1
|
Tseilikman VE, Tseilikman OB, Shevyrin VA, Yegorov ON, Epitashvili AA, Aristov MR, Karpenko MN, Lipatov IA, Pashkov AA, Shamshurin MV, Buksha IA, Shonina AK, Kolesnikova A, Shatilov VA, Zhukov MS, Novak J. Unraveling the Liver-Brain Axis: Resveratrol's Modulation of Key Enzymes in Stress-Related Anxiety. Biomedicines 2024; 12:2063. [PMID: 39335576 PMCID: PMC11428544 DOI: 10.3390/biomedicines12092063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Stress-related anxiety disorders and anxiety-like behavior in post-traumatic stress disorder (PTSD) are associated with altered neurocircuitry pathways, neurotransmitter systems, and the activities of monoamine and glucocorticoid-metabolizing enzymes. Resveratrol, a natural polyphenol, is recognized for its antioxidant, anti-inflammatory, and antipsychiatric properties. Previous studies suggest that resveratrol reduces anxiety-like behavior in animal PTSD models by downregulating key enzymes such as 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) and monoamine oxidases (MAOs). However, the underlying mechanisms remain unclear. In this study, we explored the efficacy of resveratrol in treating stress-induced anxiety using a chronic predator stress model in rats. Resveratrol was administered intraperitoneally at 100 mg/kg following a 10-day stress exposure, and anxiety behavior was assessed with an elevated plus maze. Our results indicated that stress-related anxiety correlated with increased activities of brain MAO-A, MAO-B, and hepatic 11β-HSD-1, alongside elevated oxidative stress markers in the brain and liver. Resveratrol treatment improved anxiety behavior and decreased enzyme activities, oxidative stress, and hepatic damage. We demonstrate that resveratrol exerts antianxiogenic effects by modulating glucocorticoid and monoamine metabolism in the brain and liver. These findings suggest resveratrol's potential as a therapeutic agent for anxiety disorders, warranting further clinical investigation.
Collapse
Affiliation(s)
- Vadim E. Tseilikman
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Zelman Institute of Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Olga B. Tseilikman
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Vadim A. Shevyrin
- Research, Educational and Innovative Center of Chemical and Pharmaceutical Technologies Chemical Technology Institute, Ural Federal University Named after the First President of Russia B.N. Yeltsin, 620002 Ekaterinburg, Russia
| | - Oleg N. Yegorov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | | | - Maxim R. Aristov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Marina N. Karpenko
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Ilya A. Lipatov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Anton A. Pashkov
- Federal Neurosurgical Center, 630048 Novosibirsk, Russia
- Department of Data Collection and Processing Systems, Novosibirsk State Technical University, 630048 Novosibirsk, Russia
| | - Maxim V. Shamshurin
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Irina A. Buksha
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Anna K. Shonina
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Alexandra Kolesnikova
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Vladislav A. Shatilov
- Scientific and Educational Center ‘Biomedical Technologies’, School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Maxim S. Zhukov
- Faculty of Fundamental Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Jurica Novak
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
2
|
Piccolo D, Zarouchlioti C, Bellingham J, Guarascio R, Ziaka K, Molday RS, Cheetham ME. A Proximity Complementation Assay to Identify Small Molecules That Enhance the Traffic of ABCA4 Misfolding Variants. Int J Mol Sci 2024; 25:4521. [PMID: 38674104 PMCID: PMC11050442 DOI: 10.3390/ijms25084521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
ABCA4-related retinopathy is the most common inherited Mendelian eye disorder worldwide, caused by biallelic variants in the ATP-binding cassette transporter ABCA4. To date, over 2200 ABCA4 variants have been identified, including missense, nonsense, indels, splice site and deep intronic defects. Notably, more than 60% are missense variants that can lead to protein misfolding, mistrafficking and degradation. Currently no approved therapies target ABCA4. In this study, we demonstrate that ABCA4 misfolding variants are temperature-sensitive and reduced temperature growth (30 °C) improves their traffic to the plasma membrane, suggesting the folding of these variants could be rescuable. Consequently, an in vitro platform was developed for the rapid and robust detection of ABCA4 traffic to the plasma membrane in transiently transfected cells. The system was used to assess selected candidate small molecules that were reported to improve the folding or traffic of other ABC transporters. Two candidates, 4-PBA and AICAR, were identified and validated for their ability to enhance both wild-type ABCA4 and variant trafficking to the cell surface in cell culture. We envision that this platform could serve as a primary screen for more sophisticated in vitro testing, enabling the discovery of breakthrough agents to rescue ABCA4 protein defects and mitigate ABCA4-related retinopathy.
Collapse
Affiliation(s)
- Davide Piccolo
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Christina Zarouchlioti
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - James Bellingham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Rosellina Guarascio
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Kalliopi Ziaka
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| | - Robert S. Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Michael E. Cheetham
- UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK; (D.P.); (C.Z.); (R.G.); (K.Z.)
| |
Collapse
|
3
|
Lombardi JP, Kinzlmaier DA, Jacob TC. Visualizing GABA A Receptor Trafficking Dynamics with Fluorogenic Protein Labeling. ACTA ACUST UNITED AC 2021; 92:e97. [PMID: 32364672 DOI: 10.1002/cpns.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It is increasingly evident that neurotransmitter receptors, including ionotropic GABA A receptors (GABAARs), exhibit highly dynamic trafficking and cell surface mobility. Regulated trafficking to and from the surface is a critical determinant of GABAAR neurotransmission. Receptors delivered by exocytosis diffuse laterally in the plasma membrane, with tethering and reduced movement at synapses occurring through receptor interactions with the subsynaptic scaffold. After diffusion away from synapses, receptors are internalized by clathrin-dependent endocytosis at extrasynaptic sites and can be either recycled back to the cell membrane or degraded in lysosomes. To study the dynamics of these key trafficking events in neurons, we have developed novel optical methods based around receptors containing a dual-tagged γ2 subunit (γ2pHFAP) in combination with fluorogen dyes. Specifically, the GABAAR γ2 subunit is tagged with a pH-sensitive green fluorescent protein and a fluorogen-activating peptide (FAP). The FAP allows receptor labeling with fluorogen dyes that are optically silent until bound to the FAP. Combining FAP and fluorescent imaging with organelle labeling allows novel and accurate measurement of receptor turnover and accumulation into intracellular compartments under basal conditions in scenarios ranging from in vitro seizure models to drug exposure paradigms. Here we provide a protocol to track and quantify receptors in transit from the neuronal surface to endosomes and lysosomes. This protocol is readily applicable to cell lines and primary cells, allowing rapid quantitative measurements of receptor surface levels and postendocytic trafficking decisions. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Preparation of cortical neuronal cultures for imaging assays Basic Protocol 2: Surface receptor internalization and trafficking to early endosomes Basic Protocol 3: Measurement of receptor steady state surface level, synaptic level, and lysosomal targeting.
Collapse
Affiliation(s)
- Jacob P Lombardi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Kinzlmaier
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
4
|
Smith JS, Pack TF, Inoue A, Lee C, Zheng K, Choi I, Eiger DS, Warman A, Xiong X, Ma Z, Viswanathan G, Levitan IM, Rochelle LK, Staus DP, Snyder JC, Kahsai AW, Caron MG, Rajagopal S. Noncanonical scaffolding of G αi and β-arrestin by G protein-coupled receptors. Science 2021; 371:science.aay1833. [PMID: 33479120 DOI: 10.1126/science.aay1833] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/29/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) are common drug targets and canonically couple to specific Gα protein subtypes and β-arrestin adaptor proteins. G protein-mediated signaling and β-arrestin-mediated signaling have been considered separable. We show here that GPCRs promote a direct interaction between Gαi protein subtype family members and β-arrestins regardless of their canonical Gα protein subtype coupling. Gαi:β-arrestin complexes bound extracellular signal-regulated kinase (ERK), and their disruption impaired both ERK activation and cell migration, which is consistent with β-arrestins requiring a functional interaction with Gαi for certain signaling events. These results introduce a GPCR signaling mechanism distinct from canonical G protein activation in which GPCRs cause the formation of Gαi:β-arrestin signaling complexes.
Collapse
Affiliation(s)
- Jeffrey S Smith
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F Pack
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Asuka Inoue
- Department of Pharmaceutical Sciences, Tohoku University, Japan
| | - Claudia Lee
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Kevin Zheng
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Issac Choi
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Dylan S Eiger
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Anmol Warman
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Xinyu Xiong
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhiyuan Ma
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Gayathri Viswanathan
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Ian M Levitan
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lauren K Rochelle
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Dean P Staus
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Joshua C Snyder
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Alem W Kahsai
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Marc G Caron
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
5
|
Slosky LM, Bai Y, Toth K, Ray C, Rochelle LK, Badea A, Chandrasekhar R, Pogorelov VM, Abraham DM, Atluri N, Peddibhotla S, Hedrick MP, Hershberger P, Maloney P, Yuan H, Li Z, Wetsel WC, Pinkerton AB, Barak LS, Caron MG. β-Arrestin-Biased Allosteric Modulator of NTSR1 Selectively Attenuates Addictive Behaviors. Cell 2020; 181:1364-1379.e14. [PMID: 32470395 PMCID: PMC7466280 DOI: 10.1016/j.cell.2020.04.053] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 01/21/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
Small molecule neurotensin receptor 1 (NTSR1) agonists have been pursued for more than 40 years as potential therapeutics for psychiatric disorders, including drug addiction. Clinical development of NTSR1 agonists has, however, been precluded by their severe side effects. NTSR1, a G protein-coupled receptor (GPCR), signals through the canonical activation of G proteins and engages β-arrestins to mediate distinct cellular signaling events. Here, we characterize the allosteric NTSR1 modulator SBI-553. This small molecule not only acts as a β-arrestin-biased agonist but also extends profound β-arrestin bias to the endogenous ligand by selectively antagonizing G protein signaling. SBI-553 shows efficacy in animal models of psychostimulant abuse, including cocaine self-administration, without the side effects characteristic of balanced NTSR1 agonism. These findings indicate that NTSR1 G protein and β-arrestin activation produce discrete and separable physiological effects, thus providing a strategy to develop safer GPCR-targeting therapeutics with more directed pharmacological action.
Collapse
Affiliation(s)
- Lauren M Slosky
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Yushi Bai
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Krisztian Toth
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Pharmaceutical Sciences, Campbell University, Buies Creek, NC 27506, USA
| | - Caroline Ray
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | | | - Alexandra Badea
- Departments of Radiology and Neurology, Brain Imaging and Analysis Center, Duke University, Durham, NC 27710, USA
| | | | - Vladimir M Pogorelov
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | - Dennis M Abraham
- Department of Medicine, Division of Cardiology and Duke Cardiovascular Physiology Core, Duke University, Durham, NC 27710, USA
| | - Namratha Atluri
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Michael P Hedrick
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Patrick Maloney
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Hong Yuan
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Linebarger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - William C Wetsel
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA
| | - Anthony B Pinkerton
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Lawrence S Barak
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| | - Marc G Caron
- Department of Cell Biology, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
6
|
Perkins LA, Bruchez MP. Fluorogen activating protein toolset for protein trafficking measurements. Traffic 2020; 21:333-348. [PMID: 32080949 PMCID: PMC7462100 DOI: 10.1111/tra.12722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Throughout the past decade the use of fluorogen activating proteins (FAPs) has expanded with several unique reporter dyes that support a variety of methods to specifically quantify protein trafficking events. The platform's capabilities have been demonstrated in several systems and shared for widespread use. This review will highlight the current FAP labeling techniques for protein traffic measurements and focus on the use of the different designed fluorogenic dyes for selective and specific labeling applications.
Collapse
Affiliation(s)
- Lydia A. Perkins
- School of MedicineUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Marcel P. Bruchez
- The Department of Biological SciencesCarnegie MellonPittsburghPennsylvaniaUSA
- Department of ChemistryCarnegie MellonPittsburghPennsylvaniaUSA
- Molecular and Biosensor Imaging CenterCarnegie MellonPittsburghPennsylvaniaUSA
| |
Collapse
|
7
|
Boone PG, Rochelle LK, Ginzel JD, Lubkov V, Roberts WL, Nicholls PJ, Bock C, Flowers ML, von Furstenberg RJ, Stripp BR, Agarwal P, Borowsky AD, Cardiff RD, Barak LS, Caron MG, Lyerly HK, Snyder JC. A cancer rainbow mouse for visualizing the functional genomics of oncogenic clonal expansion. Nat Commun 2019; 10:5490. [PMID: 31792216 PMCID: PMC6889384 DOI: 10.1038/s41467-019-13330-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022] Open
Abstract
Field cancerization is a premalignant process marked by clones of oncogenic mutations spreading through the epithelium. The timescales of intestinal field cancerization can be variable and the mechanisms driving the rapid spread of oncogenic clones are unknown. Here we use a Cancer rainbow (Crainbow) modelling system for fluorescently barcoding somatic mutations and directly visualizing the clonal expansion and spread of oncogenes. Crainbow shows that mutations of ß-catenin (Ctnnb1) within the intestinal stem cell results in widespread expansion of oncogenes during perinatal development but not in adults. In contrast, mutations that extrinsically disrupt the stem cell microenvironment can spread in adult intestine without delay. We observe the rapid spread of premalignant clones in Crainbow mice expressing oncogenic Rspondin-3 (RSPO3), which occurs by increasing crypt fission and inhibiting crypt fixation. Crainbow modelling provides insight into how somatic mutations rapidly spread and a plausible mechanism for predetermining the intratumor heterogeneity found in colon cancers.
Collapse
Affiliation(s)
- Peter G Boone
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Lauren K Rochelle
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua D Ginzel
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Veronica Lubkov
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Wendy L Roberts
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - P J Nicholls
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Cheryl Bock
- Transgenic Mouse Facility, Duke Cancer Institute, Durham, NC, USA
| | - Mei Lang Flowers
- Transgenic Mouse Facility, Duke Cancer Institute, Durham, NC, USA
| | - Richard J von Furstenberg
- Division of Gastroenterology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Barry R Stripp
- Department of Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Pankaj Agarwal
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine and The Center for Comparative Medicine, University of California-Davis, Davis, CA, USA
| | - Robert D Cardiff
- Department of Pathology and Laboratory Medicine and The Center for Comparative Medicine, University of California-Davis, Davis, CA, USA
| | - Larry S Barak
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Marc G Caron
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - H Kim Lyerly
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Joshua C Snyder
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Crosby EJ, Gwin W, Blackwell K, Marcom PK, Chang S, Maecker HT, Broadwater G, Hyslop T, Kim S, Rogatko A, Lubkov V, Snyder JC, Osada T, Hobeika AC, Morse MA, Lyerly HK, Hartman ZC. Vaccine-Induced Memory CD8 + T Cells Provide Clinical Benefit in HER2 Expressing Breast Cancer: A Mouse to Human Translational Study. Clin Cancer Res 2019; 25:2725-2736. [PMID: 30635338 PMCID: PMC6497539 DOI: 10.1158/1078-0432.ccr-18-3102] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/28/2018] [Accepted: 01/08/2019] [Indexed: 01/23/2023]
Abstract
PURPOSE Immune-based therapy for metastatic breast cancer has had limited success, particularly in molecular subtypes with low somatic mutations rates. Strategies to augment T-cell infiltration of tumors include vaccines targeting established oncogenic drivers such as the genomic amplification of HER2. We constructed a vaccine based on a novel alphaviral vector encoding a portion of HER2 (VRP-HER2). PATIENTS AND METHODS In preclinical studies, mice were immunized with VRP-HER2 before or after implantation of hHER2+ tumor cells and HER2-specific immune responses and antitumor function were evaluated. We tested VRP-HER2 in a phase I clinical trial where subjects with advanced HER2-overexpressing malignancies in cohort 1 received VRP-HER2 every 2 weeks for a total of 3 doses. In cohort 2, subjects received the same schedule concurrently with a HER2-targeted therapy. RESULTS Vaccination in preclinical models with VRP-HER2 induced HER2-specific T cells and antibodies while inhibiting tumor growth. VRP-HER2 was well tolerated in patients and vaccination induced HER2-specific T cells and antibodies. Although a phase I study, there was 1 partial response and 2 patients with continued stable disease. Median OS was 50.2 months in cohort 1 (n = 4) and 32.7 months in cohort 2 (n = 18). Perforin expression by memory CD8 T cells post-vaccination significantly correlated with improved PFS. CONCLUSIONS VRP-HER2 increased HER2-specific memory CD8 T cells and had antitumor effects in preclinical and clinical studies. The expansion of HER2-specific memory CD8 T cells in vaccinated patients was significantly correlated with increased PFS. Subsequent studies will seek to enhance T-cell activity by combining with anti-PD-1.
Collapse
Affiliation(s)
- Erika J Crosby
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - William Gwin
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington
| | - Kimberly Blackwell
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Paul K Marcom
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Serena Chang
- Department of Microbiology and Immunology, Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Holden T Maecker
- Department of Microbiology and Immunology, Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, California
| | - Gloria Broadwater
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Terry Hyslop
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - Sungjin Kim
- Department of Biomedical Sciences, Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andre Rogatko
- Department of Biomedical Sciences, Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Veronica Lubkov
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Joshua C Snyder
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Takuya Osada
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Amy C Hobeika
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
| | - Michael A Morse
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - H Kim Lyerly
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina.
| | - Zachary C Hartman
- Department of Surgery, Division of Surgical Sciences, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
9
|
Jaykumar AB, Caceres PS, Ortiz PA. Single-molecule labeling for studying trafficking of renal transporters. Am J Physiol Renal Physiol 2018; 315:F1243-F1249. [PMID: 30043625 DOI: 10.1152/ajprenal.00082.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability to detect and track single molecules presents the advantage of visualizing the complex behavior of transmembrane proteins with a time and space resolution that would otherwise be lost with traditional labeling and biochemical techniques. Development of new imaging probes has provided a robust method to study their trafficking and surface dynamics. This mini-review focuses on the current technology available for single-molecule labeling of transmembrane proteins, their advantages, and limitations. We also discuss the application of these techniques to the study of renal transporter trafficking in light of recent research.
Collapse
Affiliation(s)
- Ankita Bachhawat Jaykumar
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| | - Paulo S Caceres
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan
| | - Pablo A Ortiz
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital , Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine , Detroit, Michigan
| |
Collapse
|
10
|
Mackie DI, Al Mutairi F, Davis RB, Kechele DO, Nielsen NR, Snyder JC, Caron MG, Kliman HJ, Berg JS, Simms J, Poyner DR, Caron KM. h CALCRL mutation causes autosomal recessive nonimmune hydrops fetalis with lymphatic dysplasia. J Exp Med 2018; 215:2339-2353. [PMID: 30115739 PMCID: PMC6122977 DOI: 10.1084/jem.20180528] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/15/2018] [Accepted: 07/26/2018] [Indexed: 01/19/2023] Open
Abstract
We report the first case of nonimmune hydrops fetalis (NIHF) associated with a recessive, in-frame deletion of V205 in the G protein-coupled receptor, Calcitonin Receptor-Like Receptor (hCALCRL). Homozygosity results in fetal demise from hydrops fetalis, while heterozygosity in females is associated with spontaneous miscarriage and subfertility. Using molecular dynamic modeling and in vitro biochemical assays, we show that the hCLR(V205del) mutant results in misfolding of the first extracellular loop, reducing association with its requisite receptor chaperone, receptor activity modifying protein (RAMP), translocation to the plasma membrane and signaling. Using three independent genetic mouse models we establish that the adrenomedullin-CLR-RAMP2 axis is both necessary and sufficient for driving lymphatic vascular proliferation. Genetic ablation of either lymphatic endothelial Calcrl or nonendothelial Ramp2 leads to severe NIHF with embryonic demise and placental pathologies, similar to that observed in humans. Our results highlight a novel candidate gene for human congenital NIHF and provide structure-function insights of this signaling axis for human physiology.
Collapse
Affiliation(s)
- Duncan I Mackie
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - Fuad Al Mutairi
- Department of Pediatrics, King Abdulaziz Medical City, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
| | - Reema B Davis
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - Daniel O Kechele
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - Natalie R Nielsen
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
| | - Joshua C Snyder
- Department of Cell Biology, Duke University Medical Center, Durham, NC
- Department of Surgery, Duke University Medical Center, Durham, NC
| | - Marc G Caron
- Department of Cell Biology, Duke University Medical Center, Durham, NC
| | - Harvey J Kliman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT
| | - Jonathan S Berg
- Department of Genetics, University of North Carolina, Chapel Hill, NC
| | - John Simms
- School of Life Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, England, UK
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, England, UK
| | - Kathleen M Caron
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC
- Department of Genetics, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
11
|
Li C, Mourton A, Plamont MA, Rodrigues V, Aujard I, Volovitch M, Le Saux T, Perez F, Vriz S, Jullien L, Joliot A, Gautier A. Fluorogenic Probing of Membrane Protein Trafficking. Bioconjug Chem 2018; 29:1823-1828. [PMID: 29791141 DOI: 10.1021/acs.bioconjchem.8b00180] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methods to differentially label cell-surface and intracellular membrane proteins are indispensable for understanding their function and the regulation of their trafficking. We present an efficient strategy for the rapid and selective fluorescent labeling of membrane proteins based on the chemical-genetic fluorescent marker FAST (fluorescence-activating and absorption-shifting tag). Cell-surface FAST-tagged proteins could be selectively and rapidly labeled using fluorogenic membrane-impermeant 4-hydroxybenzylidene rhodanine (HBR) analogs. This approach allows the study of protein trafficking at the plasma membrane with various fluorometric techniques, and opens exciting prospects for the high-throughput screening of small molecules able to restore disease-related trafficking defects.
Collapse
Affiliation(s)
- Chenge Li
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Aurélien Mourton
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France , CNRS, INSERM, PSL Research University , 75231 Paris , France
- PSL Research University , 75006 Paris , France
| | - Marie-Aude Plamont
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Vanessa Rodrigues
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Isabelle Aujard
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France , CNRS, INSERM, PSL Research University , 75231 Paris , France
- École Normale Supérieure, Department of Biology , PSL Research University , 75005 Paris , France
| | - Thomas Le Saux
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Franck Perez
- Institut Curie, PSL Research University, CNRS UMR144 , 26 rue d'Ulm , 75248 Paris Cedex 05, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France , CNRS, INSERM, PSL Research University , 75231 Paris , France
- Université Paris Diderot, Sorbonne Paris Cité , Biology Department , 75205 Paris Cedex 13, France
| | - Ludovic Jullien
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France , CNRS, INSERM, PSL Research University , 75231 Paris , France
| | - Arnaud Gautier
- PASTEUR, Département de Chimie, École Normale Supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| |
Collapse
|
12
|
Lorenz-Guertin JM, Wilcox MR, Zhang M, Larsen MB, Pilli J, Schmidt BF, Bruchez MP, Johnson JW, Waggoner AS, Watkins SC, Jacob TC. A versatile optical tool for studying synaptic GABA A receptor trafficking. J Cell Sci 2017; 130:3933-3945. [PMID: 29025969 DOI: 10.1242/jcs.205286] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022] Open
Abstract
Live-cell imaging methods can provide critical real-time receptor trafficking measurements. Here, we describe an optical tool to study synaptic γ-aminobutyric acid (GABA) type A receptor (GABAAR) dynamics through adaptable fluorescent-tracking capabilities. A fluorogen-activating peptide (FAP) was genetically inserted into a GABAAR γ2 subunit tagged with pH-sensitive green fluorescent protein (γ2pHFAP). The FAP selectively binds and activates Malachite Green (MG) dyes that are otherwise non-fluorescent in solution. γ2pHFAP GABAARs are expressed at the cell surface in transfected cortical neurons, form synaptic clusters and do not perturb neuronal development. Electrophysiological studies show γ2pHFAP GABAARs respond to GABA and exhibit positive modulation upon stimulation with the benzodiazepine diazepam. Imaging studies using γ2pHFAP-transfected neurons and MG dyes show time-dependent receptor accumulation into intracellular vesicles, revealing constitutive endosomal and lysosomal trafficking. Simultaneous analysis of synaptic, surface and lysosomal receptors using the γ2pHFAP-MG dye approach reveals enhanced GABAAR turnover following a bicucculine-induced seizure paradigm, a finding not detected by standard surface receptor measurements. To our knowledge, this is the first application of the FAP-MG dye system in neurons, demonstrating the versatility to study nearly all phases of GABAAR trafficking.
Collapse
Affiliation(s)
- Joshua M Lorenz-Guertin
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Madeleine R Wilcox
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ming Zhang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mads B Larsen
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jyotsna Pilli
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Brigitte F Schmidt
- Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Marcel P Bruchez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jon W Johnson
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alan S Waggoner
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Simon C Watkins
- Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tija C Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Li C, Tebo AG, Gautier A. Fluorogenic Labeling Strategies for Biological Imaging. Int J Mol Sci 2017; 18:ijms18071473. [PMID: 28698494 PMCID: PMC5535964 DOI: 10.3390/ijms18071473] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/27/2022] Open
Abstract
The spatiotemporal fluorescence imaging of biological processes requires effective tools to label intracellular biomolecules in living systems. This review presents a brief overview of recent labeling strategies that permits one to make protein and RNA strongly fluorescent using synthetic fluorogenic probes. Genetically encoded tags selectively binding the exogenously applied molecules ensure high labeling selectivity, while high imaging contrast is achieved using fluorogenic chromophores that are fluorescent only when bound to their cognate tag, and are otherwise dark. Beyond avoiding the need for removal of unbound synthetic dyes, these approaches allow the development of sophisticated imaging assays, and open exciting prospects for advanced imaging, particularly for multiplexed imaging and super-resolution microscopy.
Collapse
Affiliation(s)
- Chenge Li
- École Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France.
- Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France.
| | - Alison G Tebo
- École Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France.
- Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France.
| | - Arnaud Gautier
- École Normale Supérieure, PSL Research University, UPMC Univ Paris 06, CNRS, Département de Chimie, PASTEUR, 24 rue Lhomond, 75005 Paris, France.
- Sorbonne Universités, UPMC Univ Paris 06, ENS, CNRS, PASTEUR, 75005 Paris, France.
| |
Collapse
|
14
|
Ray C, Soderblom EJ, Bai Y, Carroll FI, Caron MG, Barak LS. Probing the Allosteric Role of the α5 Subunit of α3β4α5 Nicotinic Acetylcholine Receptors by Functionally Selective Modulators and Ligands. ACS Chem Biol 2017; 12:702-714. [PMID: 28045487 DOI: 10.1021/acschembio.6b01117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nicotinic acetylcholine receptors regulate the nicotine dependence encountered with cigarette smoking, and this has stimulated a search for drugs binding the responsible receptor subtypes. Studies link a gene cluster encoding for α3β4α5-D398N nicotinic acetylcholine receptors to lung cancer risk as well as link a second mutation in this cluster to an increased risk for nicotine dependence. However, there are currently no recognized drugs for discriminating α3β4α5 signaling. In this study, we describe the development of homogeneous HEK-293 cell clones of α3β4 and α3β4α5 receptors appropriate for drug screening and characterizing biochemical and pharmacological properties of incorporated α5 subunits. Clones were assessed for plasma membrane expression of the individual receptor subunits by mass spectrometry and immunochemistry, and their calcium flux was measured in the presence of a library of kinase inhibitors and a focused library of acetylcholine receptor ligands. We demonstrated an incorporation of two α3 subunits in approximately 98% of plasma membrane receptor pentamers, indicating a 2/3 subunit expression ratio of α3 to β4 alone or to coexpressed β4 and α5. With prolonged nicotine exposure, the plasma membrane expression of receptors with and without incorporated α5 increased. Whereas α5 subunit expression decreased the cell calcium response to nicotine and reduced plasma membrane receptor number, it partially protected receptors from nicotine mediated desensitization. Hit compounds from both libraries suggest the α5 and α5-D398N subunits allosterically modify the behavior of nicotine at the parent α3β4 nicotinic acetylcholine receptor. These studies identify pharmacological tools from two distinct classes of drugs, antagonists and modifiers that are α5 and α5-D398N subtype selective that provide a means to characterize the role of the CHRNA5/A3/B4 gene cluster in smoking and cancer.
Collapse
Affiliation(s)
| | | | | | - F. Ivy Carroll
- Departments
of Pharmacology and Toxicology, RTI International, 3040 E. Cornwallis Road, Durham, North Carolina 27709, United States
| | | | | |
Collapse
|
15
|
Snyder JC, Rochelle LK, Ray C, Pack TF, Bock CB, Lubkov V, Lyerly HK, Waggoner AS, Barak LS, Caron MG. Inhibiting clathrin-mediated endocytosis of the leucine-rich G protein-coupled receptor-5 diminishes cell fitness. J Biol Chem 2017; 292:7208-7222. [PMID: 28275053 PMCID: PMC5409487 DOI: 10.1074/jbc.m116.756635] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 03/08/2017] [Indexed: 12/19/2022] Open
Abstract
The leucine-rich G protein-coupled receptor-5 (LGR5) is expressed in adult tissue stem cells of many epithelia, and its overexpression is negatively correlated with cancer prognosis. LGR5 potentiates WNT/β-catenin signaling through its unique constitutive internalization property that clears negative regulators of the WNT-receptor complex from the membrane. However, both the mechanism and physiological relevance of LGR5 internalization are unclear. Therefore, a natural product library was screened to discover LGR5 internalization inhibitors and gain mechanistic insight into LGR5 internalization. The plant lignan justicidin B blocked the constitutive internalization of LGR5. Justicidin B is structurally similar to more potent vacuolar-type H+-ATPase inhibitors, which all inhibited LGR5 internalization by blocking clathrin-mediated endocytosis. We then tested the physiological relevance of LGR5 internalization blockade in vivo A LGR5-rainbow (LBOW) mouse line was engineered to express three different LGR5 isoforms along with unique fluorescent protein lineage reporters in the same mouse. In this manner, the effects of each isoform on cell fate can be simultaneously assessed through simple fluorescent imaging for each lineage reporter. LBOW mice express three different forms of LGR5, a wild-type form that constitutively internalizes and two mutant forms whose internalization properties have been compromised by genetic perturbations within the carboxyl-terminal tail. LBOW was activated in the intestinal epithelium, and a year-long lineage-tracing course revealed that genetic blockade of LGR5 internalization diminished cell fitness. Together these data provide proof-of-concept genetic evidence that blocking the clathrin-mediated endocytosis of LGR5 could be used to pharmacologically control cell behavior.
Collapse
Affiliation(s)
| | | | | | | | - Cheryl B Bock
- Duke Cancer Institute Transgenic Core, Duke University Medical Center, Durham, North Carolina 27712 and
| | | | | | - Alan S Waggoner
- Department of Biological Sciences and Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | | | | |
Collapse
|
16
|
Beerepoot P, Nazari R, Salahpour A. Pharmacological chaperone approaches for rescuing GPCR mutants: Current state, challenges, and screening strategies. Pharmacol Res 2017; 117:242-251. [DOI: 10.1016/j.phrs.2016.12.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022]
|
17
|
Choudhary P, Armstrong EJ, Jorgensen CC, Piotrowski M, Barthmes M, Torella R, Johnston SE, Maruyama Y, Janiszewski JS, Storer RI, Skerratt SE, Benn CL. Discovery of Compounds that Positively Modulate the High Affinity Choline Transporter. Front Mol Neurosci 2017; 10:40. [PMID: 28289374 PMCID: PMC5326799 DOI: 10.3389/fnmol.2017.00040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/03/2017] [Indexed: 01/09/2023] Open
Abstract
Cholinergic hypofunction is associated with decreased attention and cognitive deficits in the central nervous system in addition to compromised motor function. Consequently, stimulation of cholinergic neurotransmission is a rational therapeutic approach for the potential treatment of a variety of neurological conditions. High affinity choline uptake (HACU) into acetylcholine (ACh)-synthesizing neurons is critically mediated by the sodium- and pH-dependent high-affinity choline transporter (CHT, encoded by the SLC5A7 gene). This transporter is comparatively well-characterized but otherwise unexplored as a potential drug target. We therefore sought to identify small molecules that would enable testing of the hypothesis that positive modulation of CHT mediated transport would enhance activity-dependent cholinergic signaling. We utilized existing and novel screening techniques for their ability to reveal both positive and negative modulation of CHT using literature tools. A screening campaign was initiated with a bespoke compound library comprising both the Pfizer Chemogenomic Library (CGL) of 2,753 molecules designed specifically to help enable the elucidation of new mechanisms in phenotypic screens and 887 compounds from a virtual screening campaign to select molecules with field-based similarities to reported negative and positive allosteric modulators. We identified a number of previously unknown active and structurally distinct molecules that could be used as tools to further explore CHT biology or as a starting point for further medicinal chemistry.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuya Maruyama
- Central Research Laboratory, Kissei Pharmaceutical Co., Ltd. Nagano, Japan
| | | | - R Ian Storer
- Pfizer, Worldwide Medicinal Chemistry Cambridge, UK
| | | | | |
Collapse
|
18
|
Khan Z, Orr A, Michalopoulos GK, Ranganathan S. Immunohistochemical Analysis of the Stem Cell Marker LGR5 in Pediatric Liver Disease. Pediatr Dev Pathol 2017; 20:16-27. [PMID: 28276299 PMCID: PMC5040613 DOI: 10.1177/1093526616686244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aims In regenerating liver, hepatic progenitor cells (HPCs) are recruited in response to injury; however, few highly specific human HPC markers exist for the hepatocyte lineage. Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), a Wnt-associated stem cell marker, has been extensively studied in intestinal stem cells, but little is known about its expression in human liver. We hypothesized that LGR5+ HPCs are induced in the regenerative response to pediatric liver injury. Methods and results Immunohistochemistry was used to characterize LGR5 expression in pediatric liver explants (n = 36). We found cytoplasmic LGR5 expression in all cases; although, much less was observed in acute hepatic necrosis compared to chronic liver diseases. In the latter cases, >50% of hepatocytes were LGR5+, signifying a robust regenerative response mainly in the periphery of regenerative nodules. Only weak LGR5 staining was noted in bile ducts, suggesting hepatocyte-specific expression at the interface. Conclusions Although we observed some degree of regenerative response in all cases, LGR5 was highly expressed in chronic liver disease, possibly due to alternate regeneration and reprogramming pathways. LGR5 is predominant in peri-septal hepatocytes rather than epithelial cell adhesion molecule (EpCAM) positive ductular reactions in chronic pediatric liver diseases and may represent a transitional HPC phenotype for the hepatocyte lineage. These studies are the first to support a unique role for LGR5 in human hepatocyte regeneration and as a potential predictive biomarker for recovery of liver function in children. Future work will also investigate the molecular mechanisms behind LGR5 expression.
Collapse
Affiliation(s)
- Zahida Khan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition,McGowan Institute for Regenerative Medicine,Department of Pathology, University of Pittsburgh School of Medicine
| | - Anne Orr
- Department of Pathology, University of Pittsburgh School of Medicine
| | - George K Michalopoulos
- McGowan Institute for Regenerative Medicine,Department of Pathology, University of Pittsburgh School of Medicine
| | - Sarangarajan Ranganathan
- Department of Pathology, Children's Hospital of Pittsburgh of UPMC,Department of Pathology, University of Pittsburgh School of Medicine
| |
Collapse
|
19
|
Boheler KR, Gundry RL. Concise Review: Cell Surface N-Linked Glycoproteins as Potential Stem Cell Markers and Drug Targets. Stem Cells Transl Med 2016; 6:131-138. [PMID: 28170199 PMCID: PMC5442750 DOI: 10.5966/sctm.2016-0109] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022] Open
Abstract
Stem cells and their derivatives hold great promise to advance regenerative medicine. Critical to the progression of this field is the identification and utilization of antibody‐accessible cell‐surface proteins for immunophenotyping and cell sorting—techniques essential for assessment and isolation of defined cell populations with known functional and therapeutic properties. Beyond their utility for cell identification and selection, cell‐surface proteins are also major targets for pharmacological intervention. Although comprehensive cell‐surface protein maps are highly valuable, they have been difficult to define until recently. In this review, we discuss the application of a contemporary targeted chemoproteomic‐based technique for defining the cell‐surface proteomes of stem and progenitor cells. In applying this approach to pluripotent stem cells (PSCs), these studies have improved the biological understanding of these cells, led to the enhanced use and development of antibodies suitable for immunophenotyping and sorting, and contributed to the repurposing of existing drugs without the need for high‐throughput screening. The utility of this latter approach was first demonstrated with human PSCs (hPSCs) through the identification of small molecules that are selectively toxic to hPSCs and have the potential for eliminating confounding and tumorigenic cells in hPSC‐derived progeny destined for research and transplantation. Overall, the cutting‐edge technologies reviewed here will accelerate the development of novel cell‐surface protein targets for immunophenotyping, new reagents to improve the isolation of therapeutically qualified cells, and pharmacological studies to advance the treatment of intractable diseases amenable to cell‐replacement therapies. Stem Cells Translational Medicine2017;6:131–138
Collapse
Affiliation(s)
- Kenneth R. Boheler
- Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Rebekah L. Gundry
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
20
|
Barak LS, Bai Y, Peterson S, Evron T, Urs NM, Peddibhotla S, Hedrick MP, Hershberger P, Maloney PR, Chung TD, Rodriguiz RM, Wetsel WC, Thomas JB, Hanson GR, Pinkerton AB, Caron MG. ML314: A Biased Neurotensin Receptor Ligand for Methamphetamine Abuse. ACS Chem Biol 2016; 11:1880-90. [PMID: 27119457 DOI: 10.1021/acschembio.6b00291] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pharmacological treatment for methamphetamine addiction will provide important societal benefits. Neurotensin receptor NTR1 and dopamine receptor distributions coincide in brain areas regulating methamphetamine-associated reward, and neurotensin peptides produce behaviors opposing psychostimulants. Therefore, undesirable methamphetamine-associated activities should be treatable with druggable NTR1 agonists, but no such FDA-approved therapeutics exist. We address this limitation with proof-of-concept data for ML314, a small-molecule, brain penetrant, β-arrestin biased, NTR1 agonist. ML314 attenuates amphetamine-like hyperlocomotion in dopamine transporter knockout mice, and in C57BL/6J mice it attenuates methamphetamine-induced hyperlocomotion, potentiates the psychostimulant inhibitory effects of a ghrelin antagonist, and reduces methamphetamine-associated conditioned place preference. In rats, ML314 blocks methamphetamine self-administration. ML314 acts as an allosteric enhancer of endogenous neurotensin, unmasking stoichiometric numbers of hidden NTR1 binding sites in transfected-cell membranes or mouse striatal membranes, while additionally supporting NTR1 endocytosis in cells in the absence of NT peptide. These results indicate ML314 is a viable, preclinical lead for methamphetamine abuse treatment and support an allosteric model of G protein-coupled receptor signaling.
Collapse
Affiliation(s)
- Larry S. Barak
- Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Yushi Bai
- Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Sean Peterson
- Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Tama Evron
- Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Nikhil M. Urs
- Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Satyamaheshwar Peddibhotla
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, United States
| | - Michael P. Hedrick
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Paul Hershberger
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, United States
| | - Patrick R. Maloney
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827, United States
| | - Thomas D.Y. Chung
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | | | - William C. Wetsel
- Duke University Medical Center, Durham, North Carolina 27710, United States
| | - James B. Thomas
- RTI International, 3040 E
Cornwallis Road, Durham, North Carolina 27709, United States
| | - Glen R. Hanson
- Department
of Pharmacology and Toxicology, University of Utah, 260 S. Campus
Drive, Salt Lake City, Utah 84112, United States
| | - Anthony B. Pinkerton
- Conrad Prebys Center for Chemical Genomics at Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Marc G. Caron
- Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|