1
|
Zhang Y, Cao R, Wang D, Yue Q, Su L, Li K, Li B, Zhao L, Zhang S. Inhalation of patchouli essential oil alleviates airway inflammation in cigarette smoke-induced COPD mice. Sci Rep 2024; 14:32108. [PMID: 39738731 DOI: 10.1038/s41598-024-83852-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, characterized by persistent respiratory symptoms and airflow limitations resulting from small airway injury, bronchial wall thickening, and hypersecretion of mucus. Current pharmacological interventions are ineffective in reversing these airflow limitations; In our study, we investigated the potential role of patchouli essential oil (PEO) in the treatment of COPD and its underlying molecular mechanisms, both in vitro and in vivo. To establish a cigarette smoke-induced COPD mice model, we exposed the mice to cigarette smoke (CS) and administered nasal drip of lipopolysaccharides (LPS). During the modeling process, the mice were nebulized daily with PEO; Treatment with PEO significantly ameliorated the inflammatory response in CS-induced COPD mice, leading to improved lung function. Histopathological examination revealed that PEO treatment improved lung tissue changes, as observed through staining. Furthermore, PEO treatment reduced the levels of inflammatory factors IL-6, IL-1β, and TNF-α, and reversed the CS-induced elevation of mRNA levels of these factors. Additionally, PEO treatment significantly countered cigarette smoke-induced COPD via the NF-κB signaling pathway in mice; Our result has shown that inhalation of PEO can substantially alleviate the increase in inflammatory factors, mitigate lung function impairment, and reduce airway remodeling in cigarette smoke-induced COPD mice.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China
| | - Rui Cao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China
| | - Duo Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd, Jinan, People's Republic of China
| | - Baojun Li
- Shandong ZhuoRan Biotechnology Co., Ltd, Jinan, People's Republic of China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China.
- Shandong Chenzhang Biotechnology Co., Ltd, Jinan, People's Republic of China.
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, People's Republic of China.
| |
Collapse
|
2
|
Sharma JR, Dubey A, Yadav UCS. Cigarette smoke-induced galectin-3 as a diagnostic biomarker and therapeutic target in lung tissue remodeling. Life Sci 2024; 339:122433. [PMID: 38237765 DOI: 10.1016/j.lfs.2024.122433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Galectin-3 (Gal-3), a multifunctional carbohydrate-binding lectin, has emerged as a key player in various biological processes including inflammation, cancer, cardiovascular diseases and fibrotic disorders, however it remains unclear if Gal-3 is a bystander or drives lung tissue remodeling (LTR). Persistent exposure to cigarette smoke (CS) is the leading cause of oxidative and inflammatory damage to the lung tissues. CS-induced pathological increase in Gal-3 expression has been implicated in the pathogenesis of various respiratory conditions, such as chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and lung cancer. We and others have reported that CS induces Gal-3 synthesis and secretion, which modulates the pathological signaling pathways in lung epithelial cells implicating Gal-3 as a novel diagnostic marker and a factor driving LTR in CS-exposed lungs. Therefore, pharmacological interventions targeting Gal-3 and its upstream and downstream signaling pathways can help combat CS-induced LTR. Excitingly, preclinical models have demonstrated the efficacy of interventions such as Gal-3 expression inhibition, Gal-3 receptor blockade, and signaling pathways modulation open up promising avenues for future therapeutic interventions. Furthermore, targeting extracellular vesicles-mediated Gal-3 release and the potential of microRNA-based therapy are emerging as novel therapeutic approaches in CS-induced LTR and have been discussed in this article.
Collapse
Affiliation(s)
- Jiten R Sharma
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupama Dubey
- Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Special Center for Systems Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Odarenko KV, Zenkova MA, Markov AV. The Nexus of Inflammation-Induced Epithelial-Mesenchymal Transition and Lung Cancer Progression: A Roadmap to Pentacyclic Triterpenoid-Based Therapies. Int J Mol Sci 2023; 24:17325. [PMID: 38139154 PMCID: PMC10743660 DOI: 10.3390/ijms242417325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Its high mortality is partly due to chronic inflammation that accompanies the disease and stimulates cancer progression. In this review, we analyzed recent studies and highlighted the role of the epithelial-mesenchymal transition (EMT) as a link between inflammation and lung cancer. In the inflammatory tumor microenvironment (iTME), fibroblasts, macrophages, granulocytes, and lymphocytes produce inflammatory mediators, some of which can induce EMT. This leads to increased invasiveness of tumor cells and self-renewal of cancer stem cells (CSCs), which are associated with metastasis and tumor recurrence, respectively. Based on published data, we propose that inflammation-induced EMT may be a potential therapeutic target for the treatment of lung cancer. This prospect is partially realized in the development of EMT inhibitors based on pentacyclic triterpenoids (PTs), described in the second part of our study. PTs reduce the metastatic potential and stemness of tumor cells, making PTs promising candidates for lung cancer therapy. We emphasize that the high diversity of molecular mechanisms underlying inflammation-induced EMT far exceeds those that have been implicated in drug development. Therefore, analysis of information on the relationship between the iTME and EMT is of great interest and may provide ideas for novel treatment approaches for lung cancer.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
| |
Collapse
|
4
|
Chen X, Ji Y, Liu R, Zhu X, Wang K, Yang X, Liu B, Gao Z, Huang Y, Shen Y, Liu H, Sun H. Mitochondrial dysfunction: roles in skeletal muscle atrophy. J Transl Med 2023; 21:503. [PMID: 37495991 PMCID: PMC10373380 DOI: 10.1186/s12967-023-04369-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
Mitochondria play important roles in maintaining cellular homeostasis and skeletal muscle health, and damage to mitochondria can lead to a series of pathophysiological changes. Mitochondrial dysfunction can lead to skeletal muscle atrophy, and its molecular mechanism leading to skeletal muscle atrophy is complex. Understanding the pathogenesis of mitochondrial dysfunction is useful for the prevention and treatment of skeletal muscle atrophy, and finding drugs and methods to target and modulate mitochondrial function are urgent tasks in the prevention and treatment of skeletal muscle atrophy. In this review, we first discussed the roles of normal mitochondria in skeletal muscle. Importantly, we described the effect of mitochondrial dysfunction on skeletal muscle atrophy and the molecular mechanisms involved. Furthermore, the regulatory roles of different signaling pathways (AMPK-SIRT1-PGC-1α, IGF-1-PI3K-Akt-mTOR, FoxOs, JAK-STAT3, TGF-β-Smad2/3 and NF-κB pathways, etc.) and the roles of mitochondrial factors were investigated in mitochondrial dysfunction. Next, we analyzed the manifestations of mitochondrial dysfunction in muscle atrophy caused by different diseases. Finally, we summarized the preventive and therapeutic effects of targeted regulation of mitochondrial function on skeletal muscle atrophy, including drug therapy, exercise and diet, gene therapy, stem cell therapy and physical therapy. This review is of great significance for the holistic understanding of the important role of mitochondria in skeletal muscle, which is helpful for researchers to further understanding the molecular regulatory mechanism of skeletal muscle atrophy, and has an important inspiring role for the development of therapeutic strategies for muscle atrophy targeting mitochondria in the future.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Xucheng Zhu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, 55 Ninghai Middle Road, Nantong, Jiangsu, 226600, People's Republic of China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Zhang P, Jiang Y, Ye X, Zhang C, Tang Y. PDK1 inhibition reduces autophagy and cell senescence through the PI3K/AKT signalling pathway in a cigarette smoke mouse emphysema model. Exp Ther Med 2023; 25:223. [PMID: 37123206 PMCID: PMC10133799 DOI: 10.3892/etm.2023.11922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/03/2022] [Indexed: 04/03/2023] Open
Abstract
A number of previous studies have demonstrated the pivotal role of PI3K/AKT signalling in cigarette smoke (CS)-induced emphysema, where phosphoinositide dependent protein kinase 1 (PDK1) is a critical component of this pathway. Therefore, the present study aimed to investigate the effects of a PDK1 inhibitor (GSK-2334470) on the expression levels of PI3K, AKT, cyclin-dependent kinase inhibitor 2A (p16) and LC3B in a CS + CS extract (CSE)-induced mouse emphysema model. CS exposure and intraperitoneal injections of CSE were combined for 4 weeks to establish an emphysema model. Mice (n=35) were randomly divided into the normal control, emphysema (CS), PI3K inhibitor (CS3) and PDK1 inhibitor (CS1) groups. Immunohistochemistry staining of lung tissues was used to measure the expression of the PI3K, PDK1 and AKT proteins in airway epithelial tissues. Immunofluorescence staining was also used to measure the levels of p16 and LC3BII protein expression in the airway epithelial tissues. In addition, PI3K, PDK1, AKT, p16 and LC3B protein expression was semi-quantified using western blotting. The expression of PDK1, PI3K and AKT proteins in the airway epithelial tissues was significantly increased in the CS + CSE group compared with that in the control group. The expression levels of p16 and LC3B were also increased as well in the CS + CSE group compared with those in the control group. The expression levels of PI3K, PDK1, AKT, LC3B and p16 in the airway epithelial tissues of the CS3 group were lower compared with those in the CS + CSE group. A decrease in the expression levels of PDK1, AKT, p16 and LC3B in the airway epithelial tissues of the CS1 group compared with those in the CS + CSE group was also observed. However, there were no significant differences in the expression levels of PI3K between the CS1 and the CS groups. The present study concluded that the inhibition of PDK1 can potentially reduce autophagy and cell senescence by downregulating the expression of PI3K/AKT pathway related proteins in airway epithelial cells, thereby protecting against CS + CSE-induced emphysema in mice.
Collapse
Affiliation(s)
- Peibei Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Youjun Jiang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Xianwei Ye
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Cheng Zhang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Yiling Tang
- Department of Respiratory Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
6
|
Single-cell sequencing reveals that endothelial cells, EndMT cells and mural cells contribute to the pathogenesis of cavernous malformations. Exp Mol Med 2023; 55:628-642. [PMID: 36914857 PMCID: PMC10073145 DOI: 10.1038/s12276-023-00962-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/13/2022] [Accepted: 01/01/2023] [Indexed: 03/14/2023] Open
Abstract
Cavernous malformations (CMs) invading the central nervous system occur in ~0.16-0.4% of the general population, often resulting in hemorrhages and focal neurological deficits. Further understanding of disease mechanisms and therapeutic strategies requires a deeper knowledge of CMs in humans. Herein, we performed single-cell RNA sequencing (scRNA-seq) analysis on unselected viable cells from twelve human CM samples and three control samples. A total of 112,670 high-quality cells were clustered into 11 major cell types, which shared a number of common features in CMs harboring different genetic mutations. A new EC subpopulation marked with PLVAP was uniquely identified in lesions. The cellular ligand‒receptor network revealed that the PLVAP-positive EC subcluster was the strongest contributor to the ANGPT and VEGF signaling pathways in all cell types. The PI3K/AKT/mTOR pathway was strongly activated in the PLVAP-positive subcluster even in non-PIK3CA mutation carriers. Moreover, endothelial-to-mesenchymal transition (EndMT) cells were identified for the first time in CMs at the single-cell level, which was accompanied by strong immune activation. The transcription factor SPI1 was predicted to be a novel key driver of EndMT, which was confirmed by in vitro and in vivo studies. A specific fibroblast-like phenotype was more prevalent in lesion smooth muscle cells, hinting at the role of vessel reconstructions and repairs in CMs, and we also confirmed that TWIST1 could induce SMC phenotypic switching in vitro and in vivo. Our results provide novel insights into the pathomechanism decryption and further precise therapy of CMs.
Collapse
|
7
|
Ye X, Luo S, Chang X, Fang Y, Liu Y, Zhang Y, Li H. Pseudognaphalium affine Extract Alleviates COPD by Inhibiting the Inflammatory Response via Downregulation of NF-κB. Molecules 2022; 27:molecules27238243. [PMID: 36500336 PMCID: PMC9737274 DOI: 10.3390/molecules27238243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease with limited therapeutic options. Pseudognaphalium affine (D. Don) Anderb. is a medicinal and edible plant used to treat cough, asthma, and COPD for a long time in folk medicine. The objective of this study is to evaluate the effect of Pseudognaphalium affine (D. Don) Anderb. extract (GAE) and investigate the possible underlying mechanism in vivo and in vitro. In vivo, the administration of GAE in a rat COPD model could significantly ameliorate lung damage and pulmonary function by inhibiting the production of pro-inflammatory cytokines. Western blot and real-time PCR results showed that GAE could suppress nuclear translocation of nuclear factor-kappa B (NF-κB), which indicated that GAE down-regulated the NF-κB pathway. Moreover, GAE protected against tumor necrosis factor (TNF)-α induced inflammatory response in BEAS-2B and inhibited the NF-κB pathway. All data suggested that GAE exhibited its anti-COPD effect by inhibiting pro-inflammatory cytokines, which may be associated with the inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Xiangli Ye
- Affiliated Union Hospital of Fujian Medical University, Fuzhou 350122, China
| | - Shuping Luo
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiaona Chang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yaling Fang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yaojun Liu
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yuqin Zhang
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Correspondence: (Y.Z.); (H.L.)
| | - Huang Li
- Pharmacy College, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Correspondence: (Y.Z.); (H.L.)
| |
Collapse
|
8
|
Liu F, Zhu Y, He J, Chen H, Cao C, Xiong D, Zhou Y, Hu L. Therapeutic effect of sodium‑glucose cotransporter 2 inhibitor and benazepril on diabetic nephropathic rats. Exp Ther Med 2022; 24:747. [PMID: 36561973 PMCID: PMC9748655 DOI: 10.3892/etm.2022.11683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
The present study aimed to compare the therapeutic effect of sodium/glucose cotransporter 2 (SGLT2) inhibitor and benazepril on diabetic nephropathy (DN) rats and provide a potential novel agent for the clinical treatment of DN. The DN model was established on rats. Animals were dosed orally with SGLT2 and benazepril daily for 4 weeks. The pathological state of renal tissues were evaluated using hematoxylin and eosin, Masson and periodic acid-Schiff staining. The change in the morphology of renal tissues was observed through transmission electron microscopy. Western blotting was utilized to determine the expression level of TGF-β, N-terminal fragment of the B-type natriuretic peptide precursor (NT-proBNP) and matrix metalloproteinase-9 (MMP-9). The expression level of endothelin 1 (ET-1), von Willebrand factor (vWF), collagen (col)-I and α smooth muscle actin (α-SMA) in renal tissues was visualized using immunohistochemical assay. Significant pathological changes in the glomerular basement membrane, mesangial membrane, renal tubules, lumen, renal interstitial region and renal tubular epithelial cells were observed in DN rats, accompanied by increased collagen fibers. SGLT2 inhibitor treatment demonstrated more alleviatory effects on the pathological changes of renal tissues compared with benazepril. Compared with control, TGF-β and NT-proBNP were upregulated in DN rats, accompanied by the downregulation of MMP-9, ET-1, vWF, col-I and α-SMA, which were markedly reversed by treatment with SGLT2 inhibitor and benazepril. Compared with benazepril, the effects of SGLT2 inhibitor on the expression level of TGF-β, NT-proBNP, MMP-9, ET-1, vWF, col-I and α-SMA were more significant. Overall, SGLT2 inhibitor demonstrated an increased therapeutic effect against DN rats compared with benazepril by regulating cytokines, renal fibrosis and extracellular matrix degradation.
Collapse
Affiliation(s)
- Feiyan Liu
- Department of Nephrology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yan Zhu
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Jie He
- Department of Nephrology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Huimin Chen
- Department of Nephrology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Caixia Cao
- Department of Nephrology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Di Xiong
- Department of Nephrology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Ying Zhou
- Department of Nephrology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Ling Hu
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China,Correspondence to: Dr Ling Hu, Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, 128 Xiangshan North Road, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
9
|
Su X, Wu W, Zhu Z, Lin X, Zeng Y. The effects of epithelial-mesenchymal transitions in COPD induced by cigarette smoke: an update. Respir Res 2022; 23:225. [PMID: 36045410 PMCID: PMC9429334 DOI: 10.1186/s12931-022-02153-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Cigarette smoke is a complex aerosol containing a large number of compounds with a variety of toxicity and carcinogenicity. Long-term exposure to cigarette smoke significantly increases the risk of a variety of diseases, including chronic obstructive pulmonary disease (COPD) and lung cancer. Epithelial–mesenchymal transition (EMT) is a unique biological process, that refers to epithelial cells losing their polarity and transforming into mobile mesenchymal cells, playing a crucial role in organ development, fibrosis, and cancer progression. Numerous recent studies have shown that EMT is an important pathophysiological process involved in airway fibrosis, airway remodeling, and malignant transformation of COPD. In this review, we summarized the effects of cigarette smoke on the development and progression of COPD and focus on the specific changes and underlying mechanisms of EMT in COPD induced by cigarette smoke. We spotlighted the signaling pathways involved in EMT induced by cigarette smoke and summarize the current research and treatment approaches for EMT in COPD, aiming to provide ideas for potential new treatment and research directions.
Collapse
Affiliation(s)
- Xiaoshan Su
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Weijing Wu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Zhixing Zhu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Xiaoping Lin
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Respirology Medicine Centre of Fujian Province, Quanzhou, China.
| |
Collapse
|
10
|
Mioc M, Milan A, Malița D, Mioc A, Prodea A, Racoviceanu R, Ghiulai R, Cristea A, Căruntu F, Șoica C. Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part I). Int J Mol Sci 2022; 23:ijms23147740. [PMID: 35887090 PMCID: PMC9322890 DOI: 10.3390/ijms23147740] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.
Collapse
Affiliation(s)
- Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Daniel Malița
- Department of Radiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
| | - Florina Căruntu
- Department of Medical Semiology II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
11
|
Jasemi SV, Khazaei H, Momtaz S, Farzaei MH, Echeverría J. Natural products in the treatment of pulmonary emphysema: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153988. [PMID: 35217434 DOI: 10.1016/j.phymed.2022.153988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a class of lung diseases including chronic bronchitis, asthma, and emphysema. Long-time smoking is considered the main reason for developing emphysema. Emphysema can be defined as damage to the walls of the air sacs (alveoli) of the lung. It has been demonstrated that natural compounds with antioxidant and anti-inflammatory effects can effectively improve or protect the lung against this disease. This paper is dedicated to systematically review the effective natural compounds in the treatment of pulmonary emphysema. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating pulmonary emphysema STUDY DESIGN AND METHODS: A systematic and comprehensive review was done based on Scopus, PubMed, and Cochrane Library databases were searched using the "emphysema", "plant", "herb", and "phytochemical" keywords. Non-English, review, and repetitive articles were excluded from the study. Search results were included in the Prisma diagram. RESULTS From a total of 1285 results, finally, 22 articles were included in the present study. The results show that some herbs such as Scutellaria baicalensis Georgi and Monascus adlay and some phytochemicals such as gallic acid and quercetin and blackboard tree indole alkaloids affect more factors in improving the lung emphysema. Also, some natural compounds such as marijuana smoke and humic acid also play an aggravating role in this disease. It also seems that some of the medicinal plants such as PM014 herbal formula, pomegranate juice and açaí berry sometimes have side effects that are inconsistent with their therapeutic effects. CONCLUSION We concluded that natural compounds can effectively improve pulmonary emphysema due to their antioxidant, anti-inflammatory, and anti-apoptotic properties. However, additional studies are suggested to prove efficacy and side effects.
Collapse
Affiliation(s)
- Sayed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Science, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
12
|
Li LY, Zhang CT, Zhu FY, Zheng G, Liu YF, Liu K, Zhang CH, Zhang H. Potential Natural Small Molecular Compounds for the Treatment of Chronic Obstructive Pulmonary Disease: An Overview. Front Pharmacol 2022; 13:821941. [PMID: 35401201 PMCID: PMC8988065 DOI: 10.3389/fphar.2022.821941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the major diseases threatening human life and health. According to the report released by the World Health Organization (WHO) in 2020, COPD has become the third leading cause of death in the world, featuring a sustainable growth of incidence rate as well as population age. The purpose of this review focuses on the advancement of bioactive natural compounds, such as baicalin, quercetin, resveratrol, and curcumin, which demonstrate promising therapeutic/interventional effects on CODP in vitro and in vivo. Information emphasizing on COPD was systematically collected from several authoritative internet databases including Web of Science, PubMed, Elsevier, Wiley Online Library, and Europe PMC, with a combination of keywords containing “COPD” and “natural small molecular compounds”. The new evidence indicated that these valuable molecules featured unique functions in the treatment of COPD through various biological processes such as anti-inflammatory, anti-oxidant, anti-apoptosis, and anti-airway fibrosis. Moreover, we found that the promising effects of these natural compounds on COPD were mainly achieved through JAK3/STAT3/NF-κB and MAPK inflammatory signaling pathways, Nrf2 oxidative stress signaling pathway, and TGF-β1/Smad 2/3 fibrosis signaling pathway, which referenced to multiple targets like TNF-α, IL-6, IL-8, TIMP-1, MMP, AKT, JAK3, IKK, PI3K, HO-1, MAPK, P38, ERK, etc. Current challenges and future directions in this promising field are also discussed at the end of this review. For the convenience of the readers, this review is divided into ten parts according to the structures of potential natural small molecular compounds. We hope that this review brings a quick look and provides some inspiration for the research of COPD.
Collapse
Affiliation(s)
- Liu-Ying Li
- Department of Heart Disease of Traditional Chinese Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Chuan-Tao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng-Ya Zhu
- Department of Heart Disease of Traditional Chinese Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Gang Zheng
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Yu-Fei Liu
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Liu
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Zigong City, Zigong, China
| | - Chen-Hui Zhang
- Department of Combine Traditional Chinese and Western Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chen-Hui Zhang, ; Hong Zhang,
| | - Hong Zhang
- Department of Combine Traditional Chinese and Western Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Chen-Hui Zhang, ; Hong Zhang,
| |
Collapse
|
13
|
ARORA P, ANSARI SH, NAINWAL LM. Clerodendrum serratum extract attenuates production of inflammatory mediators in ovalbumin-induced asthma in rats. Turk J Chem 2021; 46:330-341. [PMID: 38143476 PMCID: PMC10734715 DOI: 10.3906/kim-2107-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/27/2022] [Accepted: 11/04/2021] [Indexed: 12/26/2023] Open
Abstract
In the present study, ethanolic extract of Clerodendrum serratum roots was investigated for its potential to reverse some features of bronchial asthma in ovalbumin-induced murine model of asthma. Clerodendrum serratum commonly called bharangi, (family Solanaceae) is a well-known anti-allergic drug in Asian folk system of medicines. In the present work, pharmacological studies are done to provide scientific evidence for therapeutic potential of plant in allergic asthma. Asthma was induced in experimental rats with allergen suspension of ovalbumin and aluminum hydroxide followed by treatment with dexamethasone (2.5 mg/kg, po) or C. serratum root extract (0.53 and 5.3 mg/kg, b. w., po). Biomarkers of inflammatory response including cell counts, immunoglobulin E, cytokines such as interleukin (IL) -4, -5, -1β, tumor necrosis factor-α (TNF-α), leukotriene (LTD-4), and nitrite concentration in blood as well as bronchial (BAL) fluid were tested. Lung functions in asthmatic and treated animals were evaluated as breathing rate and tidal volume. Treatment with C. serratum extract markedly (p < 0.001, p < 0.01, and p < 0.05) diminished infiltration of inflammatory cells, IgE, cytokines, and nitrites in blood serum and bronchial fluid. Improvement in lung functions (p < 0.05) of asthmatic animals after CSE treatment also supports our findings. Results of the study suggest therapeutic potential of C. serratum in allergic asthma that can be related to ability of plant to attenuate response of inflammatory cells and thereby, production of inflammatory and proinflammatory cytokines in airways.
Collapse
Affiliation(s)
- Poonam ARORA
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi,
India
- Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana,
India
| | - Shahid Husain ANSARI
- Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana,
India
| | - Lalit Mohan NAINWAL
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi,
India
- Department of Pharmacy, School of Medical & Allied Sciences, G. D. Goenka University, Sohna, Haryana,
India
| |
Collapse
|
14
|
Sun N, Deng C, Zhao Q, Han Z, Guo Z, Wang H, Dong W, Duan Y, Zhuang G, Zhang R. Ursolic Acid Alleviates Mucus Secretion and Tissue Remodeling in Rat Model of Allergic Rhinitis After PM2.5 Exposure. Am J Rhinol Allergy 2021; 35:272-279. [PMID: 32842749 DOI: 10.1177/1945892420953351] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND According to recent epidemiologic studies, exposure to fine particulate matter (particulate matter 2.5 ≤ µm [PM2.5]) in the air increases the incidence and severity of allergic rhinitis (AR). Ursolic acid (UA) has activities in immune regulation and anti-inflammatory. However, the role of UA intervention on PM2.5-exposed AR remains unknown. In this study, we investigated the effects of UA on tissue remodeling and mucus hypersecretion in a rat model of AR after PM2.5 exposure. METHODS AR was induced in rats with ovalbumin (OVA) and they were exposed to ambient PM2.5(200 µg/m3) via a PM2.5 inhalation exposure system for 30 days(ARE group). Ursolic acid intervention was administrated in the AR model after PM2.5 exposure (UA group). Hyperplasia of goblet cells was detected by periodic acid-Schiff (PAS) staining and collagen deposition in the nasal mucosa was detected by Masson trichrome (MT) staining.MUC5AC expression was measured by immunohistochemistry. RESULTS UA group showed reduced goblet cell hyperplasia and collagen deposition in the nasal mucosa which exacerbated after PM2.5 exposure, as reflected by PAS and MT staining when compared with the ARE group. Immunohistochemical results showed that the expression of MUC5AC in the UA group was lower than that in the ARE group. CONCLUSION Analysis of our data indicated that UA could attenuate nasal remodeling and mucus hypersecretion in aggravation of AR after PM2.5 exposure, which may be the pathophysiologic mechanisms for the prevention of AR exacerbated by exposure to PM2.5.
Collapse
Affiliation(s)
- Na Sun
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Congrui Deng
- Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Qianbiao Zhao
- Shanghai Environmental Monitoring Center, Shanghai, China
| | - Zhijin Han
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhiqiang Guo
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Hong Wang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| | - Weiyang Dong
- Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Yusen Duan
- Shanghai Environmental Monitoring Center, Shanghai, China
| | - Guoshun Zhuang
- Center for Atmospheric Chemistry Study, Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Ruxin Zhang
- Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Ma H, Lu L, Xia H, Xiang Q, Sun J, Xue J, Xiao T, Cheng C, Liu Q, Shi A. Circ0061052 regulation of FoxC1/Snail pathway via miR-515-5p is involved in the epithelial-mesenchymal transition of epithelial cells during cigarette smoke-induced airway remodeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141181. [PMID: 32768781 DOI: 10.1016/j.scitotenv.2020.141181] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Circular RNA (circRNA) has been shown to be widely involved in a variety of lung diseases. Cigarette smoke (CS) may induce epithelial-mesenchymal transition (EMT) of airway remodeling in chronic obstructive pulmonary disease (COPD), however, in which the roles and mechanisms of circRNA have not been elucidated. In this study, we aimed to determine whether circ0061052 is involved in the EMT of human bronchial epithelial (HBE) cells and its potential mechanism for playing a biological role. Cigarette smoke extract (CSE) caused elevated EMT indicators and the increases of circ0061052 in HBE cells. Circ0061052 has a ring structure and is mainly present in the cytoplasm of HBE cells. We analyzed the regulatory relationship between circ0061052 and miR-515-5p using bioinformatics, a luciferase reporter gene, and qRT-PCR. We found that circ0061052 is mainly distributed in the cytoplasm and competitively binds to miR-515-5p, acting as a sponge for miR-515-5p. The luciferase reporter gene showed that miR-515-5p binds to the 3'UTR region of FoxC1 mRNA to inhibit its transcription. For HBE cells, overexpression of miR-515-5p antagonized the CSE-induced EMT. In addition, circ0061052 acts by binding miR-515-5p competitively to regulate the expression of FoxC1/Snail. When circ0061052 siRNA and miR-515-5p inhibitor were co-transfected into HBE cells, the inhibitor reversed the effect of circ0061052 siRNA on reducing EMT. Chronic exposure of mice to CS induced increases of circ0061052 levels, decreases of miR-515-5p levels, and the EMT in lung tissue, which caused dysfunction and airway obstruction. Overall, the results show that, by regulating miR-515-5p through a FoxC1/Snail regulatory axis, circ0061052 is involved in the CS-induced EMT and airway remodeling in COPD.
Collapse
Affiliation(s)
- Huimin Ma
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; The Key Laboratory of Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- The Key Laboratory of Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Quanyong Xiang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Jing Sun
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Junchao Xue
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tian Xiao
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Aimin Shi
- The Key Laboratory of Model Animal, Animal Core Facility, Jiangsu Animal Experimental Center for Medical and Pharmaceutical Research, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
16
|
Plants derived therapeutic strategies targeting chronic respiratory diseases: Chemical and immunological perspective. Chem Biol Interact 2020; 325:109125. [PMID: 32376238 PMCID: PMC7196551 DOI: 10.1016/j.cbi.2020.109125] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 12/23/2022]
Abstract
The apparent predicament of the representative chemotherapy for managing respiratory distress calls for an obligatory deliberation for identifying the pharmaceuticals that effectively counter the contemporary intricacies associated with target disease. Multiple, complex regulatory pathways manifest chronic pulmonary disorders, which require chemotherapeutics that produce composite inhibitory effect. The cost effective natural product based molecules hold a high fervor to meet the prospects posed by current respiratory-distress therapy by sparing the tedious drug design and development archetypes, present a robust standing for the possible replacement of the fading practice of poly-pharmacology, and ensure the subversion of a potential disease relapse. This study summarizes the experimental evidences on natural products moieties and their components that illustrates therapeutic efficacy on respiratory disorders. Plant derived therapeutics for managing chronic respiratory disorders. Activity of natural product based molecules on key regulatory pathways of COPD. Preclinical evidence for the efficacy of natural product moieties. Clinical significance of plant derived molecules in pulmonary distress.
Collapse
|
17
|
Hadzic S, Wu CY, Avdeev S, Weissmann N, Schermuly RT, Kosanovic D. Lung epithelium damage in COPD - An unstoppable pathological event? Cell Signal 2020; 68:109540. [PMID: 31953012 DOI: 10.1016/j.cellsig.2020.109540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common term for alveolar septal wall destruction resulting in emphysema, and chronic bronchitis accompanied by conductive airway remodelling. In general, this disease is characterized by a disbalance of proteolytic/anti-proteolytic activity, augmented inflammatory response, increased oxidative/nitrosative stress, rise in number of apoptotic cells and decreased proliferation. As the first responder to the various environmental stimuli, epithelium occupies an important position in different lung pathologies, including COPD. Epithelium sequentially transitions from the upper airways in the direction of the gas exchange surface in the alveoli, and every cell type possesses a distinct role in the maintenance of the homeostasis. Basically, a thick ciliated structure of the airway epithelium has a major function in mucus secretion, whereas, alveolar epithelium which forms a thin barrier covered by surfactant has a function in gas exchange. Following this line, we will try to reveal whether or not the chronic bronchitis and emphysema, being two pathological phenotypes in COPD, could originate in two different types of epithelium. In addition, this review focuses on the role of lung epithelium in COPD pathology, and summarises underlying mechanisms and potential therapeutics.
Collapse
Affiliation(s)
- Stefan Hadzic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Cheng-Yu Wu
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Sergey Avdeev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Djuro Kosanovic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany; Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|