1
|
Obisesan AO, Abiodun OO, Ayeni FA. Lactic acid bacteria isolated from women' breast milk and infants' faeces have appreciable immunogenic and probiotic potentials against diarrheagenic E. coli strains. BMC Microbiol 2024; 24:350. [PMID: 39289612 PMCID: PMC11406810 DOI: 10.1186/s12866-024-03502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Diarrheal diseases remain the leading cause of high mortality among the infants, particularly in the developing countries; Probiotic intervention for diarrhea has been an ongoing novel approach to diarrheal prevention and treatment. This study aims to characterize immunogenic and probiotic properties of lactic acid bacteria (LAB) isolated from human breast milk and neonates' faeces. The LAB isolates from 16 mothers' breast milk and 13 infants' faeces were screened and identified by 16 S rRNA gene partial sequencing. Their antimicrobial activities against 5 strains of diarrheagenic Escherichia coli were tested. Organic acids production was quantified by HPLC, and antibiotic resistance pattern were determined by VITEK®. Autoaggregation, co-aggregation and hydrophobicity properties were assessed by UV spectrophotometry and immunomodulatory effect was determined in mouse model. Ninety-three LAB of five genera were identified. The most abundant species was Lactiplantibacillus plantarum with inhibition zones ranged from 8.0 to 25.0 ± 1 mm. Lacticaseibacillus rhamnosus A012 had 76.8 mg/mL lactic acid, (the highest concentration), was susceptible to all antibiotics tested. L. plantarum A011 and L. rhamnosus A012 were highly resistance to gastrointestinal conditions. L. rhamnosus A012 produced hydrophobicity of 25.01% (n-hexadecane), 15.4% (xylene) and its autoaggregation was 32.52%. L. rhamnosus A012 and L. plantarum A011 exert immunomodulatory effects on the cyclophosphamide-treated mice by upregulating anti-inflammatory cytokine and downregulating proinflammatory cytokines. Lactobacillus sp. demonstrated good probiotic and immunomodulatory properties. Further works are ongoing on the practical use of the strains.
Collapse
Affiliation(s)
- Abiola O Obisesan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
- Department of Pharmaceutical Microbiology and Biotechnology, College of Pharmacy, Afe Babalola University, Ado Ekiti, Nigeria
| | - Oyindamola O Abiodun
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Funmilola A Ayeni
- Department of Environmental and Occupational Health, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA.
| |
Collapse
|
2
|
Alhassan AS, Dakurah S, Lasong J. Perspectives of midwives on the use of Kaligutim (local oxytocin) for induction of labour among pregnant women in the government hospitals in Tamale. BMC Pregnancy Childbirth 2024; 24:561. [PMID: 39198836 PMCID: PMC11351183 DOI: 10.1186/s12884-024-06745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The use of herbal medicine and/or its products is common throughout the world. In Tamale Metropolis, pregnant women frequently use local oxytocin to induce labour, as shown by the fact that 90% of midwives reported managing patients who used kaligutim (local oxytocin) to speed up labour. Early career midwives are also aware of this and have personally observed it being used by their clients. The purpose of the study was to assess midwives' opinions on pregnant women's use of the well-known kaligutim (local oxytocin) for labour induction in the Tamale Metropolis. METHODS A facility-based, quantitative, cross-sectional research design was used for the study. A total of 214 working midwives from Tamale's three main public hospitals participated. Data for the study were gathered through a standardized questionnaire. For the analysis and presentation of the data, descriptive and analytical statistics, such as basic frequencies, percentages, Fisher's exact test, chi square test and multivariate analysis, were employed. RESULTS According to the findings of this study, the safety, dosages, and contraindications of kaligutim during pregnancy and labour are unknown. The cessation of contractions was reported by 44 (22.4%) of the respondents whose clients used local oxytocin. The study also revealed that women in Tamale metropolis use "walgu", a spiritual form of oxytocin, to induce and augment labour. Respondents who responded, "yes" to baby admission to the new-born care unit were 25% more likely to use kaligutim (local oxytocin) than were those who responded, "no" to baby admission to the new-born care unit (AOR = 0.25 95% CI (0.01, 0.53), P = 0.021). CONCLUSIONS It can be concluded that using kaligutim to start labour has negative effects on both the mother and the foetus. Additional research is required to evaluate the efficacy, effectiveness, biochemical makeup, and safety of these herbal medicines, particularly during pregnancy and delivery, as well as the spiritual significance of kaligutim (Walgu) and its forms.
Collapse
Affiliation(s)
- Ahmad Sukerazu Alhassan
- Department of Population and Reproductive Health, School of Public Health, University for Development Studies, P. O. Box 1883, Tamale, Northern Region, Ghana.
| | - Shivera Dakurah
- Nandom Nursing and Midwifery Training College, Upper West Region, Nandom, Ghana
| | - Joseph Lasong
- Department of Population and Reproductive Health, School of Public Health, University for Development Studies, P. O. Box 1883, Tamale, Northern Region, Ghana
| |
Collapse
|
3
|
Daulay M, Syahputra M, Sari MI, Widyawati T, Anggraini DR. The potential of Myrmecodia pendans in preventing complications of diabetes mellitus as an antidiabetic and antihyperlipidemic agent. Open Vet J 2024; 14:1607-1613. [PMID: 39175977 PMCID: PMC11338607 DOI: 10.5455/ovj.2024.v14.i7.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Abstract
Background Hyperglycemia in diabetes mellitus (DM) can lead to dyslipidemia, which is a risk factor for macrovascular complications such as heart disease and stroke. Aside from administering antidiabetic medications, DM treatment can also be achieved through the use of natural components, such as Myrmecodia pendans, commonly known as the ant nest plant (ANP). Aim This study aimed to investigate the impact of administering the ANP on the lipid profile of Wistar rats. Methods A group of 20 rats was divided into two categories: 6 rats served as healthy controls (H), while the remaining 14 rats were subjected to a high-lipid diet and streptozotocin to generate a model of type 2 diabetes mellitus (T2DM). The diabetic rats were divided into two groups: the DM group consisted of rats that did not receive any treatment, while the ANP group was administered the herb orally. Results The results revealed significant variations in triglyceride, high-density lipoprotein (HDL), and low-density lipoprotein (LDL) levels among the three groups (p < 0.05). The post hoc test revealed disparities in triglyceride and LDL between those in the DM group and the ANP group (p < 0.05). Conclusion Myrmecodia pendans demonstrated the ability to decrease triglyceride and LDL, while increasing HDL levels in rats with T2DM.
Collapse
Affiliation(s)
- Milahayati Daulay
- Department of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Syahputra
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Mutiara Indah Sari
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Tri Widyawati
- Department of Pharmacology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Dwi Rita Anggraini
- Department of Anatomy, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
4
|
Kabir E, Shila TT, Islam J, Beauty SA, Islam F, Hossain S, Nikkon F, Himeno S, Hossain K, Saud ZA. Concomitant Exposure to Lower Doses of Arsenic, Lead, and Manganese Induces Greater Synergistic Neurotoxicity Than Individual Metals in Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04260-y. [PMID: 38898194 DOI: 10.1007/s12011-024-04260-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
People in Bangladesh are often exposed to low to high levels of multiple metals due to contaminated groundwater with various heavy metals such as arsenic (As), lead (Pb), and manganese (Mn). However, the effects of concomitant exposure of these three metals on neurobehavioral changes are yet to be studied. Therefore, this study was intended to assess the neurotoxic effect of As, Pb, and Mn in a mouse model. Elevated plus maze (EPM) and Morris water maze (MWM) tests were conducted to evaluate anxiety, learning, and spatial memory impairment, respectively. The mice exposed to a combination of metals spent least time exploring the open arms and had longer latencies to find the hidden platform than the control and individual metal exposure groups in EPM and MWM tests. Moreover, concomitant multi-metal exposure remarkably decreased the activities of cholinergic and antioxidant enzymes, brain-derived neurotropic factor (BDNF), and nuclear factor erythroid 2-related factor 2 (Nrf2) levels and significantly increased interleukin-6 (IL-6) level in the brain tissue compared to the control and individual metal-exposed mice. Among the mice treated with a single metal, the As-treated mice showed the highest toxic effects than Pb- or Mn-treated mice. Taken together, the present study demonstrated that exposure to a mixture of As, Pb, and Mn, even at lower doses than individual metals, significantly augmented anxiety-like behavior and impaired learning and spatial memory compared to exposure to individual metals, which was associated with the changes of BDNF, Nrf2, IL-6 levels, and related enzyme activities in the brain.
Collapse
Affiliation(s)
- Ehsanul Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Tasnim Tabassum Shila
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Jahidul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Sharmin Akter Beauty
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farhadul Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Shakhawoat Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Farjana Nikkon
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Seiichiro Himeno
- Laboratory of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
- School of Pharmacy, Showa University, Tokyo, Japan
| | - Khaled Hossain
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Zahangir Alam Saud
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
5
|
Naila S, Mushtaq A, Nadia M. Phytochemical analysis, antioxidant, acetylcholinesterase, and α-amylase inhibitors from extract. J TRADIT CHIN MED 2024; 44:496-504. [PMID: 38767633 PMCID: PMC11077154 DOI: 10.19852/j.cnki.jtcm.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/19/2023] [Indexed: 05/22/2024]
Abstract
OBJECTIVE To investigate the effects of Hippeastrum hybridum (HH) as a free radical scavenger, and an inhibitor of the two enzymes i-e Alpha-amylase (α-amylase) and acetylcholinesterase (AChE). METHODS In this study, HH plant was preliminary analyzed for phytochemical screening and then tested for its antioxidant, anti-α-amylase, and anti-AChE efficiency via standard procedures. RESULTS Phytochemical analysis shows the existence of different compounds; while Coumarins and quinones were absent. The total phenolic, flavonoid, and tannins content were found to be (78.52 ± 0.69) mg GAE/g, (2.01 ± 0.04) mg RUE/g, and (58.12 ± 0.23) mg TAE/g of plant extract respectively. 28.02% ± 0.02% alkaloid and 2.02% ± 0.05% saponins were present in the HH extract. The HH extract showed the anti-oxidant property with IC50 (50% inhibition) of (151.01 ± 0.13) (HH), (79.01 ± 0.04) (Ascorbic acid) for ferric reducing, (91.48 ± 0.13) (HH), (48.02 ± 0.11) (Ascorbic acid) against Ammonium molybdenum, (156.02 ± 0.31) (HH), (52.38 ± 0.21) (Ascorbic acid) against DPPH, 136.01 ± 0.21 (HH), 52.02± 0.31 (Ascorbic acid) against H2O2, and 154.12 ± 0.03 (HH), (40.05 ± 0.15) (Ascorbic acid) μg/mL against ABTS respectively. Statistical analysis indicated that HH caused a competitive type of inhibition of α-amylase (Vmax remained constant and Km increases from 10.65 to 84.37%) while Glucophage caused the un-competitive type of inhibition i-e both Km and Vmax decreased from 40.49 to 69.15% and 38.86 to 69.61% respectively. The Ki, (inhibition constant); KI, (dissociation constant), Km, (Michaelis-Menten constant), and IC50 were found to be 62, 364, 68.1, and 38.08 ± 0.22 for HH and 12, 101.05, 195, 34.01 ± 0.21 for Glucophage. Similarly, HH causes an anon-competitive type of inhibition of AChE i-e Km remains constant while Vmax decreases from 60.5% to 74.1%. The calculated Ki, KI, Km, and IC50 were found to be 32, 36.2, 0.05, and 18.117 ± 0.018. CONCLUSION From the current results, it is concluded that HH extract contains bioactive compounds, and could be a good alternative to controlling oxidants, Alzheimer's and Type-II diabetic diseases.
Collapse
Affiliation(s)
- Sher Naila
- 1 Department of Biotechnology, University of Science and Technology Bannu-KPK 28100, Pakistan
| | - Ahmed Mushtaq
- 1 Department of Biotechnology, University of Science and Technology Bannu-KPK 28100, Pakistan
| | - Mushtaq Nadia
- 2 Department of Botany, University of Science and Technology Bannu-KPK 28100, Pakistan
| |
Collapse
|
6
|
Nova P, Gomes AM, Costa-Pinto AR. It comes from the sea: macroalgae-derived bioactive compounds with anti-cancer potential. Crit Rev Biotechnol 2024; 44:462-476. [PMID: 36842998 DOI: 10.1080/07388551.2023.2174068] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/14/2023] [Indexed: 02/28/2023]
Abstract
Nature derived compounds represent a valuable source of bioactive molecules with enormous potential. The sea is one of the richest environments, full of skilled organisms, where algae stand out due to their unique characteristics. Marine macroalgae adapt their phenotypic characteristics, such as chemical composition, depending on the environmental conditions where they live. The compounds produced by these organisms show tremendous potential to be used in the biomedical field, due to their antioxidant, anti-inflammatory, immunomodulatory, and anti-cancer properties.Cancer is one of the deadliest diseases in the world, and the lack of effective treatments highlights the urgent need for the development of new therapeutic strategies. This review provides an overview of the current advances regarding the anti-cancer activity of the three major groups of marine macroalgae, i.e., red algae (Rhodophyta), brown algae (Phaeophyceae), and green algae (Chlorophyta) on pancreatic, lung, breast, cervical, colorectal, liver, and gastric cancers as well as leukemia and melanoma. In addition, future perspectives, and limitations regarding this field of work are also discussed.
Collapse
Affiliation(s)
- Paulo Nova
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Maria Gomes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ana R Costa-Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Instituto de Patologia Molecular e Imunologia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Mergen Duymaz G, Duz G, Ozkan K, Karadag A, Yilmaz O, Karakus A, Cengiz O, Akyildiz IE, Basdogan G, Damarlı E, Sagdic O. The evaluation of L-arginine solution as a solvent for propolis extraction: The phenolic profile, antioxidant, antibacterial activity, and in vitro bioaccessibility. Food Sci Nutr 2024; 12:2724-2735. [PMID: 38628177 PMCID: PMC11016385 DOI: 10.1002/fsn3.3953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 04/19/2024] Open
Abstract
Ethanol has been widely used for the extraction of propolis. Due to its certain disadvantages, there has been an ongoing search to find alternative non-ethanolic extraction solvents. This study aimed to compare the phenolics, antioxidant, and antibacterial activity of propolis extracts prepared with 70% ethanol (EWE), propylene glycol (PGE), and L-arginine solution (BE). All extracts were subjected to an in vitro simulated digestion procedure, and the phenolic profile of non-digested and digested samples was determined by using LC-MS/MS. Additionally, the change in total phenolic (TPC), total flavonoid content (TFC), and antioxidant capacities were determined at each digestion phase. TPC and TFC of non-digested propolis extracts had similar values, although BE showed higher antioxidant capacity (p < .05). The amount of TPC reached or transformed at the intestinal stage was higher for BE and PG compared to EWE. BE also provided the highest antioxidant capacity assay in digested samples. The most common phenolics were pinocembrin, pinobanskin, galangin, and CAPE in non-digested extracts. However, their concentration was drastically reduced by digestion, and their recovery (R%) ranged from 0% to 9.38% of the initial amount detected in the non-digested extracts. Chrysin was the most bioaccessible flavonoid in all extracts. Among phenolic acids, the highest R% was determined for trans-cinnamic acid (22.14%) from BE. All extracts showed in vitro inhibitory activity against Escherichia coli and Staphylococcus aureus. This study suggests that an L-arginine solution could be used as an alternative solvent to ethanol and propylene glycol for propolis extraction.
Collapse
Affiliation(s)
- Gizem Mergen Duymaz
- Food Engineering DepartmentYildiz Technical UniversityIstanbulTurkey
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Gamze Duz
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
- Department of ChemistryIstanbul Technical UniversityIstanbulTurkey
| | - Kubra Ozkan
- Food Engineering DepartmentYildiz Technical UniversityIstanbulTurkey
| | - Ayse Karadag
- Food Engineering DepartmentYildiz Technical UniversityIstanbulTurkey
| | - Ozlem Yilmaz
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Ayca Karakus
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Ozlem Cengiz
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Ismail Emir Akyildiz
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
- Chemistry DepartmentMarmara UniversityIstanbulTurkey
| | - Gunay Basdogan
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Emel Damarlı
- Altiparmak Gıda San. ve Tic. A.S. Balparmak R&D CenterIstanbulTurkey
| | - Osman Sagdic
- Food Engineering DepartmentYildiz Technical UniversityIstanbulTurkey
| |
Collapse
|
8
|
Alghamdi A. A detailed review of pharmacology of MFN1 (mitofusion-1)-mediated mitochondrial dynamics: Implications for cellular health and diseases. Saudi Pharm J 2024; 32:102012. [PMID: 38463181 PMCID: PMC10924208 DOI: 10.1016/j.jsps.2024.102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
The mitochondria are responsible for the production of cellular ATP, the regulation of cytosolic calcium levels, and the organization of numerous apoptotic proteins through the release of cofactors necessary for the activation of caspases. This level of functional adaptability can only be attained by sophisticated structural alignment. The morphology of the mitochondria does not remain unchanged throughout time; rather, it undergoes change as a result of processes known as fusion and fission. Fzo in flies, Fzo1 in yeast, and mitofusins in mammals are responsible for managing the outer mitochondrial membrane fusion process, whereas Mgm1 in yeast and optic atrophy 1 in mammals are responsible for managing the inner mitochondrial membrane fusion process. The fusion process is composed of two phases. MFN1, a GTPase that is located on the outer membrane of the mitochondria, is involved in the process of linking nearby mitochondria, maintaining the potential of the mitochondrial membrane, and apoptosis. This article offers specific information regarding the functions of MFN1 in a variety of cells and organs found in living creatures. According to the findings of the literature review, MFN1 plays an important part in a number of diseases and organ systems; nevertheless, the protein's function in other disease models and cell types has to be investigated in the near future so that it can be chosen as a promising marker for the therapeutic and diagnostic potentials it possesses. Overall, the major findings of this review highlight the pivotal role of mitofusin (MFN1) in regulating mitochondrial dynamics and its implications across various diseases, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndromes. Our review identifies novel therapeutic targets within the MFN1 signaling pathways and underscores the potential of MFN1 modulation as a promising strategy for treating mitochondrial-related diseases. Additionally, the review calls for further research into MFN1's molecular mechanisms to unlock new avenues for clinical interventions, emphasizing the need for targeted therapies that address MFN1 dysfunction.
Collapse
Affiliation(s)
- Adel Alghamdi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Baha University, P.O. Box 1988 Al-Baha, Saudi Arabia
| |
Collapse
|
9
|
Rathour A, Gupte SS, Gupta D, Singh S, Shrivastava S, Yadav D, Shukla S. Modulatory potential of Bacopa monnieri against aflatoxin B1 induced biochemical, molecular and histological alterations in rats. Toxicol Res (Camb) 2024; 13:tfae060. [PMID: 38655144 PMCID: PMC11033570 DOI: 10.1093/toxres/tfae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/17/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
Oxidative injury is concerned with the pathogenesis of several liver injuries, including those from acute liver failure to cirrhosis. This study was designed to explore the antioxidant activity of Bacopa monnieri (BM) on Aflatoxin B1 (AFB1) induced oxidative damage in Wistar albino rats. Aflatoxin B1 treatment (200 μg/kg/day, p.o.) for 28 days induced oxidative injury by a significant alteration in serum liver function test marker enzymes (AST, ALT, ALP, LDH, albumin and bilirubin), inflammatory cytokines (IL-6, IL-10 and TNF-α), thiobarbituric acid reactive substances (TBARS) along with reduction of antioxidant enzymes (GSH, SOD, CAT), GSH cycle enzymes and drug-metabolizing enzymes (AH and AND). Treatment of rats with B. monnieri (20, 30 and 40 mg/kg for 5 days, p.o.) after 28 days of AFB1 intoxication significantly restored these parameters near control in a dose-dependent way. Histopathological examination disclosed extensive hepatic injuries, characterized by cellular necrosis, infiltration, congestion and sinusoidal dilatation in the AFB1-treated group. Treatment with B. monnieri significantly reduced these toxic effects resulting from AFB1. B. monnieriper se group (40 mg/kg) did not show any significant change and proved safe. The cytotoxic activity of B. monnieri was also evaluated on HepG2 cells and showed a good percentage of cytotoxic activity. This finding suggests that B. monnieri protects the liver against oxidative damage caused by AFB1, which aids in the evaluation of the traditional usage of this medicinal plant.
Collapse
Affiliation(s)
- Arti Rathour
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Shamli S Gupte
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Divya Gupta
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Shubham Singh
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, CG 495009, India
| | - Sadhana Shrivastava
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Deepa Yadav
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| | - Sangeeta Shukla
- UNESCO Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, City Centre Gwalior, Madhya Pradesh 474011, India
| |
Collapse
|
10
|
Kepdieu Tchebou RV, Farooq U, Teponno RB, Wani TA, Tapondjou LA, Rasool A, Sarwar R, Khushal A, Bukhari SM, Zargar S, Xu HG, Khan S. Exploring Cassia mimosoïdes as a promising natural source of steroids with potent anti-cancer, urease inhibition, and antimicrobial properties. RSC Adv 2024; 14:9159-9168. [PMID: 38500625 PMCID: PMC10945739 DOI: 10.1039/d3ra08913d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
The genus Cassia is a rich source of physiologically active secondary metabolites, including a novel compound named 21-methylene-24-ethylidene lophenol, alongside 15 known compounds. These compounds were characterized using different spectroscopic techniques. They exhibited promising antimicrobial activity, particularly against bacteria causing gastrointestinal infections. Compound 1 showed strong anti-bacterial activity against H. pylori and S. aur with MIC values of 0.28 and 0.12 μg mL-1 respectively. The study investigated their impact on H. pylori, a contributor to ulcer development, by inhibiting the urease enzyme. Inhibiting urease can reduce H. pylori's pathogenic potential, evident from the fact that the compounds evaluated toward urease enzyme showed higher inhibitory activity (1.024 ± 0.43 6.678±0.11 μM) compared to standard thiourea (IC50 = 18.61 ± 0.11 μM). Molecular docking studies confirmed their inhibitory action, with compound 7 notably outperforming thiourea in inhibiting urease (-6.95 kcal mol-1vs. -3.13 kcal mol-1). Additionally, these compounds showed positive effects on liver functioning, which H. pylori can impair. Compound 9 shows the best response against human HepG2 liver cancer cell lines i.e., % viability is 14.47% ± 0.69 and IC50 is 7.8 μM ± 0.21. These compounds hold potential as lead compounds for addressing gastrointestinal and liver disorders caused by H. pylori.
Collapse
Affiliation(s)
- Robert Viani Kepdieu Tchebou
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang Box 67 Dschang Cameroon
- Department of Chemistry, COMSATS University Islamabad Abbottabad 22010 KPK Pakistan sarakhancuiatd.edu.pk
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad Abbottabad 22010 KPK Pakistan sarakhancuiatd.edu.pk
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Rémy Bertrand Teponno
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang Box 67 Dschang Cameroon
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University POBox 2457 Riyadh 11451 Saudi Arabia
| | - Léon Azefack Tapondjou
- Research Unit of Environmental and Applied Chemistry, Department of Chemistry, Faculty of Science, University of Dschang Box 67 Dschang Cameroon
| | - Azhar Rasool
- Department of Zoology, GC University Faisalabad Pakistan
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS University Islamabad Abbottabad 22010 KPK Pakistan sarakhancuiatd.edu.pk
| | - Aneela Khushal
- Department of Chemistry, COMSATS University Islamabad Abbottabad 22010 KPK Pakistan sarakhancuiatd.edu.pk
| | - Syed Majid Bukhari
- Department of Chemistry, COMSATS University Islamabad Abbottabad 22010 KPK Pakistan sarakhancuiatd.edu.pk
| | - Seema Zargar
- Department of Biochemistry College of Science, King Saud University PO Box 22452 Riyadh 11451 Saudi Arabia
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Sara Khan
- Department of Chemistry, COMSATS University Islamabad Abbottabad 22010 KPK Pakistan sarakhancuiatd.edu.pk
| |
Collapse
|
11
|
Fauzi A, Kifli N, Noor MHM, Hamzah H, Azlan A. Hematological, biochemical, and histopathological evaluation of the Morus alba L. leaf extract from Brunei Darussalam: Acute toxicity study in ICR mice. Open Vet J 2024; 14:750-758. [PMID: 38682142 PMCID: PMC11052622 DOI: 10.5455/ovj.2024.v14.i3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/07/2024] [Indexed: 05/01/2024] Open
Abstract
Background Studies have reported that the phytochemical content of Mulberry (Morus alba Linn.) is influenced by the area where it grows. On the other hand, the study of the bioactivity and toxicity of mulberry leaves from Brunei Darussalam still needs to be completed. In particular, the investigation regarding the safe dose for Mulberry's application from Brunei Darussalam has yet to be studied. Hence, toxicity information must be considered even though the community has used it for generations. Aim This study investigated Morus alba ethanolic leaf extract (MAE) to observe the acute toxicity in mice. Methods In particular, this study utilized 12 female Institute of Cancer Research mice, 8 weeks old, divided into 2 groups: the control group and the MAE group (2,000 mg/kg single dose). Physiology, hematology, biochemistry, and histology were analyzed during the study. Results The examination result indicated no mortality and behavioral changes throughout the testing period. However, the mice developed mild anemia and leukopenia, followed by decreased numbers of neutrophils, lymphocytes, and monocytes. In addition, the mice developed a mild hepatocellular injury, indicated by significant (p < 0.05) elevations of both alanine aminotransferase (ALT) and aspartate transaminase (AST). The histopathological findings of the liver were also consistent with the increment of ALT and AST, indicating mild hepatocellular necrosis through the eosinophilic cytoplasm and pyknosis (p > 0.05). Conclusion It was evident that a single oral administration of MAE was not lethal for mice (LD50, which was higher than 2,000 mg/kg). However, the administration of high doses of MAE must be carefully considered.
Collapse
Affiliation(s)
- Ahmad Fauzi
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang, Malaysia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Brawijaya, Malang, Indonesia
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Mohd. Hezmee Mohd. Noor
- Department of Veterinary Pre-clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang, Malaysia
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang, Malaysia
| | - Azrina Azlan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
12
|
Ayaz M, Mosa OF, Nawaz A, Hamdoon AAE, Elkhalifa MEM, Sadiq A, Ullah F, Ahmed A, Kabra A, Khan H, Murthy HCA. Neuroprotective potentials of Lead phytochemicals against Alzheimer's disease with focus on oxidative stress-mediated signaling pathways: Pharmacokinetic challenges, target specificity, clinical trials and future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155272. [PMID: 38181530 DOI: 10.1016/j.phymed.2023.155272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Alzheimer's diseases (AD) and dementia are among the highly prevalent neurological disorders characterized by deposition of beta amyloid (Aβ) plaques, dense deposits of highly phosphorylated tau proteins, insufficiency of acetylcholine (ACh) and imbalance in glutamatergic system. Patients typically experience cognitive, behavioral alterations and are unable to perform their routine activities. Evidence also suggests that inflammatory processes including excessive microglia activation, high expression of inflammatory cytokines and release of free radicals. Thus, targeting inflammatory pathways beside other targets might be the key factors to control- disease symptoms and progression. PURPOSE This review is aimed to highlight the mechanisms and pathways involved in the neuroprotective potentials of lead phytochemicals. Further to provide updates regarding challenges associated with their use and their progress into clinical trials as potential lead compounds. METHODS Most recent scientific literature on pre-clinical and clinical data published in quality journals especially on the lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin was collected using SciFinder, PubMed, Google Scholar, Web of Science, JSTOR, EBSCO, Scopus and other related web sources. RESULTS Literature review indicated that the drug discovery against AD is insufficient and only few drugs are clinically approved which have limited efficacy. Among the therapeutic options, natural products have got tremendous attraction owing to their molecular diversity, their safety and efficacy. Research suggest that natural products can delay the disease onset, reduce its progression and regenerate the damage via their anti-amyloid, anti-inflammatory and antioxidant potentials. These agents regulate the pathways involved in the release of neurotrophins which are implicated in neuronal survival and function. Highly potential lead phytochemicals including curcumin, catechins, quercetin, resveratrol, genistein and apigenin regulate neuroprotective signaling pathways implicated in neurotrophins-mediated activation of tropomyosin receptor kinase (Trk) and p75 neurotrophins receptor (p75NTR) family receptors. CONCLUSIONS Phytochemicals especially phenolic compounds were identified as highly potential molecules which ameliorate oxidative stress induced neurodegeneration, reduce Aβ load and inhibit vital enzymes. Yet their clinical efficacy and bioavailability are the major challenges which need further interventions for more effective therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan.
| | - Osama F Mosa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alashary Adam Eisa Hamdoon
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Modawy Elnour Modawy Elkhalifa
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | - Alshebli Ahmed
- Public health Department, Health Sciences College at Lieth, Umm Al Qura University, Makkah, KSA; University of Khartoum, Faculty of Public and Environmental Health, Sudan
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Pakistan
| | - H C Ananda Murthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P O Box 1888, Adama, Ethiopia; Department of Prosthodontics, Saveetha Dental College & Hospital, Saveetha Institute of Medical and technical science (SIMATS), Saveetha University, Chennai-600077, Tamil Nadu, India
| |
Collapse
|
13
|
Ali MR, Reza AA, Haque MA, Islam MJ, Hossain MR, Mollah MI, Islam MB, Sarker J, Rashid M, Sadik MG, Cicia D, Capasso R, Kazi M, Alam AHMK. Exploring the therapeutic potential of edible vegetables, fruits, and spices against cancer in various cell lines. J Cancer 2024; 15:577-589. [PMID: 38213720 PMCID: PMC10777031 DOI: 10.7150/jca.89539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/14/2023] [Indexed: 01/13/2024] Open
Abstract
Cancer is rapidly becoming the leading cause of death globally. This study aimed to identify edible foods with cytotoxic and/or antioxidant activities that can prevent cancer when consumed in a regular diet. Sixty-eight edible foods were purchased from the local market, and the materials were extracted with 80% methanol. The cytotoxic activity of the extracts was evaluated using MTT on HeLa, H2228, HEK293, and H3122 cell lines. To study apoptosis, triple fluorescence labeling with DAPI, Annexin V, and propidium iodide was used. The phenolic content, antioxidant capacity, and free radical scavenging capabilities were studied using conventional spectrophotometric techniques. Among the edible foods, carrot, pointed gourd, wax gourd, ficus, apple, lemon, cumin seed, and white peppercorn showed moderate cytotoxicity in HeLa cells. The growth of HeLa cells was significantly inhibited dose-dependently by tomato, banana, Indian spinach, guava, lemon peel, and coriander (IC50, 24.54, 17.89, 13.18, 9.33, 1.23, and 2.96 µg/mL, respectively). Tomato, Indian spinach, lemon peel, and coriander exerted significant dose-dependent inhibition of H2228, HEK293, and H3122 cell proliferation. The tomato, Indian spinach, lemon peel, and coriander extracts induced HeLa cell apoptosis. White peppercorn, amaranth, apple, wax gourd, cumin seed, taro, and lemon peel contained significant amounts of polyphenols and showed high antioxidant activity. White peppercorn, apple, coriander, lemon peel, and ficus significantly scavenged DPPH free radicals (IC50 values of 10.23, 12.02, 13.49, 13.8, and 14.0 µg/mL, respectively). The overall results suggest that the daily intake of these antioxidant-rich cytotoxic foods can prevent or reduce the risk of cancer.
Collapse
Affiliation(s)
- Md. Rahmat Ali
- Department of Pharmacy, University of Rajshahi, Bangladesh
| | - A.S.M. Ali Reza
- Department of Pharmacy, International Islamic University Chittagong, Bangladesh
| | | | | | | | | | - Md. Badrul Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Rajshahi, Bangladesh
| | - Joy Sarker
- Department of Pharmacy, University of Rajshahi, Bangladesh
| | - Mamunur Rashid
- Department of Pharmacy, University of Rajshahi, Bangladesh
| | | | - Donatella Cicia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Italy
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457; Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
14
|
Qari SH, Alqethami A, Qumsani AT. Ethnomedicinal evaluation of medicinal plants used for therapies by men and women in rural and urban communities in Makkah district. Saudi Pharm J 2024; 32:101881. [PMID: 38130903 PMCID: PMC10733703 DOI: 10.1016/j.jsps.2023.101881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
For the first time, differences in ethnobotanical knowledge of medicinal plants between men and women, as well as tribal and urban populations in the Makkah district, are investigated. The current research aims to provide responses to the following questions: (1) According to tribal and urban cultures, which medicinal plants are used by Saudis in Makkah? (2) In view of demographic differences, how much do male and female use medicinal plants? (3) Are the plants utilized by male and female considerably various? And, (4), how do men and women learn about therapeutic plants? Methods: Ethnomedicinal study was carried out in Makkah and its adjacent villages from September 2022 to January 2023. To document local medicinal plants, individuals used free-listing, semi-structured interviews, and an online survey form. In all, 59 male and 62 female were questioned face-to-face, and 239 participants completed the questionnaire, with 110 men and 129 women responding. Results: A total of 92 local folks for medicinal plants have been recorded, covering 88 different plant species belong to 36 families. Men cited 69 plants (34 families), whereas women referenced 64. (33 plant families). Males and females know in comparable ways, although they employ different medicinal herbs to remedy a variety of diseases. Conclusions: The use of medicinal plants by Saudis in Makkah is dependent on gendered social roles and experiences, as well as population structure. Education and urbanization exert a greater impact on the preference for biomedical or traditional medicinal usage.
Collapse
Affiliation(s)
- Sameer H. Qari
- Department of Biology, Genetics and Molecular Biology Central Laboratory, Aljumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Afnan Alqethami
- Department of Biology, College of Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Alaa T. Qumsani
- Department of Biology, Genetics and Molecular Biology Central Laboratory, Aljumum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
15
|
Ojha MD, Yadav A, P H. Analyzing the potential of selected plant extracts and their structurally diverse secondary metabolites for α-glucosidase inhibitory activity: in vitro and in silico approach. J Biomol Struct Dyn 2023; 41:9523-9538. [PMID: 36345773 DOI: 10.1080/07391102.2022.2142847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022]
Abstract
Inhibiting α-glucosidase activity is a therapeutic method to regulate post-prandial hyperglycemia in humans. Here, in-vitro and in-silico studies were used to find α-glucosidase inhibitory plant secondary metabolites (PSM). Among 408 solvent extracts from 70 plants tested for α-glucosidase inhibition, 174 had IC50 ≤ 3 mg/ml. α-glucosidase inhibitory PSM is found in several plant species and solvent extracts, indicating their diversity. Further, ensemble molecular docking and structural activity relationship analysis supported this hypothesis where the top 100 PSM with the least binding energy (BE) among the 539 PSM belonged to sesquiterpenoids (34%), catechols (11%), flavonoids (9%) and steroidal lactones (8%). Shortlisted 11 PSM were subjected to molecular dynamic simulation. Withanolide J recorded the least BE of -66.424 ± 22.333 kJ/mol, followed by Withacoagulin I (-64.665 ± 24.030 kJ/mol). When different simulation frames were analyzed, PSM of withanolide groups was stabilized in the narrow entrance of the active pocket forming H-bond with LYS156, TYR158, PHE159, PHE303 PRO312, LEU313, ARG315 and PHE134. Similarly, Hydroxytuberosone and 1, 8-Dihydroxy-3-carboxy-9, 10-anthraquinone (DHCA) formed H-bond with ASP307 located on the loop at the entrance of the active pocket. In the case of Neoliquiritin and Kaempferol-3-o-alpha-L-rhamnoside (KALR), glucose moiety interacted with the GLU277 and ASP215 (catalytic amino acid residues) through H-bonds. In addition, these 11 PSM were found to fulfil the criteria of drug-likeness as per Lipinski's rule of five and pharmacokinetic profile. The present study strengthens the library of α-glucosidase inhibitory plants and PSM, providing valuable information for Type-II Diabetes mellitus management.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Monu Dinesh Ojha
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Ajay Yadav
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Hariprasad P
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
16
|
Khan HA, Ghufran M, Shams S, Jamal A, Khan A, Abdullah, Awan ZA, Khan MI. Green synthesis of silver nanoparticles from plant Fagonia cretica and evaluating its anti-diabetic activity through indepth in-vitro and in-vivo analysis. Front Pharmacol 2023; 14:1194809. [PMID: 37936909 PMCID: PMC10625996 DOI: 10.3389/fphar.2023.1194809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
One of the most widespread metabolic diseases, Type-2 Diabetes Mellitus (T2DM) is defined by high blood sugar levels brought on by decreased insulin secretion, reduced insulin action, or both. Due to its cost-effectiveness and eco-friendliness, plant-mediated green synthesis of nanomaterials has become more and more popular. The aim of the study is to synthesize AgNPs, their characterizations and further in-vitro and in-vivo studies. Several methods were used to morphologically characterise the AgNPs. The AgNPs were crystalline, spherical, and clustered, with sizes ranging from 20 to 50 nm. AgNPs were found to contain various functional groups using Fourier transform infrared spectroscopy. This study focuses on the green-synthesis of AgNPs from Fagonia cretica (F. cretica) leaves extract to evaluate their synthesized AgNPs for in-vitro and in-vivo anti-diabetic function. For the in-vivo tests, 20 male Balb/C albino-mice were split up into four different groups. Anti-diabetic in-vivo studies showed significant weight gain and a decrease in all biochemical markers (pancreas panel, liver function panel, renal function panel, and lipid profile) in Streptozotocin (STZ)-induced diabetic mice. In vitro anti-diabetic investigations were also conducted on AgNPs, comprising α-amylase, α-glucosidase inhibitions, and antioxidant assays. AgNPs showed antioxidant activity in both the DPPH and ABTS assays. The research showed that the isolated nanoparticles have powerful antioxidant and enzyme inhibitory properties, especially against the main enzymes involved in T2DM.
Collapse
Affiliation(s)
- Haider Ali Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Mehreen Ghufran
- Department of Pathology, Medical Teaching Institution Bacha Khan Medical College (BKMC) Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Alam Jamal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Abdullah
- Department of Environmental Science, Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Isaq M, Ramachandra YL, Rai PS, Chavan A, Sekar R, Lee MJ, Somu P. Biogenic synthesized silver nanoparticles using fungal endophyte Cladosporium oxysporum of Vateria indica induce apoptosis in human colon cancer cell line via elevated intracellular ROS generation and cell cycle arrest. J Mol Liq 2023; 386:122601. [DOI: 10.1016/j.molliq.2023.122601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Dilbar S, Sher H, Ali H, Ullah R, Ali A, Ullah Z. Antibacterial Efficacy of Green Synthesized Silver Nanoparticles Using Salvia nubicola Extract against Ralstonia solanacearum, the Causal Agent of Vascular Wilt of Tomato. ACS OMEGA 2023; 8:31155-31167. [PMID: 37663485 PMCID: PMC10468922 DOI: 10.1021/acsomega.3c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023]
Abstract
Ralstonia solanacearum is a phytopathogen causing bacterial wilt diseases of tomato and affecting its productivity, which leads to prominent economic losses annually. As an alternative to conventional pesticides, green synthesized nanoparticles are believed to possess strong antibacterial activities besides being cheap and ecofriendly. Here, we present the synthesis of silver nanoparticles (Sn-AgNPs) from medicinally important aqueous plant extracts of Salvia nubicola. Characterization of biologically synthesized nanoparticles was performed through UV-vis spectrophotometry, Fourier transform infrared spectroscopy (FTIR), energy-dispersive X-ray spectroscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and thermogravimetric analysis. The antibacterial activity of the biosynthesized silver nanoparticles was tested against the phytopathogen R. solanacearum through in vitro experiments. Preliminary phytochemical analysis of the plant extracts revealed the presence of substantial amounts of flavonoids (57.08 mg GAE/g), phenolics (42.30 mg GAE/g), tannins, and terpenoids. The HPLC phenolic profile indicated the presence of 25 possible bioactive compounds. Results regarding green synthesized silver nanoparticles revealed the conformation of different functional groups through FTIR analysis, which could be responsible for the bioreduction and capping of Ag ions into silver NPs. TEM results revealed the spherical, crystalline shape of nanoparticles with the size in the range of 23-63 nm, which validates SEM results. Different concentrations of Sn-AgNPs (T1 (500 μg/mL) to T7 (78.1 μg/mL)) with a combination of plant extracts (PE-Sn-AgNPs) and plant extracts alone exhibited an efficient inhibition of R. solanacearum. These findings could be used as an effective alternative preparation against the bacterial wilt of tomato.
Collapse
Affiliation(s)
- Shazia Dilbar
- Centre
for Plant Sciences and Biodiversity, University
of Swat, Charbagh Swat 19120, Pakistan
| | - Hassan Sher
- Centre
for Plant Sciences and Biodiversity, University
of Swat, Charbagh Swat 19120, Pakistan
| | - Hina Ali
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, Shanghai 200240, China
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy King
Saud University Riyadh, Riyadh 11451, Saudi Arabia
| | - Ahmad Ali
- Centre
for Plant Sciences and Biodiversity, University
of Swat, Charbagh Swat 19120, Pakistan
| | - Zahid Ullah
- Centre
for Plant Sciences and Biodiversity, University
of Swat, Charbagh Swat 19120, Pakistan
| |
Collapse
|
19
|
Alghamdi AM, Al-Abbasi FA, AlGhamdi SA, Fatima F, Alzarea SI, Kazmi I. Rosinidin inhibits NF-κB/ Nrf2/caspase-3 expression and restores neurotransmitter levels in rotenone-activated Parkinson's disease. Saudi J Biol Sci 2023; 30:103656. [PMID: 37187936 PMCID: PMC10176079 DOI: 10.1016/j.sjbs.2023.103656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
Objectives The examination was sighted to study the preventive effects of rosinidin against rotenone-activated Parkinson's disease in rats. Methods Animals were randamoized into five groups: I-saline, II-rotenone (0.5 mg/kg/b.wt.), III- IV-10 and 20 mg/kg rosinidin after rotenone and V-20 mg/kg rosinidin per se for 28 days and were assigned for behavioral analysis., Biochemical parameters i.e. lipid peroxidation, endogenous antioxidants, nitrite level, neurotransmitter levels, proinflammatory biomarkers such as interleukin- 6 (IL-6), tumor necrosis factor-α, IL-1β, nuclear factor kappa B, nuclear factor erythroid 2-related factor 2, and caspase-3 were assessed on the 29th day of the research. Results Rosinidin augmented the effectiveness of rotenone on akinesia, catalepsy, forced-swim test, rotarod, and open-field test. Biochemical findings indicated that treatment of rosinidin showed restoring neuroinflammatory cytokines, antioxidants, and neurotransmitter levels in rotenone-injected rats. Conclusion As a result of rosinidin treatment, the brain was protected from oxidative stress-induced neuronal damage and inhibited neuroinflammatory cytokines.
Collapse
Affiliation(s)
- Amira M. Alghamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shareefa A. AlGhamdi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Corresponding author.
| |
Collapse
|
20
|
Aamir Bhat M, Kumar Mishra A, Azhar Kamal M, Rahman S, Tasleem Jan A. Elaeagnus umbellata: A miraculous shrub with potent health-promoting benefits from Northwest Himalaya. Saudi J Biol Sci 2023; 30:103662. [PMID: 37213692 PMCID: PMC10196990 DOI: 10.1016/j.sjbs.2023.103662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023] Open
Abstract
Medicinal plants encompassing a series of bioactive compounds have gained significant importance for use in the treatment of different diseases. Of them, Elaeagnus umbellata Thunb. (Deciduous shrub found in dappled shade, and sunny hedge) exhibits high medicinal value, with a widespread distribution across the Pir Panjal region of the Himalayas. Fruits serve as an excellent source of vitamins, minerals, and other essential compounds that exhibits hypolipidemic, hepatoprotective, and nephroprotective effects. The phytochemical fingerprint of berries revealed them to have a high content of polyphenols (with major proportion of anthocyanins), followed by monoterpenes and vitamin C. Extract of fruits help in regulating the digestion and absorption of glucose and reduces inflammation and oxidative stress. The phytosterols upholding anticoagulant activity serve the purpose of causing decrease in angina and the blood cholesterol levels. Phytochemicals such as eugenol, palmitic acid, and methyl palmitate exhibit potent antibacterial activity against broad range of disease-causing agents. Additionally, a high percentage of essential oils attribute it with the property of being effective against heart ailments. The present study highlights the importance of E. umbellata in traditional medicinal practices, and summarizes the knowledge of its bioactive constituents and a snapshot vision of remarkable biological activities like antimicrobial, antidiabetic, antioxidant, etc towards understanding its role in the development of efficient drug regimens for use in the treatment of different diseases. It also underlines the need to explore the plant on nutritional aspects to strengthen the existing knowledge pertaining to health promoting potential of E. umbellata.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- Gene Expression Lab, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India
| | - Arif Tasleem Jan
- Gene Expression Lab, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, India
- Corresponding author at: Gene Expression Lab, Department of Botany, Baba Ghulam Shah Badshah University, Rajouri 185234, India.
| |
Collapse
|
21
|
Khan HA, Ghufran M, Shams S, Jamal A, Ayaz M, Ullah M, Khan A, Khan MI, Awan ZA. In-depth in-vitro and in-vivo anti-diabetic evaluations of Fagonia cretica mediated biosynthesized selenium nanoparticles. Biomed Pharmacother 2023; 164:114872. [PMID: 37245338 DOI: 10.1016/j.biopha.2023.114872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023] Open
Abstract
Therapeutic moieties derived from medicinal plants as well as plants-based ecofriendly processes for producing selenium nanoparticles have shown great promise in the management of type 2 diabetes mellitus (T2DM). The current study was aimed to assess the anti-diabetic potentials of Fagonia cretica mediated biogenic selenium nanoparticles (FcSeNPs) using in-vitro and in-vivo approaches. The bio-synthesized FcSeNPs were characterized using various techniques including UV-VIS spectrophotometry and FTIR analysis. The in-vitro efficacy of FcSeNPs were assessed against α-glucosidase, α-amylase enzymes as well as the anti-radical studies were performed using DPPH and ABTS free radicals scavenging assays. For in-vivo studies, 20 Male Balb/C albino-mice were randomly divided into 4 groups (n = 5) including normal group, disease group (Diabetic group with no treatment), control group and treatment group (Diabetic group treated with FcSeNPs). Further, biochemistry markers including pancreas, liver, kidney and lipid profile were assessed for all treatment groups. The FcSeNPs exhibited a dose-dependent inhibition against α-amylase and α-glucosidase at 62-1000 µg mL-1 concentration with IC50 values of 92 and 100 µg mL-1 respectively. In antioxidant experiments, the FcSeNPs demonstrated significant radicals scavenging effect against DPPH and ABTS radicals. In STZ-induced diabetic mice, a considerable decline in blood glucose level was observed after treatment with FcSeNPs. Anti-hyperglycemic effect of FcSeNPs treated animals were high (105 ± 3.22**) as compared to standard drug (128.6 ± 2.73** mg dL-1). Biochemical investigations revealed that all biochemical parameters for pancreas, liver function, renal function panel and lipid profile were significantly lowered in FcSeNPs treated animals. Our findings indicate a preliminary multi-target efficacy for FcSeNPs against type-2 diabetes and thus warrant further detailed studies.
Collapse
Affiliation(s)
- Haider Ali Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, 23200 Khyber Pakhtunkhwa Pakistan.
| | - Mehreen Ghufran
- Department of Biochemistry, Women University Mardan, 23200 Khyber Pakhtunkhwa Pakistan.
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, 23200 Khyber Pakhtunkhwa Pakistan.
| | - Alam Jamal
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Pakistan.
| | - Mehran Ullah
- District Medical Officer, Sehat Sahulat Program (SSP), Mardan 23200 Khyber Pakhtunkhwa Pakistan.
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, 23200 Khyber Pakhtunkhwa Pakistan.
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Centre of Artificial Intelligence for Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Zuhier A Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
22
|
Ullah S, Sirajuddin M, Ullah Z, Mushtaq A, Naz S, Zubair M, Haider A, Ali S, Kubicki M, Wani TA, Zargar S, Rehman MU. Synthesis, Structural Elucidation and Pharmacological Applications of Cu(II) Heteroleptic Carboxylates. Pharmaceuticals (Basel) 2023; 16:ph16050693. [PMID: 37242476 DOI: 10.3390/ph16050693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Six heteroleptic Cu(II) carboxylates (1-6) were prepared by reacting 2-chlorophenyl acetic acid (L1), 3-chlorophenyl acetic acid (L2), and substituted pyridine (2-cyanopyridine and 2-chlorocyanopyridine). The solid-state behavior of the complexes was described via vibrational spectroscopy (FT-IR), which revealed that the carboxylate moieties adopted different coordination modes around the Cu(II) center. A paddlewheel dinuclear structure with distorted square pyramidal geometry was elucidated from the crystal data for complexes 2 and 5 with substituted pyridine moieties at the axial positions. The presence of irreversible metal-centered oxidation reduction peaks confirms the electroactive nature of the complexes. A relatively higher binding affinity was observed for the interaction of SS-DNA with complexes 2-6 compared to L1 and L2. The findings of the DNA interaction study indicate an intercalative mode of interaction. The maximum inhibition against acetylcholinesterase enzyme was caused for complex 2 (IC50 = 2 µg/mL) compared to the standard drug Glutamine (IC50 = 2.10 µg/mL) while the maximum inhibition was found for butyrylcholinesterase enzyme by complex 4 (IC50 = 3 µg/mL) compared to the standard drug Glutamine (IC50 = 3.40 µg/mL). The findings of the enzymatic activity suggest that the under study compounds have potential for curing of Alzheimer's disease. Similarly, complexes 2 and 4 possess the maximum inhibition as revealed from the free radical scavenging activity performed against DPPH and H2O2.
Collapse
Affiliation(s)
- Shaker Ullah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Sirajuddin
- Department of Chemistry, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Zafran Ullah
- Department of Chemistry, University of Science and Technology Bannu, Bannu 28100, Pakistan
| | - Afifa Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saba Naz
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maciej Kubicki
- Department of Chemistry, Adam Mickiewicz University in Poznan, 61-712 Poznan, Poland
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
23
|
Ponticelli M, Bellone ML, Parisi V, Iannuzzi A, Braca A, de Tommasi N, Russo D, Sileo A, Quaranta P, Freer G, Pistello M, Milella L. Specialized metabolites from plants as a source of new multi-target antiviral drugs: a systematic review. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2023; 22:1-79. [PMID: 37359711 PMCID: PMC10008214 DOI: 10.1007/s11101-023-09855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/30/2023] [Indexed: 06/28/2023]
Abstract
Viral infections have always been the main global health challenge, as several potentially lethal viruses, including the hepatitis virus, herpes virus, and influenza virus, have affected human health for decades. Unfortunately, most licensed antiviral drugs are characterized by many adverse reactions and, in the long-term therapy, also develop viral resistance; for these reasons, researchers have focused their attention on investigating potential antiviral molecules from plants. Natural resources indeed offer a variety of specialized therapeutic metabolites that have been demonstrated to inhibit viral entry into the host cells and replication through the regulation of viral absorption, cell receptor binding, and competition for the activation of intracellular signaling pathways. Many active phytochemicals, including flavonoids, lignans, terpenoids, coumarins, saponins, alkaloids, etc., have been identified as potential candidates for preventing and treating viral infections. Using a systematic approach, this review summarises the knowledge obtained to date on the in vivo antiviral activity of specialized metabolites extracted from plant matrices by focusing on their mechanism of action.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
- Ph.D. Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Annamaria Iannuzzi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Alessandra Braca
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Nunziatina de Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Daniela Russo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Annalisa Sileo
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | | | - Giulia Freer
- Virology Unit, Pisa University Hospital, Pisa, Italy
| | | | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
24
|
Hassan NH, Yousef DM, Alsemeh AE. Hesperidin protects against aluminum-induced renal injury in rats via modulating MMP-9 and apoptosis: biochemical, histological, and ultrastructural study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36208-36227. [PMID: 36547838 PMCID: PMC10039835 DOI: 10.1007/s11356-022-24800-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/13/2022] [Indexed: 06/09/2023]
Abstract
Aluminum, one of the most abundant metallic elements, is known to be toxic to multiple organs including the kidneys. This study aimed to investigate the pleiotropic nephroprotective effects of Hesperidin in aluminum chloride (ALCL3)-induced renal injury, highlighting the potential molecular mechanisms underlying. Twenty-four male albino rats were divided into four groups: control, Hesperidin (80 mg/kg BW, orally), ALCL3 (10 mg/kg BW, IP), and ALCL3 + Hesperidin groups. By the end of the study, blood samples were collected, and tissue samples were harvested at sacrifice. ALCL3 rats showed dramatically declined renal function, enhanced intrarenal oxidative stress, inflammation, apoptosis, and extravagant renal histopathological damage with interstitial fibrosis as shown by a higher Endothelial, Glomerular, Tubular, and Interstitial (EGTI) score. Hesperidin significantly reversed all the aforementioned detrimental effects in ALCL3-treated rats. The study verified the nephroprotective effects of Hesperidin on ALCL3-induced renal damage and confirmed the critical role of extracellular matrix (ECM) remodeling and apoptosis inhibition.
Collapse
Affiliation(s)
- Nancy Husseiny Hassan
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Doaa Mohammed Yousef
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, 44519 Egypt
| |
Collapse
|
25
|
Tran TNT, Truong TMH, Nguyen TDP, Bui VX, Thao DT, Luan TV, Khoo KS, Chew KW, Show PL. Enrichment of soy isoflavone extracts through macroporous resin for characterization of toxicity and estrogenic activities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1097-1106. [PMID: 36908365 PMCID: PMC9998774 DOI: 10.1007/s13197-022-05491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 10/16/2022]
Abstract
Soy isoflavone extracts are widely researched for their distinctive potential in contributing to various functional foods. The research work focuses on testing the toxicity of purified soy isoflavone extracts in mice models. With an agreement of the animal ethics, acute toxicity is firstly used to screen the effects of test compounds in mice for therapeutic purposes. Moreover, tests were conducted on BALB/c for estrogen in vivo and MCF7 for in vitro, screening active protection of liver cells, lipid peroxidation and scavenging free radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH). Genistin and daidzin were found to be the two major compounds accounting for 47% and 35% of total purified soy isoflavones. The acute toxicity test results exhibited no effect against physiological accretion of BALB/c after 7-day administration with the given dose of 10 g/kgBW. Moreover, modified E-screen assay on MCF7 cells proved that the estrogen of isoflavone extracts induces cell proliferation by 15% compared with other non-steroid culture techniques. Therefore, this research contributes to helping researchers apply soy isoflavones in functional food, to alleviate the difficulties in menopausal symptoms for women in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05491-4.
Collapse
Affiliation(s)
- Thi Ngoc Thu Tran
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang, 550 000 Vietnam
| | - Thi Minh Hanh Truong
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Danang, 550 000 Vietnam
| | - Thi Dong Phuong Nguyen
- The University of Danang, University of Technology and Education, 48 Cao Thang St., Danang, 550 000 Vietnam
| | - Vung Xuan Bui
- The University of Danang, University of Science and Education, 459 Ton Duc Thang St., Danang, 550 000 Vietnam
| | - Do Thi Thao
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi, 100000 Vietnam
| | - Tran-van Luan
- The University of Danang, University of Science and Technology, 54 Nguyen Luong Bang St., Danang, 550 000 Vietnam
| | - Kuan Shiong Khoo
- Faculty of Applied Sciences, UCSI University, UCSI Heights, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan Malaysia
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, 325035 Wenzhou, China
| |
Collapse
|
26
|
Sharma V, Mujwar S, Sharma D, Das R, Kumar Mehta D, Shah K. Computational Design of Plant-Based Antistress Agents Targeting Nociceptin Receptor. Chem Biodivers 2023; 20:e202201038. [PMID: 36644820 DOI: 10.1002/cbdv.202201038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023]
Abstract
Stress is the body's reaction to the challenges it faces, and it produces a multitude of chemical molecules known as stressors as a result of these reactions. It's also a misalignment of the sympathetic and parasympathetic nervous systems causing changes in a variety of physiological reactions and perhaps leading to stress disorders. The reduction in neurotransmitter & neurohormonal hormones is mainly governed by the nociceptin receptor as G-protein coupled receptor and increased the level of reactive oxygen species. Various synthetic medicines that target nociceptin receptors were utilized to reduce the effects of stress but they come up with a variety of side effects. Because of the widespread utilization and renewed interest in medicinal herbal plants considered to be alternative antistress therapy. Our present work is an approach to decipher the molecular nature of novel herbal leads by targeting nociceptin receptor, under which herbal compounds were screened and validated through in-silico methods. Among screened leads, withanolide-B showed stable association in the active site of the nociceptin receptor as an antistress agent with no side effects. Furthermore, the selected lead was also evaluated for stability by molecular dynamic stimulation as well as for pharmacokinetics and toxicity profile. It has been concluded stable conformation of withanolide-B without presence of any major toxic effects. As a result, the in silico molecular docking technique is a highly successful method for selecting a prospective herbal lead molecule with respect to a specific target, and future research can pave the way for further exploration in the drug development field.
Collapse
Affiliation(s)
- Vishal Sharma
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, 133207, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Diksha Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Rina Das
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, 133207, India
| | - Dinesh Kumar Mehta
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, 133207, India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| |
Collapse
|
27
|
Chowdhury SK. Uptake of antepartum care services in a matrilineal-matrilocal society: a study of Garo indigenous women in Bangladesh. BMC Pregnancy Childbirth 2023; 23:75. [PMID: 36709250 PMCID: PMC9883956 DOI: 10.1186/s12884-023-05404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The indigenous Garo is a close-knit matrilineal-matrilocal community. This community's expectant mothers receive less antepartum biomedical care, making them prone to maternal mortality. This study developed a conceptual framework to explore how the external environment, personal predispositions, enabling components and perceived antepartum care needs influence and generate a gap in antepartum biomedical care uptake. METHODS The author used qualitative data from the study area. The data were collected through conducting 24 semi-structured interviews with purposively selected Garo women. After transcribing the data, the author generated the themes, grouped them into two broader domains, and analyzed them using the grounded theory approach. RESULTS The emergent themes suggest adding the external environment (i.e., healthcare facilities' availability and services and culturally relevant healthcare services) to Anderson's behavioral model to understand indigenous women's antepartum care uptake disparity. Antepartum care uptake disparities arise when Andersen's behavioral model's other three drivers-personal predisposition, enabling components, and needs components-interact with the external environment. The interplay between enabling resources and the external environment is the conduit by which their predispositions and perceived needs are shaped and, thus, generate a disparity in antepartum care uptake. The data demonstrate that enabling resources include gendered power dynamics in families, home composition and income, men's spousal role, community practices of maternal health, and mother groups' and husbands' knowledge. Birth order, past treatment, late pregnancy, and healthcare knowledge are predispositions. According to data, social support, home-based care, mental health well-being, cultural norms and rituals, doctors' friendliness, affordable care, and transportation costs are perceived needs. CONCLUSIONS Garo family members (mothers/in-laws and male husbands) should be included in health intervention initiatives to address the problem with effective health education, highlighting the advantages of biomedical antepartum care. Health policymakers should ensure the availability of nearby and culturally appropriate pregnancy care services.
Collapse
Affiliation(s)
- Suban Kumar Chowdhury
- grid.412656.20000 0004 0451 7306Department of International Relations, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
28
|
Hemmati Bushehri R, Navabi P, Saeedifar AM, Keshavarzian N, Hosseini Rouzbahani N, Mosayebi G, Ghazavi A, Ghorban K, Ganji A. Integration of phytotherapy and chemotherapy: Recent advances in anticancer molecular pathways. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:987-1000. [PMID: 37605725 PMCID: PMC10440131 DOI: 10.22038/ijbms.2023.69979.15222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/20/2023] [Indexed: 08/23/2023]
Abstract
Cancer is a disease characterized by abnormal and uncontrolled growth of cells, leading to invasion and metastasis to other tissues. Chemotherapy drugs are some of the primary treatments for cancer, which could detrimentally affect the cancer cells by various molecular mechanisms like apoptosis and cell cycle arrest. These treatment lines have always aligned with side effects and drug resistance. Due to their anticancer effects, medicinal herbs and their active derivative compounds are being profoundly used as complementary treatments for cancer. Many studies have shown that herbal ingredients exert antitumor activities and immune-modulation effects and have fewer side effects. On the other hand, combining phytotherapy and chemotherapy, with their synergistic effects, has gained much attention across the medical community. This review article discussed the therapeutic effects of essential herbal active ingredients combined with chemotherapeutic drugs in cancer therapy. To write this article, PubMed and Scopus database were searched with the keywords "Cancer," "Combination," "Herbal," "Traditional," and "Natural." After applying inclusion/exclusion criteria, 110 articles were considered. The study shows the anticancer effects of the active herbal ingredients by inducing apoptosis and cell cycle arrest in cancer cells, especially with a chemotherapeutic agent. This study also indicates that herbal compounds can reduce side effects and dosage, potentiate anticancer responses, and sensitize cancer cells to chemotherapy drugs.
Collapse
Affiliation(s)
| | - Parnian Navabi
- Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Nafiseh Keshavarzian
- Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Ghasem Mosayebi
- Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ghazavi
- Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
| | - Khodayar Ghorban
- Department of Immunology, Medical School, Aja University of Medical Sciences, Tehran, Iran
| | - Ali Ganji
- Department of Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
29
|
Pahore AK, Khan S, Karim N. Anticancer effect of Illicium verum (star anise fruit) against human breast cancer MCF-7 cell line. Pak J Med Sci 2023; 39:70-74. [PMID: 36694772 PMCID: PMC9842999 DOI: 10.12669/pjms.39.1.6580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/20/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Objective To investigate the anticancer effect of Illicium verum against human breast cancer MCF-7 cell line. Methods An experimental study was conducted in Multidisciplinary and Tissue Culture Laboratory, Aga Khan University in collaboration with Pharmacology Department of Bahria University Medical and Dental College, Karachi, Pakistan from January 2021 to June 2021. MCF-7 cells of Luminal-A breast cancer were seeded in 96-well plate and treated with I.verum methanol extract. After incubation, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) dye was used for cell viability and cell proliferation assays to determine the number of dead and viable cells, and the absorbance was measured using an enzyme-linked immunosorbent assay (ELISA) plate reader. In cell viability assay, different doses of I. verum methanol extract were used to treat the MCF-7 (0.25, 0.5, 1, 3, 6, 12, 25, and 50μg/ml) cells. For apoptosis analysis, the cells were processed with 4´, 6-diamidino-2-phenylindole fluorescent nuclear dye (DAPI) and were examined for fluorescence intensity and apoptotic cells. For cell proliferation assay and apoptosis the IC50 dose of 5.5μg/ml I. verum methanol extract was used. Results The MCF-7 cells showed a significant reduction (p-value <0.01) in cell viability in the presence of all tested doses of I. verum methanol extract, except for the dose of 0.25μg/ml. The IC50 dose 5.5μg/ml of same extract also showed a significant reduction (p-value <0.01) in cell proliferation and apoptosis induction in MCF-7 cells. Conclusions Illicium verum methanol extract possesses very potent anticancer action against MCF-7 cells through cytotoxicity, reduction, and inhibition of cancer cells and by inducing apoptosis.
Collapse
Affiliation(s)
- Asra Khan Pahore
- Dr. Asra Khan Pahore, BDS, MPhil. Lecturer, Department of Pharmacology, Altamash Institute of Dental Medicine, Karachi, Pakistan
| | - Shagufta Khan
- Dr. Shagufta Khan, MPhil, PhD. Assistant Professor, Department of Biological & Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Nasim Karim
- Prof. Dr. Nasim Karim, MBBS, MPhil, Ph.D., Post-Doc. Head Department of Pharmacology, Bahria University Medical & Dental College, Sailors Street, Adjacent PNS Shifa, DHA Phase-II, Karachi, Pakistan
| |
Collapse
|
30
|
Rahayu SR, Susilastuti MS, Saefurrohim MZ, Azam M, Indrawati F, Supriyono M, Miarso D, Safitri BD, Daniswara S, Merzistya AN, Amilia R, Affandi MD, Wahidah N, Isbandi, Wandastuti AD, Laila AK, Muflikhah Z. Lost to Follow-Up among Tuberculosis Patients during the Public-Private Mix Era in Rural Area of Indonesia. Ethiop J Health Sci 2023; 33:115-122. [PMID: 36890941 PMCID: PMC9987293 DOI: 10.4314/ejhs.v33i1.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 03/10/2023] Open
Abstract
Background Indonesia's national Tuberculosis (TB) strategy is public-private mix (PPM). The PPM aims to treat patients who have lost sight during TB treatment as these patients are TB carriers and at risk of transmitting TB. The purpose of this study was to identify predictive factors for loss to follow-up (LFTU) among TB patients receiving treatment when the PPM was at place in Indonesia. Methods The design of this study was a retrospective cohort study. The data used in this study was sourced from the Tuberculosis Information System (SITB) of Semarang which was recorded routinely during 2020-2021. Univariate analysis, crosstabulation, and logistic regression were performed on 3434 TB patients meeting the minimum variables. Results The participation of health facilities in reporting TB during the PPM era in Semarang reached 97.6% consisting of 37 primary healthcare center (100%), 8 public hospitals (100%), 19 private hospitals (90.5%), and a community-based pulmonary health center (100%). The regression analysis reveal that the predictive factors of LTFU-TB during the PPM are the year of diagnosis (AOR=1.541; p-value=<0.001; 95% CI=1.228-1.934), referral status (AOR=1.562, p-value=0.007; 95% CI=1.130-2160), healthcare and social security insurance ownership (AOR=1.638; p-value=<0.001; 95% CI=1.263-2.124), drugs source (AOR=4.667; p-value=0.035; 95% CI=1.117-19.489). Conclusions The PPM strategy in dealing with LTFU patients should focus on TB patients without Healthcare and Social Security Insurance and who receive TB treatment rather than program drugs.
Collapse
Affiliation(s)
- Sri R Rahayu
- Public Health Department, Sport Science Faculty, Universitas Negeri Semarang, Indonesia
| | | | - Muhamad Z Saefurrohim
- Semarang City Health Office, Semarang, Indonesia.,Master of Public Health, Postgraduate, Universitas Negeri Semarang, Indonesia
| | - Mahalul Azam
- Public Health Department, Sport Science Faculty, Universitas Negeri Semarang, Indonesia
| | - Fitri Indrawati
- Public Health Department, Sport Science Faculty, Universitas Negeri Semarang, Indonesia
| | | | - Dani Miarso
- Semarang City Health Office, Semarang, Indonesia
| | | | | | - Aufiena Na Merzistya
- Public Health Department, Sport Science Faculty, Universitas Negeri Semarang, Indonesia
| | - Rizqi Amilia
- Gadjah Mada University Academic Hospital, Yogyakarta
| | - Mustafa D Affandi
- Public Health Department, Sport Science Faculty, Universitas Negeri Semarang, Indonesia
| | - Nur Wahidah
- Public Health Department, Sport Science Faculty, Universitas Negeri Semarang, Indonesia
| | - Isbandi
- Master of Public Health, Postgraduate, Universitas Negeri Semarang, Indonesia
| | - Anggun D Wandastuti
- Master of Public Health, Postgraduate, Universitas Negeri Semarang, Indonesia
| | - Annisa K Laila
- Public Health Department, Sport Science Faculty, Universitas Negeri Semarang, Indonesia
| | - Zuyyinatun Muflikhah
- Public Health Department, Sport Science Faculty, Universitas Negeri Semarang, Indonesia
| |
Collapse
|
31
|
Kabra A, Garg R, Brimson J, Živković J, Almawash S, Ayaz M, Nawaz A, Hassan SSU, Bungau S. Mechanistic insights into the role of plant polyphenols and their nano-formulations in the management of depression. Front Pharmacol 2022; 13:1046599. [PMID: 36419621 PMCID: PMC9676275 DOI: 10.3389/fphar.2022.1046599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/24/2022] [Indexed: 01/07/2024] Open
Abstract
Depression is a condition characterized by low mood and an aversion to activity, that causes behavioral problems, poor quality of life and limits daily life activities. It is considered as the fourth leading cause of disability worldwide. Selective Serotonin Reuptake Inhibitors (SSRIs) Monoamine Oxidase (MAO) inhibitors, Tricyclic Antidepressants (TCAs), and atypical antidepressants are some of the conventional medications used to treat depression. However, only about half of patients with major depressive disorder (MDD) respond effectively to first-line antidepressant therapy. Additionally, there are a number of drawbacks to standard antidepressants, such as anti-cholinergic side effects, drug-drug interactions, and food-drug interactions, which prompts researchers to look at alternative approaches to the treatment of depression. Medicinal plants and their metabolites are extensively tested for their efficacy against depression. Electronic databases such as Google scholar, Science Direct, SciFinder and PubMed were used to search relevant literature on the role of polyphenols in depression. Plants-derived Polyphenols represent a major class of compounds extensively distributed in plants. Number of polyphenols have demonstrated antidepressant activity, among which berberine, piperine, curcumin, naringenin, ascorbic acid and ginsenosides are extensively evaluated. The medicinal plants and their derived compounds mediated synthesized green nanoparticles have also exhibited considerable efficacy in the management of depression. The therapeutic effects of these phytochemicals is mediated via differentiation and inhibition of neuronal cell apoptosis, promotion of neuronal cell survival and modulation of key neurotransmitters. The aim of this study is to review compressively the chemical, pharmacological and neurological evidence showing the potential of polyphenols in depression.
Collapse
Affiliation(s)
- Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Ruchika Garg
- University School of Pharmaceutical Sciences, Rayat Bhara University, Mohali, Punjab, India
| | - James Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Jelena Živković
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plants Research “Dr. Josif Pančić”, Belgrade, Serbia
| | - Saud Almawash
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Asif Nawaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, Pakistan
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
32
|
Ahmed AA, A. Salih F, Yousef M. Rhus coriaria extracts inhibit quorum sensing-related virulence and biofilm production in drug-resistant Pseudomonas aeruginosa recovered from burn wounds. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1349-1356. [PMID: 36474566 PMCID: PMC9699946 DOI: 10.22038/ijbms.2022.66085.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Numerous studies have confirmed sumac's ability to inhibit pathogens and even eradicate chronic drug-resistant infections. Current research was conducted to demonstrate the action of various sumac extracts at sub-inhibitory concentrations in modulating pathogen-related characteristics instead of killing them. MATERIALS AND METHODS The influence of sumac extracts on the quorum sensing dependent virulence of multidrug-resistant isolates of Pseudomonas aeruginosa recovered from burn wounds was considered by detecting the effect on biofilm development, various virulence factors, and expression of bacterial exotoxin A and quorum sensing related genes. RESULTS Experiments to characterize and measure sumac extract's impact on the P. aeruginosa growth, biofilm, exoproteases, pyocyanin, motility, and the quorum sensing networks revealed that all studied characteristics were reduced by concentrations below inhibition without affecting bacterial growth. Furthermore, the expression of exotoxin A, rhl, and las glucons was declined or even inhibited by lower levels of sumac fruit fractions. CONCLUSION The findings revealed that sumac fights infections either by its inhibitory effect on the bacterial cells or by reducing bacterial signaling and virulence by disruption of the bacterial signal system.
Collapse
Affiliation(s)
- Akhter A Ahmed
- Department of Biology, Salahaddin University Erbil, Erbil, Iraq,Corresponding author: Akhter A Ahmed. Department of Biology, Salahaddin University- Erbil, Erbil, Iraq.
| | | | | |
Collapse
|
33
|
Elmaidomy AH, Shady NH, Abdeljawad KM, Elzamkan MB, Helmy HH, Tarshan EA, Adly AN, Hussien YH, Sayed NG, Zayed A, Abdelmohsen UR. Antimicrobial potentials of natural products against multidrug resistance pathogens: a comprehensive review. RSC Adv 2022; 12:29078-29102. [PMID: 36320761 PMCID: PMC9558262 DOI: 10.1039/d2ra04884a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
Antibiotic resistance is one of the critical issues, describing a significant social health complication globally. Hence, the discovery of novel antibiotics has acquired an increased attention particularly against drug-resistant pathogens. Natural products have served as potent therapeutics against pathogenic bacteria since the glorious age of antibiotics of the mid 20th century. This review outlines the various mechanistic candidates for dealing with multi-drug resistant pathogens and explores the terrestrial phytochemicals isolated from plants, lichens, insects, animals, fungi, bacteria, mushrooms, and minerals with reported antimicrobial activity, either alone or in combination with conventional antibiotics. Moreover, newly established tools are presented, including prebiotics, probiotics, synbiotics, bacteriophages, nanoparticles, and bacteriocins, supporting the progress of effective antibiotics to address the emergence of antibiotic-resistant infectious bacteria. Therefore, the current article may uncover promising drug candidates that can be used in drug discovery in the future.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62511 Egypt
| | - Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | | | | | - Hussein Hykel Helmy
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | - Emad Ashour Tarshan
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | - Abanoub Nabil Adly
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | | | - Nesma Gamal Sayed
- Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, College of Pharmacy, Tanta University, Elguish Street (Medical Campus) Tanta 31527 Egypt
- Institute of Bioprocess Engineering, Technical University of Kaiserslautern Gottlieb-Daimler-Str. 49 Kaiserslautern 67663 Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone New Minia 61111 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
| |
Collapse
|
34
|
Alshehri OM, Alshamrani S, Mahnashi MH, Alshahrani MM, Khan JA, Shah M, Alshehri MA, Zafar R, Zahoor M, Jan MS, Hassan SSU, Sadiq A. Phytochemical Analysis, Total Phenolic, Flavonoid Contents, and Anticancer Evaluations of Solvent Extracts and Saponins of H. digitata. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9051678. [PMID: 36246962 PMCID: PMC9553491 DOI: 10.1155/2022/9051678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
Abstract
Cancer is one of the most challenging diseases in the modern era for the researchers and investigators. Extensive research worldwide is underway to find novel therapeutics for prevention and treatment of diseases. The extracted natural sources have shown to be one of the best and effective treatments for cell proliferation and angiogenesis. Different approaches including disc potato model, brine shrimp, and chorioallantoic membrane (CAM) assay were adopted to analyze the anticancer effects. Habenaria digitata was also evaluated for MTT activity against NIH/3T3 cell line. The dexamethasone, etoposide, and vincristine sulfate were used as a positive control in these assays. All of the extracts including crude extracts (Hd.Cr), saponin (Hd.Sp), n-hexane (Hd.Hx), chloroform (Hd.Chf), ethyl acetate (Hd.EA), and aqueous fraction (Hd.Aq) were shown excellent results by using various assays. For example, saponin and chloroform have displayed decent antitumor and angiogenic activity by using potato tumor assay. The saponin fraction and chloroform were shown to be the most efficient in potato tumor experiment, demonstrating 87.5 and 93.7% tumor suppression at concentration of 1000 μg/ml, respectively, with IC50 values of 25.5 and 18.3 μg/ml. Additionally, the two samples, chloroform and saponins, outperformed the rest of the test samples in terms of antiangiogenic activity, with IC50 28.63 μg/ml and 16.20 μg/ml, respectively. In characterizing all solvent fractions, the chloroform (Hd.Chf) and saponin (Hd.Sp) appeared to display good effectiveness against tumor and angiogenesis but very minimal activity against A. tumefaciens. The Hd.Chf and Hd.Sp have been prospective candidates in the isolation of natural products with antineoplastic properties.
Collapse
Affiliation(s)
- Osama M. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Jalwa Ali Khan
- Department of Pharmacy, University of Swabi, KP, Pakistan
| | - Muhammad Shah
- COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Mohammed Ali Alshehri
- Department of Medical Genetics, Collage of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Rehman Zafar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | | | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| |
Collapse
|
35
|
Geremew A, Carson L, Woldesenbet S. Biosynthesis of silver nanoparticles using extract of Rumex nepalensis for bactericidal effect against food-borne pathogens and antioxidant activity. Front Mol Biosci 2022; 9:991669. [PMID: 36203876 PMCID: PMC9530741 DOI: 10.3389/fmolb.2022.991669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
The evolution and incidence of multidrug-resistant food-borne pathogens still become a critical public health global issue. To avert this challenge there is great interest in medical applications of silver nanoparticles. Thus, this study aimed to synthesize silver nanoparticles (Rn-AgNPs) using aqueous leaf extract of Nepal Dock (Rumex nepalensis Spreng) and evaluate their antibacterial potential against food-borne pathogens and antioxidant activity. The Rn-AgNPs were characterized by UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and Fourier Transform Infra-Red Spectroscopy (FTIR). The antibacterial activities of the Rn-AgNPs were evaluated using agar well diffusion (zone of inhibition, ZOI) and microdilution (minimum inhibitory concentration, MIC and minimum bactericidal concentration, MBC) methods. The antioxidant property of the Rn-AgNPs was investigated using radical scavenging (DPPH and hydroxyl) assays. The UV-Vis spectra of Rn-AgNPs elucidated the absorption maxima at 425 nm and FTIR detected numerous functional groups of biological compounds that are responsible for capping and stabilizing Rn-AgNPs. DLS analysis displayed monodispersed Rn-AgNPs of 86.7 nm size and highly negative zeta potential (-32.5 mV). Overall results showed that Escherichia coli was the most sensitive organism, whereas Staphylococcus aureus was the least sensitive against Rn-AgNPs. In the antioxidant tests, the AgNPs radical scavenging activity reached 95.44% at 100 μg/ml. This study indicates that Rn-AgNPs exhibit a strong antimicrobial on L. monocytogenes, S. aureus, S. typhimurium, and E. coli and antioxidant and thus might be developed as a new type of antimicrobial agent for the treatment of multidrug-resistant foodborne pathogens and extensible applications in nanomaterial food- and nanocomposite-based antimicrobial packaging and/or as an antioxidant.
Collapse
|
36
|
Abdelbaset S, El-Kersh DM, Ayoub IM, Eldahshan OA. GC-MS profiling of Vitex pinnata bark lipophilic extract and screening of its anti-TB and cytotoxic activities. Nat Prod Res 2022:1-7. [PMID: 36110061 DOI: 10.1080/14786419.2022.2124512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Tuberculosis is a highly infectious ailment worldwide. The emergence of multi-drug resistance and serious adverse effects of anti-TB drugs have led to the continuous search of natural candidates. This study aimed to analyse the chemical profile of Vitex pinnata (VP) bark lipophilic extract using GC-MS also evaluating its anti-TB and cytotoxic activities. GC-MS revealed a total of 81 compounds which representing 86% identified compounds. In vitro anti-TB of VP lipophilic extract was evaluated using the Microplate Alamar Blue Assay which exhibited MIC value of 62.5 µg/mL. In vitro cytotoxicity was evaluated using Water Soluble formazan assay recording IC50 > 100 and 200 µg/mL using Vero and A-549 cell lines, respectively. In silico docking study was performed on the major identified compounds, n-nonane showed the most favourable binding affinity (ΔG) equals to -33.34 Kcal/mol. The results obtained herein unravelled the potential use of VP n-hexane extract as a natural anti-TB.
Collapse
Affiliation(s)
- Safa Abdelbaset
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Dina M. El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
- Center for Drug Research and Development (CDRD), The British University in Egypt (BUE), Cairo, Egypt
| | - Iriny M. Ayoub
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Omayma A. Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| |
Collapse
|
37
|
Phytotherapeutic Approach in the Management of Cisplatin Induced Vomiting; Neurochemical Considerations in Pigeon Vomit Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3914408. [PMID: 36148411 PMCID: PMC9489405 DOI: 10.1155/2022/3914408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/02/2022]
Abstract
Cisplatin induced vomiting involves multiple mechanisms in its genesis and a single antiemetic agent do not cover both the phases (acute & delayed) of vomiting in clinics; necessitating the use of antiemetics in combination. Cannabis sativa and other selected plants have ethnopharmacological significance in relieving emesis. The aim of the present study was to investigate the intrinsic antiemetic profile of Cannabis sativa (CS), Bacopa monniera (BM, family Scrophulariaceae), and Zingiber officinale (ZO, family Zingiberaceae) in combinations against vomiting induced by highly emetogenic anticancer drug-cisplatin in pigeons. We have analysed the neurotransmitters which trigger the vomiting response centrally and peripherally. Electrochemical detector (ECD) was used for the quantification of neurotransmitters and their respective metabolites by high performance liquid chromatography in the brain stem (BS) and area postrema (AP) while peripherally in the small intestine. Cisplatin (7 mg/kg i.v.) induced reliable vomiting throughout the observation period (24 hrs). CS-HexFr (10 mg) + BM-MetFr (10 mg)–Combination 1, BM-ButFr (5 mg) + ZO-ActFr (25 mg)–Combination 2, ZO-ActFr (25 mg) + CS-HexFr (10 mg)–Combination 3, and CS-HexFr (10 mg) + BM-ButFr (5 mg)–Combination 4; provided ~30% (30 ± 1.1), 70% (12 ± 0.4; P < 0.01), 60% (19 ± 0.2; P < 0.05) and 90% (05 ± 0.1; P < 0.001) protection, respectively, against cisplatin induced vomiting as compared to cisplatin control. Standard MCP (30 mg) provided ~50% (23 ± 0.3) protection (P > 0.05). CS Hexane fraction (10 mg/kg), BM methanolic (10 mg/kg) and bacoside rich n-butanol fraction (5 mg/kg) and ZO acetone fraction (25 mg/kg) alone provided ~62%, 36%, 71%, and 44% protection, respectively, as compared to cisplatin control. The most effective and synergistic combination 4 was found to reduce 5HT and 5HIAA (P < 0.05–0.001) in all the brain areas area postrema (AP)+brain stem (BS) and intestine at the 3rd hour of cisplatin administration. In continuation, at the 18th of cisplatin administration reduction in dopamine (P < 0.001) in the AP and 5HT in the brain stem and intestine (P < 0.001) was observed. The said combination did not change the neurotransmitters basal levels and their respective metabolites any significantly. In conclusion, all the tested combinations offered protection against cisplatin induced vomiting to variable degrees, where combination 4 provided enhanced attenuation by antiserotonergic mechanism at the 3rd hour while a blended antidopaminergic and antiserotonergic mechanism at the 18th hour after cisplatin administration.
Collapse
|
38
|
Aizuddin AN, Zamzuri M'AIA, Mansor J, Nurumal SR, Yunus SZSA, Razak MAA, Jamhari MN, Fah TS, Miskam HM, Hod R, Yusoff HM. Perception of integrating complementary and alternative medicine practice in patient's treatment among the healthcare practitioners: a systematic review. Pan Afr Med J 2022; 43:19. [PMID: 36451723 PMCID: PMC9674529 DOI: 10.11604/pamj.2022.43.19.31133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 06/20/2022] [Indexed: 03/19/2024] Open
Abstract
There is a growing trend in complementary and alternative medicine (CAM) usage among the population with medical conditions. However, there is hesitancy for medical practitioners to integrate its application with the current treatment modality, despite governance by the authority. Hence, our objective is to systematically evaluate the healthcare perception towards integrating CAM in their practices. We systematically searched three large and renowned databases i.e., Scopus, Web of Science and PubMed, regarding "Perception on Integrating CAM Usage in Patient's Treatment among Healthcare Practitioners" from 2016 until 2020. At least two independent reviewers comprehensively screened and extracted the data from the accepted articles. A total of 15 studies were included in the final qualitative synthesis following a strict and rigorous assessment checked using MMAT 2018 checklist. The studies included providing the richness of information due to the qualitative nature of the study design. There were three main domains extracted i.e. knowledge, attitude, and perspective of the healthcare practitioner towards CAM integration. Limited knowledge of CAM among healthcare providers may be the possible main reason for non-supportive attitude and negative perspective on CAM. However, those who showed an inclination towards CAM were found to be more open and ready to learn about CAM if it provides benefits to the patients. There is a heterogeneity of perception towards CAM integration from healthcare providers' point of view. A proactive and systematic CAM literacy awareness program may help to improve their understanding and possibly gain more trust in its application.
Collapse
Affiliation(s)
- Azimatun Noor Aizuddin
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | | | - Juliana Mansor
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Siti Rohani Nurumal
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | | | - Mohamad Aznuddin Abd Razak
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Nazrin Jamhari
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Tong Seng Fah
- Department of Family Medicine, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Hazlina Mohd Miskam
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Hanizah Mohd Yusoff
- Department of Community Health, Faculty of Medicine, National University of Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Ahmad M, Ali A, Ullah Z, Sher H, Dai DQ, Ali M, Iqbal J, Zahoor M, Ali I. Biosynthesized silver nanoparticles using Polygonatum geminiflorum efficiently control fusarium wilt disease of tomato. Front Bioeng Biotechnol 2022; 10:988607. [PMID: 36159677 PMCID: PMC9493356 DOI: 10.3389/fbioe.2022.988607] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Nanomaterials are gaining tremendous potential as emerging antimicrobials in the quest to find resistance-free alternatives of chemical pesticides. In this study, stable silver nanoparticles were synthesized using the aqueous extract of medicinal plant species Polygonatum geminiflorum , and their morphological features were evaluated by transmission electron microscopy, X-ray diffraction spectroscopy and energy dispersive X-ray analysis. In vitro Antifungal activity of the synthesized silver nanoparticles (AgNPs) and P. geminiflorum extract (PE) either alone or in combination (PE-AgNPs) against Fusarium oxysporum was evaluated using disc-diffusion and well-diffusion methods. In planta assay of the same treatments against Fusarium wilt diseases of tomato was evaluated by foliar spray method. Moreover, plant extract was evaluated for the quantitative investigation of antioxidant activity, phenolics and flavonoids by spectroscopic and HPLC techniques. Phytochemical analysis indicated the presence of total phenolic and flavonoid contents as 48.32 mg ± 1.54 mg GAE/g and 57.08 mg ± 1.36 mg QE/g, respectively. The DPPH radical scavenging of leaf extract was found to be 88.23% ± 0.87%. Besides, the HPLC phenolic profile showed the presence of 15 bioactive phenolic compounds. Characterization of nanoparticles revealed the size ranging from 8 nm to 34 nm with average crystallite size of 27 nm. The FTIR analysis revealed important functional groups that were responsible for the reduction and stabilization of AgNPs. In the in vitro assays, 100 μg/ml of AgNPs and AgNPs-PE strongly inhibited Fusarium oxysporum. The same treatments tested against Fusarium sprayed on tomato plants in controlled environment exhibited nearly 100% plant survival with no observable phytotoxicity. These finding provide a simple baseline to control Fusarium wilt using silver nano bio-control agents without affecting the crop health.
Collapse
Affiliation(s)
- Maaz Ahmad
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Ahmad Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Zahid Ullah
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Hassan Sher
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China
| | - Mohammad Ali
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh, Swat, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Khyber Pakhtunkhwa, Pakistan
| | - Iftikhar Ali
- Centre for Plant Sciences and Biodiversity, University of Swat, Charbagh, Swat, Pakistan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Mary OG, Zaituni MS, Faith MP, Lughano KJ, Robinson MH, John OE. ANTIBACTERIAL EFFECTS OF SINGLE AND COMBINED CRUDE EXTRACTS OF SYNADENIUM GLAUCESCENS AND COMMIPHORA SWYNNERTONII. Afr J Infect Dis 2022; 16:9-16. [PMID: 36124327 PMCID: PMC9480890 DOI: 10.21010/ajid.v16i2s.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background Synadenium glaucescens and Commiphora swynnertonii are among the reported plants used traditionally for treatment of bacterial infections. This study reports antibacterial effects of single and combined extracts from leaves, stem and root barks of Commiphora swynnertonii and Synadenium glaucescens. Materials and Methods Plants were collected from Manyara and Njombe regions in Tanzania. Extraction was done using dichloromethane and methanol. The extracts were assessed for antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumonia and Pseudomonas aeruginosa). Minimum Inhibitory Concentrations (MIC) was determined by broth microdilution, while Fractional Inhibitory Concentration (FIC) indices were calculated from MIC values of combined extracts to determine combination effects. Results Strong antibacterial activities were demonstrated by all extracts of S. glaucescens (MIC 0.011-0.375mg/mL) against Gram-positive bacteria and methanol extracts of C. swynnertonii (MIC 0.047-0.375mg/mL). Synergistic effect was observed when combining methanol extracts of C. swynnertonii stem bark with S. glaucescens leaves against S. aureus (∑FIC 0.5), Other synergistic effects were observed against E. faecalis with dichloromethane extracts of C. swynnertonii stem bark and S. glaucescens stem bark (∑FIC 0.5), and C. swynnertonii root bark and S. glaucescens root bark (FIC index 0.3). For the remaining combinations, mainly additive effects were observed. Conclusion Synergistic effects on bacteria were observed by combining different plant parts of S. glaucescens and C. swynnertonii suggesting that it could be beneficial to combine such extracts when used for antibacterial purposes.
Collapse
Affiliation(s)
- Ochollah G. Mary
- Department of Chemistry and Physics, College of Natural and Applied Sciences, Sokoine University of Agriculture, P.O. Box 3038, Morogoro, Tanzania,Corresponding Author’s E-Mail:
| | - Msengwa S. Zaituni
- Department of Chemistry and Physics, College of Natural and Applied Sciences, Sokoine University of Agriculture, P.O. Box 3038, Morogoro, Tanzania
| | - Mabiki P. Faith
- Department of Chemistry and Physics, College of Natural and Applied Sciences, Sokoine University of Agriculture, P.O. Box 3038, Morogoro, Tanzania
| | | | - Mdegela H. Robinson
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, P.O. Box 3015, Morogoro, Tanzania
| | - Olsen E. John
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, Frederiksberg C, Denmark
| |
Collapse
|
41
|
Iqbal J, Khan AA, Aziz T, Ali W, Ahmad S, Rahman SU, Iqbal Z, Dablool AS, Alruways MW, Almalki AA, Alamri AS, Alhomrani M. Phytochemical Investigation, Antioxidant Properties and In Vivo Evaluation of the Toxic Effects of Parthenium hysterophorus. Molecules 2022; 27:molecules27134189. [PMID: 35807432 PMCID: PMC9268705 DOI: 10.3390/molecules27134189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Parthenium hysterophorus L. is a poisonous Asteraceae weed. The phytochemical profile, antioxidant activity, total phenolic contents (TPC), total flavonoid contents (TFC), and cytotoxicity of Parthenium hysterophorus L. flower extract were evaluated in this study, and the toxic effects were assessed in rabbits. The HPLC-DAD system was used for phytochemical analysis. The hemolytic and DPPH assays were performed. The effects of orally administering the flower crude extract to rabbits (n = 5) at four different doses (10, 20, 40, and 80 mg/kg) for ten days on hematological and biochemical parameters were investigated. The crude extract of the flower contained phenolic compounds such as Gallic acid, Chlorogenic acid, Ellagic acid, and P Coumaric acid, which were detected at different retention times, according to the HPLC results. With a sample peak of 4667.475 %, chlorogenic acid was abundant. At concentrations of 80 µg, the methanolic extract of flowers had total phenolic contents (89.364 ± 4.715 g GAE/g) and total flavonoid contents (65.022 ± 2.694 g QE/g). In the DPPH free radical scavenging assay, 80 µg of extract had the highest cell inhibition of 76.90% with an IC50 value of 54.278 µg/µL, while in the hemolytic assay 200 µg of extract had the highest cell inhibition of 76.90% with an IC50 > 500. The biochemical and hematological parameters were altered in the flower extract-fed groups as compared to the control (p < 0.05). The toxic effects on the blood, liver, and kidneys were confirmed. The findings also confirmed the presence of phenolic and flavonoid content in the flower extract, both of which contribute to the plant’s antioxidant potential.
Collapse
Affiliation(s)
- Javed Iqbal
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara 18800, Pakistan; (J.I.); (W.A.)
| | - Ayaz Ali Khan
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara 18800, Pakistan; (J.I.); (W.A.)
- Correspondence: (A.A.K.); (T.A.)
| | - Tariq Aziz
- Pak-Austria Fachhochschule, Institute of Applied Sciences and Technology, Haripur 22621, Pakistan
- Correspondence: (A.A.K.); (T.A.)
| | - Waqar Ali
- Department of Biotechnology, Faculty of Biological Sciences, University of Malakand, Chakdara 18800, Pakistan; (J.I.); (W.A.)
| | - Saeed Ahmad
- Department of Zoology, Faculty of Biological Sciences, University of Malakand, Chakdara 18800, Pakistan;
| | - Shafiq Ur Rahman
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal 18050, Pakistan;
| | - Zafar Iqbal
- Institute of Nursing Sciences, Khyber Medical University, Peshawar 25120, Pakistan;
| | - Anas S. Dablool
- Department of Public Health, Health Sciences College Al-Leith, Umm Al-Qura University, Makkah al-Mukarramah 24382, Saudi Arabia;
| | - Mashael W. Alruways
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 15273, Saudi Arabia;
| | - Abdulraheem Ali Almalki
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.A.); (A.S.A.); (M.A.)
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.A.); (A.S.A.); (M.A.)
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.A.); (A.S.A.); (M.A.)
| |
Collapse
|
42
|
Rivea hypocrateriformis (Desr.) Choisy: An Overview of Its Ethnomedicinal Uses, Phytochemistry, and Biological Activities and Prospective Research Directions. J CHEM-NY 2022. [DOI: 10.1155/2022/9099672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rivea hypocrateriformis (Desr.) Choisy is a robust woody climbing shrub of the genus Rivea which is widely distributed in India, Nepal, Sri Lanka, Pakistan, Bangladesh, Myanmar, and Thailand. R. hypocrateriformis is a promising medicinal herb with a wide range of beneficial and health-promoting properties. Since the ancient times, it has been used as a traditional medicine to treat rheumatic pain, fever, urogenital problems, snake bites, cough, piles, malaria, and skin diseases. Aside from these traditional uses, its leaves and young shoots are also cooked and eaten as a vegetable and used for the preparation of bread with millet flour. This study extensively analyzes the available information on R. hypocrateriformis botanical characterization, distribution, traditional applications, phytochemistry, pharmacology, and toxicological properties. Phytochemical investigations of the plant has revealed the presence of highly valuable secondary metabolites including alkaloids, glycosides, coumarins, flavonoids, xanthones, stilbenes, and other organic compounds. Its crude extracts and isolated compounds have revealed anovulatory, antifertility, antiarthritic, antimicrobial, anticancer, antioxidant hepatoprotective, antilithiatic, and antimitotic potentials. This review of literature clearly identifies R. hypocrateriformis as a potent medicinal plant with remarkable healing and health-promoting properties. Further research directions into the bioactive extracts, clinical, and toxicological evaluations to assess the beneficial health-promoting properties of this promising herb are also discussed.
Collapse
|
43
|
Green Synthesis of Silver Nanoparticles Using Euphorbia wallichii Leaf Extract: Its Antibacterial Action against Citrus Canker Causal Agent and Antioxidant Potential. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113525. [PMID: 35684463 PMCID: PMC9182241 DOI: 10.3390/molecules27113525] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Biologically synthesized silver nanoparticles are emerging as attractive alternatives to chemical pesticides due to the ease of their synthesis, safety and antimicrobial activities in lower possible concentrations. In the present study, we have synthesized silver nanoparticles (AgNPs) using the aqueous extract of the medicinal plant Euphorbia wallichii and tested them against the plant pathogenic bacterium Xanthomonas axonopodis, the causative agent of citrus canker, via an in vitro experiment. The synthesized silver nanoparticles were characterized by techniques such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction analysis and transmission electron microscopy. Moreover, the plant species were investigated for phenolics, flavonoids and antioxidant activity. The antioxidant potential of the extract was determined against a DPPH radical. The extract was also evaluated for phenolic compounds using the HPLC technique. The results confirmed the synthesis of centered cubic, spherical-shaped and crystalline nanoparticles by employing standard characterization techniques. A qualitative and quantitative phytochemical analysis revealed the presence of phenolics (41.52 mg GAE/g), flavonoids (14.2 mg QE/g) and other metabolites of medicinal importance. Different concentrations (1000 µg/mL to 15.62 µg/mL—2 fold dilutions) of AgNPs and plant extract (PE) alone, and both in combination (AgNPs-PE), exhibited a differential inhibition of X. axanopodis in a high throughput antibacterial assay. Overall, AgNPs-PE was superior in terms of displaying significant antibacterial activity, followed by AgNPs alone. An appreciable antioxidant potential was recorded as well. The observed antibacterial and antioxidant potential may be attributed to eight phenolic compounds identified in the extract. The Euphorbia wallichii leaf-extract-induced synthesized AgNPs exhibited strong antibacterial activity against X. axanopodis, which could be exploited as effective alternative preparations against citrus canker in planta in a controlled environment. In addition, as a good source of phenolic compounds, the plant could be further exploited for potent antioxidants.
Collapse
|
44
|
Shokouhi Targhi H, Mehrbod P, Fotouhi F, Amininasab M. In vitro anti-influenza assessment of anionic compounds ascorbate, acetate and citrate. Virol J 2022; 19:88. [PMID: 35606770 PMCID: PMC9125540 DOI: 10.1186/s12985-022-01823-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/11/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Influenza A virus (IAV) infection remains a serious public health threat. Due to drug resistance and side effects of the conventional antiviral drugs, repurposing the available natural compounds with high tolerability and fewer side effects has attracted researchers' attention. The aim of this study was to screen in vitro anti-influenza activity of three anionic compounds ascorbate, acetate, and citrate. METHODS The non-cytotoxic concentration of the compounds was determined by MTT assay and examined for the activity against IAV in simultaneous, pre-, and post-penetration combination treatments over 1 h incubation on Madin-Darby Canine Kidney (MDCK) cell line. The virus titer and viral load were determined using hemagglutination assay (HA) and qPCR, respectively. Few pro-inflammatory and anti-inflammatory cytokines were evaluated at RNA and protein levels by qPCR and ELISA, respectively. RESULTS The non-cytotoxic concentrations of the ascorbate (200 mg/ml), acetate and citrate (both 3 mg/ml) reduced the viral titer by 6.5, 4.5, and 1.5 logs in the simultaneous combination treatment. The M protein gene copy number decreased significantly in simultaneous treatment (P < 0.01). The expression of cytokines was also affected by the treatment of these compounds. CONCLUSIONS These anionic compounds could affect the influenza virus load, thereby reducing pro-inflammatory cytokines and increasing anti-inflammatory cytokines levels.
Collapse
Affiliation(s)
- Hadiseh Shokouhi Targhi
- Department of Cell and Molecular Biology, Kish International Campus, University of Tehran, Kish Island, Iran
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Fotouhi
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
45
|
Tuzimski T, Petruczynik A. Determination of Anti-Alzheimer's Disease Activity of Selected Plant Ingredients. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103222. [PMID: 35630702 PMCID: PMC9147832 DOI: 10.3390/molecules27103222] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases, among which one of the more common is Alzheimer’s disease, are the one of the biggest global public health challenges facing our generation because of the increasing elderly population in most countries. With the growing burden of these diseases, it is essential to discover and develop new treatment options capable of preventing and treating them. Neurodegenerative diseases, among which one of the most common is Alzheimer’s disease, are a multifactorial disease and therefore demand multiple therapeutic approaches. One of the most important therapeutic strategies is controlling the level of acetylcholine—a neurotransmitter in cholinergic synapses—by blocking the degradation of acetylcholine using acetylcholinesterase inhibitors such as tacrine, galantamine, donepezil and rivastigmine. However, these drugs can cause some adverse side effects, such as hepatotoxicity and gastrointestinal disorder. Thus, the search for new, more effective drugs is very important. In the last few years, different active constituents from plants have been tested as potential drugs in neurodegenerative disease therapy. The availability, lower price and less toxic effects of herbal medicines compared with synthetic agents make them a simple and excellent choice in the treatment of neurodegenerative diseases. The empirical approach to discovering new drugs from the systematic screening of plant extracts or plant-derived compounds is still an important strategy when it comes to finding new biologically active substances. The aim of this review is to identify new, safe and effective compounds that are potential candidates for further in vivo and clinical tests from which more effective drugs for the treatment of Alzheimer’s disease could be selected. We reviewed the methods used to determine anti-Alzheimer’s disease activity. Here, we have discussed the relevance of plant-derived compounds with in vitro activity. Various plants and phytochemical compounds have shown different activity that could be beneficial in the treatment of Alzheimer’s disorders. Most often, medicinal plants and their active components have been investigated as acetylcholinesterase and/or butyrylcholinesterase activity inhibitors, modifiers of β-amyloid processing and antioxidant agents. This study also aims to highlight species with assessed efficacy, usable plant parts and the most active plant components in order to identify species and compounds of interest for further study. Future research directions are suggested and recommendations made to expand the use of medicinal plants, their formulations and plant-derived active compounds to prevent, mitigate and treat Alzheimer’s disease.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (T.T.); (A.P.)
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
- Correspondence: (T.T.); (A.P.)
| |
Collapse
|
46
|
Giresha AS, Urs D, Manjunatha JG, Sophiya P, Supreetha BH, Jayarama S, Dharmappa KK. Group IIA secreted phospholipase A 2 inhibition by elemolic acid as a function of anti-inflammatory activity. Sci Rep 2022; 12:7649. [PMID: 35538123 PMCID: PMC9087174 DOI: 10.1038/s41598-022-10950-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Human group IIA secreted phospholipase A2 (GIIA) is a key enzyme in inflammatory reactions, worsening the condition of several chronic inflammatory diseases. The natural inhibitors of GIIA potentially block the production of inflammatory mediators. In the present study, elemolic acid, a triterpenoid from Boswellia serrata inhibited the GIIA enzyme in a concentration-dependent manner with IC50 value of 5.70 ± 0.02 µM. The mode of GIIA inhibition was studied by increasing the concentration of the substrate from 30 to 120 nM, and calcium from 2.5 to 15 mM, the level of inhibition was not changed. The inhibitor-enzyme interaction was examined by fluorimetry and Circular Dichroism (CD) studies; elemolic acid altered intrinsic fluorescence intensity and shifted far UV- CD spectra of GIIA enzyme, suggesting the direct interaction with GIIA. Elemolic acid neutralized the GIIA mediated indirect hemolytic activity from 94.5 to 9.8% and reduced GIIA induced mouse paw edema from 171.75 to 113.68%. Elemolic acid also reduced the hemorrhagic effect of GIIA along with Vipera russelii neurotoxic non-enzymatic peptide -VNTx-II (VR-HC-I). Thus, the elemolic acid has been proven as a potent inhibitor of GIIA enzyme and modulated the GIIA induced inflammatory response by in situ and in vivo methods.
Collapse
Affiliation(s)
- Aladahalli S Giresha
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India
| | - Deepadarshan Urs
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India
| | - J G Manjunatha
- Department of Chemistry, FMKMC College Madikeri, Mangalore University Constituent College, Mangalore, Karnataka, 571201, India
| | - P Sophiya
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India
| | - B H Supreetha
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India
| | - Shankar Jayarama
- Department of Studies in Food Technology, Davangere University, Shivagangotri, Davangere, 577002, India
| | - K K Dharmappa
- Inflammation Research Laboratory, Department of Studies and Research in Biochemistry, Mangalore University, Jnana Kaveri Post Graduate campus, Chikka Aluvara, Kodagu, 571232, India.
| |
Collapse
|
47
|
Pervaiz A, Jan MS, Hassan Shah SM, Khan A, Zafar R, Ansari B, Shahid M, Hussain F, Ijaz Khan M, Zeb A, Mukarram Shah SM. Comparative in-vitro anti-inflammatory, anticholinesterase and antidiabetic evaluation: computational and kinetic assessment of succinimides cyano-acetate derivatives. J Biomol Struct Dyn 2022:1-14. [PMID: 35507043 DOI: 10.1080/07391102.2022.2069862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/19/2022] [Indexed: 12/12/2022]
Abstract
This research was planned to synthesize cyano-acetate derivatives of succinimide and evaluate its comparative biological efficacy as anti-inflammatory, anti-cholinesterase and anti-diabetic, which was further validated by molecular docking studies. The three cyano-acetate derivatives of succinimide including compound 23 Methyl 2-cyano-2-(2,5-dioxopyrrolidin-3-yl)acetate, compound 31 Methyl 2-cyano-2-(1-methyl-2,5-dioxopyrrolidin-3-yl)acetate and compound 44 Methyl 2-cyano-2-(1-ethyl-2,5-dioxopyrrolidin-3-yl) acetate were synthesized. The mentioned compounds were checked for in vitro anti-inflammatory, anti-cholinesterase and anti-diabetic (α-amylase inhibition) activity. To validate the in vitro results, computational studies were carried out using molecular operating environment to analyse the BE, i.e. binding energies of all synthesized compounds against the respective enzymes. The Compounds 23, 31, 44 exhibited anti-inflammatory via inhibiting COX-2 (IC50 value of 204.08, 68.60 and 50.93 µM, respectively), COX-1 (IC50 value of 287, 185, and 143 µM, respectively) and 5-LOX (IC50 value of 138, 50.76 and 20, 87 µM respectively). They exhibited choline-mimetic potential, such as compound 23, 31 and 44 inhibited AChE enzyme (IC50 value of 240, 174, and 134 µM, respectively) and BChE enzyme (IC50 value of 203, 134 and 97 µM, respectively). The Compounds 23, 31, 44 exhibited anti-diabetic effect via inhibiting α-amylase enzyme (IC50 values of 250, 106 and 60 µM, respectively). Molecular docking studies revealed that the synthesized compounds have good binding affinity in the binding pockets of AChE, BChE, COX-2, 5-LOX and α-amylase enzyme and showed high binding energies. The synthesized succinimide derivatives, i.e. compound 23, 31, 44 showed marked inhibitory activities against cyclooxygenase, lipoxygenase, α-amylase and cholinesterase enzymes. Among these three, compound 44 and 31 showed strong anti-inflammatory and anti-diabetic activity while they displayed moderate anti-cholinesterase activity supported by molecular docking results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aini Pervaiz
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | | | | | - Ali Khan
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | - Rehman Zafar
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Bushra Ansari
- Department of Pharmacy, Abdul Wali Khan University, Mardan, KP, Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, KP, Pakistan
| | - Fida Hussain
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | | | - Anwar Zeb
- Department of Pharmacy, University of Swabi, Swabi, KP, Pakistan
| | | |
Collapse
|
48
|
Silva Fernandes A, Hollanda Véras J, Silva LS, Puga SC, Luiz Cardoso Bailão EF, de Oliveira MG, Cardoso CG, Carneiro CC, Costa Santos SD, Chen-Chen L. Pedunculagin isolated from Plinia cauliflora seeds exhibits genotoxic, antigenotoxic and cytotoxic effects in bacteria and human lymphocytes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:353-363. [PMID: 34875975 DOI: 10.1080/15287394.2021.2009947] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pedunculagin (PD), an ellagitannin found in different plant species, possesses several pharmaceutical properties, including antitumor, antioxidant, gastroprotective, hepatoprotective, and anti-inflammatory properties. However, the effects of PD alone on DNA remain to be determined. The aim of this study was to investigate the potential cytotoxic, genotoxic, and antigenotoxic activities of PD isolated from Plinia cauliflora seeds using in silico and in vitro assays. To elucidate the biological activities of PD, in silico tools indicative of antioxidant, antineoplastic, and chemopreventive activities of PD were used. Subsequently, the mutagenic/antimutagenic effects of PD were later assessed using bacteria with the Ames test, and the cytotoxic, genotoxic, and antigenotoxic effects utilizing human lymphocytes as evidenced by trypan blue exclusion test and CometChip assay. In silico analysis indicated potential antioxidant, chemopreventive, free radical scavenger, and cytostatic activities of PD. In the Ames test, PD was found to be not mutagenic; however, this plant component protected DNA against damage-mediated by mutagens 4-nitroquinoline-1-oxide and sodium azide. Regarding human lymphocytes, PD alone was cytotoxic and genotoxic; however, it also reduced DNA damage induced by doxorubicin at co- and post-treatment. In conclusion, PD showed genotoxic, antigenotoxic and cytotoxic effects in human lymphocytes and antimutagenic effects in bacteria.
Collapse
Affiliation(s)
- Amanda Silva Fernandes
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Jefferson Hollanda Véras
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Luana Santos Silva
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Sara Cristina Puga
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | | | - Clever Gomes Cardoso
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Cristiene Costa Carneiro
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Lee Chen-Chen
- Laboratory of Radiobiology and Mutagenesis, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
49
|
Eindhoven E, Lee A, Stilwell P, Mior S. I expected to be pain free: a qualitative study exploring athletes' expectations and experiences of care received by sports chiropractors. Chiropr Man Therap 2022; 30:21. [PMID: 35501876 PMCID: PMC9059405 DOI: 10.1186/s12998-022-00426-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Background Knowledge about patient satisfaction and experience with care they receive can guide practitioners in establishing doctor-patient relationships and improve health outcomes. Although evidence suggests high patient satisfaction with chiropractic care in general, there is limited understanding of the expectations and experiences of athletes receiving sports chiropractic care.
Objective To explore the athletes’ expectations and experiences with care received from sports chiropractors, and their perceptions of relevant areas of future research.
Methods A qualitative study was conducted through an interpretivist lens exploring the perspectives of elite and competitive athletes receiving care from sports chiropractors in Canada. Participants were purposively recruited and interviewed until saturation was reached. Two research team members independently analyzed the interview transcripts using a conventional approach to content analysis. Content was inductively coded and discussed by the research team to generate categories.
Results We interviewed 18 participants between December 2018 and March 2020, 14 were national level athletes participating in sports ranging from paddling to combat sports. Reported reasons for seeking care included acute care, injury prevention, enhancing performance and maintenance care. Generated categories were organized under topics of experience with care, expectations of care, and research agenda. Participants experienced a variety of interventions, reassurance, varying treatment times, and reported positive impact on their athletic performance. They expected musculoskeletal assessment and treatment including at and beyond the injury site, symptom improvement, good communication and expertise from the chiropractor. Some participants suggested interpersonal and interprofessional communication can be improved, in particular the level of collaboration with other members of their health care team. Overall, participants reported a high level of trust and satisfaction with care received from sports chiropractors. From our participants’ perspective, suggested areas of research should focus on injury mechanics and prevention, impact of care on performance, and interprofessional collaboration. Conclusions In general, participants were very satisfied with care. Overall, participants’ expectations and experiences aligned but changed over time. Addressing the findings of this study can be used to enhance the quality of care provided to athletes from sports chiropractors, as well as inform future research agendas. Further work assessing if athletes in other competitive levels have similar experiences and expectations is needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12998-022-00426-4.
Collapse
Affiliation(s)
- Evan Eindhoven
- Department of Graduate Studies, Canadian Memorial Chiropractic College, 6100 Leslie St., Toronto, ON, M2H 3J1, Canada.
| | - Alex Lee
- Department of Graduate Studies, Canadian Memorial Chiropractic College, 6100 Leslie St., Toronto, ON, M2H 3J1, Canada
| | - Peter Stilwell
- School of Physical and Occupational Therapy, McGill University, Montreal, Canada
| | - Silvano Mior
- Department of Graduate Studies, Canadian Memorial Chiropractic College, 6100 Leslie St., Toronto, ON, M2H 3J1, Canada.,Institute for Disability and Rehabilitation Research at, Ontario Tech University and Canadian Memorial Chiropractic College, Toronto, Canada.,Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Canada
| |
Collapse
|
50
|
Komakech R, Shim KS, Yim NH, Song JH, Yang S, Choi G, Lee J, Kim YG, Omujal F, Okello D, Agwaya MS, Kyeyune GN, Kan H, Hwang KS, Matsabisa MG, Kang Y. GC-MS and LC-TOF-MS profiles, toxicity, and macrophage-dependent in vitro anti-osteoporosis activity of Prunus africana (Hook f.) Kalkman Bark. Sci Rep 2022; 12:7044. [PMID: 35487926 PMCID: PMC9054796 DOI: 10.1038/s41598-022-10629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Osteoporosis affects millions of people worldwide. As such, this study assessed the macrophage-dependent in vitro anti-osteoporosis, phytochemical profile and hepatotoxicity effects in zebrafish larvae of the stem bark extracts of P. africana. Mouse bone marrow macrophages (BMM) cells were plated in 96-well plates and treated with P. africana methanolic bark extracts at concentrations of 0, 6.25, 12.5, 25, and 50 µg/ml for 24 h. The osteoclast tartrate-resistant acid phosphatase (TRAP) activity and cell viability were measured. Lipopolysaccharides (LPS) induced Nitrite (NO) and interleukin-6 (IL-6) production inhibitory effects of P. africana bark extracts (Methanolic, 150 µg/ml) and β-sitosterol (100 µM) were conducted using RAW 264.7 cells. Additionally, inhibition of IL-1β secretion and TRAP activity were determined for chlorogenic acid, catechin, naringenin and β-sitosterol. For toxicity study, zebrafish larvae were exposed to different concentrations of 25, 50, 100, and 200 µg/ml P. africana methanolic, ethanolic and water bark extracts. Dimethyl sulfoxide (0.05%) was used as a negative control and tamoxifen (5 µM) and dexamethasone (40 µM or 80 µM) were positive controls. The methanolic P. africana extracts significantly inhibited (p < 0.001) TRAP activity at all concentrations and at 12.5 and 25 µg/ml, the extract exhibited significant (p < 0.05) BMM cell viability. NO production was significantly inhibited (all p < 0.0001) by the sample. IL-6 secretion was significantly inhibited by P. africana methanolic extract (p < 0.0001) and β-sitosterol (p < 0.0001) and further, chlorogenic acid and naringenin remarkably inhibited IL-1β production. The P. africana methanolic extract significantly inhibited RANKL-induced TRAP activity. The phytochemical study of P. africana stem bark revealed a number of chemical compounds with anti-osteoporosis activity. There was no observed hepatocyte apoptosis in the liver of zebrafish larvae. In conclusion, the stem bark of P. africana is non-toxic to the liver and its inhibition of TRAP activity makes it an important source for future anti-osteoporosis drug development.
Collapse
Affiliation(s)
- Richard Komakech
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea.,University of Science and Technology (UST), Korean Convergence Medicine Major, KIOM campus, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea.,Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
| | - Ki-Shuk Shim
- Korea Institute of Oriental Medicine (KIOM), 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Nam-Hui Yim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Jun Ho Song
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Sungyu Yang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Goya Choi
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Jun Lee
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea.,University of Science and Technology (UST), Korean Convergence Medicine Major, KIOM campus, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Yong-Goo Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea
| | - Francis Omujal
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
| | - Denis Okello
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea.,University of Science and Technology (UST), Korean Convergence Medicine Major, KIOM campus, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea
| | - Moses Solomon Agwaya
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
| | - Grace Nambatya Kyeyune
- Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
| | - Hyemin Kan
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Kyu-Seok Hwang
- Bio and Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Motlalepula Gilbert Matsabisa
- IKS Research Group, Department of Pharmacology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9301, Free State, South Africa
| | - Youngmin Kang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-ro, Naju-si, Jeollanam-do, 58245, Republic of Korea. .,University of Science and Technology (UST), Korean Convergence Medicine Major, KIOM campus, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| |
Collapse
|