Chenine L, Dupuy AM, Bargnoux AS, Leray-Moragues H, Klouche K, Vernhet H, Canaud B, Cristol JP. Severe Coronary Artery Calcifications in Chronic Kidney Disease Patients, Coupled with Inflammation and Bone Mineral Disease Derangement, Promote Major Adverse Cardiovascular Events through Vascular Remodeling. Kidney Blood Press Res 2024; 50:33-45. [PMID: 39602894 PMCID: PMC11844697 DOI: 10.1159/000542418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION Cardiovascular (CV) diseases persist as the foremost cause of morbidity/mortality among chronic kidney disease (CKD) patients. This paper examines the values of coronary artery calcification (CAC) and biomarkers of CV on major adverse CV events (MACE)/CV death in a sample of 425 non-dialysis CKD patients. METHODS At inclusion, patients underwent chest multidetector computed tomography for CAC scoring and biomarkers of CV risk including CRP, mineral metabolism markers, fibroblast growth factor-23 (FGF-23), α-Klotho, osteoprotegerin, tartrate-resistant acid phosphatase 5b (TRAP5b), sclerostin, matrix gla protein (both dephosphorylated uncarboxylated [dp-ucMGP] and total uncarboxylated), and growth differentiation factor-15 (GDF-15) were measured. Patients were followed for a median of 3.61 years (25th-75th percentiles = 1.92-6.70). RESULTS Our results reported that CAC was a major independent factor of MACE/CV mortality showing a hazard ratio of 1.71 95% (confidence interval = 1.00-2.93) after adjustment for age, gender, diabetes, and history of CV events for patients with CAC >300. Interestingly, CAC effect was further enhanced in the presence of low levels of 25(OH) vitamin D3 or α-Klotho and high levels of intact parathyroid hormone (PTH), high-sensitive C reactive protein, FGF-23, osteoprotegerin, sclerostin, dp-ucMGP, or GDF-15. CONCLUSION CAC constitutes a significant CV risk, further exacerbated by inflammation, hyperparathyroidism, and regulation of bone molecules implicated in calcification progression. This finding aligns with the original concept of multiple hits. Consequently, addressing the detrimental environment that fosters plaque vulnerability, reducing chronic low-grade inflammation, and normalizing mineral metabolism markers (such as vitamin D and PTH) and bone-regulating molecules may emerge as a viable therapeutic strategy.
Collapse
Affiliation(s)
- Marion Morena-Carrere
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | | | - Leila Chenine
- Department of Nephrology, University Hospital Center of Montpellier, Montpellier, France
| | - Anne-Marie Dupuy
- Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | - Anne-Sophie Bargnoux
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
| | | | - Kada Klouche
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Intensive Care Medicine, University Hospital Center of Montpellier, Montpellier, France
| | - Hélène Vernhet
- Department of Radiology, University Hospital Center of Montpellier, Montpellier, France
| | - Bernard Canaud
- University of Montpellier, Nephrology, Montpellier, France
| | - Jean-Paul Cristol
- PhyMedExp, University of Montpellier, INSERM, CNRS, Department of Biochemistry and Hormonology, University Hospital Center of Montpellier, Montpellier, France
- Charles Mion Foundation, AIDER-Santé, Montpellier, France
| |
Collapse
|
18
|
Konnur A, Gang S, Hegde U, Patel H, Pandya A, Shete N. Chronic Kidney Disease: Decreasing Serum Klotho Levels Predict Adverse Renal and Vascular Outcomes. Int J Nephrol 2024; 2024:2803739. [PMID: 39544340 PMCID: PMC11563715 DOI: 10.1155/2024/2803739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Background and Objectives: Soluble alpha Klotho (s.Klotho) is an emerging marker for chronic kidney disease (CKD) prognosis. The objective was to study the association between s.Klotho and CKD-related decrease in glomerular filtration rate (GFR), bone and vascular damage. Method: A total of 118 patients with CKD stage 2-4 were enrolled and 107 patients continued in the study. Clinical and laboratory parameters were recorded at time of enrollment and 12 months. A double sandwich ELISA for s.Klotho was recorded in controls (n = 25) and patients' serum samples at 6 months (n = 107) and 12 months (n = 102). Primary endpoints like 40% or more fall in GFR, a requirement for renal replacement therapy (RRT), and death with different grades of s.Klotho deficiency were studied. Results: Of the 107 patients (80 male and 27 female), mean s.Klotho was 3.46 ng/mL (02.3-04.2). The GFR fall was significantly different (p value < 0.0001) in the different grades of s.Klotho deficiency with Grade 4 s.Klotho deficiency (0.1-2.99 ng/mL) having the maximum fall of GFR at 9.2 mL/min/1.73 m2 (04.8-12.0) and minimum in Grade 2 (3-5.99 ng/mL) at 1.35 mL/min/1.73 m2 (03.0-02.75). The Ankle Brachial Pressure Index positively correlated with s.Klotho and the correlation coefficient was 0.536 (0.382-0.662) (p < 0.001). The carotid intimal medial thickness negatively correlated with s.Klotho and the correlation coefficient was -0.712 (95% CI: -0.797--0.601, p < 0.001). All five deaths had s.Klotho Grade 4 (severe) deficiency. The event-free survival rate was maximum (100%) in Grade 2 Klotho deficiency and lowest (55%) in Grade 4 s.Klotho deficiency. Conclusions: s.Klotho levels decreased significantly in patients with progressive kidney failure. s.Klotho levels significantly correlated with the presence of vascular disease. Death and need for RRT were significantly more in patients with severe s.Klotho deficiency.
Collapse
Affiliation(s)
- Abhijit Konnur
- Department of Nephrology, Muljibhai Patel Urological Hospital, Nadiad, India
| | - Sishir Gang
- Department of Nephrology, Muljibhai Patel Urological Hospital, Nadiad, India
| | - Umapati Hegde
- Department of Nephrology, Muljibhai Patel Urological Hospital, Nadiad, India
| | - Hardik Patel
- Department of Nephrology, Muljibhai Patel Urological Hospital, Nadiad, India
| | - Akash Pandya
- Department of Nephrology, Muljibhai Patel Urological Hospital, Nadiad, India
| | - Nitiraj Shete
- Department of Biostatistics, Muljibhai Patel Urological Hospital, Nadiad, India
| |
Collapse
|
19
|
Rostamzadeh F, Joukar S, Yeganeh-Hajahmadi M. The role of Klotho and sirtuins in sleep-related cardiovascular diseases: a review study. NPJ AGING 2024; 10:43. [PMID: 39358364 PMCID: PMC11447243 DOI: 10.1038/s41514-024-00165-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/07/2024] [Indexed: 10/04/2024]
Abstract
The prevalence of sleep disorders has been reported from 1.6% to 56.0%, worldwide. Sleep deprivation causes cardiovascular diseases (CVDs) including atherosclerosis, vascular aging, hypertension, heart dysfunction, reduced heart rate variability, and cardiac arrhythmia. Reduced tissue oxygen causes various CVDs by activating pro-inflammatory factors and increasing oxidative stress. Sleep disorders are more important and prevalent in older people and cause more severe cardiovascular complications. On the other hand, the reduction of Klotho level, an age-dependent protein whose expression decreases with age, is associated with age-related diseases. Sirtuins, class III histone deacetylases, also are among the essential factors in postponing cellular aging and increasing the lifespan of organisms, and they do this by regulating different pathways in the cell. Sirtuins and Klotho play an important role in the pathophysiology of CVDS and both have anti-oxidative stress and anti-inflammatory activity. Studies have shown that the levels of Klotho and sirtuins are altered in sleep disorders. In this article, alterations of Klotho and sirtuins in sleep disorders and in the development of sleep-related CVDs were reviewed and the possible signaling pathways were discussed. The inclusion criteria were studies with keywords of different types of sleep disorders and CVDs, klotho, SIRT1-7, and sirtuins in PubMed, Scopus, Embase، Science Direct، Web of Sciences and Google Scholar by the end of 2023. The studies revealed there is a bidirectional relationship between sleep disorders and the serum and tissue levels of Klotho and sirtuins and sleep related-CVDs.
Collapse
Affiliation(s)
- Farzaneh Rostamzadeh
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
- Cardiovascular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mahboobeh Yeganeh-Hajahmadi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
20
|
Daneshgar N, Lan R, Regnier M, Mackintosh SG, Venkatasubramanian R, Dai DF. Klotho enhances diastolic function in aged hearts through Sirt1-mediated pathways. GeroScience 2024; 46:4729-4741. [PMID: 38976132 PMCID: PMC11336011 DOI: 10.1007/s11357-024-01209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
Aging leads to a progressive decline in cardiac function, increasing the risk of heart failure with preserved ejection fraction (HFpEF). This study elucidates the impact of α-Klotho, an anti-aging hormone, on cardiac diastolic dysfunction and explore its downstream mechanisms. Aged wild-type and heterozygous Klotho-deficient mice received daily injection of soluble α-Klotho (sKL) for 10 weeks, followed by a comprehensive assessment of heart function by echocardiography, intracardiac pressure catheter, exercise tolerance, and cardiac pathology. Our findings show that klotho deficiency accentuated cardiac hypertrophy, diastolic dysfunction, and exercise intolerance, while sKL treatment ameliorates these abnormalities and improves cardiac capillary densities. Downstream of klotho, we focused on the Sirtuin1 (Sirt1) signaling pathway to elucidate the potential underlying mechanism by which Klotho improves diastolic function. We found that decreased Klotho levels were linked with Sirt1 deficiency, whereas sKL treatment restored Sirt1 expression in aged hearts and mitigated the DNA damage response pathway activation. Through tandem mass tag proteomics and unbiased acetylomics analysis, we identified 220 significantly hyperacetylated lysine sites in critical cardiac proteins of aged hearts. We found that sKL supplementation attenuated age-dependent DNA damage and cardiac diastolic dysfunction. In contrast, Klotho deficiency significantly increased hyperacetylation of several crucial cardiac contractile proteins, potentially impairing ventricular relaxation and diastolic function, thus predisposing to HFpEF. These results suggest the potential benefit of sKL supplementation as a promising therapeutic strategy for combating HFpEF in aging.
Collapse
Affiliation(s)
- Nastaran Daneshgar
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Renny Lan
- UAMS, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Dao-Fu Dai
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Wang F, Colonnello E, Zhang H, Sansone A, Wang C, Dolci S, Guo J, Jannini EA. Comparing Western and traditional Chinese medicine for male sexual dysfunction: can Klotho represent a silk road? Andrology 2024; 12:1215-1223. [PMID: 38155398 DOI: 10.1111/andr.13580] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Traditional Chinese medicine (TCM) and Western Medicine both have shown efficacy in treating male sexual dysfunction (MSD). The aim of this perspective paper is to discuss a possible link between Western medicine and TCM in the MSD field as represented by the entity of Klotho. Klotho is a recently discovered protein, mainly expressed in the kidney, encoded by the anti-aging gene klotho. Not only is Klotho significantly correlated with the development and progression of kidney diseases and their complications, but increasing evidence indicates that it is also closely related to MSD. A comprehensive search within PubMed database was performed to retrieve available evidence on Klotho's roles, particularly in kidney and in MSD. Indeed, in the TCM theory, the concept of the "kidney" is entirely different from the Western medicine: it is closely related to metabolism and to the reproductive, nervous, endocrine systems, being more than just a urinary organ. According to the "Kidney storing essence (jīng) and governing reproduction" (KSEGR) theory, a cornerstone in TCM, the treatment of MSD mainly consists of restoring the kidney's function. Signs of decreasing kidney essence show a consistent similarity to deficiencies of Klotho, also for what regards the male sexual function. Based on the current evidence, Klotho may represent a potential biological indicator for sexual desire and sexual function and a kind of new scientific Silk Road between TCM and Western medicine for MSD; nevertheless, there is a need to conduct further high-quality research to prove this hypothesis.
Collapse
Affiliation(s)
- Fu Wang
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Elena Colonnello
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Hui Zhang
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Andrea Sansone
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Chunlin Wang
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Susanna Dolci
- Chair of Anatomy, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Jun Guo
- Department of Andrology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Emmanuele A Jannini
- Chair of Endocrinology and Medical Sexology (ENDOSEX), Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
22
|
Prud’homme GJ, Wang Q. Anti-Inflammatory Role of the Klotho Protein and Relevance to Aging. Cells 2024; 13:1413. [PMID: 39272986 PMCID: PMC11394293 DOI: 10.3390/cells13171413] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
The α-Klotho protein (hereafter Klotho) is an obligate coreceptor for fibroblast growth factor 23 (FGF23). It is produced in the kidneys, brain and other sites. Klotho insufficiency causes hyperphosphatemia and other anomalies. Importantly, it is associated with chronic pathologies (often age-related) that have an inflammatory component. This includes atherosclerosis, diabetes and Alzheimer's disease. Its mode of action in these diseases is not well understood, but it inhibits or regulates multiple major pathways. Klotho has a membrane form and a soluble form (s-Klotho). Cytosolic Klotho is postulated but not well characterized. s-Klotho has endocrine properties that are incompletely elucidated. It binds to the FGF receptor 1c (FGFR1c) that is widely expressed (including endothelial cells). It also attaches to soluble FGF23, and FGF23/Klotho binds to FGFRs. Thus, s-Klotho might be a roaming FGF23 coreceptor, but it has other functions. Notably, Klotho (cell-bound or soluble) counteracts inflammation and appears to mitigate related aging (inflammaging). It inhibits NF-κB and the NLRP3 inflammasome. This inflammasome requires priming by NF-κB and produces active IL-1β, membrane pores and cell death (pyroptosis). In accord, Klotho countered inflammation and cell injury induced by toxins, damage-associated molecular patterns (DAMPs), cytokines, and reactive oxygen species (ROS). s-Klotho also blocks the TGF-β receptor and Wnt ligands, which lessens fibrotic disease. Low Klotho is associated with loss of muscle mass (sarcopenia), as occurs in aging and chronic diseases. s-Klotho counters the inhibitory effects of myostatin and TGF-β on muscle, reduces inflammation, and improves muscle repair following injury. The inhibition of TGF-β and other factors may also be protective in diabetic retinopathy and age-related macular degeneration (AMD). This review examines Klotho functions especially as related to inflammation and potential applications.
Collapse
Affiliation(s)
- Gérald J. Prud’homme
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 220 Walmer Rd, Toronto, ON M5R 3R7, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai 200030, China
- Shanghai Innogen Pharmaceutical Co., Ltd., Shanghai 201318, China
| |
Collapse
|
23
|
Hosseini L, Babaie S, Shahabi P, Fekri K, Shafiee-Kandjani AR, Mafikandi V, Maghsoumi-Norouzabad L, Abolhasanpour N. Klotho: molecular mechanisms and emerging therapeutics in central nervous system diseases. Mol Biol Rep 2024; 51:913. [PMID: 39153108 DOI: 10.1007/s11033-024-09862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Klotho is recognized as an aging-suppressor protein that is implicated in a variety of processes and signaling pathways. The anti-inflammatory, anti-apoptotic, anti-oxidant, and anti-tumor bioactivities of klotho have extended its application in neurosciences and made the protein popular for its lifespan-extending capacity. Furthermore, it has been demonstrated that klotho levels would reduce with aging and numerous pathologies, particularly those related to the central nervous system (CNS). Evidence supports the idea that klotho can be a key therapeutic target in CNS diseases such as amyotrophic lateral sclerosis, Parkinson's disease, stroke, and Alzheimer's disease. Reviewing the literature suggests that the upregulation of klotho expression regulates various signaling pathways related to autophagy, oxidative stress, inflammation, cognition, and ferroptosis in neurological disorders. Therefore, it has been of great interest to develop drugs or agents that boost or restore klotho levels. In this regard, the present review was designed and aimed to gather the delegated documents regarding the therapeutic potential of Klotho in CNS diseases focusing on the molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soraya Babaie
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Faculty of Medicine, Department of Physiology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kiarash Fekri
- Department of Paramedicine, Amol School of Paramedicine, Mazandaran University of Medical Sciences, Sari, Iran
- Preclinical Department, Amol Campus of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Shafiee-Kandjani
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Mafikandi
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nasrin Abolhasanpour
- Research Center for Evidence‑Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Chen S, Kong Y, Wang N, Kang N, Chen H, Zhang Z, Liu L, Chen L. Association between weight change and serum anti-aging protein α-Klotho: a cross-sectional study in middle-aged and older adults. Sci Rep 2024; 14:18624. [PMID: 39128946 PMCID: PMC11317480 DOI: 10.1038/s41598-024-69556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024] Open
Abstract
The relationship of weight change has extended to accelerated ageing, yet little is known about the association between weight change and anti-aging protein α-Klotho. This study included 10,972 subjects from the National Health and Nutrition Examination Survey 2007-2016. Participants were measured body weight and height at baseline and recalled weight at young adulthood and middle adulthood. α-Klotho concentrations were quantified. Generalized linear regression models were used to assess the association between weight change and α-Klotho. Across adulthood, maximal overweight, non-obese to obese, and stable obesity were consistently associated with lower serum Klotho levels. Compared with participants who remained at normal weight, from middle to late adulthood, participants experiencing maximal overweight, moving from the non-obese to obese, and maintaining obesity had 27.97 (95% CI: - 46.57 to - 9.36), 39.16 (95% CI: - 61.15 to - 17.18), and 34.55 (95% CI: - 55.73 to - 13.37) pg/ml lower α-Klotho, respectively; similarly, from young to late adulthood, those had 29.21 (95% CI: - 47.00 to - 11.42) , 34.14 (95% CI: - 52.88 to - 15.40), and 36.61 (95% CI: - 65.01 to - 8.21) lower, respectively. Interestingly, from middle to late adulthood, the absolute weight change values of 590 participants who changed from obese to non-obese were negatively associated with serum α-Klotho. Each 1 kg of weight loss during the process of changing from obese to non-obese brought about a relative increase in α-Klotho levels of 3.03 pg/ml. The findings suggest the potential role of weight management across adulthood for aging.
Collapse
Affiliation(s)
- Shanshan Chen
- Department of Clinical Medicine, Jining Medical University, Jining, 272029, Shandong, China
| | - Yu Kong
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Na Wang
- Department of General Medicine, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Nan Kang
- Department of Traditional Chinese Medicine, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Hanwen Chen
- Department of General Medicine, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Zhengjun Zhang
- Department of Endocrine, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Lei Liu
- Department of General Medicine, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China.
| | - Lingzhi Chen
- Department of Clinical Nutrition, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China.
| |
Collapse
|
25
|
Marečáková N, Kačírová J, Tóthová C, Maďari A, Maďar M, Farbáková J, Horňák S. Determination of the reference interval for urinary klotho to creatinine ratio of healthy dogs. Front Vet Sci 2024; 11:1423390. [PMID: 39113723 PMCID: PMC11305118 DOI: 10.3389/fvets.2024.1423390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
For several years, alpha klotho has been considered as a candidate biomarker in chronic kidney disease (CKD), progression of CKD and CKD mineral bone disorders (CKD-MBD). The evidence on the relationship between klotho and kidney function is controversial in some areas. The aim of the study was to identify the influence of age, sex and breed on urinary alpha klotho, values in the early stages of CKD within the studied population and determine a reference interval in a group of healthy dogs. Significantly higher values were measured in older dogs over 6 years old (p = 0.026, p = 0.0007) and in the breed German Shepherd than Belgian Shepherd (p = 0.0401). On the basis of sex and in small breed dogs, no significant differences were noted. In dogs with CKD stage 2, alpha klotho values were significantly lower (p = 0.0135) than in healthy dogs. Within the studied population, a reference interval for urinary klotho to creatinine ratio (UrKl/Cr) was determined in the range of 3.94-23.55 pg/gCr. Since our findings show that alpha klotho is associated with older age, we assume that this may have influenced the results in the group of dogs with CKD stage 1 due to the presence of predominantly old dogs in this group. Future studies would be needed to consider age as a factor affecting urinary alpha klotho in dogs with CKD.
Collapse
Affiliation(s)
- Nikola Marečáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Jana Kačírová
- Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Nitra, Slovakia
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Aladár Maďari
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Marián Maďar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Jana Farbáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| | - Slavomír Horňák
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy in Košice, Košice, Slovakia
| |
Collapse
|
26
|
Muglia L, Di Dio M, Filicetti E, Greco GI, Volpentesta M, Beccacece A, Fabbietti P, Lattanzio F, Corsonello A, Gembillo G, Santoro D, Soraci L. Biomarkers of chronic kidney disease in older individuals: navigating complexity in diagnosis. Front Med (Lausanne) 2024; 11:1397160. [PMID: 39055699 PMCID: PMC11269154 DOI: 10.3389/fmed.2024.1397160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Chronic kidney disease (CKD) in older individuals is a matter of growing concern in the field of public health across the globe. Indeed, prevalence of kidney function impairment increases with advancing age and is often exacerbated by age-induced modifications of kidney function, presence of chronic diseases such as diabetes, hypertension, and cardiovascular disorders, and increased burden related to frailty, cognitive impairment and sarcopenia. Accurate assessment of CKD in older individuals is crucial for timely intervention and management and relies heavily on biomarkers for disease diagnosis and monitoring. However, the interpretation of these biomarkers in older patients may be complex due to interplays between CKD, aging, chronic diseases and geriatric syndromes. Biomarkers such as serum creatinine, estimated glomerular filtration rate (eGFR), and albuminuria can be significantly altered by systemic inflammation, metabolic changes, and medication use commonly seen in this population. To overcome the limitations of traditional biomarkers, several innovative proteins have been investigated as potential, in this review we aimed at consolidating the existing data concerning the geriatric aspects of CKD, describing the challenges and considerations in using traditional and innovative biomarkers to assess CKD in older patients, highlighting the need for integration of the clinical context to improve biomarkers' accuracy.
Collapse
Affiliation(s)
- Lucia Muglia
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Michele Di Dio
- Unit of Urology, Department of Surgery, Annunziata Hospital, Cosenza, Italy
| | - Elvira Filicetti
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Giada Ida Greco
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Mara Volpentesta
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| | - Alessia Beccacece
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Paolo Fabbietti
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy
| | - Andrea Corsonello
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, Italian National Research Center on Aging (IRCCS INRCA), Ancona and Cosenza, Italy
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Sciences, School of Medicine and Digital Technologies, University of Calabria, Arcavacata di Rende, Italy
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), Cosenza, Italy
| |
Collapse
|
27
|
Wang X, Chang HC, Gu X, Han W, Mao S, Lu L, Jiang S, Ding H, Han S, Qu X, Bao Z. Renal lipid accumulation and aging linked to tubular cells injury via ANGPTL4. Mech Ageing Dev 2024; 219:111932. [PMID: 38580082 DOI: 10.1016/j.mad.2024.111932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Renal tubular epithelial cells are vulnerable to stress-induced damage, including excessive lipid accumulation and aging, with ANGPTL4 potentially playing a crucial bridging role between these factors. In this study, RNA-sequencing was used to identify a marked increase in ANGPTL4 expression in kidneys of diet-induced obese and aging mice. Overexpression and knockout of ANGPTL4 in renal tubular epithelial cells (HK-2) was used to investigate the underlying mechanism. Subsequently, ANGPTL4 expression in plasma and kidney tissues of normal young controls and elderly individuals was analyzed using ELISA and immunohistochemical techniques. RNA sequencing results showed that ANGPTL4 expression was significantly upregulated in the kidney tissue of diet-induced obesity and aging mice. In vitro experiments demonstrated that overexpression of ANGPTL4 in HK-2 cells led to increased lipid deposition and senescence. Conversely, the absence of ANGPTL4 appears to alleviate the impact of free fatty acids (FFA) on aging in HK-2 cells. Additionally, aging HK-2 cells exhibited elevated ANGPTL4 expression, and stress response markers associated with cell cycle arrest. Furthermore, our clinical evidence revealed dysregulation of ANGPTL4 expression in serum and kidney tissue samples obtained from elderly individuals compared to young subjects. Our study findings indicate a potential association between ANGPTL4 and age-related metabolic disorders, as well as injury to renal tubular epithelial cells. This suggests that targeting ANGPTL4 could be a viable strategy for the clinical treatment of renal aging.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Hung-Chen Chang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Xuchao Gu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Wanlin Han
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Shihang Mao
- Department of ENT Institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, China
| | - Lili Lu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Traditional Chinese Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Shuai Jiang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Thoracic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China
| | - Haiyong Ding
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Urologic Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xinkai Qu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Department of Cardiology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai 200040, China.
| |
Collapse
|
28
|
Yuan Y, Chang J, Sun Q. Research Progress on Cognitive Frailty in Older Adults with Chronic Kidney Disease. Kidney Blood Press Res 2024; 49:302-309. [PMID: 38663363 DOI: 10.1159/000538689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/01/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND As the medical challenges posed by the ageing population become increasingly severe, the proportion of older people among patients with chronic kidney disease (CKD) is increasing every year. SUMMARY The prevalence of frailty in patients with CKD is significantly higher than that in the general population, and older patients are also a high-risk group for frailty and cognitive impairment. Cognitive frailty, as an important subtype of frailty, is a syndrome characterised by cognitive dysfunction caused by physiological factors, excluding Alzheimer's disease and other types of dementia. It is characterised by the coexistence of physical frailty and cognitive impairment. Previous studies have mainly focused on cognitive impairment, and there is limited research on cognitive frailty, particularly in older patients with CKD. KEY MESSAGES This article provides a comprehensive review of the concept, epidemiology, screening methods, prevention, and treatment measures and possible pathogenesis of cognitive frailty in patients with CKD.
Collapse
Affiliation(s)
- Yuqing Yuan
- Department of Internal Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jing Chang
- Department of Internal Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qianmei Sun
- Department of Internal Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Liu J, Wang H, Liu Q, Long S, Wu Y, Wang N, Lin W, Chen G, Lin M, Wen J. Klotho exerts protection in chronic kidney disease associated with regulating inflammatory response and lipid metabolism. Cell Biosci 2024; 14:46. [PMID: 38584258 PMCID: PMC11000353 DOI: 10.1186/s13578-024-01226-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/27/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The anti-aging protein Klotho plays a protective role in kidney disease, but its potential as a biomarker for chronic kidney disease (CKD) is controversial. Additionally, the main pathways through which Klotho exerts its effects on CKD remain unclear. Therefore, we used bioinformatics and clinical data analysis to determine its role in CKD. RESULTS We analyzed the transcriptomic and clinical data from the Nephroseq v5 database and found that the Klotho gene was mainly expressed in the tubulointerstitium, and its expression was significantly positively correlated with estimated glomerular filtration rate (eGFR) and negatively correlated with blood urea nitrogen (BUN) in CKD. We further found that Klotho gene expression was mainly negatively associated with inflammatory response and positively associated with lipid metabolism in CKD tubulointerstitium by analyzing two large sample-size CKD tubulointerstitial transcriptome datasets. By analyzing 10-year clinical data from the National Health and Nutrition Examination Survey (NHANES) 2007-2016, we also found that Klotho negatively correlated with inflammatory biomarkers and triglyceride and positively correlated with eGFR in the CKD population. Mediation analysis showed that Klotho could improve renal function in the general population by modulating the inflammatory response and lipid metabolism, while in the CKD population, it primarily manifested by mediating the inflammatory response. Restricted cubic spline (RCS) analysis showed that the optimal concentration range for Klotho to exert its biological function was around 1000 pg/ml. Kaplan-Meier curves showed that lower cumulative hazards of all-cause mortality in participants with higher levels of Klotho. We also demonstrated that Klotho could reduce cellular inflammatory response and improve cellular lipid metabolism by establishing an in vitro model similar to CKD. CONCLUSIONS Our results suggest that Klotho exerts protection in CKD, which may be mainly related to the regulation of inflammatory response and lipid metabolism, and it can serve as a potential biomarker for CKD.
Collapse
Affiliation(s)
- Junhui Liu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Huaicheng Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
| | - Qinyu Liu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shushu Long
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yanfang Wu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Nengying Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China.
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| | - Miao Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China.
- Department of Nephrology, Provincial Clinical College, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, China.
| | - Junping Wen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, China.
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| |
Collapse
|
30
|
Fan Z, Wei X, Zhu X, Yang K, Tian L, Du Y, Yang L. Correlation between soluble klotho and chronic kidney disease-mineral and bone disorder in chronic kidney disease: a meta-analysis. Sci Rep 2024; 14:4477. [PMID: 38396063 PMCID: PMC10891172 DOI: 10.1038/s41598-024-54812-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
We conducted a systematic search across medical databases, including PubMed, Web of Science, EMBASE, and Cochrane Library, up to March 2023. A total of 1944 subjects or individuals from 17 studies were included in our final analysis. The correlation coefficient (r) between sKlotho and calcium was [0.14, (0.02, 0.26)], and a moderate heterogeneity was observed (I2 = 66%, P < 0.05). The correlation coefficient (r) between Klotho and serum phosphate was [- 0.21, (- 0.37, - 0.04)], with apparent heterogeneity (I2 = 84%, P < 0.05). The correlation coefficient (r) between sKlotho and parathyroid hormone and vascular calcification was [- 0.23,(- 0.29, - 0.17); - 0.15, (- 0.23, - 0.08)], with no significant heterogeneity among the studies. (I2 = 40%, P < 0.05; I2 = 30%, P < 0.05). A significant correlation exists between low sKlotho levels and an increased risk of CKD-MBD in patients with CKD. According to the findings, sKlotho may play a role in alleviating CKD-MBD by lowering phosphorus and parathyroid hormone levels, regulating calcium levels, and suppressing vascular calcification. As analysis showed that sKlotho has an important impact on the pathogenesis and progression of CKD-MBD in CKD patients. Nonetheless, further comprehensive and high-quality studies are needed to validate our conclusions.
Collapse
Affiliation(s)
- Zhongyu Fan
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Kun Yang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Ling Tian
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China.
| | - Liming Yang
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
31
|
Garcia NA, Gonzalez-King H, Mellergaard M, Nair S, Salomon C, Handberg A. Comprehensive strategy for identifying extracellular vesicle surface proteins as biomarkers for chronic kidney disease. Front Physiol 2024; 15:1328362. [PMID: 38379702 PMCID: PMC10877036 DOI: 10.3389/fphys.2024.1328362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic kidney disease (CKD) poses a significant health burden worldwide. Especially, obesity-induced chronic kidney disease (OCKD) is associated with a lack of accuracy in disease diagnostic methods. The identification of reliable biomarkers for the early diagnosis and monitoring of CKD and OCKD is crucial for improving patient outcomes. Extracellular vesicles (EVs) have emerged as potential biomarkers in the context of CKD. In this review, we focused on the role of EVs as potential biomarkers in CKD and OCKD and developed a comprehensive list of EV membrane proteins that could aid in the diagnosis and monitoring of the disease. To assemble our list, we employed a multi-step strategy. Initially, we conducted a thorough review of the literature on EV protein biomarkers in kidney diseases. Additionally, we explored papers investigating circulating proteins as biomarkers in kidney diseases. To further refine our list, we utilized the EV database Vesiclepedia.org to evaluate the qualifications of each identified protein. Furthermore, we consulted the Human Protein Atlas to assess the localization of these candidates, with a particular focus on membrane proteins. By integrating the information from the reviewed literature, Vesiclepedia.org, and the Human Protein Atlas, we compiled a comprehensive list of potential EV membrane protein biomarkers for CKD and OCKD. Overall, our review underscores the potential of EVs as biomarkers in the field of CKD research, providing a foundation for future studies aimed at improving CKD and OCKD diagnosis and treatment.
Collapse
Affiliation(s)
| | - Hernan Gonzalez-King
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Maiken Mellergaard
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland, Brisbane, QLD, Australia
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, The Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
32
|
Martín-Vírgala J, Martín-Carro B, Fernández-Villabrille S, Ruiz-Torres MP, Gómez-Alonso C, Rodríguez-García M, Fernández-Martín JL, Alonso-Montes C, Panizo S, Cannata-Andía JB, Naves-Díaz M, Carrillo-López N. Soluble Klotho, a Potential Biomarker of Chronic Kidney Disease-Mineral Bone Disorders Involved in Healthy Ageing: Lights and Shadows. Int J Mol Sci 2024; 25:1843. [PMID: 38339121 PMCID: PMC10855561 DOI: 10.3390/ijms25031843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Shortly after the discovery of Klotho, interest grew in its potential role in chronic kidney disease (CKD). There are three isoforms of the Klotho protein: αKlotho, βKlotho and γKlotho. This review will focus on αKlotho due to its relevance as a biomarker in CKD. αKlotho is synthesized mainly in the kidneys, but it can be released into the bloodstream and urine as soluble Klotho (sKlotho), which undertakes systemic actions, independently or in combination with FGF23. It is usually accepted that sKlotho levels are reduced early in CKD and that lower levels of sKlotho might be associated with the main chronic kidney disease-mineral bone disorders (CKD-MBDs): cardiovascular and bone disease. However, as results are inconsistent, the applicability of sKlotho as a CKD-MBD biomarker is still a matter of controversy. Much of the inconsistency can be explained due to low sample numbers, the low quality of clinical studies, the lack of standardized assays to assess sKlotho and a lack of consensus on sample processing, especially in urine. In recent decades, because of our longer life expectancies, the prevalence of accelerated-ageing diseases, such as CKD, has increased. Exercise, social interaction and caloric restriction are considered key factors for healthy ageing. While exercise and social interaction seem to be related to higher serum sKlotho levels, it is not clear whether serum sKlotho might be influenced by caloric restriction. This review focuses on the possible role of sKlotho as a biomarker in CKD-MBD, highlighting the difference between solid knowledge and areas requiring further research, including the role of sKlotho in healthy ageing.
Collapse
Affiliation(s)
- Julia Martín-Vírgala
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Beatriz Martín-Carro
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Sara Fernández-Villabrille
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - María Piedad Ruiz-Torres
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Área 5—Fisiología y Fisiopatología Renal y Vascular del Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Physiology Unit, Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Carlos Gómez-Alonso
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Minerva Rodríguez-García
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Nephrology Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - José Luis Fernández-Martín
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Cristina Alonso-Montes
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Sara Panizo
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| | - Jorge B. Cannata-Andía
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Department of Medicine, Universidad de Oviedo, 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | - Natalia Carrillo-López
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040, Kidney Disease), 28040 Madrid, Spain;
| |
Collapse
|
33
|
Milošević T, Sopić M, Vekić J, Guzonjić A, Vujčić S, Pešić S, Miljković-Trailović M, Naumović R, Kotur-Stevuljević J. The influence of Klotho protein and prooxidant-antioxidant balance combination on the mortality of HD patients. Int Urol Nephrol 2024; 56:615-623. [PMID: 37410303 DOI: 10.1007/s11255-023-03696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
PURPOSE End-stage renal disease patients on chronic hemodialysis (HD) have a shortened life expectancy compared to the general population. The aim of this study was to evaluate a possible link between three new and emerging factors in renal pathophysiology: Klotho protein, telomere length in peripheral blood mononuclear cells (TL) and redox status parameters before HD (bHD) and after HD (aHD), and to test mortality prediction capability of these emerging parameters in a population of HD patients. METHODS The study included 130 adult patients with average age 66 (54-72), on HD (3 times per week; 4-5 h per session). Klotho level, TL, routine laboratory parameters, dialysis adequacy and redox status parameters: advanced oxidation protein products (AOPP), prooxidant-antioxidant balance (PAB), superoxide anion (O2.-), malondialdehyde (MDA), ischemia-modified albumin (IMA), total sulfhydryl group content (SHG), and superoxide dismutase (SOD) were determined. RESULTS Klotho concentration was significantly higher aHD; 68.2 (22.6-152.9) vs. bHD 64.2 (25.5-119.8) (p = 0.027). The observed increase in TL was not statistically significant. AOPP, PAB, SHG, and SOD activity were significantly increased aHD (p > 0.001). The patients with the highest mortality risk score (MRS) had significantly higher PAB bHD (p = 0.002). Significantly lower O2.- (p < 0.001), SHG content (p = 0.072), and IMA (p = 0.002) aHD were found in patients with the lowest MRS values. Principal component analysis revealed redox balance-Klotho factor as a significant predictor of high mortality risk (p = 0.014). CONCLUSION Decreased Klotho and TL attrition as well as redox status disturbance could be connected with higher mortality rate in HD patients.
Collapse
Affiliation(s)
- Tamara Milošević
- Laboratory Diagnostics Service, Zvezdara Clinical Hospital Center, Belgrade, Serbia.
- Faculty of Pharmacy, Department for Medical Biochemistry, University of Belgrade, Belgrade, Serbia.
- Department of Hematology and Cytological Diagnostics of Fluids Laboratory Diagnostics Service Zvezdara Clinical Hospital Center, Dimitrija Tucovica 161, 11120, Belgrade, Serbia.
| | - Miron Sopić
- Faculty of Pharmacy, Department for Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Jelena Vekić
- Faculty of Pharmacy, Department for Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Azra Guzonjić
- Faculty of Pharmacy, Department for Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Sanja Vujčić
- Faculty of Pharmacy, Department for Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Snežana Pešić
- Clinical Department of Nephrology and Metabolic Disorders With Dialysis "Prof. Dr. Vasilije Jovanovic", Zvezdara Clinical Hospital Center, Belgrade, Serbia
| | | | - Radomir Naumović
- Clinical Department of Nephrology and Metabolic Disorders With Dialysis "Prof. Dr. Vasilije Jovanovic", Zvezdara Clinical Hospital Center, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Kotur-Stevuljević
- Faculty of Pharmacy, Department for Medical Biochemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
34
|
Jurina A, Kasumović D, Delimar V, Filipec Kanižaj T, Japjec M, Dujmović T, Vučić Lovrenčić M, Starešinić M. Fibroblast growth factor 23 and its role in bone diseases. Growth Factors 2024; 42:1-12. [PMID: 37906060 DOI: 10.1080/08977194.2023.2274579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Fibroblast growth factor 23 (FGF23) has been casually linked to numerous hypophosphatemic bone diseases, however connection with bone loss or fragility fractures is still a matter of debate. The purpose of this review is to explore and summarise the known actions of FGF23 in various pathological bone conditions. Besides implication in bone mineralisation, elevated FGF23 showed a pathological effecton bone remodelling, primarily by inhibiting osteoblast function. Unlike the weak association with bone mineral density, high values of FGF23 have been connected with fragility fracture prevalence. This review shows that its effects on bone are concomitantly present on multiple levels, affecting both qualitative and quantitative part of bone strength, eventually leading to impaired bone strength and increased tendency of fractures. Recognising FGF23 as a risk factor for the development of bone diseases and correcting its levels could lead to the reduction of morbidity and mortality in specific groups of patients.
Collapse
Affiliation(s)
- Andrija Jurina
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
| | - Dino Kasumović
- Department of Internal Medicine, Division of Nephrology and Dialysis, Dubrava University Hospital, Zagreb, Croatia
| | - Valentina Delimar
- Special Hospital for Medical Rehabilitation KrapinskeToplice, KrapinskeToplice, Croatia
| | - Tajana Filipec Kanižaj
- Department of Internal Medicine, Division of Gastroenterology, Merkur University Hospital, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Japjec
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
| | - Tomislav Dujmović
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
| | - Marijana Vučić Lovrenčić
- Department of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb, Croatia
| | - Mario Starešinić
- Department of Surgery, Division of General and Sport Traumatology and Orthopaedics, Merkur University Hospital, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
35
|
Pires DA, Brandão-Rangel MAR, Silva-Reis A, Olímpio FRS, Aimbire F, Oliveira CR, Mateus-Silva JR, Zamarioli LS, Bachi ALL, Bella YF, Santos JMB, Bincoletto C, Lancha AH, Vieira RP. Vitamin C Inhibits Lipopolysaccharide-Induced Hyperinflammatory State of Chronic Myeloid Leukemia Cells through Purinergic Signaling and Autophagy. Nutrients 2024; 16:383. [PMID: 38337668 PMCID: PMC10857061 DOI: 10.3390/nu16030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Background: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the overproduction of white blood cells, leading to symptoms such as fatigue, infections, and other complications. CML patients must take measures to prevent infections to mitigate the exacerbation of cancer cell proliferation and comorbidities. Methods: This study investigated whether vitamin C can suppress the hyperinflammatory activation of K-562 cells induced by lipopolysaccharide (LPS) and whether purinergic signaling (ATP and P2X7 receptor) and autophagy play a role in it. Two different doses of vitamin C (5 µg/mL and 10 µg/mL) were employed, along with the lysosome inhibitor chloroquine (CQ; 100 µM), administered 2 h prior to LPS stimulation (10 ng/mL) for a duration of 22 h in K-562 cells (3 × 105 cells/mL/well). Results: Both doses of vitamin C reduced the release of interleukin-6 (IL-6) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and tumor necrosis factor (TNF) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) induced by LPS. Furthermore, in LPS + CQ-stimulated cells, vitamin C at a concentration of 10 µg/mL inhibited the expression of LC3-II (p < 0.05). Conversely, both doses of vitamin C led to the release of the anti-inflammatory cytokine interleukin-10 (IL-10) (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01), while only the 10 µg/mL dose of vitamin C induced the release of Klotho (10 µg/mL, p < 0.01). In addition, both doses of vitamin C reduced the accumulation of ATP (5 µg/mL, p < 0.01 and 10 µg/mL, p < 0.01) and decreased the expression of the P2X7 receptor at the mRNA level. Conclusions: Vitamin C inhibits the hyperinflammatory state induced by LPS in K-562 cells, primarily by inhibiting the ATP accumulation, P2X7 receptor expression, and autophagy signaling.
Collapse
Affiliation(s)
- Daniela A. Pires
- Post-Graduation Program in Bioengineering, Universidade Brasil, Rua Carolina Fonseca 235, São Paulo 08230-030, SP, Brazil;
| | - Maysa A. R. Brandão-Rangel
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Anamei Silva-Reis
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Fabiana R. S. Olímpio
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 720, Vila Clementino, São Paulo 04039-002, SP, Brazil; (F.R.S.O.); (F.A.)
| | - Flavio Aimbire
- Department of Medicine, Postgraduate Program in Translational Medicine, Federal University of São Paulo (UNIFESP), Rua Pedro de Toledo 720, Vila Clementino, São Paulo 04039-002, SP, Brazil; (F.R.S.O.); (F.A.)
| | - Carlos R. Oliveira
- Gap Biotech Laboratory of Biotechnology and Bioinformatics, Rua Comendador Remo Cesaroni 223, São José dos Campos 12243-020, SP, Brazil; (C.R.O.); (J.R.M.-S.)
| | - José R. Mateus-Silva
- Gap Biotech Laboratory of Biotechnology and Bioinformatics, Rua Comendador Remo Cesaroni 223, São José dos Campos 12243-020, SP, Brazil; (C.R.O.); (J.R.M.-S.)
| | - Lucas S. Zamarioli
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), Rua Três de Maio 100, São Paulo 04044-020, SP, Brazil; (L.S.Z.); (C.B.)
| | - André L. L. Bachi
- Postgraduate Program in Health Science, Santo Amaro University, Rua Prof. Enéas de Siqueira Neto 340, São Paulo 04829-300, SP, Brazil;
| | - Yanesko F. Bella
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Juliana M. B. Santos
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
| | - Claudia Bincoletto
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), Rua Três de Maio 100, São Paulo 04044-020, SP, Brazil; (L.S.Z.); (C.B.)
| | - Antonio Herbert Lancha
- Experimental Surgery (LIM 26), Laboratory of Clinical Investigation, School of Medicine, University of Sao Paulo, Avenida Doutor Arnaldo 455, São Paulo 05508-030, SP, Brazil;
| | - Rodolfo P. Vieira
- Post-Graduation Program in Bioengineering, Universidade Brasil, Rua Carolina Fonseca 235, São Paulo 08230-030, SP, Brazil;
- Postgraduate Program in Science of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Avenida Ana Costa 95, Santos 11060-001, SP, Brazil; (M.A.R.B.-R.); (A.S.-R.); (Y.F.B.); (J.M.B.S.)
- Gap Biotech Laboratory of Biotechnology and Bioinformatics, Rua Comendador Remo Cesaroni 223, São José dos Campos 12243-020, SP, Brazil; (C.R.O.); (J.R.M.-S.)
- Postgraduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goiás (Unievangélica), Avenida Universitária Km 3,5, Anápolis 75083-515, GO, Brazil
| |
Collapse
|
36
|
Castillo RF, Pérez RG, González AL. Beneficial effects of physical exercise on the osteo-renal Klotho-FGF-23 axis in Chronic Kidney Disease: A systematic review with meta-analysis. Int J Med Sci 2024; 21:332-340. [PMID: 38169578 PMCID: PMC10758140 DOI: 10.7150/ijms.90195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024] Open
Abstract
The aim of this study was to investigate the efficacy of physical exercise in chronic kidney disease, describing its impact on the Klotho-FGF23 axis. PubMed, Web of Science and Scopus databases, updated to January 2023, were searched. The present study employed mean difference and a 95% confidence interval (CI) to examine the efficacy of the intervention. Heterogeneity was assessed through inconsistency statistics (I2). Out of the 299 studies identified, a total of 4 randomized controlled trials (RCTs), comprising 272 participants, met the eligibility criteria. Compared with the control group, physical exercise significantly decreased the concentrations of FGF23 (MD: -102.07 Pg/mL, 95% CI: -176.23.47, -27.91 I2= 97%, p = 0.001), and a significantly increased the concentrations of Klotho protein: (MD: 158.82 Pg/mL, 95% CI: 123.33, -194.31, I2 = 0%, p = 0.001). The results of our study indicated that the exercise has a direct relationship with Klotho-FGF23 axis. We can conclude that physical exercise in patients with CKD produces beneficial effects on the pathophysiological components related to this disease, including cardiorespiratory fitness and vascular functions. As observed, both endurance and aerobic physical exercise increase Klotho production and decrease FGF23 levels. Evidence indicates that exercise attenuates the progression of CKD, improves uremic parameters and down-regulates inflammation-related markers.
Collapse
Affiliation(s)
- Rafael Fernandez Castillo
- Instituto de Investigación Biosanitaria ibs.Granada; Faculty of Health Sciences, University of Granada, 18071 Granada, Spain
| | - Raquel García Pérez
- University of Granada. Faculty of Health Sciences, Parque Tecnológico de Ciencias de la Salud. Avd de la Ilustración 60 CP18016 Granada/Spain
| | - Antonio Liñán González
- University of Granada. Faculty of Health Sciences, Parque Tecnológico de Ciencias de la Salud. Avd de la Ilustración 60 CP18016 Granada/Spain
| |
Collapse
|
37
|
Zhang X, Li L, Tan H, Hong X, Yuan Q, Hou FF, Zhou L, Liu Y. Klotho-derived peptide 1 inhibits cellular senescence in the fibrotic kidney by restoring Klotho expression via posttranscriptional regulation. Theranostics 2024; 14:420-435. [PMID: 38164143 PMCID: PMC10750200 DOI: 10.7150/thno.89105] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Klotho deficiency is a common feature of premature aging and chronic kidney disease (CKD). As such, restoring Klotho expression could be a logic strategy for protecting against various nephropathies. In this study, we demonstrate that KP1, a Klotho-derived peptide, inhibits cellular senescence by restoring endogenous Klotho expression. Methods: The effects of KP1 on cellular senescence and Klotho expression were assessed in mouse models of CKD. RNA-sequencing was employed to identify the microRNA involved in regulating Klotho by KP1. Gain- or loss-of-function approaches were used to assess the role of miR-223-3p and IncRNA-TUG1 in regulating Klotho and cellular senescence. Results: KP1 inhibited senescence markers p21, p16 and γ-H2AX in tubular epithelial cells of diseased kidneys, which was associated with its restoration of Klotho expression at the posttranscriptional level. Profiling of kidney microRNAs by RNA sequencing identified miR-223-3p that bound to Klotho mRNA and inhibited its protein expression. Overexpression of miR-223-3p inhibited Klotho and induced p21, p16 and γ-H2AX, which were negated by KP1. Conversely, inhibition of miR-223-3p restored Klotho expression, inhibited cellular senescence. Furthermore, miR-223-3p interacted with lncRNA-TUG1 and inhibited its expression. Knockdown of lncRNA-TUG1 increased miR-223-3p, aggravated Klotho loss and worsened cellular senescence, whereas KP1 mitigated all these changes. Conclusion: These studies demonstrate that KP1 inhibits cellular senescence and induces Klotho expression via posttranscriptional regulation mediated by miR-223-3p and lncRNA-TUG1. By restoring endogenous Klotho, KP1 elicits a broad spectrum of protective actions and could serve as a promising therapeutic agent for fibrotic kidney disorders.
Collapse
Affiliation(s)
- Xiaoyao Zhang
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huishi Tan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xue Hong
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Yuan
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| | - Youhua Liu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Institute of Nephrology, Guangzhou, China
| |
Collapse
|
38
|
Kale A, Shelke V, Habshi T, Dagar N, Gaikwad AB. ER stress modulated Klotho restoration: A prophylactic therapeutic strategy against acute kidney injury-diabetes comorbidity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166905. [PMID: 37793463 DOI: 10.1016/j.bbadis.2023.166905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023]
Abstract
Klotho is a renoprotective factor that is at the forefront of research as a potential therapeutic agent and biomarker of acute kidney injury (AKI). Endoplasmic reticulum (ER) stress and Klotho downregulation are the critical hallmarks of AKI progression. Importantly, the crosstalk between ER and Klotho is still elusive in AKI under diabetic condition. Therefore, this study aimed to elucidate the affiliation between ER stress and Klotho regulation by using the ischemia-reperfusion renal injury (IRI) model based on male Wistar rats and the hypoxia-reperfusion injury (HRI) using NRK52E cells. Study outcomes demonstrated that the expression of AKI biomarkers: plasma creatinine, neutrophil gelatinase-associated lipocalin, kidney-injury molecule 1, and ER stress markers such as binding immunoglobulin binding protein (BiP), R/PKR-like ER kinase (PERK), and eukaryotic initiation factor-2 (eIF2α), were observed during AKI. Increased ER stress was associated with apoptosis induction as depicted by increased levels of Poly (ADP-ribose) polymerase (PARP) and caspase-7 and decreased tubular Klotho expression. Under diabetic settings, ER stress and apoptosis were exacerbated by additional Klotho downregulation. Treatment with Tauroursodeoxycholic acid (TUDCA) inhibited the ER stress, apoptosis, restored endogenous Klotho levels and ameliorated AKI under diabetic and non-diabetic conditions. ER stress and Klotho appear to be shared factors involved in the pathogenesis of AKI-diabetes comorbidity and targeting them could prove a novel therapeutic approach.
Collapse
Affiliation(s)
- Ajinath Kale
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vishwadeep Shelke
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Tahib Habshi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Neha Dagar
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Laboratory of Molecular Pharmacology, Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India.
| |
Collapse
|
39
|
Wolf L, Vogt J, Alber J, Franjic D, Feger M, Föller M. PKC regulates αKlotho gene expression in MDCK and NRK-52E cells. Pflugers Arch 2024; 476:75-86. [PMID: 37773536 PMCID: PMC10758369 DOI: 10.1007/s00424-023-02863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Particularly expressed in the kidney, αKlotho is a transmembrane protein that acts together with bone hormone fibroblast growth factor 23 (FGF23) to regulate renal phosphate and vitamin D homeostasis. Soluble Klotho (sKL) is released from the transmembrane form and controls various cellular functions as a paracrine and endocrine factor. αKlotho deficiency accelerates aging, whereas its overexpression favors longevity. Higher αKlotho abundance confers a better prognosis in cardiovascular and renal disease owing to anti-inflammatory, antifibrotic, or antioxidant effects and tumor suppression. Serine/threonine protein kinase C (PKC) is ubiquitously expressed, affects several cellular responses, and is also implicated in heart or kidney disease as well as cancer. We explored whether PKC is a regulator of αKlotho. Experiments were performed in renal MDCK or NRK-52E cells and PKC isoform and αKlotho expression determined by qRT-PCR and Western Blotting. In both cell lines, PKC activation with phorbol ester phorbol-12-myristate-13-acetate (PMA) downregulated, while PKC inhibitor staurosporine enhanced αKlotho mRNA abundance. Further experiments with PKC inhibitor Gö6976 and RNA interference suggested that PKCγ is the major isoform for the regulation of αKlotho gene expression in the two cell lines. In conclusion, PKC is a negative regulator of αKlotho gene expression, an effect which may be relevant for the unfavorable effect of PKC on heart or kidney disease and tumorigenesis.
Collapse
Affiliation(s)
- Lisa Wolf
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Julia Vogt
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Jana Alber
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Domenic Franjic
- Core Facility Hohenheim, Data and Statistical Consulting, University of Hohenheim, 70599, Stuttgart, Germany
| | - Martina Feger
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Michael Föller
- Department of Physiology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
40
|
Kim SH, Lee SH, Jin JA, So HJ, Lee JU, Ji MJ, Kwon EJ, Han PS, Lee HK, Kang TW. In vivo safety and biodistribution profile of Klotho-enhanced human urine-derived stem cells for clinical application. Stem Cell Res Ther 2023; 14:355. [PMID: 38072946 PMCID: PMC10712141 DOI: 10.1186/s13287-023-03595-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Urine-derived stem cells (UDSCs) can be easily isolated from urine and possess excellent stem cell characteristics, making them a promising source for cell therapeutics. Due to their kidney origin specificity, UDSCs are considered a superior therapeutic alternative for kidney diseases compared to other stem cells. To enhance the therapeutic potential of UDSCs, we developed a culture method that effectively boosts the expression of Klotho, a kidney-protective therapeutic factor. We also optimized the Good Manufacturing Practice (GMP) system to ensure stable and large-scale production of clinical-grade UDSCs from patient urine. In this study, we evaluated the in vivo safety and distribution of Klotho-enhanced UDSCs after intravenous administration in accordance with Good Laboratory Practice (GLP) regulations. METHODS Mortality and general symptoms were continuously monitored throughout the entire examination period. We evaluated the potential toxicity of UDSCs according to the administration dosage and frequency using clinical pathological and histopathological analyses. We quantitatively assessed the in vivo distribution and retention period of UDSCs in major organs after single and repeated administration using human Alu-based qPCR analysis. We also conducted long-term monitoring for 26 weeks to assess the potential tumorigenicity. RESULTS Klotho-enhanced UDSCs exhibited excellent homing potential, and recovered Klotho expression in injured renal tissue. Toxicologically harmful effects were not observed in all mice after a single administration of UDSCs. It was also verified that repeated administration of UDSCs did not induce significant toxicological or immunological adverse effects in all mice. Single and repeated administrated UDSCs persisted in the blood and major organs for approximately 3 days and cleared in most organs, except the lungs, within 2 weeks. UDSCs that remained in the lungs were cleared out in approximately 4-5 weeks. There were no significant differences according to the variation of sex and administration frequency. The tumors were found in the intravenous administration group but they were confirmed to be non-human origin. Based on these results, it was clarified that UDSCs have no tumorigenic potential. CONCLUSIONS Our results demonstrate that Klotho-enhanced UDSCs can be manufactured as cell therapeutics through an optimized GMP procedure, and they can be safely administered without causing toxicity and tumorigenicity.
Collapse
Affiliation(s)
- Sang-Heon Kim
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea
| | - Sung-Hoon Lee
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea
| | - Jeong-Ah Jin
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea
| | - Hyung-Joon So
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea
| | - Jae-Ung Lee
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea
| | - Min-Jae Ji
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea
| | | | | | - Hong-Ki Lee
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea.
- EHLCell Clinic, Seoul, 06029, Republic of Korea.
| | - Tae-Wook Kang
- Institute of Cell Biology and Regenerative Medicine, EHLBio Co., Ltd., Uiwang-si, 16006, Republic of Korea.
| |
Collapse
|
41
|
Ranjbar N, Raeisi M, Barzegar M, Ghorbanihaghjo A, Shiva S, Sadeghvand S, Negargar S, Poursistany H, Raeisi S. The possible anti-seizure properties of Klotho. Brain Res 2023; 1820:148555. [PMID: 37634687 DOI: 10.1016/j.brainres.2023.148555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/30/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Recurrent seizures in epilepsy may lead to progressive neuronal damage, which can diminish health-related quality of life. Evaluation and control of pathological processes in the brain is valuable. It seems imperative that new markers and approaches for seizure alleviation be discovered. Klotho (Kl), an antiaging protein, has protective effects in the brain against neurological disorders. It may also have antiseizure effects by improving creatine transfer to the brain, upregulating excitatory amino acid transporters, and inhibiting insulin/insulin-like growth factor-1 (IGF-1), Wingless (Wnt), transforming growth factor-beta (TGF-β), and retinoic-acid-inducible gene-I (RIG-I)/nuclear translocation of nuclear factor-κB (NF-κB) pathways. Stimulation and activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) and apoptosis signal-regulating kinase 1 (ASK1)/p38 mitogen‑activated protein kinase (MAPK) signaling pathways could also be considered other possible antiseizure mechanisms of Kl. In the present review, the roles of Kl in the central nervous system as well as its possible anti-seizure properties are discussed for the first time.
Collapse
Affiliation(s)
- Nasrin Ranjbar
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Raeisi
- Student Research Committee, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Barzegar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- Biothechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Shiva
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sohrab Negargar
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Haniyeh Poursistany
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Raeisi
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unit of Zahra Mardani Azari Children Educational and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
42
|
Tseng CH, Shah KM, Chiu IJ, Hsiao LL. The Role of Autophagy in Type 2 Diabetic Kidney Disease Management. Cells 2023; 12:2691. [PMID: 38067119 PMCID: PMC10705810 DOI: 10.3390/cells12232691] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD), or diabetic nephropathy (DN), is one of the most prevalent complications of type 2 diabetes mellitus (T2DM) and causes severe burden on the general welfare of T2DM patients around the world. While several new agents have shown promise in treating this condition and potentially halting the progression of the disease, more work is needed to understand the complex regulatory network involved in the disorder. Recent studies have provided new insights into the connection between autophagy, a physiological metabolic process known to maintain cellular homeostasis, and the pathophysiological pathways of DKD. Typically, autophagic activity plays a role in DKD progression mainly by promoting an inflammatory response to tissue damage, while both overactivated and downregulated autophagy worsen disease outcomes in different stages of DKD. This correlation demonstrates the potential of autophagy as a novel therapeutic target for the disease, and also highlights new possibilities for utilizing already available DN-related medications. In this review, we summarize findings on the relationship between autophagy and DKD, and the impact of these results on clinical management strategies.
Collapse
Affiliation(s)
- Che-Hao Tseng
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kavya M. Shah
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
| | - I-Jen Chiu
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU-Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Li Hsiao
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.-H.T.); (K.M.S.)
| |
Collapse
|
43
|
Han YY, Celedón JC, Forno E. Serum α-Klotho level, lung function, airflow obstruction and inflammatory markers in US adults. ERJ Open Res 2023; 9:00471-2023. [PMID: 37936898 PMCID: PMC10626412 DOI: 10.1183/23120541.00471-2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023] Open
Abstract
Background α-Klotho is a pleiotropic protein that may have anti-oxidative and anti-inflammatory properties in the lung, but its role in airflow obstruction or lung function is largely unknown. Methods This was a cross-sectional study of 6046 adults aged 40-79 years in the US National Health and Nutrition Examination Survey (NHANES) 2007-2012. We used multivariable logistic or linear regression to examine the relation between serum α-Klotho level and airflow obstruction, defined as forced expiratory volume in 1 s (FEV1) <80% of predicted and FEV1/forced vital capacity (FVC) ratio <0.70; FEV1, FVC and FEV1/FVC as percentage of predicted; and inflammatory markers in blood (white blood cell count, eosinophils, neutrophils and C-reactive protein (CRP)). Results α-Klotho levels in the second to fourth quartiles (Q2-Q4) were associated with significantly decreased odds of airflow obstruction (adjusted OR for Q2-Q4 versus lowest quartile (Q1) 0.54 (95% CI 0.35-0.81)) in never-smokers and ex-smokers with <10 pack-years of smoking, but not in current smokers or ex-smokers with ≥10 pack-years of smoking. In all participants, each unit increment in log10-transformed α-Klotho level was significantly associated with 5.0% higher FEV1 % pred and 3.7% higher FVC % pred. Higher α-Klotho was also associated with lower eosinophils, neutrophils and CRP in participants both with and without airflow obstruction. Conclusions Higher serum α-Klotho is associated with lower inflammatory markers and higher lung function in adults with and without airflow obstruction, and with decreased odds of airflow obstruction in never-smokers and ex-smokers with <10 pack-years of smoking. Further studies are warranted to replicate our findings and evaluate underlying mechanisms.
Collapse
Affiliation(s)
- Yueh-Ying Han
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juan C. Celedón
- Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erick Forno
- Division of Pulmonary, Allergy and Sleep Medicine, Riley Children's Hospital, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
44
|
Wang M, Zhou Y, Hao G, Wu YE, Yin R, Zheng Y, Zhao W. Recombinant Klotho alleviates vancomycin-induced acute kidney injury by upregulating anti-oxidative capacity via JAK2/STAT3/GPx3 axis. Toxicology 2023; 499:153657. [PMID: 37884167 DOI: 10.1016/j.tox.2023.153657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Emerging studies support that Klotho protects against different kidney diseases. However, the role of Klotho in vancomycin induced acute kidney injury (Van-AKI) is largely unclear. Hence this study aimed to explore the regulatory mechanism of Klotho in Van-AKI. The mRNA expression of Klotho and the JAK2/STAT3/GPx3 in renal tissue were assessed by RNA sequence analysis after 600 mg/kg Van daily for seven days; Small interfering RNA and recombinant protein are applied to examine the mechanism action of Klotho in vitro and in vivo respectively. Flow cytometry and spectrophotometry detected the expression of reactive oxygen species and antioxidant enzymes. Transmission electron microscopy scanned the structural damage of mitochondria. Western blotting, qPCR, and immunofluorescence were employed to explore the JAK2/STAT3/GPx3 expression. RNA sequence analysis found that Van challenging reduced Klotho and GPx3 expression but increased JAK2/STAT3 in renal tissue. In HK-2 cells, Klotho were decreased by Van in a dose-dependent manner. Klotho siRNA enhanced the production of reactive oxygen species and the cell apoptosis ratio by regulating the JAK2/STAT3, and JAK2/STAT3 inhibitors prevented the decrease of GPx3. Meanwhile, 1 μg/ml recombinant human Klotho showed the opposite function to 120 pmol Klotho siRNA. In Van-AKI BALB/c mice, 20 μg/kg recombinant mouse Klotho once every two days improved the anti-oxidative enzyme expression, mitochondria structure, renal dysfunction, and histological damage. In conclusion, Klotho enhances antioxidant capacity through the JAK2/STAT3/GPx3 axis, which in turn improves Van-AKI.
Collapse
Affiliation(s)
- MengMeng Wang
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Zhou
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - GuoXiang Hao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue E Wu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Yin
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Wei Zhao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China.
| |
Collapse
|
45
|
Ozdemir N, Toraman A, Taneli F, Yurekli BS, Hekimsoy Z. An evaluation of both serum Klotho/FGF-23 and apelin-13 for detection of diabetic nephropathy. Hormones (Athens) 2023; 22:413-423. [PMID: 37458962 DOI: 10.1007/s42000-023-00464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/26/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE The aim of our study is to evaluate whether serum Klotho/FGF-23 and apelin-13 can be used as new biomarkers for detection of development of nephropathy. METHODS In this cross-sectional study, 88 type 2 diabetes mellitus (T2DM) patients and 38 healthy controls were included. The mean duration of T2DM was 11.4 ± 9.7 years. T2DM individuals were categorized into two groups as group 1 with e-GFR < 60 mL/min/1.73 m2 and group 2 with e-GFR > 60 mL/min/1.73 m2. They were also divided into two groups according to their 24 h urine albumin levels, classifying them as follows: normoalbuminuria if less than 30 mg/day and albuminuria if more than 30 mg/day. RESULTS Mean serum Klotho levels in the T2DM group were observed to be significantly higher than in the control group. Serum apelin-13 levels were observed to be significantly lower in the T2DM group compared to the control group (p < 0.001). In the diabetic group, apelin-13 levels were positively correlated with age, waist circumference, and albuminuria while they were negatively correlated with e-GFR. Apelin-13 levels were seen to be significantly higher in group 1 (p < 0.001). CONCLUSION Apelin-13 levels were found to be significantly higher in individuals with diabetic nephropathy than in those without diabetic nephropathy. In the diabetic group, a significant relationship was detected between apelin-13 levels and albumin excretion. Based on these findings, we consider that serum Klotho and apelin-13 levels may have a protective effect on diabetic nephropathy and can additionally be used as a biomarker to predict diabetic nephropathy.
Collapse
Affiliation(s)
- Nilufer Ozdemir
- Department of Endocrinology and Metabolism, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey.
| | - Aysun Toraman
- Department of Nephrology, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Fatma Taneli
- Department of Clinical Biochemistry, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| | - Banu Sarer Yurekli
- Department of Endocrinology and Metabolism, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Zeliha Hekimsoy
- Department of Endocrinology and Metabolism, Faculty of Medicine, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
46
|
Puddu A, Maggi DC. Klotho: A new therapeutic target in diabetic retinopathy? World J Diabetes 2023; 14:1027-1036. [PMID: 37547589 PMCID: PMC10401458 DOI: 10.4239/wjd.v14.i7.1027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023] Open
Abstract
Klotho (Kl) is considered an antiaging gene, mainly for the inhibition of the insulin-like growth factor-1 signaling. Kl exists as full-length transmembrane, which acts as co-receptor for fibroblast growth factor receptor, and in soluble forms (sKl). The sKl may exert pleiotropic effects on organs and tissues by regulating several pathways involved in the pathogenesis of diseases associated with oxidative and inflammatory state. In diabetic Patients, serum levels of Kl are significantly decreased compared to healthy subjects, and are related to duration of diabetes. In diabetic retinopathy (DR), one of the most common microvascular complications of type 2 diabetes, serum Kl levels are negatively correlated with progression of the disease. A lot of evidences showed that Kl regulates several mechanisms involved in maintaining homeostasis and functions of retinal cells, including phagocytosis, calcium signaling, secretion of vascular endothelial growth factor A (VEGF-A), maintenance of redox status, and melanin biosynthesis. Experimental data have been shown that Kl exerts positive effects on several mechanisms involved in onset and progression of DR. In particular, treatment with Kl: (1) Prevents apoptosis induced by oxidative stress in human retinal endothelial cells and in retinal pigment epithelium (RPE) cells; (2) reduces secretion of VEGF-A by RPE cells; and (3) decreases subretinal fibrosis and preserves autophagic activity. Therefore, Kl may become a novel biomarker and a good candidate for the treatment of DR.
Collapse
Affiliation(s)
- Alessandra Puddu
- Department of Internal Medicine and Medical Specialties, University of Genova, Genova 16132, Italy
| | - Davide Carlo Maggi
- Department of Internal Medicine and Medical Specialties, University of Genova, Genova 16132, Italy
| |
Collapse
|
47
|
Jiang J, Liu Q, Mao Y, Wang N, Lin W, Li L, Liang J, Chen G, Huang H, Wen J. Klotho reduces the risk of osteoporosis in postmenopausal women: a cross-sectional study of the National Health and Nutrition Examination Survey (NHANES). BMC Endocr Disord 2023; 23:151. [PMID: 37452417 PMCID: PMC10347835 DOI: 10.1186/s12902-023-01380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is one of the diseases that endanger the health of the elderly population. Klotho protein is a hormone with anti-aging effects. A few studies have discussed the relationship between Klotho and OP. However, there is still a lack of research on larger populations. This study aims to evaluate the association between OP and Klotho in American postmenopausal women. METHODS This is a retrospective study. We searched the National Health and Nutrition Examination Survey (NHANES) database and collected data of 3 survey cycles, finally involving 871 postmenopausal women over 50 years old in the present study. All participants took dual-energy X-ray absorptiometry examination and serum Klotho testing at the time of investigation. After adjusting the possible confounding variables, a multivariate regression model was employed to estimate the relationship between OP and Klotho proteins. Besides, the P for trend and restricted cubic spline (RCS) were applied to examine the threshold effect and calculate the inflection point. RESULTS Factors influencing the occurrence of OP included age, ethnicity, body mass index and Klotho levels. Multivariate regression analysis indicated that the serum Klotho concentration was lower in OP patients than that in participants without OP (OR[log2Klotho] = 0.568, P = 0.027). The C-index of the prediction model built was 0.765, indicating good prediction performance. After adjusting the above-mentioned four variables, P values for trend showed significant differences between groups. RCSs revealed that when the Klotho concentration reached 824.09 pg/ml, the risk of OP decreased drastically. CONCLUSION Based on the analysis of the data collected from the NHANES database, we propose a correlation between Klotho and postmenopausal OP. A higher serum Klotho level is related to a lower incidence of OP. The findings of the present study can provide guidance for research on diagnosis and risk assessment of OP.
Collapse
Affiliation(s)
- Jialin Jiang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Qinyu Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Yaqian Mao
- Department of Internal Medicine, Fujian Provincial Hospital Jinshan Branch, Fuzhou, China
| | - Nengyin Wang
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Wei Lin
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Liantao Li
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Jixing Liang
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
| | - Gang Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Medical Analysis, Fujian Academy of Medical, Fuzhou, China
| | - Huibin Huang
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China.
| | - Junping Wen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou, China.
| |
Collapse
|
48
|
Wan X, Liao J, Lai H, Zhang S, Cui J, Chen C. Roles of microRNA-192 in diabetic nephropathy: the clinical applications and mechanisms of action. Front Endocrinol (Lausanne) 2023; 14:1179161. [PMID: 37396169 PMCID: PMC10309560 DOI: 10.3389/fendo.2023.1179161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most common and intractable microvascular complications of diabetes worldwide, serving as the main cause of terminal renal disease. Due to the lack of early specific symptoms and diagnostic markers, DN severely threatens the sufferer's life. MicroRNA-192 (miR-192) was early identified in human renal cortical tissue and stored and excreted in urine as microvesicles. MiR-192 was found to be involved in the development of DN. For the first time, the present review summarized all the current evidence on the topic of the roles of miR-192 in DN. Finally, 28 studies (ten clinical trials and eighteen experimental studies) were eligible for thorough reviewing. Most of the clinical trials (7/10, 70%) indicated miR-192 might be a protective factor for DN development and progression, while the majority of experimental studies (14/18, 78%) suggested miR-192 might be a pathogenic factor for DN. Mechanistically, miR-192 interacts with various direct targeted proteins (i.e., ZEB1, ZEB2, SIP1, GLP1R, and Egr1) and signaling cascades (i.e., SMAD/TGF-β and PTEN/PI3K/AKT), together contribute to the pathogenesis of DN through epithelial-to-mesenchymal transition (EMT), extracellular matrix deposition, and fibrosis formation. The current review highlights the dual role of miR-192 in the development of DN. Low serum miR-192 expression could be applied for the early prediction of DN (the early stage of DN), while the high miR-192 level in renal tissues and urine may imply the progression of DN (the late stage of DN). Further investigations are still warranted to illustrate this inconsistent phenomenon, which may facilitate promoting the therapeutic applications of miR-192 in predicting and treating DN.
Collapse
Affiliation(s)
- Xiaoqing Wan
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Jian Liao
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| | - Hongting Lai
- Clinical Medical College, Tianjin Medical University, Tianjin, China
| | - Shilong Zhang
- Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jianling Cui
- Department of Nephrology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Chunyan Chen
- Department of Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, China
| |
Collapse
|
49
|
Sauvé B, Chorfi Y, Montminy MPL, Guay F. Vitamin D Supplementation Impacts Calcium and Phosphorus Metabolism in Piglets Fed a Diet Contaminated with Deoxynivalenol and Challenged with Lipopolysaccharides. Toxins (Basel) 2023; 15:394. [PMID: 37368695 DOI: 10.3390/toxins15060394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Using alternative feed ingredients in pig diets can lead to deoxynivalenol (DON) contamination. DON has been shown to induce anorexia, inflammation, and-more recently-alterations in the vitamin D, calcium, and phosphorus metabolisms. Adding vitamin D supplementation in the form of vitamin D3 and 25-OH-D3 to the feed could modify the effects of DON in piglets. In this study, vitamin D3 or 25-OH-D3 supplementation was used in a control or DON-contaminated treatment. A repetitive exposure over 21 days to DON in the piglets led to disruptions in the vitamin D, calcium, and phosphorus metabolisms, resulting in a decreased growth performance, increased bone mineralization, and the downregulation of genes related to calcium and to phosphorus intestinal and renal absorption. The DON challenge also decreased blood concentrations of 25-OH-D3, 1,25-(OH)2-D3, and phosphate. The DON contamination likely decreased the piglets' vitamin D status indirectly by modifying the calcium metabolism response. Vitamin D supplementations did not restore vitamin D status or bone mineralization. After a lipopolysaccharide-induced inflammatory stimulation, feeding a 25-OH-D3 supplementation increased 25-OH-D3 concentration and 1,25-(OH)2-D3 regulations during the DON challenge. DON contamination likely induced a Ca afflux by altering the intestinal barrier, which resulted in hypercalcemia and hypovitaminosis D. The vitamin D supplementation could increase the calcitriol production to face the combined LPS and DON challenge.
Collapse
Affiliation(s)
- Béatrice Sauvé
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| | - Younes Chorfi
- Department of Veterinary Biomedicine, Montreal University, Saint-Hyacinthe, QC J2S 2M2, Canada
| | | | - Frédéric Guay
- Department of Animal Sciences, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
50
|
Ananya FN, Ahammed MR, Lahori S, Parikh C, Lawrence JA, Sulachni F, Barqawi T, Kamwal C. Neuroprotective Role of Klotho on Dementia. Cureus 2023; 15:e40043. [PMID: 37425590 PMCID: PMC10324629 DOI: 10.7759/cureus.40043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Klotho, a gene found on chromosome 13q12, is involved in a variety of processes and signaling pathways in the human body related to vitamin D metabolism; cardiovascular, renal, musculoskeletal, and skin diseases; and cancer biology. However, more importantly, it has been linked to beneficial effects related to anti-aging. The levels of soluble Klotho in the blood have been found to decline with age, increasing the risk of age-related diseases. When the Klotho gene was silenced or defective, it caused a shorter lifespan. However, when the gene was overexpressed, it resulted in a longer lifespan. Klotho has positive benefits on the neurological system by causing a higher representation of useful longevity genes, preventing further neuronal damage, and offering neuroprotection. Thus, it has the potential to become a new treatment for many age-related diseases that cause dementia, including multiple sclerosis, Alzheimer's disease, and Parkinson's disease. In this review, we discuss the mechanisms of Klotho's benefits and roles on various organ systems, specifically on nervous system disorders that lead to dementia.
Collapse
Affiliation(s)
- Fariha Noor Ananya
- Internal Medicine, Dhaka Medical College and Hospital, Dhaka, BGD
- Research and Academic Affairs, Larkin Community Hospital, South Miami, USA
| | - Md Ripon Ahammed
- Internal Medicine, Icahn School of Medicine at Mount Sinai, New York City Health + Hospitals/Queens, New York, USA
| | - Simmy Lahori
- Internal Medicine, Pramukhswami Medical College, Anand, IND
| | - Charmy Parikh
- Internal Medicine, Pramukhswami Medical College, Anand, IND
| | - Jannel A Lawrence
- Internal Medicine, Ross University School of Medicine, Bridgetown, BRB
| | - Fnu Sulachni
- Internal Medicine, Liaquat University of Medical and Health Sciences, Jamshoro, PAK
| | | | - Chhaya Kamwal
- Research and Academic Affairs, Larkin Community Hospital, South Miami, USA
| |
Collapse
|