1
|
Ebraheem MA, El-Fakharany EM, Husseiny SM, Mohammed FA. Purification and characterization of the produced hyaluronidase by Brucella Intermedia MEFS for antioxidant and anticancer applications. Microb Cell Fact 2024; 23:200. [PMID: 39026213 PMCID: PMC11256544 DOI: 10.1186/s12934-024-02469-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Hyaluronidase (hyase) is an endoglycosidase enzyme that degrades hyaluronic acid (HA) and is mostly known to be found in the extracellular matrix of connective tissues. In the current study, eleven bacteria isolates and one actinomycete were isolated from a roaster comb and screened for hyase production. Seven isolates were positive for hyase, and the most potent isolate was selected based on the diameter of the transparent zone. Based on the morphological, physiological, and 16 S rRNA characteristics, the most potent isolate was identified as Brucella intermedia MEFS with accession number OR794010. The environmental conditions supporting the maximum production of hyase were optimized to be incubation at 30 ºC for 48 h and pH 7, which caused a 1.17-fold increase in hyase production with an activity of 84 U/mL. Hyase was purified using a standard protocol, including precipitation with ammonium sulphate, DEAE as ion exchange chromatography, and size exclusion chromatography using Sephacryle S100, with a specific activity of 9.3-fold compared with the crude enzyme. The results revealed that the molecular weight of hyase was 65 KDa, and the optimum conditions for hyase activity were at pH 7.0 and 37 °C for 30 min. The purified hyase showed potent anticancer activities against colon, lung, skin, and breast cancer cell lines with low toxicity against normal somatic cells. The cell viability of hyase-treated cancer cells was found to be in a dose dependent manner. Hyase also controlled the growth factor-induced cell cycle progression of breast cancer cells and caused relative changes in angiogenesis-related genes as well as suppressed many pro-inflammatory proteins in MDA cells compared with 5-fluorouracil, indicating the significant role of hyase as an anticancer agent. In addition, hyase recorded the highest DPPH scavenging activity of 65.49% and total antioxidant activity of 71.84% at a concentration of 200 µg/mL.
Collapse
Affiliation(s)
- Mai A Ebraheem
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute GEPRI, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt.
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Alexandria, Egypt.
- Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex 21648, Alexandria, Egypt.
| | - Sherif Moussa Husseiny
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Fafy A Mohammed
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Gaber DM, Ibrahim SS, Awaad AK, Shahine YM, Elmallah S, Barakat HS, Khamis NI. A drug repurposing approach of Atorvastatin calcium for its antiproliferative activity for effective treatment of breast cancer: In vitro and in vivo assessment. Int J Pharm X 2024; 7:100249. [PMID: 38689601 PMCID: PMC11059436 DOI: 10.1016/j.ijpx.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
Breast cancer, the most common cancer among women, caused over 500,000 deaths in 2020. Conventional treatments are expensive and have severe side effects. Drug repurposing is a novel approach aiming to reposition clinically approved non-cancer drugs into newer cancer treatments. Atorvastatin calcium (ATR Ca) which is used for the treatment of hypercholesterolemia has potential to modulate cell growth and apoptosis. The study aimed at utilizing gelucire-based solid lipid nanoparticles (SLNs) and lactoferrin (Lf) as targeting ligand to enhance tumor targeting of atorvastatin calcium for effective management of breast cancer. Lf-decorated-ATR Ca-SLNs showed acceptable particle size and PDI values <200 nm and 0.35 respectively, entrapment efficiency >90% and sustained drug release profile with 78.97 ± 12.3% released after 24 h. In vitro cytotoxicity study on breast cancer cell lines (MCF-7) showed that Lf-decorated-ATR Ca-SLNs obviously improved anti-tumor activity by 2 to 2.5 folds compared to undecorated ATR Ca-SLNs and free drug. Further, In vivo study was also carried out using Ehrlich breast cancer model in mice. Caspase-3 apoptotic marker revealed superior antineoplastic and apoptosis-inducing activity in the groups treated with ATR Ca-SLNs either decorated/ undecorated with Lf in dosage 10 mg/kg/day p < 0.001 with superior activity for lactoferrin-decorated formulation.
Collapse
Affiliation(s)
- Dina M. Gaber
- Pharmaceutical Sciences Division (Pharmaceutics), College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Abu Kir Campus, Alexandria 1029, Egypt
| | - Sherihan S. Ibrahim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University Alexandria, 21311, Egypt
| | - Ashraf K. Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria 21514, Egypt
| | - Yasmine M. Shahine
- Department of Microbiology & Immunology, Faculty of Pharmacy, Pharos University, Alexandria 21311, Egypt
| | - Salma Elmallah
- Pharmaceutical Sciences Division (Pharmaceutical Chemistry), College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Abu Kir Campus, Alexandria 1029, Egypt
| | - Hebatallah S. Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21525, Egypt
| | - Noha I. Khamis
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Pharos University, Alexandria 21311, Egypt
| |
Collapse
|
3
|
Ramírez‐Sánchez DA, Canizalez‐Román A, León‐Sicairos N, Pérez Martínez G. The anticancer activity of bovine lactoferrin is reduced by deglycosylation and it follows a different pathway in cervix and colon cancer cells. Food Sci Nutr 2024; 12:3516-3528. [PMID: 38726451 PMCID: PMC11077203 DOI: 10.1002/fsn3.4020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 05/12/2024] Open
Abstract
Bovine lactoferrin (bLF) is a glycosylated protein with purported beneficial properties. The aim of this work was to determine the role of bLF glycosylation in the adhesion, internalization, and growth inhibition of cancer cells. The viability of cervix (HeLa) and colon (Caco-2) cancer cells (MTT assay and epifluorescence microscopy) was inhibited by bLF, while deglycosylated bLF (bLFdeg) had no effect. Adhesion to cell surfaces was quantified by immunofluorescence assay and showed that bLF was able to bind more efficiently to both cell lines than bLFdeg. Microscopic observations indicated that bLF glycosylation favored bLF binding to epithelial cells and that it was endocytosed through caveolin-1-mediated internalization. In addition, the mechanism of action of bLF on cancer cell proliferation was investigated by determining the amount of phosphorylated intermediates of signaling pathways such as epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK) and protein kinase B (known as Akt). Chemoluminescence immunoassay of phosphorylated intermediates showed that bLF inhibited Akt phosphorylation, consistent with its growth inhibiting activity. This assay also indicated that the bLF receptor/signaling pathways may be different in the two cell lines, Caco-2 and HeLa. This work confirmed the effect of glycosylated bLF in inhibiting cancer cell growth and that glycosylation is required for optimal surface adhesion, internalization, and inhibition of the ERK/Akt pathway of cell proliferation through glycosylated cell surface receptors.
Collapse
Affiliation(s)
- Diana A. Ramírez‐Sánchez
- Programa Regional de Noroeste para el Doctorado en BiotecnologíaUniversidad Autónoma de Sinaloa Facultad de Ciencias Químico BiológicasCuliacanMexico
| | - Adrián Canizalez‐Román
- Unidad de Investigación, Facultad de MedicinaUniversidad Autónoma de SinaloaCuliacanMexico
- Servicios de Salud de SinaloaHospital de la MujerCuliacanMexico
| | - Nidia León‐Sicairos
- Unidad de Investigación, Facultad de MedicinaUniversidad Autónoma de SinaloaCuliacanMexico
- Servicios de Salud de Sinaloa, Departamento de Investigación del Hospital Pediátrico de SinaloaCuliacanMexico
| | - Gaspar Pérez Martínez
- Consejo Superior de Investigaciones CientificasInstituto de Agroquímica y Tecnología de AlimentosPaternaSpain
| |
Collapse
|
4
|
Hernández-Galdámez HV, Fattel-Fazenda S, Flores-Téllez TNJ, Aguilar-Chaparro MA, Mendoza-García J, Díaz-Fernández LC, Romo-Medina E, Sánchez-Pérez Y, Arellanes-Robledo J, De la Garza M, Villa-Treviño S, Piña-Vázquez C. Iron-saturated bovine lactoferrin: a promising chemopreventive agent for hepatocellular carcinoma. Food Funct 2024; 15:4586-4602. [PMID: 38590223 DOI: 10.1039/d3fo05184f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is a tumor with minimal chance of cure due to underlying liver diseases, late diagnosis, and inefficient treatments. Thus, HCC treatment warrants the development of additional strategies. Lactoferrin (Lf) is a mammalian multifunctional iron-binding glycoprotein of the innate immune response and can be found as either a native low iron form (native-Lf) or a high iron form (holo-Lf). Bovine Lf (bLf), which shares many functions with human Lf (hLf), is safe for humans and has several anticancer activities, including chemotherapy boost in cancer. We found endogenous hLf is downregulated in HCC tumors compared with normal liver, and decreased hLf levels in HCC tumors are associated with shorter survival of HCC patients. However, the chemoprotective effect of 100% iron saturated holo-bLf on experimental hepatocarcinogenesis has not yet been determined. We aimed to evaluate the chemopreventive effects of holo-bLf in different HCC models. Remarkably, a single dose (200 mg kg-1) of holo-bLf was effective in preventing early carcinogenic events in a diethylnitrosamine induced HCC in vivo model, such as necrosis, ROS production, and the surge of facultative liver stem cells, and eventually, holo-bLf reduced the number of preneoplastic lesions. For an established HCC model, holo-bLf treatment significantly reduced HepG2 tumor burden in xenotransplanted mice. Finally, holo-bLf in combination with sorafenib, the advanced HCC first-line treatment, synergistically decreased HepG2 viability by arresting cells in the G0/G1 phase of the cell cycle. Our findings provide the first evidence suggesting that holo-bLf has the potential to prevent HCC or to be used in combination with treatments for established HCC.
Collapse
Affiliation(s)
| | - Samia Fattel-Fazenda
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Teresita N J Flores-Téllez
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, SK10 4TG Macclesfield, UK
| | | | - Jonathan Mendoza-García
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Lidia C Díaz-Fernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Eunice Romo-Medina
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Yesennia Sánchez-Pérez
- Instituto Nacional de Cancerología (INCan), Subdirección de Investigación Básica, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratorio de Enfermedades Hepáticas, Instituto Nacional de Medicina Genómica, Ciudad de México, México. Dirección de Cátedras, Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Ciudad de México, Mexico
| | - Mireya De la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Saúl Villa-Treviño
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| | - Carolina Piña-Vázquez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), CDMX, Mexico.
| |
Collapse
|
5
|
Alkhulaifi MM, Alosaimi MM, Khan MS, Tabrez S, Shaik GM, Alokail MS, Hassan MA, Awadalla ME, Husain FM. Assessment of Broad-Spectrum Antimicrobial, Antibiofilm, and Anticancer Potential of Lactoferrin Extracted from Camel Milk. Appl Biochem Biotechnol 2024; 196:1464-1480. [PMID: 37418128 DOI: 10.1007/s12010-023-04579-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/08/2023]
Abstract
Lactoferrin is a multifunctional glycoprotein present in mammalian milk. It possesses antimicrobial, antioxidant, immunomodulatory, and several biological functions. Owing to the current trend of increasing antibiotic resistance, our study was designed to purify lactoferrin from camel milk colostrum using cation exchange chromatography on the SP-Sepharose high-performance column. The purity and molecular weight of lactoferrin were checked by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The chromatogram of the purification procedure illustrated a single peak corresponding to lactoferrin, while the SDS-PAGE revealed 78 kDa molecular weight protein. Furthermore, lactoferrin protein and its hydrolysate form were assessed for its antimicrobial potential. The highest inhibitory effect of whole lactoferrin at the concentration (4 mg/ml) was observed against methicillin-resistant S. aureus (MRSA) and S. aureus, while 10 mg/ml concentration was effective against K. pneumonia, and 27 mg/ml was potent against multidrug-resistant (MDR) bacteria, P. aeruginosa. Likewise, MRSA was more sensitive toward iron-free lactoferrin (2 mg/ml) and hydrolyzed lactoferrin (6 mg/ml). The tested lactoferrin forms showed variability in minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) among tested bacteria. The scanning electron microscopy (SEM) analysis images revealed distortions of the bacterial cells exposed to lactoferrin. The antibiofilm effect differed depending on the concentration and the type of the bacteria; biofilm inhibition ranged from 12.5 to 91.3% in the tested pathogenic bacteria. Moreover, the anticancer activity of lactoferrin forms exhibited a dose-dependent cytotoxicity against human lung cancer cell line (A549).
Collapse
Affiliation(s)
- Manal M Alkhulaifi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Malak M Alosaimi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gouse M Shaik
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Majed S Alokail
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammed A Hassan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muawiya E Awadalla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fohad Mabood Husain
- Food and Nutrition, Department of Agriculture, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Ashraf MF, Zubair D, Bashir MN, Alagawany M, Ahmed S, Shah QA, Buzdar JA, Arain MA. Nutraceutical and Health-Promoting Potential of Lactoferrin, an Iron-Binding Protein in Human and Animal: Current Knowledge. Biol Trace Elem Res 2024; 202:56-72. [PMID: 37059920 PMCID: PMC10104436 DOI: 10.1007/s12011-023-03658-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/03/2023] [Indexed: 04/16/2023]
Abstract
Lactoferrin is a natural cationic iron-binding glycoprotein of the transferrin family found in bovine milk and other exocrine secretions, including lacrimal fluid, saliva, and bile. Lactoferrin has been investigated for its numerous powerful influences, including anticancer, anti-inflammatory, anti-oxidant, anti-osteoporotic, antifungal, antibacterial, antiviral, immunomodulatory, hepatoprotective, and other beneficial health effects. Lactoferrin demonstrated several nutraceutical and pharmaceutical potentials and have a significant impact on improving the health of humans and animals. Lactoferrin plays a critical role in keeping the normal physiological homeostasis associated with the development of pathological disorders. The current review highlights the medicinal value, nutraceutical role, therapeutic application, and outstanding favorable health sides of lactoferrin, which would benefit from more exploration of this glycoprotein for the design of effective medicines, drugs, and pharmaceuticals for safeguarding different health issues in animals and humans.
Collapse
Affiliation(s)
| | - Dawood Zubair
- Iqraa Medical Complex, Johar Town Lahore, Punjab, Pakistan
| | | | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, 44519, Egypt.
| | - Shabbir Ahmed
- Faculty of Animal Husbandry & Veterinary Science, Sindh Agriculture University Tandojam, Tandojam, Pakistan
| | - Qurban Ali Shah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Jameel Ahmed Buzdar
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan
| | - Muhammad Asif Arain
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, 3800, Balochistan, Pakistan.
| |
Collapse
|
7
|
Wang Y, Sun Y, Wang F, Wang H, Hu J. Ferroptosis induction via targeting metabolic alterations in triple-negative breast cancer. Biomed Pharmacother 2023; 169:115866. [PMID: 37951026 DOI: 10.1016/j.biopha.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/13/2023] Open
Abstract
Triple-negative breast cancer (TNBC), the most aggressive form of breast cancer, presents severe threats to women's health. Therefore, it is critical to find novel treatment approaches. Ferroptosis, a newly identified form of programmed cell death, is marked by the buildup of lipid reactive oxygen species (ROS) and high iron concentrations. According to previous studies, ferroptosis sensitivity can be controlled by a number of metabolic events in cells, such as amino acid metabolism, iron metabolism, and lipid metabolism. Given that TNBC tumors are rich in iron and lipids, inducing ferroptosis in these tumors is a potential approach for TNBC treatment. Notably, the metabolic adaptability of cancer cells allows them to coordinate an attack on one or more metabolic pathways to initiate ferroptosis, offering a novel perspective to improve the high drug resistance and clinical therapy of TNBC. However, a clear picture of ferroptosis in TNBC still needs to be completely revealed. In this review, we provide an overview of recent advancements regarding the connection between ferroptosis and amino acid, iron, and lipid metabolism in TNBC. We also discuss the probable significance of ferroptosis as an innovative target for chemotherapy, radiotherapy, immunotherapy, nanotherapy and natural product therapy in TNBC, highlighting its therapeutic potential and application prospects.
Collapse
Affiliation(s)
- Yaru Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yue Sun
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Feiran Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Hongyi Wang
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Jing Hu
- The Department of Breast Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China.
| |
Collapse
|
8
|
Dyrda-Terniuk T, Pomastowski P. The Multifaceted Roles of Bovine Lactoferrin: Molecular Structure, Isolation Methods, Analytical Characteristics, and Biological Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20500-20531. [PMID: 38091520 PMCID: PMC10755757 DOI: 10.1021/acs.jafc.3c06887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
Bovine lactoferrin (bLF) is widely known as an iron-binding glycoprotein from the transferrin family. The bLF molecule exhibits a broad spectrum of biological activity, including iron delivery, antimicrobial, antiviral, immunomodulatory, antioxidant, antitumor, and prebiotic functions, thereby making it one of the most valuable representatives for biomedical applications. Remarkably, LF functionality might completely differ in dependence on the iron saturation state and glycosylation patterns. Recently, a violently growing demand for bLF production has been observed, mostly for infant formulas, dietary supplements, and functional food formulations. Unfortunately, one of the reasons that inhibit the development of the bLF market and widespread protein implementation is related to its negligible amount in both major sources─colostrum and mature milk. This study provides a comprehensive overview of the significance of bLF research by delineating the key structural characteristics of the protein and elucidating their impact on its physicochemical and biological properties. Progress in the development of optimal isolation techniques for bLF is critically assessed, alongside the challenges that arise during its production. Furthermore, this paper presents a curated list of the most relevant instrumental techniques for the characterization of bLF. Lastly, it discusses the prospective applications and future directions for bLF-based formulations, highlighting their potential in various fields.
Collapse
Affiliation(s)
- Tetiana Dyrda-Terniuk
- Centre for Modern Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary
Technologies, Nicolaus Copernicus University
in Toruń, Wileńska 4, 87-100 Toruń, Poland
| |
Collapse
|
9
|
Attri K, Chudasama B, Mahajan RL, Choudhury D. Therapeutic potential of lactoferrin-coated iron oxide nanospheres for targeted hyperthermia in gastric cancer. Sci Rep 2023; 13:17875. [PMID: 37857677 PMCID: PMC10587155 DOI: 10.1038/s41598-023-43725-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Lactoferrin (LF) is a non-heme iron-binding glycoprotein involved in the transport of iron in blood plasma. In addition, it has many biological functions, including antibacterial, antiviral, antimicrobial, antiparasitic, and, importantly, antitumor properties. In this study, we have investigated the potential of employing lactoferrin-iron oxide nanoparticles (LF-IONPs) as a treatment modality for gastric cancer. The study confirms the formation of LF-IONPs with a spherical shape and an average size of 5 ± 2 nm, embedded within the protein matrix. FTIR and Raman analysis revealed that the Fe-O bond stabilized the protein particle interactions. Further, we conducted hyperthermia studies to ascertain whether the proposed composite can generate a sufficient rise in temperature at a low frequency. The results confirmed that we can achieve a temperature rise of about 7 °C at 242.4 kHz, which can be further harnessed for gastric cancer treatment. The particles were further tested for their anti-cancer activity on AGS cells, with and without hyperthermia. Results indicate that LF-IONPs (10 µg/ml) significantly enhance cytotoxicity, resulting in the demise of 67.75 ± 5.2% of cells post hyperthermia, while also exhibiting an inhibitory effect on cell migration compared to control cells, with the most inhibition observed after 36 h of treatment. These findings suggest the potential of LF-IONPs in targeted hyperthermia treatment of gastric cancer.
Collapse
Affiliation(s)
- Komal Attri
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Bhupendra Chudasama
- School of Physics and Material Sciences, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| | - Roop L Mahajan
- Department of Mechanical Engineering, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- TIET-VT Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
10
|
Kato S. Lactoferrin inhibits the proliferation of IMR‑32 neuroblastoma cells even under X‑rays. MEDICINE INTERNATIONAL 2023; 3:33. [PMID: 37448769 PMCID: PMC10336960 DOI: 10.3892/mi.2023.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Neuroblastoma is a typical solid tumor common in childhood. The present study investigated the inhibitory effects of lactoferrin on the proliferation of IMR-32 neuroblastoma cells, including under X-ray irradiation. In controlled in vitro assays, it was found that lactoferrin inhibited cell proliferation, accompanied by cell membrane disruption. Furthermore, intracellular reactive oxygen species generation increased in IMR-32 cells treated with lactoferrin, causing membrane lipid peroxidation and the leakage of lactate dehydrogenase. The IC50 values for cell proliferation were ~2.0 nM for doxorubicin, 2.7 mM for dibutyryl-cAMP and 45.9 µM for lactoferrin. X-ray irradiation at 1 Gy decreased cell proliferation to ~30%, which was not restored by lactoferrin. In the Fenton reaction system with iron chloride, lactoferrin increased hydroxyl radical (OH·) formation via H2O2, as confirmed by electron spin resonance spectra. On the whole, the findings of the present study indicate that lactoferrin, found abundantly in milk, may help prevent or treat neuroblastoma in infants with modest efficacy, and does not exert a protective effect against X-rays.
Collapse
Affiliation(s)
- Shinya Kato
- Radioisotope Experimental Facility, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
11
|
El-Fakharany EM, Abu-Serie MM, Ibrahim A, Eltarahony M. Anticancer activity of lactoferrin-coated biosynthesized selenium nanoparticles for combating different human cancer cells via mediating apoptotic effects. Sci Rep 2023; 13:9579. [PMID: 37311791 DOI: 10.1038/s41598-023-36492-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
The present study aims to develop a novel nanocombination with high selectivity against several invasive cancer cells, sparing normal cells and tissues. Bovine lactoferrin (bLF) has recently captured the interest of numerous medical fields owing to its biological activities and well-known immunomodulatory effects. BLF is an ideal protein to be encapsulated or adsorbed into selenium nanocomposites (Se NPs) in order to produce stable nanocombinations with potent anticancer effects and improved immunological functions. The biosynthesis of the functionalized Se NPs was achieved using Rhodotorula sp. strain MZ312359 via a simultaneous bio-reduction approach to selenium sodium salts. The physicochemical properties of Se NPs using SEM, TEM, FTIR, UV Vis, XRD, and EDX confirmed the formation of uniform agglomerated spheres with a size of 18-40 nm. Se NPs were successfully embedded in apo-LF (ALF), forming a novel nanocombination of ALF-Se NPs with a spherical shape and an average nanosize of less than 200 nm. The developed ALF-Se NPs significantly displayed an effective anti-proliferation efficiency against many cancer cells, including MCF-7, HepG-2, and Caco-2 cell lines, as compared to Se NPs and ALF in free forms. ALF-Se NPs showed a significant selectivity impact (> 64) against all treated cancer cells at IC50 63.10 ≤ μg/mL, as well as the strongest upregulation of p53 and suppression of Bcl-2, MMP-9, and VEGF genes. Besides, ALF-Se NPs were able to show the maximum activation of transcrition of key redox mediator (Nrf2) with suppression in reactive oxygen species (ROS) levels inside all treated cancer cells. This study demonstrates that this novel nanocombination of ALF-Se NPs has superior selectivity and apoptosis-mediating anticancer activity over free ALF or individual form of Se NPs.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, 21934, Alexandria, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GE‑BRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, 21934, Alexandria, Egypt
| | - Amany Ibrahim
- Botany Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
- Department of Biology, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
- Ain Shams University, Cairo, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab, 21934, Alexandria, Egypt
| |
Collapse
|
12
|
Abd El-Hack ME, Abdelnour SA, Kamal M, Khafaga AF, Shakoori AM, Bagadood RM, Naffadi HM, Alyahyawi AY, Khojah H, Alghamdi S, Jaremko M, Świątkiewicz S. Lactoferrin: Antimicrobial impacts, genomic guardian, therapeutic uses and clinical significance for humans and animals. Biomed Pharmacother 2023; 164:114967. [PMID: 37290189 DOI: 10.1016/j.biopha.2023.114967] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/10/2023] Open
Abstract
Lactoferrin (LF) is a protein found in several bodily fluids, such as milk. This protein has a diverse range of functions and is evolutionarily conserved. Lactoferrin is a multifunction protein with distinct biological abilities affecting mammals' immune structures. Reports indicated that the daily uptake of LF from dairy products is unsatisfactory in detecting further health-promoting abilities. Research has shown that it protects against infection, mitigates cellular senescence, and improves nutritional quality. Additionally, LF is being studied as a potential treatment for various diseases and conditions, including gastrointestinal issues and infections. Studies have also demonstrated its effectiveness against various viruses and bacteria. In this article, we'll look closer at the structure of LF and its various biological activities, including its antimicrobial, anti-viral, anti-cancer, anti-osteoporotic, detoxifying, and immunomodulatory properties. More specifically, the protective effect of LF against oxidative DNA damage was also clarified through its ability to abolish DNA damaging issues without interfacing with host genetic material. Fortification with LF protects mitochondria dysfunction syndromes via sustaining redox status and biogenesis and suppressing apoptosis and autophagy singling. Additionally, we'll examine the potential benefits of lactoferrin and provide an overview of recent clinical trials conducted to examine its use in laboratory and living models.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Sameh A Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Afnan M Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Rehab M Bagadood
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Hind M Naffadi
- Department of medical genetics,college of medicine, Umm Al-Qura University, Makkah, Kingdom of Saudi Arabia
| | - Areej Y Alyahyawi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia; King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Hanan Khojah
- Pharmacognosy Department, Faculty of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Saudi Arabia
| | - Saleh Alghamdi
- Department of Clinical Pharmacy, Faculty of clinical pharmacy, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | | |
Collapse
|
13
|
Ceniti C, Ambrosio RL, Bria J, Di Vito A, Tilocca B, Anastasio A, Britti D, Morittu VM, Chiarella E. Utilization of Dairy By-Products as a Source of Functional and Health Compounds-The Role of Ovine Colostrum and Milk Whey on Chronic Myeloid Leukemia Cells. Foods 2023; 12:foods12091752. [PMID: 37174290 PMCID: PMC10178729 DOI: 10.3390/foods12091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Nowadays, the search for food products that promote consumers' health has gained interest, and dairy by-products, due to their biological quality, could have a prominent position among products with health benefits. However, little is known about their activity on cancer cells. This study aimed to provide evidence about the effect of ovine colostrum and milk whey on K562 cells, a model of the human chronic myeloid leukemia cell line. The exposure of K562 cells to a single administration of sheep by-products at different concentrations for three days and three treatments for three days was carried out. Using a flow cytometric approach, we found that CD235a expression remained stable in the cells exposed to ovine whey (milk and colostrum) at concentrations ranging from 1 ng/mL to 100 μg/mL, after three days from one or three administrations, respectively. A significant reduction in fluorescent cells was observed in the populations exposed to 1 mg/mL of both milk and colostrum at the same time points. In these conditions, the size and granularity of the leukemic cells also changed, with a substantial reduction in the number of actively dividing cells in the S phase of the cell cycle. This phenomenon was highlighted by the Annexin V/PI cytofluorimetric test, which is able to provide quantitative results regarding the population of cells in early or late apoptosis or necrotic cells after exposure to a single dose or three doses of colostrum or sheep whey for three days, respectively. This report showed that both colostrum and milk whey were able to modify the phenotypic profile and cell cycle of the K562 cell line, inducing apoptosis at the highest concentration.
Collapse
Affiliation(s)
- Carlotta Ceniti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, C, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, CISVetSUA, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Rosa Luisa Ambrosio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Jessica Bria
- Laboratory of Morphology and Tissue Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Anna Di Vito
- Laboratory of Morphology and Tissue Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Bruno Tilocca
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, C, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, CISVetSUA, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Domenico Britti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, C, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, CISVetSUA, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Valeria Maria Morittu
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, C, 88100 Catanzaro, Italy
- Interdepartmental Center Veterinary Service for Human and Animal Health, CISVetSUA, University "Magna Græcia", 88100 Catanzaro, Italy
| | - Emanuela Chiarella
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University "Magna Græcia", 88100 Catanzaro, Italy
| |
Collapse
|
14
|
Evaluation of the effect of nano-encapsulated lactoferrin on the expression of Bak and Bax genes in gastric cancer cell line AGS and study of the molecular docking of lactoferrin with these proteins. Gene 2023; 866:147355. [PMID: 36907277 DOI: 10.1016/j.gene.2023.147355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/31/2022] [Accepted: 03/06/2023] [Indexed: 03/13/2023]
Abstract
lactoferrin (Lf) is a glycoprotein with various biological activities, including antibacterial, antiviral, anti-cancer, etc. In the present study, the effect of different concentrations of nano-encapsulated lactoferrin (NE-Lf) on the expression of Bax and Bak genes was evaluated in stomach cancer cell line AGS using real-time PCR technique and cytotoxicity of NE-Lf on the growth cells as well as the molecular mechanism of these two genes and their proteins in the apoptosis pathway and the relationship between lactoferrin and these proteins were investigated by bioinformatics studies. In the viability test, the results showed that the growth inhibition effect of nano-lactoferrin was greater than lactoferrin in both concentrations, and chitosan had no inhibitory effect on the cells. In concentrations of 250 and 500 µg of NE-Lf Bax gene expression increased by 2.3 and 5 times, respectively, and Bak gene expression increased by 1.94 and 1.74 times, respectively. Statistical analysis showed that there is a significant difference in the relative amount of gene expression between the treatments in both genes (P < 0.05). The binding mode of lactoferrin with Bax and Bak proteins was obtained using docking. According to docking results, the N-lobe region of lactoferrin interacts with the Bax protein, as well as the Bak protein. The results show that lactoferrin, in addition to acting on the gene, interacts with Bax and Bak proteins. Since two proteins are components of apoptosis, lactoferrin can induce apoptosis in this way.
Collapse
|
15
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
16
|
Barragán-Cárdenas A, Insuasty-Cepeda DS, Vargas-Casanova Y, López-Meza JE, Parra-Giraldo CM, Fierro-Medina R, Rivera-Monroy ZJ, García-Castañeda JE. Changes in Length and Positive Charge of Palindromic Sequence RWQWRWQWR Enhance Cytotoxic Activity against Breast Cancer Cell Lines. ACS OMEGA 2023; 8:2712-2722. [PMID: 36687035 PMCID: PMC9850729 DOI: 10.1021/acsomega.2c07336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Breast cancer is one of the main causes of premature death in women; current treatments have low selectivity, generating strong physical and psychological sequelae. The palindromic peptide R-1-R (RWQWRWQWR) has cytotoxic activity against different cell lines derived from cancer and selectivity against noncancerous cells. To determine if changes in the charge/length of this peptide increase its activity, six peptides were obtained by SPPS, three of them with addition of Arg at the N, C-terminal or both and three with deletion of Arg at the N, C-terminal or both. The cytotoxic and selective activities were evaluated against MCF-7, MDA-MB-231, and MCF-12 cell lines and fibroblast primary cell culture, evidencing that the RR-1-R peptide with the inclusion of Arg in the N-terminal end maintained selectivity and increased cytotoxicity against lines derived from breast cancer. The effect of this addition regarding the type of induced cell death was evaluated by flow cytometry, showing very low rates of necrosis and a significant majority of apoptotic events with activation of both Caspase 8 and Caspase 9. This work allowed us to find a modification that generates a peptide with greater cytotoxic effects and can be considered a promising molecule for other approaches to improve anticancer peptides.
Collapse
Affiliation(s)
| | | | - Yerly Vargas-Casanova
- Microbiology
Department, Pontificia Universidad Javeriana, Ak. 7 #40-62, Bogotá 110231, Colombia
| | - Joel Edmundo López-Meza
- Multidisciplinary
Centre for Studies in Biotechnology, Universidad
Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia, Zinapécuaro, Morelia 58030, Mexico
| | | | - Ricardo Fierro-Medina
- Chemistry
Department, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Building 451, Bogota 111321, Colombia
| | - Zuly Jenny Rivera-Monroy
- Chemistry
Department, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Building 451, Bogota 111321, Colombia
| | | |
Collapse
|
17
|
Arredondo-Beltrán IG, Ramírez-Sánchez DA, Zazueta-García JR, Canizalez-Roman A, Angulo-Zamudio UA, Velazquez-Roman JA, Bolscher JGM, Nazmi K, León-Sicairos N. Antitumor activity of bovine lactoferrin and its derived peptides against HepG2 liver cancer cells and Jurkat leukemia cells. Biometals 2023; 36:639-655. [PMID: 36626098 DOI: 10.1007/s10534-022-00484-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023]
Abstract
Liver cancer and leukemia are the fourth and first causes, respectively, of cancer death in children and adults worldwide. Moreover, cancer treatments, although beneficial, remain expensive, invasive, toxic, and affect the patient's quality of life. Therefore, new anticancer agents are needed to improve existing agents. Because bovine lactoferrin (bLF) and its derived peptides have antitumor properties, we investigated the anticancer effect of bLF and LF peptides (LFcin17-30, LFampin265-284 and LFchimera) on liver cancer HepG2 cells and leukemia Jurkat cells. HepG2 and Jurkat cells were incubated with bLF and LF peptides. Cell proliferation was quantified by an MTT assay, and cell morphology and damage were visualized by light microscopy or by phalloidin-TRITC/DAPI staining. The discrimination between apoptosis/necrosis was performed by staining with Annexin V-Alexa Fluor 488 and propidium iodide, and the expression of genes related to apoptosis was analyzed in Jurkat cells. Finally, the synergistic interaction of bLF and LF peptides with cisplatin or etoposide was assessed by an MTT assay and the combination index. The present study demonstrated that bLF and LF peptides inhibited the viability of HepG2 and Jurkat cells, inducing damage to the cell monolayer of HepG2 cells and morphological changes in both cell lines. bLF, LFcin17-30, and LFampin265-284 triggered apoptosis in both cell lines, whereas LFchimera induced necrosis. These results suggested that bLF and LF peptides activate apoptosis by increasing the expression of genes of the intrinsic pathway. Additionally, bLF and LF peptides synergistically interacted with cisplatin and etoposide. In conclusion, bLF and LF peptides display anticancer activity against liver cancer and leukemia cells, representing an alternative or improvement in cancer treatment.
Collapse
Affiliation(s)
- Izamar G Arredondo-Beltrán
- Laboratorio de Biología Celular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico.,Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Diana A Ramírez-Sánchez
- Laboratorio de Biología Celular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico.,Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Jesús R Zazueta-García
- Laboratorio de Biología Celular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Adrián Canizalez-Roman
- Laboratorio de Biología Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico.,Hospital de la Mujer. Servicios de Salud de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Uriel A Angulo-Zamudio
- Laboratorio de Biología Celular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Jorge A Velazquez-Roman
- Laboratorio de Enfermedades Metabólicas, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico
| | - Jan G M Bolscher
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
| | - Nidia León-Sicairos
- Laboratorio de Biología Celular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico. .,Departamento de Investigación, Hospital Pediátrico de Sinaloa, Servicios de Salud de Sinaloa, Culiacán, Sinaloa, Mexico.
| |
Collapse
|
18
|
Akhtar N, Wani AK, Jan M, Sinha S, Devkota HP, Li Z, Amin-ul Mannan M, Prakash A. Lactoferrin and Activated Protein C: Potential Role in Prevention of Cancer Progression and Recurrence. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:86-99. [PMID: 37942258 PMCID: PMC10629726 DOI: 10.22088/ijmcm.bums.12.1.86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
Existing therapeutic interventions for controlling cancer are limited and associated with side effects. Furthermore, the recurrence of cancer poses a significant challenge to the cure of cancer. Therefore, avenues are wanted to find novel therapies for cancer treatment and cancer recurrence. In this review, we have highlighted that lactoferrin (LF) and activated protein C (APC) carry enormous potential in cancer treatment. Studies have shown that the decreased level of APC and impaired function of APC are associated with cancer progression and cancer-related mortality. Moreover, APC plays an important role in preventing prothrombotic state-mediated cancer progression and deaths. LF can also inhibit the progression of cancer by controlling the generation of reactive oxygen species, triggering the apoptosis of cancer cells, arresting the cell cycle and hindering the angiogenesis process. Additionally, APC and LF could have the potential to inhibit neutrophil extracellular traps (NETs) formations which are involved in cancer progression and the reawakening of dormant cancer cells. Hence, in this review, the anticancer potential and mechanism of APC and LF along with their potential to mitigate inflammation and NETs-mediated cancer progression and recurrence has been discussed. Additionally, possible future strategies to develop effective and safe anticancer treatment using LF and APC have also been discussed in this review.
Collapse
Affiliation(s)
- Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| | - Musamey Jan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab-144411, India.
| | - Shruti Sinha
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599, United States of America.
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan.
- Headquarters for Admissions and Education, Kumamoto University, Kurokami, 2-39-1, Chuo-ku, Ku-mamoto 860-8555, Japan.
- Pharmacy Program, Gandaki University, Pokhara 33700, Nepal.
| | - Zijian Li
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States of America.
| | - Mohammad Amin-ul Mannan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab-144411, India.
- Division of Infectious Disease, The Lundquist Institute, UCLA Harbor Medical Center, Los Angeles, California 90502, USA.
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, United States of America.
| |
Collapse
|
19
|
Rodriguez-Ochoa N, Cortes-Reynosa P, Rodriguez-Rojas K, de la Garza M, Salazar EP. Bovine holo-lactoferrin inhibits migration and invasion in MDA-MB-231 breast cancer cells. Mol Biol Rep 2023; 50:193-201. [PMID: 36319786 DOI: 10.1007/s11033-022-07943-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Breast cancer is the most common malignancy in developed countries and the main cause of deaths in women worldwide. Lactoferrin (Lf) is an iron-binding protein constituted for a single polypeptide chain that is folded into two symmetrical lobes that bind Fe2+ or Fe3+. Lf has the ability to reversibly bind Fe3+ and is found free of Fe3+ (Apo-Lf) or associated with Fe3+ (Holo-Lf) with a different three-dimensional conformation. However, the role of bovine Apo-Lf (Apo-BLf) and bovine Holo-Lf (Holo-BLf) in the migration and invasion induced by linoleic acid (LA) and fetal bovine serum (FBS), as well as in the expression of mesenchymal and epithelial proteins in breast cancer cells has not been studied. METHODS AND RESULTS Scratch wound assays demonstrated that Holo-BLf and Apo-BLf do not induce migration, however they differentially inhibit the migration induced by FBS and LA in breast cancer cells MDA-MB-231. Western blot, invasion, zymography and immunofluorescence confocal microscopy assays demonstrated that Holo-BLf partly inhibit the invasion, FAK phosphorylation at tyrosine (Tyr)-397 and MMP-9 secretion, whereas it increased the number and size of focal adhesions induced by FBS in MDA-MB-231 cells. Moreover, Holo-BLf induced a slight increase of E-cadherin expression in MCF-7 cells, and inhibited vimentin expression in MCF-7 and MDA-MB-231 breast cancer cells. CONCLUSION Holo-BLf inhibits cellular processes that mediate the invasion process in breast cancer cells.
Collapse
Affiliation(s)
- Ninive Rodriguez-Ochoa
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Pedro Cortes-Reynosa
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Karem Rodriguez-Rojas
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Mireya de la Garza
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico
| | - Eduardo Perez Salazar
- Departamento de Biologia Celular, Cinvestav-IPN. Ciudad de Mexico, Av. IPN # 2508, 07360, Mexico City, Mexico.
| |
Collapse
|
20
|
Santos-Pereira C, Guedes JP, Ferreira D, Rodrigues LR, Côrte-Real M. Lactoferrin perturbs intracellular trafficking, disrupts cholesterol-rich lipid rafts and inhibits glycolysis of highly metastatic cancer cells harbouring plasmalemmal V-ATPase. Int J Biol Macromol 2022; 220:1589-1604. [PMID: 36116593 DOI: 10.1016/j.ijbiomac.2022.09.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
The milk-derived bovine lactoferrin (bLf) is an iron-binding glycoprotein with remarkable selective anticancer activity towards highly metastatic cancer cells displaying the proton pump V-ATPase at the plasma membrane. As studies aiming to dissect the bLf mechanisms of action are critical to improve its efficacy and boost its targeted clinical use, herein we sought to further uncover the molecular basis of bLf anticancer activity. We showed that bLf co-localizes with V-ATPase and cholesterol-rich lipid rafts at the plasma membrane of highly metastatic cancer cells. Our data also revealed that bLf perturbs cellular trafficking, induces intracellular accumulation of cholesterol and lipid rafts disruption, downregulates PI3K, and AKT or p-AKT and inhibits glycolysis of cancer cells harbouring V-ATPase at the plasma membrane lipid rafts. Altogether, our results can lay the foundation for future bLf-based targeted anticancer strategies as they unravel a novel cascade of molecular events that explains and further reinforces bLf selectivity for cancer cells displaying plasmalemmal V-ATPase.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana P Guedes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Débora Ferreira
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
21
|
Camels' biological fluids contained nanobodies: promising avenue in cancer therapy. Cancer Cell Int 2022; 22:279. [PMID: 36071488 PMCID: PMC9449263 DOI: 10.1186/s12935-022-02696-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a major health concern and accounts for one of the main causes of death worldwide. Innovative strategies are needed to aid in the diagnosis and treatment of different types of cancers. Recently, there has been an evolving interest in utilizing nanobodies of camel origin as therapeutic tools against cancer. Nanotechnology uses nanobodies an emerging attractive field that provides promises to researchers in advancing different scientific sectors including medicine and oncology. Nanobodies are characteristically small-sized biologics featured with the ability for deep tissue penetration and dissemination and harbour high stability at high pH and temperatures. The current review highlights the potential use of nanobodies that are naturally secreted in camels’ biological fluids, both milk and urine, in the development of nanotechnology-based therapy for treating different typesQuery of cancers and other diseases. Moreover, the role of nano proteomics in the invention of novel therapeutic agents specifically used for cancer intervention is also illustrated.
Collapse
|
22
|
Bovine Lactoferrin Induces Cell Death in Human Prostate Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2187696. [PMID: 36092155 PMCID: PMC9463017 DOI: 10.1155/2022/2187696] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022]
Abstract
Bovine lactoferrin (bLf) is a multifunctional protein widely associated with anticancer activity. Prostate cancer is the second most frequent type of cancer worldwide. This study was aimed at evaluating the influence of bLf on cell viability, cell cycle progression, reactive oxygen species (ROS) production, and rate of apoptosis in the human prostate cancer cell line (DU-145). MTT assay and trypan blue exclusion were used to analyze cell viability. Morphological changes were analyzed through optical microscopy after 24 h and 48 h of bLf treatment. FITC-bLf internalization and cellular damage were observed within 24 h by confocal fluorescence microscopy. Cell cycle analyses were performed by flow cytometry and propidium iodide. For caspases 3/7 activation and reactive oxygen species production evaluation, cells were live-imaged using the high-throughput system Operetta. The cell viability assays demonstrated that bLf induces cell death and morphological changes after 24 h and 48 h of treatment compared to control on DU-145 cells. The bLf internalization was detected in DU-145 cells, G1-phase arrest of the cell cycle, caspase 3/7 activation, and increased oxidative stress on bLf-treated cells. Our data support that bLf has an important anticancer activity, thus offering new perspectives in preventing and treating prostate cancer.
Collapse
|
23
|
Oussaief O, Jrad Z, Adt I, Kaddes K, Khorchani T, Degraeve P, El Hatmi H. Antioxidant, lipase and
ACE
‐inhibitory properties of camel lactoferrin and its enzymatic hydrolysates. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Olfa Oussaief
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine University of Gabes Medenine 4119 Tunisia
| | - Zeineb Jrad
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine University of Gabes Medenine 4119 Tunisia
| | - Isabelle Adt
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) Research Unit, IUT Lyon 1 Bourg en Bresse 01000 France
| | - Khaoula Kaddes
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) Research Unit, IUT Lyon 1 Bourg en Bresse 01000 France
| | - Touhami Khorchani
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine University of Gabes Medenine 4119 Tunisia
| | - Pascal Degraeve
- Univ Lyon, Université Claude Bernard Lyon 1, ISARA Lyon, BioDyMIA (Bioingénierie et Dynamique Microbienne aux Interfaces Alimentaires) Research Unit, IUT Lyon 1 Bourg en Bresse 01000 France
| | - Halima El Hatmi
- Livestock and Wildlife Laboratory, Arid Lands Institute of Medenine University of Gabes Medenine 4119 Tunisia
- Department of Food, High Institute of Applied Biology of Medenine University of Gabes Medenine 4119 Tunisia
| |
Collapse
|
24
|
El-Fakharany EM, Ashry M, Abd-Elaleem AEH, Romeih MH, Morsy FA, Shaban RA, Abdel-Wahhab KG. Therapeutic efficacy of Nano-formulation of lactoperoxidase and lactoferrin via promoting immunomodulatory and apoptotic effects. Int J Biol Macromol 2022; 220:43-55. [PMID: 35970364 DOI: 10.1016/j.ijbiomac.2022.08.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/27/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
This study identifies promising potential of a novel and safer nanocombination of bovine milk lactoperoxidase (LPO) and lactoferrin (LF) to target breast cancer in vitro and in adult female albino rat model. Favorable selective anticancer effects of the prepared nanocombination were observed, in a dose-dependent manner, against both MCF-7 and MDA cell lines, sparing normal HFB-4 cells. The administration of LPO + LFNPs markedly improved the induced-breast cancer disorders, prolonged survival and reduced the values of serum TNF-α, IL1β, CD4+, ALAT, ASAT, urea, creatinine, cholesterol and triglycerides with remarkable elevation in mammary SOD and GPx activity and GSH level. Moreover, the histopathological findings showed that LPO + LFNPs succeeded in prevention of mammary gland tumorigenesis. Superior efficacy of LPO + LFNPs was observed against pro-inflammatory cytokines through their anti-inflammatory and immunomodulatory properties. The treatment of LPO + LFNPs more significantly modulated the apoptosis and enhanced the expression of cell cycle regulator genes, which demonstrates a successful tumor therapy in vitro and in vivo. Therefore, this study provided evidence that the chemo-preventive feature of LPO + LFNPs may offer a novel alternative therapy for the treatment of breast cancer through enhances apoptosis pathway, improvement of immune response, reduction of inflammation and restoration of the impaired oxidative stress.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, Egypt.
| | - Mahmoud Ashry
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit, Egypt
| | | | - Mahmoud H Romeih
- Biochemistery and Molecular Biology Department, Theodor Bilharz Research Institute, Egypt
| | | | - Reem A Shaban
- Chemistry Department, Faculty of Science, Minofia University, Minofia, Egypt
| | | |
Collapse
|
25
|
Augmenting apoptosis-mediated anticancer activity of lactoperoxidase and lactoferrin by nanocombination with copper and iron hybrid nanometals. Sci Rep 2022; 12:13153. [PMID: 35915221 PMCID: PMC9343395 DOI: 10.1038/s41598-022-17357-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022] Open
Abstract
There is an urgent need in the medicinal fields to discover biocompatible nanoformulations with low cytotoxicity, which provide new strategies for promising therapies for several types of tumors. Bovine lactoperoxidase (LP) and lactoferrin (LF) have recently attracted attention in medicine for their antitumor activities with recognized safety pattern. Both LP and LF are suitable proteins to be coated or adsorbed to Cu and Fe nanometals for developing stable nanoformulations that boost immunity and strong anticancer effects. New nanometals of Cu and Fe NPs embedded in LP and LF forming novel nanocombinations of LP-CNPs and LF-FNPs had a spherical shape with an average nanosize of about 21 nm. The combination of LP-CNPs and LF-FNPs significantly exhibited the highest growth inhibitory efficacy, in terms of effectively lowering the half-maximal inhibitory concentration (IC50) values, against Caco-2, HepG2 and MCF7 cells comparing to nanometals, LP, LF and individual nanoproteins (LP-CNPs or LF-FNPs). The highest apoptotic effect of this nanocombination (LP-CNPs and LF-FNPs) was confirmed by the highest percentages of annexin-stained apoptotic cells and G0 population with the strongest alteration in the expression of two well-characterized apoptosis guards (p53 and Bcl-2) and the maximum suppression in the proliferation marker (Ki-67). Also, the in silico analysis predicted that LP-CNPs and LF-FNPs enhanced AMP-activated protein kinase (AMPK, p53 activator) activity and inhibited cancer migration-related proteases (cathepsin B and matrix metalloproteinase (MMP)-9). Our results offer for the first time that these novel nanocombinations of LP and LF were superior in their selectivity and apoptosis-mediating anticancer activity to Cu and Fe nanometals as well as the free form of these proteins or their individual nanoforms.
Collapse
|
26
|
Lactoferrin as a Human Genome “Guardian”—An Overall Point of View. Int J Mol Sci 2022; 23:ijms23095248. [PMID: 35563638 PMCID: PMC9105968 DOI: 10.3390/ijms23095248] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Structural abnormalities causing DNA modifications of the ethene and propanoadducts can lead to mutations and permanent damage to human genetic material. Such changes may cause premature aging and cell degeneration and death as well as severe impairment of tissue and organ function. This may lead to the development of various diseases, including cancer. In response to a damage, cells have developed defense mechanisms aimed at preventing disease and repairing damaged genetic material or diverting it into apoptosis. All of the mechanisms described above are part of the repertoire of action of Lactoferrin—an endogenous protein that contains iron in its structure, which gives it numerous antibacterial, antiviral, antifungal and anticancer properties. The aim of the article is to synthetically present the new and innovative role of lactoferrin in the protection of human genetic material against internal and external damage, described by the modulation mechanisms of the cell cycle at all its levels and the mechanisms of its repair.
Collapse
|
27
|
Bielecka M, Cichosz G, Czeczot H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates - A review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Zhang Y, Chen N, Xin N, Li Q, Zhang T, Ye H, Zhao C. Complexation of chlorogenic acid enhances the antiproliferative effect of lactoferrin to colon cancer cells. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101601] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
29
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Plasmalemmal V-ATPase as a Potential Biomarker for Lactoferrin-Based Anticancer Therapy. Biomolecules 2022; 12:119. [PMID: 35053267 PMCID: PMC8773557 DOI: 10.3390/biom12010119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/27/2023] Open
Abstract
Lactoferrin (Lf) is a milk-derived protein with well-recognized potential as a therapeutic agent against a wide variety of cancers. This natural protein exhibits health-promoting effects and has several interesting features, including its selectivity towards cancer cells, good tolerability in humans, worldwide availability, and holding a generally recognized as safe (GRAS) status. To prompt the rational clinical application of this promising anticancer compound, previous works aimed to unveil the molecular mechanisms underlying its selective anticancer activity, where plasmalemmal V-ATPase was identified as an Lf target in cancer cells. V-ATPase is a proton pump critical for cellular homeostasis that migrates to the plasma membrane of highly metastatic cancer cells contributing to the acidity of the tumor microenvironment. Cancer cells were found to be susceptible to Lf only when this proton pump is present at the plasma membrane. Plasmalemmal V-ATPase can thus be an excellent biomarker for driving treatment decisions and forecasting clinical outcomes of Lf-based anticancer strategies. Future research endeavors should thus seek to validate this biomarker by thorough preclinical and clinical studies, as well as to develop effective methods for its detection under clinical settings.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal;
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Lígia R. Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal;
| |
Collapse
|
30
|
Wang X, Zhao Y, Wang T, Liang Y, Zhao X, Tang K, Guan Y, Wang H. Carboxyl-Rich Carbon Dots as Highly Selective and Sensitive Fluorescent Sensor for Detection of Fe 3+ in Water and Lactoferrin. Polymers (Basel) 2021; 13:4317. [PMID: 34960868 PMCID: PMC8706276 DOI: 10.3390/polym13244317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
As lactoferrin (LF) plays an essential role in physiological processes, the detection of LF has attracted increasing attention in the field of disease diagnosis. However, most current methods require expensive equipment, laborious pretreatment, and long processing time. In this work, carboxyl-rich carbon dots (COOH-CDs) were facilely prepared through a one-step, low-cost hydrothermal process with tartaric acid as the precursor. The COOH-CDs had abundant carboxyl on the surface and showed strong blue emission. Moreover, COOH-CDs were used as a fluorescent sensor toward Fe3+ and showed high selectivity for Fe3+ with the limit of detection (LoD) of 3.18 nM. Density functional theory (DFT) calculations were performed to reveal the mechanism of excellent performance for Fe3+ detection. Meanwhile, COOH-CDs showed no obvious effect on lactobacillus plantarum growth, which means that COOH-CDs have good biocompatibility. Due to the nontoxicity and excellent detection performance for Fe3+, COOH-CDs were employed as a fluorescent sensor toward LF and showed satisfying performance with an LoD of 0.776 µg/mL, which was better than those of the other methods.
Collapse
Affiliation(s)
- Xinxin Wang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.W.); (Y.Z.); (X.Z.); (Y.G.)
| | - Yanan Zhao
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.W.); (Y.Z.); (X.Z.); (Y.G.)
| | - Ting Wang
- College of Biotechnology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (T.W.); (K.T.)
| | - Yan Liang
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.W.); (Y.Z.); (X.Z.); (Y.G.)
| | - Xiangzhong Zhao
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.W.); (Y.Z.); (X.Z.); (Y.G.)
| | - Ke Tang
- College of Biotechnology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (T.W.); (K.T.)
| | - Yutong Guan
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (X.W.); (Y.Z.); (X.Z.); (Y.G.)
| | - Hua Wang
- School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
31
|
Olszewska P, Pazdrak B, Kruzel ML. A Novel Human Recombinant Lactoferrin Inhibits Lung Adenocarcinoma Cell Growth and Migration with No Cytotoxic Effect on Normal Human Epithelial Cells. Arch Immunol Ther Exp (Warsz) 2021; 69:33. [PMID: 34748082 PMCID: PMC8575758 DOI: 10.1007/s00005-021-00637-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Lung cancer remains the leading cause of cancer death worldwide. Despite the recent advances in cancer treatment, only a subset of patients responds to targeted and immune therapies, and many patients developing resistance after an initial response. Lactoferrin (Lf) is a natural glycoprotein with immunomodulatory and anticancer activities. We produced a novel recombinant human Lf (rhLf) that exhibits glycosylation profile compatible with the natural hLf for potential parenteral therapeutic applications. The aim of this study was to evaluate the anticancer effects of this novel rhLf in human lung adenocarcinoma cells and its mechanisms of action. The results showed a concentration-dependent inhibition of A549 cancer cell growth in response to rhLf. Treatment with 1 mg/ml of rhLf for 24 h and 72 h resulted in a significant inhibition of cancer cell growth by 32% and 25%, respectively. Moreover, rhLf increased fourfold the percentage of early and late apoptotic cells compared to the control. This effect was accompanied by increased levels of caspase-3 activity and cell cycle arrest at the S phase in rhLf-treated cancer cells. Furthermore, rhLf significantly attenuated A549 cell migration. Importantly, treatment of normal human bronchial epithelial (NHBE) cells with rhLf showed the cell viability and morphology comparable to the control. In contrast, chemotherapeutic etoposide induced cytotoxicity in NHBE cells and reduced the cell viability by 40%. These results demonstrate the selective anticancer effects of rhLf against lung adenocarcinoma cells without cytotoxicity on normal human cells. This study highlights a potential for clinical utility of this novel rhLf in patients with lung cancer.
Collapse
Affiliation(s)
- Paulina Olszewska
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Faculty of Pharmacy, Medical University of Lodz, Lodz, Poland.
| | - Barbara Pazdrak
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
32
|
El-Kattawy AM, Algezawy O, Alfaifi MY, Noseer EA, Hawsawi YM, Alzahrani OR, Algarni A, Kahilo KA, El-Magd MA. Therapeutic potential of camel milk exosomes against HepaRG cells with potent apoptotic, anti-inflammatory, and anti-angiogenesis effects for colostrum exosomes. Biomed Pharmacother 2021; 143:112220. [PMID: 34649349 DOI: 10.1016/j.biopha.2021.112220] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to evaluate and compare the therapeutic effect of camel milk exosomes derived from colostrum, early, mid, and late lactation periods on liver cancer HepaRG cells. These exosomes showed cytotoxicity on HepaRG while being safer on normal human liver THLE-2 cells. Among the four different isolated exosome groups, exosomes isolated from colostrum exhibited the highest apoptotic potential on HepaRG as indicated by highest DNA damage and upregulated expression of Bax and caspase3 expression, but with lowest Bcl2 expression. HepaRG-treated with colostrum-derived exosomes also exhibited the lowest expression of inflammation-related genes (TNFα, NFkB, TGFβ1, and Cox2) and the angiogenesis-related gene VEGF. Colostrum-derived exosomes had significantly higher expression of lactoferrin and kappa casein than other milk-derived exosomes. These results indicate that colostrum-derived exosomes have a more potent anti-cancer effect on HepaRG cells than exosomes derived from the early, mid, and lat lactation periods. This effect could be mediated through induction of apoptosis and inhibition of inflammation and angiogenesis. Therefore, these exosomes could be used as safe adjuvants/carriers to deliver chemotherapeutics and to potentiate their anticancer effect on liver cancer cells.
Collapse
Affiliation(s)
- Azza M El-Kattawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Ola Algezawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Enas A Noseer
- Department of Biochemistry, Faculty of Veterinary Medicine, Aswan University, Egypt
| | - Yousef M Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah 21499, Saudi Arabia; College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Othman R Alzahrani
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abdulrahman Algarni
- Department of Biomedical Science, the Northern Border University, P.O.Box 1321, Arar, Saudi Arabia
| | - Khaled A Kahilo
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt
| | - Mohammed A El-Magd
- Department of Anatomy, Faculty of Veterinary Medicine, Kafrelsheikh University, P.O. Box 33516, Kafrelsheikh, Egypt.
| |
Collapse
|
33
|
Pan Y, Chua N, Lim K, Ho CL. Engineering of Human Lactoferrin for Improved Anticancer Activity. ACS Pharmacol Transl Sci 2021; 4:1476-1482. [PMID: 34661069 DOI: 10.1021/acsptsci.1c00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 11/30/2022]
Abstract
Protease-digested lactoferrin fragments often exhibit improved therapeutic properties. However, there are limited studies investigating the anticancer properties of these fragments. The fragment with improved anticancer activities is an attractive alternative to chemotherapeutic drugs-presenting severe side effects. Herein, we report the isolation and characterization of recombinant engineered-lactoferrin (rtHLF4), exhibiting up to 100-fold improved anticancer activity compared to the full-length lactoferrin (flHLF). Further, rtHLF4 exerts its anticancer effect in a shorter duration. Through transcriptomic analysis of various cancer biomarkers, rtHLF4 was found to upregulate various pro-apoptotic markers and downregulate signaling proteins involved in angiogenesis and metastasis. We further determined that rtHLF4 showed no hemolytic activity at high concentrations. We believe that this anticancer protein can be further developed as a cancer treatment.
Collapse
Affiliation(s)
- Yu Pan
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Niying Chua
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive 637551, Jurong West, Singapore
| | - Kaisheng Lim
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| |
Collapse
|
34
|
Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021; 232:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.
Collapse
|
35
|
Najmafshar A, Rostami M, Varshosaz J, Norouzian D, Samsam Shariat SZA. Enhanced antitumor activity of bovine lactoferrin through immobilization onto functionalized nano graphene oxide: an in vitro/ in vivo study. Drug Deliv 2021; 27:1236-1247. [PMID: 32812454 PMCID: PMC7470100 DOI: 10.1080/10717544.2020.1809558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study aims to improve the anticancer activity of bovine lactoferrin through enhancing its stability by immobilization onto graphene oxide. Bovine lactoferrin was conjugated onto graphene oxide and the conjugation process was confirmed by FT-IR, SDS-PAGE, and UV spectrophotometry. Physical characterization was performed by DLS analysis and atomic force microscopy. The cytotoxicity and cellular uptake of the final construct (CGO-PEG-bLF) was inspected on lung cancer TC-1 cells by MTT assay and flow cytometry/confocal microscopy. The anticancer mechanism of the CGO-PEG-bLF was studied by cell cycle analysis, apoptosis assay, and western blot technique. Finally, the anticancer activity of CGO-PEG-bLF was assessed in an animal model of lung cancer. Size and zeta potential of CGO-PEG-bLF was obtained in the optimum range. Compared with free bLF, more cytotoxic activity, cellular uptake and more survival time was obtained for CGO-PEG-bLF. CGO-PEG-bLF significantly inhibited tumor growth in the animal model. Cell cycle arrest and apoptosis were more induced by CGO-PEG-bLF. Moreover, exposure to CGO-PEG-bLF decreased the phospho-AKT and pro-Caspase 3 levels and increased the amount of cleaved caspase 3 in the treated cells. This study revealed the potential of CGO-PEG as a promising nanocarrier for enhancing the therapeutic efficacy of anticancer agents.
Collapse
Affiliation(s)
- Azam Najmafshar
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboubeh Rostami
- Department of Medicinal Chemistry, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Dariush Norouzian
- Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ziyae Aldin Samsam Shariat
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
36
|
Jain A, Prajapati SK, Tripathi M, Raichur AM, Kanwar JR. Exploring the room for repurposed hydroxychloroquine to impede COVID-19: toxicities and multipronged combination approaches with pharmaceutical insights. Expert Rev Clin Pharmacol 2021; 14:715-734. [PMID: 33769888 DOI: 10.1080/17512433.2021.1909473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: SARS-CoV-2 has fatally affected the whole world with millions of deaths. Amidst the dilemma of a breakthrough in vaccine development, hydroxychloroquine (HCQ) was looked upon as a prospective repurposed candidate. It has confronted numerous controversies in the past few months as a chemoprophylactic and treatment option for COVID-19. Recently, it has been withdrawn by the World Health Organization for its use in an ongoing pandemic. However, its benefit/risk ratio regarding its use in COVID-19 disease remains poorly justified. An extensive literature search was done using Scopus, PubMed, Google Scholar, www.cdc.gov, www.fda.gov, and who.int.Areas covered: Toxicity vexations of HCQ; pharmaceutical perspectives on new advances in drug delivery approaches; computational modeling (PBPK and PD modeling) overtures; multipronged combination approaches for enhanced synergism with antiviral and anti-inflammatory agents; immuno-boosting effects.Expert commentary: Harnessing the multipronged pharmaceutical perspectives will optimistically help the researchers, scientists, biotech, and pharmaceutical companies to bring new horizons in the safe and efficacious utilization of HCQ alone or in combination with remdesivir and immunomodulatory molecules like bovine lactoferrin in a fight against COVID-19. Combinational therapies with free forms or nanomedicine based targeted approaches can act synergistically to boost host immunity and stop SARS-CoV-2 replication and invasion to impede the infection.
Collapse
Affiliation(s)
- Ankit Jain
- Department of Materials Engineering, Indian Institute of Science, Bangalore - Karnataka, India
| | - Shiv Kumar Prajapati
- Department of Pharmaceutical Sciences, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida, Uttar Pradesh, India
| | - Madhavi Tripathi
- Department of Materials Engineering, Indian Institute of Science, Bangalore - Karnataka, India
| | - Ashok M Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore - Karnataka, India
| | - Jagat R Kanwar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, Madhya Pradesh, India
| |
Collapse
|
37
|
Nakamura-Bencomo S, Gutierrez DA, Robles-Escajeda E, Iglesias-Figueroa B, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Arévalo-Gallegos S, Aguilera RJ, Rascón-Cruz Q, Varela-Ramirez A. Recombinant human lactoferrin carrying humanized glycosylation exhibits antileukemia selective cytotoxicity, microfilament disruption, cell cycle arrest, and apoptosis activities. Invest New Drugs 2021; 39:400-415. [PMID: 33063290 PMCID: PMC8939434 DOI: 10.1007/s10637-020-01020-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023]
Abstract
Lactoferrin has gained extensive attention due to its ample biological properties. In this study, recombinant human lactoferrin carrying humanized glycosylation (rhLf-h-glycan) expressed in the yeast Pichia pastoris SuperMan5, which is genetically glycoengineered to efficiently produce functional humanized glycoproteins inclosing (Man)5(GlcNAc)2 Asn-linked glycans, was analyzed, inspecting its potential toxicity against cancer cells. The live-cell differential nuclear staining assay was used to quantify the rhLf-h-glycan cytotoxicity, which was examined in four human cell lines: acute lymphoblastic leukemia (ALL) CCRF-CEM, T-cell lymphoblastic lymphoma SUP-T1, cervical adenocarcinoma HeLa, and as control, non-cancerous Hs27 cells. The defined CC50 values of rhLf-h-glycan in CCRF-CEM, SUP-T1, HeLa, and Hs27 cells were 144.45 ± 4.44, 548.47 ± 64.41, 350 ± 14.82, and 3359.07 ± 164 µg/mL, respectively. The rhLf-h-glycan exhibited a favorable selective cytotoxicity index (SCI), preferentially killing cancer cells: 23.25 for CCRF-CEM, 9.59 for HeLa, and 6.12 for SUP-T1, as compared with Hs27 cells. Also, rhLf-h-glycan showed significant antiproliferative activity (P < 0.0001) at 24, 48, and 72 h of incubation on CCRF-CEM cells. Additionally, it was observed via fluorescent staining and confocal microscopy that rhLf-h-glycan elicited apoptosis-associated morphological changes, such as blebbing, nuclear fragmentation, chromatin condensation, and apoptotic bodies in ALL cells. Furthermore, rhLf-h-glycan-treated HeLa cells revealed shrinkage of the microfilament structures, generating a speckled/punctuated pattern and also caused PARP-1 cleavage, a hallmark of apoptosis. Moreover, in ALL cells, rhLf-h-glycan altered cell cycle progression inducing the G2/M phase arrest, and caused apoptotic DNA fragmentation. Overall, our findings revealed that rhLf-h-glycan has potential as an anticancer agent and therefore deserves further in vivo evaluation.
Collapse
Affiliation(s)
- Sayuri Nakamura-Bencomo
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Denisse A Gutierrez
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA
| | - Elisa Robles-Escajeda
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA
| | - Blanca Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Tania S Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Edward A Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México
| | - Renato J Aguilera
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA.
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, C. P. 31125, Chihuahua, Chih, México.
| | - Armando Varela-Ramirez
- The Cellular Characterization and Biorepository (CCB) Core Facility, Border Biomedical Research Center, Department of Biological Sciences, The University of Texas at El Paso, 500 West University Avenue, El Paso, 79968-0519, TX, USA.
| |
Collapse
|
38
|
A novel 'smart' PNIPAM-based copolymer for breast cancer targeted therapy: Synthesis, and characterization of dual pH/temperature-responsive lactoferrin-targeted PNIPAM-co-AA. Colloids Surf B Biointerfaces 2021; 202:111694. [PMID: 33740633 DOI: 10.1016/j.colsurfb.2021.111694] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 12/12/2022]
Abstract
Despite the active research towards introducing novel anticancer agents, the long-term sequelae and side effects of chemotherapy remain the major obstacle to achieving clinical success. Recent cancer research is now utilizing the medicinal chemistry toolbox to tailor novel 'smart' carrier systems that can reduce the major limitations of chemotherapy ranging from non-specificity and ubiquitous biodistribution to systemic toxicity. In this aspect, various stimuli-responsive polymers have gained considerable interest due to their intrinsic tumor targeting properties. Among these polymers, poly(N-isopropylacrylamide (PNIPAM) has been chemically modified to tune its thermoresponsivity or even copolymerized to endow new stimulus responsiveness for enhancing tumor targeting. Herein, we set our design rationale to impart additional active targeting entity to pH/temperature-responsive PNIPAM-based polymer for more efficient controlled payloads accumulation at the tumor through cellular internalization via synthesizing novel "super intelligent" lactoferrin conjugated PNIPAM-acrylic acid (LF-PNIPAM-co-AA) copolymer. The synthesized copolymer was physicochemically characterized and evaluated as a smart nanocarrier for targeting breast cancer. In this regard, Honokiol (HK) was utilized as a model anticancer drug and encapsulated in the nanoparticles to overcome its lipophilic nature and allow its parenteral administration, for achieving sustainable drug release with targeting action. Results showed that the developed HK-loaded LF-PNIPAM-co-AA nanohydrogels displayed high drug loading capacity reaching to 18.65 wt.% with excellent physical and serum stability. Moreover, the prepared HK-loaded nanohydrogels exhibited efficient in vitro and in vivo antitumor activities. In vivo, HK-loaded nanohydrogels demonstrated suppression of VEGF-1 and Ki-67 expression levels, besides inducing apoptosis through upregulating the expression level of active caspase-3 in breast cancer-bearing mice. Overall, the developed nanohydrogels (NGs) with pH and temperature responsivity provide a promising nanocarrier for anticancer treatment.
Collapse
|
39
|
Sienkiewicz M, Jaśkiewicz A, Tarasiuk A, Fichna J. Lactoferrin: an overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit Rev Food Sci Nutr 2021; 62:6016-6033. [PMID: 33685299 DOI: 10.1080/10408398.2021.1895063] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lactoferrin (LF), a glycoprotein found in mucosal secretions, is characterized by a wide range of functions, including immunomodulatory and anti-inflammatory activities. Moreover, several investigations confirmed that LF displays high effectiveness against multiple bacteria and viruses and may be regarded as a potential inhibitor of enveloped viruses, such as presently prevailing SARS-CoV-2. In our review, we discuss available studies about LF functions and bioavailability of different LF forms in in vitro and in vivo models. Moreover, we characterize the potential benefits and side effects of LF use; we also briefly summarize the latest clinical trials examining LF application. Finally, we point potential role of LF in inflammatory bowel disease and indicate its use as a marker for disease severity.
Collapse
Affiliation(s)
- Michał Sienkiewicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Jaśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Tarasiuk
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
40
|
Orafaie A, Bahrami AR, Matin MM. Use of anticancer peptides as an alternative approach for targeted therapy in breast cancer: a review. Nanomedicine (Lond) 2021; 16:415-433. [PMID: 33615876 DOI: 10.2217/nnm-2020-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Traditional therapies are expensive and cause severe side effects. Targeted therapy is a powerful method to circumvent the problems of other therapies. It also allows drugs to localize at predefined targets in a selective manner. Currently, there are several monoclonal antibodies which target breast cancer cell surface markers. However, using antibodies has some limitations. In the last two decades, many investigators have discovered peptides that may be useful to target breast cancer cells. In this article, we provide an overview on anti-breast cancer peptides, their sources and biological activities. We further discuss the pros and cons of using anticancer peptides with further emphasis on how to improve their effectiveness in cancer therapy.
Collapse
Affiliation(s)
- Ala Orafaie
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics & Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
41
|
Rascón-Cruz Q, Espinoza-Sánchez EA, Siqueiros-Cendón TS, Nakamura-Bencomo SI, Arévalo-Gallegos S, Iglesias-Figueroa BF. Lactoferrin: A Glycoprotein Involved in Immunomodulation, Anticancer, and Antimicrobial Processes. Molecules 2021; 26:molecules26010205. [PMID: 33401580 PMCID: PMC7795860 DOI: 10.3390/molecules26010205] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/15/2022] Open
Abstract
Lactoferrin is an iron binding glycoprotein with multiple roles in the body. Its participation in apoptotic processes in cancer cells, its ability to modulate various reactions of the immune system, and its activity against a broad spectrum of pathogenic microorganisms, including respiratory viruses, have made it a protein of broad interest in pharmaceutical and food research and industry. In this review, we have focused on describing the most important functions of lactoferrin and the possible mechanisms of action that lead to its function.
Collapse
|
42
|
Zhang Z, Lu M, Chen C, Tong X, Li Y, Yang K, Lv H, Xu J, Qin L. Holo-lactoferrin: the link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics 2021; 11:3167-3182. [PMID: 33537080 PMCID: PMC7847686 DOI: 10.7150/thno.52028] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Iron-saturated Lf (Holo-Lactoferrin, Holo-Lf) exhibits a superior anticancer property than low iron-saturated Lf (Apo-Lf). Ferroptosis is an iron-dependent cell death characterized by the accumulation of lipid peroxidation products and lethal reactive oxygen species (ROS). Radiotherapy also exerts its therapeutic effect through ROS. Methods: The effect of different iron-saturated Lf on ferroptosis and radiotherapy were tested on triple-negative breast cancer (TNBC) cell line MDA-MB-231 and non-TNBC cell line MCF-7. Results: Holo-Lf significantly increased the total iron content, promoted ROS generation, increased lipid peroxidation end product, malondialdehyde (MDA), and enhanced ferroptosis of MDA-MB-231 cells. By contrast, Apo-Lf upregulated SLC7a11 expression, increased GSH generation and inhibited ferroptosis of MDA-MB-231 cells. However, non-TNBC MCF-7 cells were resistant to Holo-Lf-induced ferroptosis because MCF-7 cells have a higher redox balance capacity than MDA-MB-231 cells. More importantly, Holo-Lf downregulated HIF-1α expression, ameliorated the hypoxia microenvironment in subcutaneous MDA-MB-231 tumors, and promoted radiation-induced DNA damage to hypoxic MDA-MB-231 cells. Finally, the efficacy of radiotherapy to MDA-MB-231 tumors was enhanced by Holo-Lf. Conclusion: Holo-Lf could induce ferroptosis in MDA-MB-231 cells and sensitize MDA-MB-231 tumors to radiotherapy.
Collapse
|
43
|
Ramírez-Sánchez DA, Arredondo-Beltrán IG, Canizalez-Roman A, Flores-Villaseñor H, Nazmi K, Bolscher JGM, León-Sicairos N. Bovine lactoferrin and lactoferrin peptides affect endometrial and cervical cancer cell lines. Biochem Cell Biol 2020; 99:149-158. [PMID: 33307991 DOI: 10.1139/bcb-2020-0074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cervical, uterine, and ovarian cancers are the most common malignancies of the female genital tract worldwide. Despite advances in prevention, early diagnosis, effective screening, and treatment programs, mortality remains high. Consequently, it is important to search for new treatments. The activity of bovine lactoferrin (bLF) and LF peptides against several types of cancer has been studied; however, only a few studies report the effect of bLF and LF peptides against cervical and endometrial cancers. In this study, we explored the effect of bLF as well as LF chimera and its constituent peptides LFcin17-30 and LFampin265-284 on the viability of cervical (HeLa, SiHa) and endometrial (KLE, HEC-1A) cancer cell lines. Cell proliferation was quantified with an MTT assay, cell morphological changes and damage were determined by Giemsa and phalloidin-TRITC and DAPI staining, and apoptotic and necrotic cells were identified by Alexa Fluor® 488 Annexin V and propidium iodide staining. Additionally, the effect of combinations of bLF and LF peptides with cisplatin was assessed. bLF and LF peptides inhibited the proliferation of uterine cancer cells and caused cellular morphological changes and damage to cell monolayers. bLF induced apoptosis, LFcin17-30 and LFampin265-284 induced apoptosis and necrosis, and LF chimera induced necrosis. Additionally, bLF and LF chimera showed an additive interaction with cisplatin against uterine cancer cells.
Collapse
Affiliation(s)
- Diana A Ramírez-Sánchez
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México.,Programa Regional del Noroeste para el Doctorado en Biotecnología, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México
| | - Izamar G Arredondo-Beltrán
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México.,Maestría en Ciencias en Biomedicina Molecular, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México
| | - Adrián Canizalez-Roman
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México.,Hospital de la Mujer, Servicios de Salud de Sinaloa, Culiacán Sinaloa, México
| | | | - Kamran Nazmi
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, the Netherlands
| | - Jan G M Bolscher
- Department of Oral Biochemistry ACTA, University of Amsterdam and VU University, Amsterdam, the Netherlands
| | - Nidia León-Sicairos
- CIASaP, Facultad de Medicina, Universidad Autónoma de Sinaloa, Culiacán Sinaloa, México.,Departamento de Investigación del Hospital Pediátrico, Servicios de Salud de Sinaloa, Culiacán Sinaloa, México
| |
Collapse
|
44
|
Polat Yemiş G, Delaquis P. Natural Compounds With Antibacterial Activity Against Cronobacter spp. in Powdered Infant Formula: A Review. Front Nutr 2020; 7:595964. [PMID: 33330595 PMCID: PMC7731913 DOI: 10.3389/fnut.2020.595964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Bacteria from the genus Cronobacter are opportunistic foodborne pathogens capable of causing severe infections in neonates, the elderly and immunocompromised adults. The majority of neonatal infections have been linked epidemiologically to dehydrated powdered infant formulas (PIFs), the majority of which are manufactured using processes that do not ensure commercial sterility. Unfortunately, the osmotolerance, desiccation resistance, mild thermotolerance and wide-ranging minimum, optimum and maximum growth temperatures of Cronobacter spp. are conducive to survival and/or growth during the processing, reconstitution and storage of reconstituted PIFs. Consequently, considerable research has been directed at the development of alternative strategies for the control of Cronobacter spp. in PIFs, including approaches that employ antimicrobial compounds derived from natural sources. The latter include a range of phytochemicals ranging from crude extracts or essential oils derived from various plants (e.g., thyme, cinnamon, clove, marjoram, cumin, mint, fennel), to complex polyphenolic extracts (e.g., muscadine seed, pomegranate peel, olive oil, and cocoa powder extracts), purified simple phenolic compounds (e.g., carvacrol, citral, thymol, eugenol, diacetyl, vanillin, cinnamic acid, trans-cinnamaldehyde, ferulic acid), and medium chain fatty acids (monocaprylin, caprylic acid). Antimicrobials derived from microbial sources (e.g., nisin, other antibacterial peptides, organic acids, coenzyme Q0) and animal sources (e.g., chitosan, lactoferrin, antibacterial peptides from milk) have also been shown to exhibit antibacterial activity against the species. The selection of antimicrobials for the control of Cronobacter spp. requires an understanding of activity at different temperatures, knowledge about their mode of action, and careful consideration for toxicological and nutritional effects on neonates. Consequently, the purpose of the present review is to provide a comprehensive summary of currently available data pertaining to the antibacterial effects of natural antimicrobial compounds against Cronobacter spp. with a view to provide information needed to inform the selection of compounds suitable for control of the pathogen during the manufacture or preparation of PIFs by end users.
Collapse
Affiliation(s)
- Gökçe Polat Yemiş
- Department of Food Engineering, Sakarya University, Serdivan, Turkey
| | - Pascal Delaquis
- Summerland Research and Development Research Centre, Agriculture and AgriFood Canada, Summerland, BC, Canada
| |
Collapse
|
45
|
Ueda K, Shimizu M, Ohashi A, Murata D, Suzuki T, Kobayashi N, Baba J, Takeuchi T, Shiga Y, Nakamura M, Kagaya S, Sato A. Albumin fusion at the N-terminus or C-terminus of human lactoferrin leads to improved pharmacokinetics and anti-proliferative effects on cancer cell lines. Eur J Pharm Sci 2020; 155:105551. [PMID: 32946958 DOI: 10.1016/j.ejps.2020.105551] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/23/2020] [Accepted: 09/12/2020] [Indexed: 12/18/2022]
Abstract
Human lactoferrin (hLF), a soluble factor of the innate immune system, exhibits various biological functions and therefore has potential as a therapeutic protein. However, the clinical applications of hLF are limited by its low stability in blood. We therefore attempted to resolve this by producing recombinant hLF fused to human serum albumin (HSA). Two HSA-fused hLFs with different fusion orientations (hLF-HSA and HSA-hLF) were produced in Chinese hamster ovary (CHO) DG44 cells. hLF-HSA revealed higher thermal stability, resistance to peptic degradation, and stability during the process of cellular uptake and release in an intestinal enterocyte model (Caco-2 cells) than HSA-hLF. The lower stability of HSA-hLF is presumably due to the steric hindrance imposed by HSA fusion to the N-terminus of hLF. Both HSA fusion proteins, especially HSA-hLF, displayed improved pharmacokinetic properties despite the lower protein stability of HSA-hLF. hLF-HSA and HSA-hLF exhibited approximately 3.3- and 20.7-fold longer half-lives (64.0 and 403.6 min), respectively, than holo-rhLF (19.5 min). Both HSA fusion proteins were found to exert enhanced growth inhibition effects on cancer cells in vitro, but not normal cells. Their enhanced growth inhibitory activities were considered to be due to the synergetic effects of hLF and HSA because hLF alone or HSA alone failed to exert such an effect. Altogether, Fusion of HSA to hLF yielded superior pharmacokinetics and anti-proliferative activities against cancer cells. HSA-fused hLF is a novel candidate for further application of hLF as biopharmaceuticals for intravenous administration.
Collapse
Affiliation(s)
- Keisuke Ueda
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Maya Shimizu
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Aimi Ohashi
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Daisuke Murata
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Takuo Suzuki
- Division of Biological Chemistry and Biologicals, National Institute of Health, Sciences, Kawasaki, Kanagawa, 210-9501, Japan
| | - Natsuki Kobayashi
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Junpei Baba
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Takashi Takeuchi
- Department of Veterinary Medicine, Tottori University, Koyama-Minami, Tottori, 680-8553, Japan
| | - Yuki Shiga
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Masao Nakamura
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan
| | - Shinji Kagaya
- NRL Pharma, Inc., Kawasaki, Kanagawa, 213-0012, Japan
| | - Atsushi Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology, 1404-1, Katakura, Hachioji, Tokyo, 192-0982, Japan.
| |
Collapse
|
46
|
Elzoghby AO, Abdelmoneem MA, Hassanin IA, Abd Elwakil MM, Elnaggar MA, Mokhtar S, Fang JY, Elkhodairy KA. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 2020; 263:120355. [PMID: 32932142 PMCID: PMC7480805 DOI: 10.1016/j.biomaterials.2020.120355] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 12/21/2022]
Abstract
Recent progress in protein-based nanomedicine, inspired by the success of Abraxane® albumin-paclitaxel nanoparticles, have resulted in novel therapeutics used for treatment of challenging diseases like cancer and viral infections. However, absence of specific drug targeting, poor pharmacokinetics, premature drug release, and off-target toxicity are still formidable challenges in the clinic. Therefore, alternative protein-based nanomedicines were developed to overcome those challenges. In this regard, lactoferrin (Lf), a glycoprotein of transferrin family, offers a promising biodegradable well tolerated material that could be exploited both as an active therapeutic and drug nanocarrier. This review highlights the major pharmacological actions of Lf including anti-cancer, antiviral, and immunomodulatory actions. Delivery technologies of Lf to improve its pries and enhance its efficacy were also reviewed. Moreover, different nano-engineering strategies used for fabrication of drug-loaded Lf nanocarriers were discussed. In addition, the use of Lf for functionalization of drug nanocarriers with emphasis on tumor-targeted drug delivery was illustrated. Besides its wide application in oncology nano-therapeutics, we discussed the recent advances of Lf-based nanocarriers as efficient platforms for delivery of anti-parkinsonian, anti-Alzheimer, anti-viral drugs, immunomodulatory and bone engineering applications.
Collapse
Affiliation(s)
- Ahmed O Elzoghby
- Center for Engineered Therapeutics, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Harvard-MIT Division of Health Sciences & Technology (HST), Cambridge, MA, 02139, USA; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Mona A Abdelmoneem
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Damanhur University, Damanhur, 22516, Egypt
| | - Islam A Hassanin
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Mahmoud M Abd Elwakil
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Manar A Elnaggar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Nanotechnology Program, School of Sciences & Engineering, The American University in Cairo (AUC), New Cairo, 11835, Egypt
| | - Sarah Mokhtar
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, 333, Taiwan
| | - Kadria A Elkhodairy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
47
|
Barragán‐Cárdenas A, Insuasty‐Cepeda DS, Niño‐Ramírez VA, Umaña‐Pérez A, Ochoa‐Zarzosa A, López‐Meza JE, Rivera‐Monroy ZJ, García‐Castañeda JE. The Nonapeptide RWQWRWQWR: A Promising Molecule for Breast Cancer Therapy. ChemistrySelect 2020. [DOI: 10.1002/slct.202002101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Adriana Umaña‐Pérez
- Chemistry DepartmentUniversidad Nacional de Colombia Carrera 45 No. 26–85, Building 451
| | - Alejandra Ochoa‐Zarzosa
- Multidisciplinary Centre for Studies in BiotechnologyUniversidad Michoacana de San Nicolás de Hidalgo Km 9.5 Carretera Morelia-Zinapécuaro
| | - Joel E. López‐Meza
- Multidisciplinary Centre for Studies in BiotechnologyUniversidad Michoacana de San Nicolás de Hidalgo Km 9.5 Carretera Morelia-Zinapécuaro
| | | | | |
Collapse
|
48
|
Insuasty-Cepeda DS, Barragán-Cárdenas AC, Ochoa-Zarzosa A, López-Meza JE, Fierro-Medina R, García-Castañeda JE, Rivera-Monroy ZJ. Peptides Derived from (RRWQWRMKKLG) 2-K- Ahx Induce Selective Cellular Death in Breast Cancer Cell Lines through Apoptotic Pathway. Int J Mol Sci 2020; 21:E4550. [PMID: 32604743 PMCID: PMC7352952 DOI: 10.3390/ijms21124550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The effect on the cytotoxicity against breast cancer cell lines of the substitution of 26Met residue in the sequence of the Bovine Lactoferricin-derived dimeric peptide LfcinB (20-30)2: (20RRWQWRMKKLG30)2-K-Ahx with amino acids of different polarity was evaluated. The process of the synthesis of the LfcinB (20-30)2 analog peptides was similar to the original peptide. The cytotoxic assays showed that some analog peptides exhibited a significant cytotoxic effect against breast cancer cell lines HTB-132 and MCF-7, suggesting that the substitution of the Met with amino acids of a hydrophobic nature drastically enhances its cytotoxicity against HTB-132 and MCF-7 cells, reaching IC50 values up to 6 µM. In addition, these peptides have a selective effect, since they exhibit a lower cytotoxic effect on the non-tumorigenic cell line MCF-12. Interestingly, the cytotoxic effect is fast (90 min) and is maintained for up to 48 h. Additionally, through flow cytometry, it was found that the obtained dimeric peptides generate cell death through the apoptosis pathway and do not compromise the integrity of the cytoplasmic membrane, and there are intrinsic apoptotic events involved. These results show that the obtained peptides are extremely promising molecules for the future development of drugs for use against breast cancer.
Collapse
Affiliation(s)
- Diego Sebastián Insuasty-Cepeda
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia; (D.S.I.-C.); (A.C.B.-C.); (R.F.-M.)
| | - Andrea Carolina Barragán-Cárdenas
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia; (D.S.I.-C.); (A.C.B.-C.); (R.F.-M.)
| | - Alejandra Ochoa-Zarzosa
- Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, P.C. 58893 Morelia, Michoacán, Mexico; (A.O.-Z.); (J.E.L.-M.)
| | - Joel E. López-Meza
- Facultad de Medicina Veterinaria y Zootecnia, Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, P.C. 58893 Morelia, Michoacán, Mexico; (A.O.-Z.); (J.E.L.-M.)
| | - Ricardo Fierro-Medina
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia; (D.S.I.-C.); (A.C.B.-C.); (R.F.-M.)
| | - Javier Eduardo García-Castañeda
- Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá Carrera 45 No 26-85, Building 450, Bogotá 11321, Colombia;
| | - Zuly Jenny Rivera-Monroy
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Carrera 45 No 26-85, Building 451, office 409, Bogotá 11321, Colombia; (D.S.I.-C.); (A.C.B.-C.); (R.F.-M.)
| |
Collapse
|
49
|
Naleskina LA, Lukianova NY, Lozovska YV, Todor IM, Andrusishyna IM, Kunska LM, Chekhun VF. Changes of Morphological Characteristics and Metabolic Profile of Walker-256 Carcinosarcoma under the Impact of Exogenous Lactoferrin. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720030093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Brown RAM, Richardson KL, Kabir TD, Trinder D, Ganss R, Leedman PJ. Altered Iron Metabolism and Impact in Cancer Biology, Metastasis, and Immunology. Front Oncol 2020; 10:476. [PMID: 32328462 PMCID: PMC7160331 DOI: 10.3389/fonc.2020.00476] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Iron is an essential nutrient that plays a complex role in cancer biology. Iron metabolism must be tightly controlled within cells. Whilst fundamental to many cellular processes and required for cell survival, excess labile iron is toxic to cells. Increased iron metabolism is associated with malignant transformation, cancer progression, drug resistance and immune evasion. Depleting intracellular iron stores, either with the use of iron chelating agents or mimicking endogenous regulation mechanisms, such as microRNAs, present attractive therapeutic opportunities, some of which are currently under clinical investigation. Alternatively, iron overload can result in a form of regulated cell death, ferroptosis, which can be activated in cancer cells presenting an alternative anti-cancer strategy. This review focuses on alterations in iron metabolism that enable cancer cells to meet metabolic demands required during different stages of tumorigenesis in relation to metastasis and immune response. The strength of current evidence is considered, gaps in knowledge are highlighted and controversies relating to the role of iron and therapeutic targeting potential are discussed. The key question we address within this review is whether iron modulation represents a useful approach for treating metastatic disease and whether it could be employed in combination with existing targeted drugs and immune-based therapies to enhance their efficacy.
Collapse
Affiliation(s)
- Rikki A. M. Brown
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Kirsty L. Richardson
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Tasnuva D. Kabir
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Debbie Trinder
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| | - Ruth Ganss
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
| | - Peter J. Leedman
- Queen Elizabeth II Medical Centre, Harry Perkins Institute of Medical Research, Perth, WA, Australia
- UWA Centre for Medical Research, University of Western Australia, Perth, WA, Australia
- UWA Medical School, University of Western Australia, Perth, WA, Australia
| |
Collapse
|