1
|
Sardar F, Kamsani YS, Ramly F, Mohamed Noor Khan NA, Sardar R, Aminuddin AA. Cadmium Associated Preeclampsia: A Systematic Literature Review of Pregnancy and Birth Outcomes. Biol Trace Elem Res 2024:10.1007/s12011-024-04364-5. [PMID: 39256331 DOI: 10.1007/s12011-024-04364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
Preeclampsia (PE), caused by multiple factors, is one of the most serious complications of pregnancy. Cadmium (Cd) is a heavy metal environmental pollutant, reproductive toxicant, and endocrine disruptor, which can increase the risk of PE. Cd toxicity due to occupational, diet, and environmental factors has worsened the risk. Studies showed elevated Cd concentration in maternal blood and placenta of PE women. However, the implicit association between Cd associated PE is still not highlighted. We systematically reviewed Cd-associated PE and its effect on pregnancy and birth outcomes. Based on "Preferred reporting items for systematic reviews and meta-analyses (PRISMA)" guidelines, eighty-six studies were identified by PubMed, Web of Science (WOS), and Scopus databases. Publications were included until October 2023 and articles screened based on our inclusion criteria. Our study identified that the exposure of controlled and uncontrolled Cd induces PE, which negatively affects pregnancy and birth outcomes. Given the serious nature of this finding, Cd is a potential adverse agent that impacts pregnancy and future neonatal health. Further comprehensive studies covering the whole trimesters of pregnancy and neonatal developments are warranted. Data on the molecular mechanisms behind Cd-induced PE is also essential for potential preventive, diagnostic, or therapeutic targets.
Collapse
Affiliation(s)
- Fatima Sardar
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Yuhaniza Shafinie Kamsani
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.
- Maternofetal and Embryo (MatE) Research Group, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Fathi Ramly
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Nor Ashikin Mohamed Noor Khan
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
- Maternofetal and Embryo (MatE) Research Group, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Razia Sardar
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| | - Anisa Aishah Aminuddin
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
- Department of Obstetrics & Gynaecology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000, Sungai Buloh, Selangor, Malaysia
| |
Collapse
|
2
|
Köse BG, Pekmezci H, Basaran B. Bread Consumption-Induced Heavy Metal Exposures and Health Risk Assessment of Pregnant Women: Turkey. Biol Trace Elem Res 2024; 202:473-480. [PMID: 37231318 DOI: 10.1007/s12011-023-03711-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Affordable, nutritious, and easily available bread has a significant place in the nutrition of pregnant women. This study aims to determine bread consumption-induced heavy metal exposure in pregnant women with different sociodemographic characteristics living in Turkey and to evaluate it for non-carcinogenic health risks. Bread consumption data of pregnant women covered a retrospective 24-h period. Heavy metal exposure was calculated according to the deterministic model. Non-carcinogenic health risk assessment was evaluated by target hazard quotient (THQ) and hazard index (HI). Bread consumption-induced Mn, Al, Cu, Ni, Pb, As, Cr, Co, Cd, and Hg exposures of all pregnant women (n = 446) were 44.0, 25.0, 6.62, 0.69, 0.15, 0.06, 0.04, 0.03, 0.03, and < 0.00 µg/kg bw/day, respectively. Bread consumption-induced Mn exposure was higher than the tolerable daily intake level. The HI (1.37 [Formula: see text] 1.71) related to bread consumption is greater than 1 in all pregnant women in different age groups and trimesters and bread consumption may cause some health concerns in terms of non-carcinogenic health risks for pregnant women. The bread consumption can be limited, but bread consumption should not be abandoned.
Collapse
Affiliation(s)
- Burcu Genç Köse
- Department of Medical Services and Techniques, Health Services Vocational School, Recep Tayyip Erdogan University, Rize, 53100, Turkey.
| | - Hilal Pekmezci
- Department of Health Care Services, Health Services Vocational School, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | - Burhan Basaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| |
Collapse
|
3
|
Stanek LW, Grokhowsky N, George BJ, Thomas KW. Assessing lead exposure in U.S. pregnant women using biological and residential measurements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167135. [PMID: 37739076 PMCID: PMC11351066 DOI: 10.1016/j.scitotenv.2023.167135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
There is strong scientific evidence for multiple pathways of human exposure to lead (Pb) in residential settings, particularly for young children; however, less is known about maternal exposure during pregnancy and children's exposure during early lifestages. A robust, multi-faceted secondary analysis was conducted using data collected by the National Institute of Child Health and Human Development in the 2009-2014 National Children's Study Vanguard Studies. Descriptive statistics summarized Pb concentrations of maternal blood, maternal urine, and house dust vacuum samples collected during pregnancy and residence surface wipes collected both during pregnancy and six months post-partum. The maternal blood Pb level geometric mean was 0.44 μg/dL (n = 426), with no women having values ≥ 5 μg/dL; creatinine-adjusted maternal urinary Pb geometric mean was 0.43 μg/g (n = 366). These blood and urine concentrations are similar to those observed for females in the general U.S. population in the National Health and Nutrition Examination Survey 2010-2011 cycle. A modest correlation between maternal blood Pb and surface wipe measurements during pregnancy was observed (Spearman r = 0.35, p < 0.0001). Surface wipe Pb loadings obtained in mother's homes during pregnancy (n = 640) and from areas where children spent the most time at roughly 6 months of age (n = 99) ranged from 0.02 to 71.8 ng/cm2, with geometric means of 0.47 and 0.49 ng/cm2, respectively, which were relatively low compared to other national studies. Survey responses of demographic, lifestyle, and residence characteristics were assessed for associations with blood concentration and surface wipe loading. Demographic (e.g., race/ethnicity, income, education, marital status) and housing characteristics (e.g., year home built, paint condition, own or rent home, attached garage) were associated with both maternal blood and surface wipe loadings during pregnancy. The availability of residential environmental media and extensive survey data provided enhanced understanding of Pb exposure during pregnancy and early life.
Collapse
Affiliation(s)
- Lindsay W Stanek
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, NC, USA.
| | - Nicholas Grokhowsky
- Formerly of Oak Ridge Institute for Science and Education, Research Triangle Park, NC, USA
| | - Barbara J George
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, NC, USA
| | - Kent W Thomas
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, NC, USA
| |
Collapse
|
4
|
Li W, Tan M, Wang H, Wang Z, Pang Y, Yang R, Zhong S, Pan X, Chen S, Wang Q, Li D, Xiao Y, Chen W, Chen L. METTL3-mediated m6A mRNA modification was involved in cadmium-induced liver injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121887. [PMID: 37236586 DOI: 10.1016/j.envpol.2023.121887] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Cadmium is an environmental pollutant that has extensive deleterious effects. However, the mechanisms underlying the hepatotoxicity induced by long-term exposure to cadmium remained undefined. In the present study, we explored the role of m6A methylation in the development of cadmium-induced liver disease. We showed a dynamic change of RNA methylation in liver tissue from mice administrated with cadmium chloride (CdCl2) for 3, 6 and 9 months, respectively. Particularly, the METTL3 expression was declined in a time-dependent manner, associated with the degree of liver injury, indicating the involvement of METTL3 in hepatotoxicity induced by CdCl2. Moreover, we established a mouse model with liver-specific over-expression of Mettl3 and administrated these mice with CdCl2 for 6 months. Notably, METTL3 highly expressed in hepatocytes attenuated CdCl2-induced steatosis and liver fibrosis in mice. In vitro assay also showed METTL3 overexpression ameliorated the CdCl2-induced cytotoxicity and activation of primary hepatic stellate cells. Furthermore, transcriptome analysis identified 268 differentially expressed genes both in mice liver tissue treated with CdCl2 for 3 months and 9 months. Among them, 115 genes were predicted to be regulated by METTL3 determined by m6A2Target database. Further analysis revealed the perturbation of metabolic pathway, glycerophospholipid metabolism, ErbB signaling pathway, Hippo signaling pathway, and choline metabolism in cancer, and circadian rhythm, led to hepatotoxicity induced by CdCl2. Collectively, our findings reveal new insight into the crucial role of epigenetic modifications in hepatic diseases caused by long-term exposure to cadmium.
Collapse
Affiliation(s)
- Wenxue Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China; Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Mingxue Tan
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Huiqi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yaqin Pang
- Faculty of Toxicology, School of Public Health, Youjiang Medical College for Nationalities, Guangxi, 533000, China
| | - Rongfang Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shiyuan Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xinhong Pan
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yongmei Xiao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Green AJ, Wall AR, Weeks RD, Mattingly CJ, Marsden KC, Planchart A. Developmental cadmium exposure disrupts zebrafish vestibular calcium channels interfering with otolith formation and inner ear function. Neurotoxicology 2023; 96:129-139. [PMID: 37060951 PMCID: PMC10518193 DOI: 10.1016/j.neuro.2023.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Dizziness or balance problems are estimated to affect approximately 3.3 million children aged three to 17 years. These disorders develop from a breakdown in the balance control system and can be caused by anything that affects the inner ear or the brain, including exposure to environmental toxicants. One potential environmental toxicant linked to balance disorders is cadmium, an extremely toxic metal that occurs naturally in the earth's crust and is released as a byproduct of industrial processes. Cadmium is associated with balance and vestibular dysfunction in adults exposed occupationally, but little is known about the developmental effects of low-concentration cadmium exposure. Our findings indicate that zebrafish exposed to 10-60 parts per billion (ppb) cadmium from four hours post-fertilization (hpf) to seven days post-fertilization (dpf) exhibit abnormal behaviors, including pronounced increases in auditory sensitivity and circling behavior, both of which are linked to reductions in otolith growth and are rescued by the addition of calcium to the media. Pharmacological intervention shows that agonist-induced activation of the P2X calcium ion channel in the presence of cadmium restores otolith size. In conclusion, cadmium-induced ototoxicity is linked to vestibular-based behavioral abnormalities and auditory sensitivity following developmental exposure, and calcium ion channel function is associated with these defects.
Collapse
Affiliation(s)
- Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA.
| | - Alex R Wall
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Ryan D Weeks
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Kurt C Marsden
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Hao Y, Wu W, Fraser WD, Huang H. Association between residential proximity to municipal solid waste incinerator sites and birth outcomes in Shanghai: a retrospective cohort study of births during 2014-2018. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2460-2470. [PMID: 34496690 DOI: 10.1080/09603123.2021.1970116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
We tested the hypothesis of whether maternal residential proximity to municipal solid waste incinerator (MSWI) sites could significantly affect birth outcomes. This retrospective birth cohort study conducted at the International Peace Maternity and Infant Hospital, Shanghai, China, included 59,606 mothers with singleton live births during 2014-2018. Multivariate generalized linear models were used to examine associations between residential proximity to MSWI sites and birth outcomes. Small for gestational age (SGA) was significantly more common among children with maternal residential proximity to MSWI sites (odds ratio [OR]=1.20, 95% confidence interval [CI]: 1.07-1.34). Maternal prepregnancy body mass index (BMI) influenced this association. Infants of underweight mothers (prepregnancy BMI <18.5 kg/m2) with MSWI exposure (OR=2.00, 95% CI: 1.58-2.52) had higher risks of SGA than their counterparts. Our findings underscore the need to prevent adverse environmental effects of MSWI on birth outcomes; improved exposure assessment measures are warranted in future studies.
Collapse
Affiliation(s)
- Yanhui Hao
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Weibin Wu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - William D Fraser
- Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
7
|
Lloyd DT, Skinner HG, Maguire R, Murphy SK, Motsinger-Reif AA, Hoyo C, House JS. Clomifene and Assisted Reproductive Technology in Humans Are Associated with Sex-Specific Offspring Epigenetic Alterations in Imprinted Control Regions. Int J Mol Sci 2022; 23:10450. [PMID: 36142363 PMCID: PMC9499479 DOI: 10.3390/ijms231810450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Children conceived with assisted reproductive technology (ART) have an increased risk of adverse outcomes, including congenital malformations and imprinted gene disorders. In a retrospective North Carolina-based-birth-cohort, we examined the effect of ovulation drugs and ART on CpG methylation in differentially methylated CpGs in known imprint control regions (ICRs). Nine ICRs containing 48 CpGs were assessed for methylation status by pyrosequencing in mixed leukocytes from cord blood. After restricting to non-smoking, college-educated participants who agreed to follow-up, ART-exposed (n = 27), clomifene-only-exposed (n = 22), and non-exposed (n = 516) groups were defined. Associations of clomifene and ART with ICR CpG methylation were assessed with linear regression and stratifying by offspring sex. In males, ART was associated with hypomethylation of the PEG3 ICR [β(95% CI) = -1.46 (-2.81, -0.12)] and hypermethylation of the MEG3 ICR [3.71 (0.01, 7.40)]; clomifene-only was associated with hypomethylation of the NNAT ICR [-5.25 (-10.12, -0.38)]. In female offspring, ART was associated with hypomethylation of the IGF2 ICR [-3.67 (-6.79, -0.55)]. Aberrant methylation of these ICRs has been associated with cardiovascular disease and metabolic and behavioral outcomes in children. The results suggest that the increased risk of adverse outcomes in offspring conceived through ART may be due in part to altered methylation of ICRs. Larger studies utilizing epigenome-wide interrogation are warranted.
Collapse
Affiliation(s)
- Dillon T. Lloyd
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Harlyn G. Skinner
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Rachel Maguire
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Duke University, Durham, NC 27701, USA
| | - Alison A. Motsinger-Reif
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - John S. House
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
8
|
Vidal AC, Moylan CA, Wilder J, Grant DJ, Murphy SK, Hoyo C. Racial disparities in liver cancer: Evidence for a role of environmental contaminants and the epigenome. Front Oncol 2022; 12:959852. [PMID: 36072796 PMCID: PMC9441658 DOI: 10.3389/fonc.2022.959852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023] Open
Abstract
Liver cancer incidence has tripled since the early 1980s, making this disease one of the fastest rising types of cancer and the third leading cause of cancer-related deaths worldwide. In the US, incidence varies by geographic location and race, with the highest incidence in the southwestern and southeastern states and among racial minorities such as Hispanic and Black individuals. Prognosis is also poorer among these populations. The observed ethnic disparities do not fully reflect differences in the prevalence of risk factors, e.g., for cirrhosis that may progress to liver cancer or from genetic predisposition. Likely substantial contributors to risk are environmental factors, including chemical and non-chemical stressors; yet, the paucity of mechanistic insights impedes prevention efforts. Here, we review the current literature and evaluate challenges to reducing liver cancer disparities. We also discuss the hypothesis that epigenetic mediators may provide biomarkers for early detection to support interventions that reduce disparities.
Collapse
Affiliation(s)
- Adriana C. Vidal
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Cynthia A. Moylan
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Duke University, Durham, NC, United States
| | - Julius Wilder
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Duke University, Durham, NC, United States
| | - Delores J. Grant
- Department of Biomedical and Biological Sciences, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, United States
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Division of Research, School of Medicine, Duke University, Durham, NC, United States
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
9
|
Pavilonis B, Maroko A, Cai B, Shin J, Lahage N, Gupta A, Stein-Albert M, Patil U, Dubov TE, Karbalivand H, McDermott S. Characterization of fetal exposure to multiple metals among an urban population: A case study of New York City. ENVIRONMENTAL RESEARCH 2022; 211:113050. [PMID: 35259408 DOI: 10.1016/j.envres.2022.113050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
INTRODUCTION Metals and metalloids are ubiquitous and persistent in urban areas and are generally released into the environment as mixtures. OBJECTIVES The purpose of this study was to establish baseline concentrations of selected elements in meconium samples among a large urban population in the US and understand the spatial variability in concentrations. The association of metal mixtures on birth weight was also assessed. METHODS This cross-sectional study was conducted across five public hospitals located in New York City, NY (NYC) in four boroughs. We collected meconium sample from 116 infants during the first 24 h after delivery and quantified 11 metals using ICP-MS. Principal component analysis was used to determine metal mixtures and their association with birth weight. Spatial hot spots of each metal were calculated using the Getis-Ord (GI*). RESULTS Essential elements were detected in all samples with Zn in the greatest abundance (median = 274.5 μg/g) and Mo in the least (median = 0.1845 μg/g). Pb was detected in all but two samples (median = 0.0222 μg/g), while Cd levels were detected in approximately half of the samples (median = 0.0019 μg/g). Co-located hot spots were detected for Cu, Zn, and Fe in southeast Brooklyn; Cd, Cr, and Ni in eastern Queens; and Al and Mo in south Queens. There was a significant inverse relationship between Pb concentrations (beta = -1935.7; p = 0.006) and the mixture of Cr, Cu, Mo, Zn (beta = -157.7; p = 0.045) and birth weight. CONCLUSIONS Our findings indicate that meconium is an effective biomarker for measuring metal exposures among an urban population. We were able to quantify detectable levels of ten of the eleven metals measured in the study and characterize nutritionally necessary trace elements and metals derived from anthropogenic sources without biologic need in a cohort of NYC newborns. Further research needs to establish the change point from necessary to toxic, for the essential elements.
Collapse
Affiliation(s)
- Brian Pavilonis
- City University of New York Graduate School of Public Health and Health Policy, 55 W. 125th Street, New York, NY, 10027, USA.
| | - Andrew Maroko
- City University of New York Graduate School of Public Health and Health Policy, 55 W. 125th Street, New York, NY, 10027, USA
| | - Bo Cai
- University of South Carolina, Columbia, SC, USA
| | - Jin Shin
- Medgar Evers College of The City University of New York, 1650 Bedford Avenue, Brooklyn, NY, 11225, USA
| | - Nadine Lahage
- New York City Health and Hospitals, New York City, NY, USA
| | - Arpit Gupta
- New York City Health and Hospitals, New York City, NY, USA
| | | | - Uday Patil
- New York City Health and Hospitals, New York City, NY, USA
| | | | | | - Suzanne McDermott
- City University of New York Graduate School of Public Health and Health Policy, 55 W. 125th Street, New York, NY, 10027, USA
| |
Collapse
|
10
|
Kamai EM, Daniels JL, Delamater PL, Lanphear BP, MacDonald Gibson J, Richardson DB. Patterns of Children's Blood Lead Screening and Blood Lead Levels in North Carolina, 2011-2018-Who Is Tested, Who Is Missed? ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:67002. [PMID: 35647633 PMCID: PMC9158533 DOI: 10.1289/ehp10335] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND No safe level of lead in blood has been identified. Blood lead testing is required for children on Medicaid, but it is at the discretion of providers and parents for others. Elevated blood lead levels (EBLLs) cannot be identified in children who are not tested. OBJECTIVES The aims of this research were to identify determinants of lead testing and EBLLs among North Carolina children and estimate the number of additional children with EBLLs among those not tested. METHODS We linked geocoded North Carolina birth certificates from 2011-2016 to 2010 U.S. Census data and North Carolina blood lead test results from 2011-2018. We estimated the probability of being screened for lead and created inverse probability (IP) of testing weights. We evaluated the risk of an EBLL of ≥3μg/dL at <30 months of age, conditional on characteristics at birth, using generalized linear models and then applied IP weights to account for missing blood lead results among unscreened children. We estimated the number of additional children with EBLLs of all North Carolina children using the IP-weighted population and bootstrapping to produce 95% credible intervals (CrI). RESULTS Mothers of the 63.5% of children (402,002 of 633,159) linked to a blood lead test result were disproportionately young, Hispanic, Black, American Indian, or on Medicaid. In full models, maternal age ≤20y [risk ratio (RR)=1.10; 95% confidence interval (CI): 1.13, 1.20] or smoking (RR=1.14; 95% CI: 1.12, 1.17); proximity to a major roadway (RR=1.10; 95% CI: 1.05, 1.15); proximity to a lead-releasing Toxics Release Inventory site (RR=1.08; 95% CI: 1.03, 1.14) or a National Emissions Inventory site (RR=1.11; 95% CI: 1.07, 1.14); and living in neighborhoods with more housing built before 1950 (RR=1.10; 95% CI: 1.05, 1.14) or before 1940 (RR=1.18; 95% CI: 1.11, 1.25) or more vacant housing (RR=1.14; 95% CI: 1.11, 1.17) were associated with an increased risk of EBLL, whereas overlap with a public water service system was associated with a decreased risk of EBLL (RR=0.85; 95% CI: 0.83, 0.87). Children of Black mothers were no more likely than children of White mothers to have EBLLs (RR=0.98; 95% CI: 0.96, 1.01). Complete blood lead screening in 2011-2018 may have identified an additional 17,543 (95% CrI: 17,462, 17,650) children with EBLLs ≥3μg/dL. DISCUSSION Our results indicate that current North Carolina lead screening strategies fail to identify over 30% (17,543 of 57,398) of children with subclinical lead poisoning and that accounting for characteristics at birth alters the conclusions about racial disparities in children's EBLLs. https://doi.org/10.1289/EHP10335.
Collapse
Affiliation(s)
- Elizabeth M. Kamai
- Department of Epidemiology, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, North Carolina, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Julie L. Daniels
- Department of Epidemiology, University of North Carolina at Chapel Hill (UNC-Chapel Hill), Chapel Hill, North Carolina, USA
- Department of Maternal and Child Health, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul L. Delamater
- Department of Geography, UNC-Chapel Hill, Chapel Hill, North Carolina, USA
- Carolina Population Center, UNC-Chapel Hill, North Carolina, USA
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | | | - David B. Richardson
- Department of Environmental and Occupational Health, University of California, Irvine, California, USA
| |
Collapse
|
11
|
Jackson TW, Baars O, Belcher SM. Gestational Cd Exposure in the CD-1 Mouse Sex-Specifically Disrupts Essential Metal Ion Homeostasis. Toxicol Sci 2022; 187:254-266. [PMID: 35212737 PMCID: PMC9154225 DOI: 10.1093/toxsci/kfac027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In CD-1 mice, gestational-only exposure to cadmium (Cd) causes female-specific hepatic insulin resistance, metabolic disruption, and obesity. To evaluate whether sex differences in uptake and changes in essential metal concentrations contribute to metabolic outcomes, placental and liver Cd and essential metal concentrations were quantified in male and female offspring perinatally exposed to 500 ppb CdCl2. Exposure resulted in increased maternal liver Cd+2 concentrations (364 µg/kg) similar to concentrations found in non-occupationally exposed human liver. At gestational day (GD) 18, placental Cd and manganese concentrations were significantly increased in exposed males and females, and zinc was significantly decreased in females. Placental efficiency was significantly decreased in GD18-exposed males. Increases in hepatic Cd concentrations and a transient prenatal increase in zinc were observed in exposed female liver. Fetal and adult liver iron concentrations were decreased in both sexes, and decreases in hepatic zinc, iron, and manganese were observed in exposed females. Analysis of GD18 placental and liver metallothionein mRNA expression revealed significant Cd-induced upregulation of placental metallothionein in both sexes, and a significant decrease in fetal hepatic metallothionein in exposed females. In placenta, expression of metal ion transporters responsible for metal ion uptake was increased in exposed females. In liver of exposed adult female offspring, expression of the divalent cation importer (Slc39a14/Zip14) decreased, whereas expression of the primary exporter (Slc30a10/ZnT10) increased. These findings demonstrate that Cd can preferentially cross the female placenta, accumulate in the liver, and cause lifelong dysregulation of metal ion concentrations associated with metabolic disruption.
Collapse
Affiliation(s)
- Thomas W Jackson
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, North Carolina 27695, USA
| | - Oliver Baars
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Scott M Belcher
- Center for Human Health and the Environment, Department of Biological Sciences, North Carolina State University, 127 David Clark Labs Campus Box 7617, Raleigh, North Carolina 27695, USA
| |
Collapse
|
12
|
Watson CV, Lewin M, Ragin-Wilson A, Jones R, Jarrett JM, Wallon K, Ward C, Hilliard N, Irvin-Barnwell E. Characterization of trace elements exposure in pregnant women in the United States, NHANES 1999-2016. ENVIRONMENTAL RESEARCH 2020; 183:109208. [PMID: 32058143 PMCID: PMC8243358 DOI: 10.1016/j.envres.2020.109208] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/30/2020] [Accepted: 01/30/2020] [Indexed: 05/19/2023]
Abstract
OBJECTIVE The objective of the current study is to report on urine, blood and serum metal concentrations to characterize exposures to trace elements and micronutrient levels in both pregnant women and women of child-bearing age in the U.S. National Health and Nutrition Examination Survey (NHANES) years 1999-2016. METHODS Urine and blood samples taken from NHANES participants were analyzed for thirteen urine metals, three blood metals, three serum metals, speciated mercury in blood and speciated arsenic in urine. Adjusted and unadjusted least squares geometric means and 95% confidence intervals were calculated for all participants among women aged 15-44 years. Changes in exposure levels over time were also examined. Serum cotinine levels were used to adjust for smoke exposure, as smoking is a source of metal exposure. RESULTS Detection rates for four urine metals from the ATSDR Substance Priority List: arsenic, lead, mercury and cadmium were ~83-99% for both pregnant and non-pregnant women of child bearing age. A majority of metal concentrations were higher in pregnant women compared to non-pregnant women. Pregnant women had higher mean urine total arsenic, urine mercury, and urine lead; however, blood lead and mercury were higher in non-pregnant women. Blood lead, cadmium, mercury, as well as urine antimony, cadmium and lead in women of childbearing age decreased over time, while urine cobalt increased over time. CONCLUSIONS Pregnant women in the US have been exposed to several trace metals, with observed concentrations for some trace elements decreasing since 1999.
Collapse
Affiliation(s)
- Christina Vaughan Watson
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Michael Lewin
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Angela Ragin-Wilson
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Robert Jones
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jeffery M Jarrett
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kristen Wallon
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cynthia Ward
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Nolan Hilliard
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elizabeth Irvin-Barnwell
- Division of Toxicology and Human Health Sciences, Agency for Toxic Substances and Disease Registry, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
13
|
Yaprak E, Yolcubal İ. Presence of Toxic Heavy Metals in Platelet-Rich Fibrin: a Pilot Study. Biol Trace Elem Res 2019; 191:363-369. [PMID: 30895450 DOI: 10.1007/s12011-019-01695-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/15/2019] [Indexed: 12/19/2022]
Abstract
Platelet-rich fibrin (PRF) is widely used blood-derived biomaterial which is directly applied to the surgical wounds. Depending on its autologous origin, PRF is thought as a safe material. However, it is not known to what extent the blood-derived toxins can be found in the PRF by considering the systemic exposure rates of the individuals to the toxins. The aim of this pilot study was to test the hypothesis whether PRF contains any blood-origin heavy metals (HMs) and smoking increases their concentrations as an environmental HM source. PRF samples were obtained from systemically healthy 30 non-smoker and 30 smoker volunteers. All liquid and dry fibrin parts of the PRF samples were analyzed in terms of 15 toxic elements using inductively coupled plasma mass spectrometry. All analyzed HMs were detected in all investigated PRF samples within various concentrations in both groups. In addition, significantly high levels of cadmium, arsenic, lead, manganese, nickel, chromium, and vanadium were detected in dry fibrin matrices of PRF samples of smokers comparing with non-smokers (p < 0.05). Only cadmium was at significantly high levels in the liquid part of PRF samples of smokers (p < 0.05). This is the first study evaluating toxic ingredients of PRF. The results revealed that PRF contains various toxic HMs. Additionally, systemic exposure to environmental HM sources such as smoking may significantly increase HM concentrations in PRF. Further studies are required to investigate the transmission potentials of HMs to the applied tissues and biological importance of PRF-origin HMs.
Collapse
Affiliation(s)
- Emre Yaprak
- Department of Periodontology, Faculty of Dentistry, Kocaeli University, Yuvacik, Basiskele, 41190, Kocaeli, Turkey.
| | - İrfan Yolcubal
- Department of Geological Engineering, Faculty of Engineering, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
14
|
Hudson KM, Belcher SM, Cowley M. Maternal cadmium exposure in the mouse leads to increased heart weight at birth and programs susceptibility to hypertension in adulthood. Sci Rep 2019; 9:13553. [PMID: 31537853 PMCID: PMC6753073 DOI: 10.1038/s41598-019-49807-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Cadmium (Cd) is a toxic heavy metal ubiquitous in the environment. Maternal exposure to Cd is associated with fetal growth restriction, trace element deficiencies, and congenital malformations. Cd exposure during adulthood is associated with cardiovascular disease (CVD); however, the effects of maternal Cd exposure on offspring cardiovascular development and disease are not well-understood. Utilizing a mouse model of maternal Cd exposure, we show that offspring born to Cd-exposed mothers have increased heart weights at birth and susceptibility to hypertension during adulthood. Despite inefficient maternal-fetal transfer of Cd, maternal Cd alters fetal levels of essential trace elements including a deficiency in iron, which is required for cardiovascular system development, oxygen homeostasis, and cellular metabolism. RNA-seq on newborn hearts identifies differentially expressed genes associated with maternal Cd exposure that are enriched for functions in CVD, hypertension, enlarged hearts, cellular energy, and hypoxic stress. We propose that a maternal Cd exposure-induced iron deficiency leads to altered cellular metabolic pathways and hypoxic conditions during fetal development; this stress may contribute to increased heart weight at birth and the programming of susceptibility to hypertension in adulthood. These studies will give insights into potential mechanisms through which maternal Cd exposure impacts cardiovascular development and disease.
Collapse
Affiliation(s)
- Kathleen M Hudson
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Scott M Belcher
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael Cowley
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
15
|
A nongenomic mechanism for "metalloestrogenic" effects of cadmium in human uterine leiomyoma cells through G protein-coupled estrogen receptor. Arch Toxicol 2019; 93:2773-2785. [PMID: 31468104 DOI: 10.1007/s00204-019-02544-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/14/2019] [Indexed: 12/25/2022]
Abstract
Cadmium (Cd) is a ubiquitous environmental metal that is reported to be a "metalloestrogen." Uterine leiomyomas (fibroids) are estrogen-responsive gynecologic neoplasms that can be the target of xenoestrogens. Previous epidemiology studies have suggested Cd may be associated with fibroids. We have shown that Cd can stimulate proliferation of human uterine leiomyoma (ht-UtLM) cells, but not through classical estrogen receptor (ER) binding. Whether nongenomic ER pathways are involved in Cd-induced proliferation is unknown. In the present study, by evaluating G protein-coupled estrogen receptor (GPER), ERα36, and phospho-epidermal growth factor receptor (EGFR) expression in human tissues, we found that GPER, ERα36 and phospho-EGFR were all highly expressed in fibroids compared to patient-matched myometrial tissues. In ht-UtLM cells, cell proliferation was increased by low doses of Cd (0.1 µM and 10 µM), and this effect could be inhibited by GPER-specific antagonist (G15) pretreatment, or silencing (si) GPER, but not by siERα36. Cd-activated MAPK was dependent on GPER/EGFR transactivation, through significantly increased phospho-Src, matrix metalloproteinase-2 (MMP2) and MMP9, and heparin-binding EGF-like growth factor (HB-EGF) expression/activation. Also, phospho-Src could interact directly to phosphorylate EGFR. Overall, Cd-induced proliferation of human fibroid cells was through a nongenomic GPER/p-src/EGFR/MAPK signaling pathway that did not directly involve ERα36. This suggests that Cd may be a risk factor for uterine fibroids through cross talk between hormone and growth factor receptor pathways.
Collapse
|
16
|
Joubert BR, Berhane K, Chevrier J, Collman G, Eskenazi B, Fobil J, Hoyo C, John CC, Kumie A, Nicol M, Ramsay M, Smith J, Steyn A, Tshala-Katumbay D, McAllister K. Integrating environmental health and genomics research in Africa: challenges and opportunities identified during a Human Heredity and Health in Africa (H3Africa) Consortium workshop. AAS Open Res 2019; 2:159. [PMID: 32382703 PMCID: PMC7194141 DOI: 10.12688/aasopenres.12983.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
Individuals with African ancestry have extensive genomic diversity but have been underrepresented in genomic research. There is also extensive global diversity in the exposome (the totality of human environmental exposures from conception onwards) which should be considered for integrative genomic and environmental health research in Africa. To address current research gaps, we organized a workshop on environmental health research in Africa in conjunction with the H3Africa Consortium and the African Society of Human Genetics meetings in Kigali, Rwanda. The workshop was open to all researchers with an interest in environmental health in Africa and involved presentations from experts within and outside of the Consortium. This workshop highlighted innovative research occurring on the African continent related to environmental health and the interplay between the environment and the human genome. Stories of success, challenges, and collaborative opportunities were discussed through presentations, breakout sessions, poster presentations, and a panel discussion. The workshop informed participants about environmental risk factors that can be incorporated into current or future epidemiology studies and addressed research design considerations, biospecimen collection and storage, biomarkers for measuring chemical exposures, laboratory strategies, and statistical methodologies. Inclusion of environmental exposure measurements with genomic data, including but not limited to H3Africa projects, can offer a strong platform for building gene-environment (G x E) research in Africa. Opportunities to leverage existing resources and add environmental exposure data for ongoing and planned studies were discussed. Future directions include expanding the measurement of both genomic and exposomic risk factors and incorporating sophisticated statistical approaches for analyzing high dimensional G x E data. A better understanding of how environmental and genomic factors interact with nutrition and infection is also needed. Considering that the environment represents many modifiable risk factors, these research findings can inform intervention and prevention efforts towards improving global health.
Collapse
Affiliation(s)
- Bonnie R Joubert
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Kiros Berhane
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Gwen Collman
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | | | | | | | - Chandy C John
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abera Kumie
- Addis Abada University, Addis Abada, Ethiopia
| | - Mark Nicol
- University of Cape Town, Cape Town, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Adrie Steyn
- Africa Health Research Institute, Durban, South Africa
| | | | - Kimberly McAllister
- National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
17
|
House JS, Hall J, Park SS, Planchart A, Money E, Maguire RL, Huang Z, Mattingly CJ, Skaar D, Tzeng JY, Darrah TH, Vengosh A, Murphy SK, Jirtle RL, Hoyo C. Cadmium exposure and MEG3 methylation differences between Whites and African Americans in the NEST Cohort. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz014. [PMID: 31528362 PMCID: PMC6736358 DOI: 10.1093/eep/dvz014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) is a ubiquitous environmental pollutant associated with a wide range of health outcomes including cancer. However, obscure exposure sources often hinder prevention efforts. Further, although epigenetic mechanisms are suspected to link these associations, gene sequence regions targeted by Cd are unclear. Aberrant methylation of a differentially methylated region (DMR) on the MEG3 gene that regulates the expression of a cluster of genes including MEG3, DLK1, MEG8, MEG9 and DIO3 has been associated with multiple cancers. In 287 infant-mother pairs, we used a combination of linear regression and the Getis-Ord Gi* statistic to determine if maternal blood Cd concentrations were associated with offspring CpG methylation of the sequence region regulating a cluster of imprinted genes including MEG3. Correlations were used to examine potential sources and routes. We observed a significant geographic co-clustering of elevated prenatal Cd levels and MEG3 DMR hypermethylation in cord blood (P = 0.01), and these findings were substantiated in our statistical models (β = 1.70, se = 0.80, P = 0.03). These associations were strongest in those born to African American women (β = 3.52, se = 1.32, P = 0.01) compared with those born to White women (β = 1.24, se = 2.11, P = 0.56) or Hispanic women (β = 1.18, se = 1.24, P = 0.34). Consistent with Cd bioaccumulation during the life course, blood Cd levels increased with age (β = 0.015 µg/dl/year, P = 0.003), and Cd concentrations were significantly correlated between blood and urine (ρ > 0.47, P < 0.01), but not hand wipe, soil or house dust concentrations (P > 0.05). Together, these data support that prenatal Cd exposure is associated with aberrant methylation of the imprint regulatory element for the MEG3 gene cluster at birth. However, neither house-dust nor water are likely exposure sources, and ingestion via contaminated hands is also unlikely to be a significant exposure route in this population. Larger studies are required to identify routes and sources of exposure.
Collapse
Affiliation(s)
- John S House
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Jonathan Hall
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Sarah S Park
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Antonio Planchart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Eric Money
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA
- Department of Natural Resources, North Carolina State University, Raleigh, NC, USA
| | - Rachel L Maguire
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Carolyn J Mattingly
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - David Skaar
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jung Ying Tzeng
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Thomas H Darrah
- Division of Climate, Water, and Environment, School of Earth Sciences, The Ohio State University, Columbus, OH, USA
| | - Avner Vengosh
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Randy L Jirtle
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
18
|
Planchart A, Green A, Hoyo C, Mattingly CJ. Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies. Curr Environ Health Rep 2019; 5:110-124. [PMID: 29460222 DOI: 10.1007/s40572-018-0182-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MS) describes the co-occurrence of conditions that increase one's risk for heart disease and other disorders such as diabetes and stroke. The worldwide increase in the prevalence of MS cannot be fully explained by lifestyle factors such as sedentary behavior and caloric intake alone. Environmental exposures, such as heavy metals, have been implicated, but results are conflicting and possible mechanisms remain unclear. To assess recent progress in determining a possible role between heavy metal exposure and MS, we reviewed epidemiological and model system data for cadmium (Cd), lead (Pb), and mercury (Hg) from the last decade. RECENT FINDINGS Data from 36 epidemiological studies involving 17 unique countries/regions and 13 studies leveraging model systems are included in this review. Epidemiological and model system studies support a possible association between heavy metal exposure and MS or comorbid conditions; however, results remain conflicting. Epidemiological studies were predominantly cross-sectional and collectively, they highlight a global interest in this question and reveal evidence of differential susceptibility by sex and age to heavy metal exposures. In vivo studies in rats and mice and in vitro cell-based assays provide insights into potential mechanisms of action relevant to MS including altered regulation of lipid and glucose homeostasis, adipogenesis, and oxidative stress. Heavy metal exposure may contribute to MS or comorbid conditions; however, available data are conflicting. Causal inference remains challenging as epidemiological data are largely cross-sectional; and variation in study design, including samples used for heavy metal measurements, age of subjects at which MS outcomes are measured; the scope and treatment of confounding factors; and the population demographics vary widely. Prospective studies, standardization or increased consistency across study designs and reporting, and consideration of molecular mechanisms informed by model system studies are needed to better assess potential causal links between heavy metal exposure and MS.
Collapse
Affiliation(s)
- Antonio Planchart
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA.,Center for Human Health and the Environment, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA
| | - Adrian Green
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA.,Center for Human Health and the Environment, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA. .,Center for Human Health and the Environment, NC State University, Toxicology building, 850 Main Campus Dr, Raleigh, NC, 27606, USA.
| |
Collapse
|
19
|
Matthews NH, Fitch K, Li WQ, Morris JS, Christiani DC, Qureshi AA, Cho E. Exposure to Trace Elements and Risk of Skin Cancer: A Systematic Review of Epidemiologic Studies. Cancer Epidemiol Biomarkers Prev 2019; 28:3-21. [PMID: 30297516 PMCID: PMC6324965 DOI: 10.1158/1055-9965.epi-18-0286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/30/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Exposure to environmental trace elements has been studied in relation to many cancers. However, an association between exposure to trace elements and skin cancer remains less understood. Therefore, we conducted a systematic review of published epidemiologic literature examining the association between exposure to trace elements, and risk of melanoma and keratinocyte carcinoma in humans. We identified epidemiologic studies investigating exposure to arsenic, cadmium, chromium, copper, iron, selenium, and zinc and risk of skin cancer in humans. Among the minerals, arsenic, selenium, and zinc had more than five studies available. Exposure to arsenic was associated with increased risk of keratinocyte carcinoma, while too few studies existed on melanoma to draw conclusions. Exposure to selenium was associated with possible increased risk of keratinocyte carcinoma. Studies of zinc and skin cancer were case-control in design and were found to have inconsistent associations. The data on the association between cadmium, chromium, copper, and iron and risk of skin cancer remain too sparse to draw any conclusions. In summary, epidemiologic studies on exposure to trace elements and cutaneous malignancies are limited. Studies with larger sample sizes and prospective designs are warranted to improve our knowledge of trace elements and skin cancer.
Collapse
Affiliation(s)
- Natalie H Matthews
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Katherine Fitch
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Wen-Qing Li
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
| | - J Steven Morris
- Research Reactor Center, University of Missouri-Columbia and Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
- Pulmonary and Critical Care Unit, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Abrar A Qureshi
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Rhode Island Hospital, Providence, Rhode Island
| | - Eunyoung Cho
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island.
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
20
|
Bede-Ojimadu O, Amadi CN, Orisakwe OE. Blood Lead Levels in Women of Child-Bearing Age in Sub-Saharan Africa: A Systematic Review. Front Public Health 2018; 6:367. [PMID: 30619808 PMCID: PMC6305709 DOI: 10.3389/fpubh.2018.00367] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
This paper reported available studies on blood lead level of childbearing age in Sub-Saharan African women. PubMed and Google scholar databases were searched for original articles reporting blood lead levels of women of childbearing age in Sub-Saharan Africa. Searches were not limited to year of study but limited to studies published in English Language. Data were extracted and synthesized by estimating the weighted mean of the reported blood lead levels. Fifteen papers fulfilled the inclusion criteria. Mean blood lead levels of women in the studies ranged from 0.83 to 99 μg/dl. The overall weighted mean of blood lead levels was 24.73 μg/dl. The weighted mean from analyses of data on blood lead levels of pregnant women alone was 26.24 μg/dl. Identified sources of lead exposure included lead mine, informal lead-acid battery recycling, leaded gasoline and piped water. Elevated BLLs were associated with incidence of preeclampsia, hypertension, and malaria. Important contributing factors for elevated blood lead levels (BLL) in these women include poverty, high environmental lead burden, low awareness on lead exposure hazards and lack of regulation for lead in consumer products. BLLs of women of childbearing age in SSA are unacceptably high. There is need therefore, for aggressive programs to address lead exposure in this population.
Collapse
Affiliation(s)
- Onyinyechi Bede-Ojimadu
- Department of Chemical pathology, Faculty of Medicine, Nnamdi Azikiwe University, Awka, Nigeria
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Nigeria
| | - Orish Ebere Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Nigeria
| |
Collapse
|
21
|
Wang F, Fan F, Wang L, Ye W, Zhang Q, Xie S. Maternal Cadmium Levels During Pregnancy and the Relationship with Preeclampsia and Fetal Biometric Parameters. Biol Trace Elem Res 2018; 186:322-329. [PMID: 29651732 DOI: 10.1007/s12011-018-1312-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/18/2018] [Indexed: 12/11/2022]
Abstract
Preeclampsia, which is caused by multiple factors, still remains one of the most serious complications of pregnancy. This study was designed to determine cadmium levels in women with preeclampsia compared to those of normotensive women. In this case-control study, maternal blood, umbilical cord blood, and placental cadmium levels were measured by an inductively coupled plasma mass spectrometry system in 51 women presenting consecutively with preeclampsia and 51 normotensive pregnant women. Groups were matched for maternal age, parity, and gestational age. Birth outcomes were recorded, such as gestational age at delivery, birth weight, and Apgar score. Median (interquartile range [IQR]) blood cadmium concentration was 1.21 μg/L (0.76-1.84 μg/L) and 1.09 μg/L (0.72-1.31 μg/L) in women with preeclampsia and normotensive, respectively; values for placental cadmium levels of women with preeclampsia and normotensive were 3.61 μg/kg (2.19-4.37 μg/kg) and 4.28 μg/kg (3.06-5.71 μg/kg), respectively. We observed a statistically significant increase in blood and placental cadmium levels in women with preeclampsia compared to healthy pregnant women. After adjusting for pre-pregnancy body mass index, maternal age, parity, gestational age at sample collection, and maternal calcium and magnesium levels, the odds ratio of having preeclampsia in the high tertile was markedly increased (odds ratio, 7.83 [95% CI, 1.64-37.26]) compared with the low tertile. Interestingly, there was no difference in the cadmium level in umbilical cord blood between the groups. Within the preeclamptic group, higher cadmium status was significantly associated with decreased birth weight. Our study suggested that elevated cadmium level in the maternal circulation could potentially increase the risk of preeclampsia. The results also demonstrate that higher cadmium status may contribute to fetal growth restriction in preeclamptic patients.
Collapse
Affiliation(s)
- Fan Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Fengyun Fan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lianyun Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wen Ye
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiong Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Shuangshuang Xie
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
22
|
Green AJ, Hoyo C, Mattingly CJ, Luo Y, Tzeng JY, Murphy SK, Buchwalter DB, Planchart A. Cadmium exposure increases the risk of juvenile obesity: a human and zebrafish comparative study. Int J Obes (Lond) 2018; 42:1285-1295. [PMID: 29511319 PMCID: PMC6054604 DOI: 10.1038/s41366-018-0036-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Human obesity is a complex metabolic disorder disproportionately affecting people of lower socioeconomic strata, and ethnic minorities, especially African Americans and Hispanics. Although genetic predisposition and a positive energy balance are implicated in obesity, these factors alone do not account for the excess prevalence of obesity in lower socioeconomic populations. Therefore, environmental factors, including exposure to pesticides, heavy metals, and other contaminants, are agents widely suspected to have obesogenic activity, and they also are spatially correlated with lower socioeconomic status. Our study investigates the causal relationship between exposure to the heavy metal, cadmium (Cd), and obesity in a cohort of children and in a zebrafish model of adipogenesis. DESIGN An extensive collection of first trimester maternal blood samples obtained as part of the Newborn Epigenetics Study (NEST) was analyzed for the presence of Cd, and these results were cross analyzed with the weight-gain trajectory of the children through age 5 years. Next, the role of Cd as a potential obesogen was analyzed in an in vivo zebrafish model. RESULTS Our analysis indicates that the presence of Cd in maternal blood during pregnancy is associated with increased risk of juvenile obesity in the offspring, independent of other variables, including lead (Pb) and smoking status. Our results are recapitulated in a zebrafish model, in which exposure to Cd at levels approximating those observed in the NEST study is associated with increased adiposity. CONCLUSION Our findings identify Cd as a potential human obesogen. Moreover, these observations are recapitulated in a zebrafish model, suggesting that the underlying mechanisms may be evolutionarily conserved, and that zebrafish may be a valuable model for uncovering pathways leading to Cd-mediated obesity in human populations.
Collapse
Affiliation(s)
- Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yiwen Luo
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jung-Ying Tzeng
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David B Buchwalter
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
23
|
Accessing Disadvantaged Pregnant Women in Houston, Texas, and Characterizing Biomarkers of Metal Exposure: A Feasibility Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14050474. [PMID: 28468266 PMCID: PMC5451925 DOI: 10.3390/ijerph14050474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
Abstract
Communities of color or low socioeconomic status are disproportionately affected by metal exposure given spatial variability of the ambient levels of these contaminants. Despite this, there is little research characterizing metal concentrations in blood among disadvantaged populations in the U.S., especially among pregnant women who are particularly vulnerable and difficult to access. Thus, we conducted a pilot study among disadvantaged pregnant women in Houston, Texas to assess willingness to participate in key activities of an epidemiologic study and characterize exposures to 16 metals. Thirty-one women attending a Medicaid-serving prenatal clinic were included in this pilot study and completed an interviewer-administered questionnaire. We obtained and measured metal compounds in whole blood samples for 22 of these women during third-trimester prenatal visits. Median whole blood concentrations of Ni, As, Cd, and Pb were 27, 1.4, 0.6, and 6.3 µg/L, respectively. Most women were willing to participate in critical aspects of a research study, including wearing a personal air-sampling badge for 2–3 days (87.1%), receiving ultrasounds (83.9%), and providing blood draws (64.5%). Despite the small sample, our results provide evidence of women’s metal exposure and their willingness to participate in future research studies to elucidate exposure pathways and explore related health effects experienced among this population of disadvantaged pregnant women.
Collapse
|
24
|
Luo Y, McCullough LE, Tzeng JY, Darrah T, Vengosh A, Maguire RL, Maity A, Samuel-Hodge C, Murphy SK, Mendez MA, Hoyo C. Maternal blood cadmium, lead and arsenic levels, nutrient combinations, and offspring birthweight. BMC Public Health 2017; 17:354. [PMID: 28438148 PMCID: PMC5402649 DOI: 10.1186/s12889-017-4225-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/05/2017] [Indexed: 12/24/2022] Open
Abstract
Background Cadmium (Cd), lead (Pb) and arsenic (As) are common environmental contaminants that have been associated with lower birthweight. Although some essential metals may mitigate exposure, data are inconsistent. This study sought to evaluate the relationship between toxic metals, nutrient combinations and birthweight among 275 mother-child pairs. Methods Non-essential metals, Cd, Pb, As, and essential metals, iron (Fe), zinc (Zn), selenium (Se), copper (Cu), calcium (Ca), magnesium (Mg), and manganese (Mn) were measured in maternal whole blood obtained during the first trimester using inductively coupled plasma mass spectrometry. Folate concentrations were measured by microbial assay. Birthweight was obtained from medical records. We used quantile regression to evaluate the association between toxic metals and nutrients due to their underlying wedge-shaped relationship. Ordinary linear regression was used to evaluate associations between birth weight and toxic metals. Results After multivariate adjustment, the negative association between Pb or Cd and a combination of Fe, Se, Ca and folate was robust, persistent and dose-dependent (p < 0.05). However, a combination of Zn, Cu, Mn and Mg was positively associated with Pb and Cd levels. While prenatal blood Cd and Pb were also associated with lower birthweight. Fe, Se, Ca and folate did not modify these associations. Conclusion Small sample size and cross-sectional design notwithstanding, the robust and persistent negative associations between some, but not all, nutrient combinations with these ubiquitous environmental contaminants suggest that only some recommended nutrient combinations may mitigate toxic metal exposure in chronically exposed populations. Larger longitudinal studies are required to confirm these findings. Electronic supplementary material The online version of this article (doi:10.1186/s12889-017-4225-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiwen Luo
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | | | - Jung-Ying Tzeng
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA. .,Department of Statistics, North Carolina State University, Raleigh, NC, USA. .,Department of Statistics, National Cheng-Kung University, Tainan, Taiwan.
| | - Thomas Darrah
- School of Earth Sciences, The Ohio State University, Columbus, OH, USA
| | - Avner Vengosh
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Rachel L Maguire
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27533, USA
| | - Arnab Maity
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | | | | | | | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27533, USA.
| |
Collapse
|
25
|
Akinwunmi F, Akinhanmi TF, Atobatele ZA, Adewole O, Odekunle K, Arogundade LA, Odukoya OO, Olayiwola OM, Ademuyiwa O. Heavy metal burdens of public primary school children related to playground soils and classroom dusts in Ibadan North-West local government area, Nigeria. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:21-26. [PMID: 27889649 DOI: 10.1016/j.etap.2016.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 11/02/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Information about heavy metal burden of children in Nigeria related to playground soils and classroom dusts is lacking. Playground soil, classroom dust, blood and spot urine samples (n=253) were collected from 6 urban and 2 semi-rural public schools in Ibadan North-West, Nigeria. Samples were analysed for Pb, Cu, Zn, Fe and Mn. Mean blood Pb levels in urban area (male, 41.66±8.78μg/dl vs. female, 40.64±5.46μg/dl) were twice as high as those in semi-rural area (male, 19.71±3.73μg/dl vs. female, 20.65±2.26μg/dl). Concentrations of Pb, Cu, Zn, and Fe in soil and dust samples in the urban schools were between 2- to 4-fold greater than that of semi-rural schools. No correlation was observed between blood and dust metals. A positive correlation (r=0.168, p=0.008) was observed between blood Pb and playground soil Pb. Pb burden in the children might be from their schools' playgrounds and other yet unidentified sources.
Collapse
Affiliation(s)
- F Akinwunmi
- Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - T F Akinhanmi
- Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - Z A Atobatele
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - O Adewole
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - K Odekunle
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - L A Arogundade
- Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - O O Odukoya
- Department of Chemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| | - O M Olayiwola
- Department of Statistics, Federal University of Agriculture, Abeokuta, Nigeria.
| | - O Ademuyiwa
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria.
| |
Collapse
|
26
|
Affiliation(s)
- Rosemarie Marchan
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund IfADo, Ardeystr. 67, 44139, Dortmund, Germany.
| |
Collapse
|