1
|
Sun H, Jiang L, Chen J, Kang C, Yan J, Ma S, Zhao M, Guo H, Yang B. Genomic island-encoded LmiA regulates acid resistance and biofilm formation in enterohemorrhagic Escherichia coli O157:H7. Gut Microbes 2025; 17:2443107. [PMID: 39690480 DOI: 10.1080/19490976.2024.2443107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/19/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important intestinal pathogen that causes severe foodborne diseases. We previously demonstrated that the genomic island-encoded regulator LmiA activates the locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence and colonization in the host intestine. However, whether LmiA is involved in the regulation of any other biological processes in EHEC O157:H7 remains largely unexplored. Here, we compared global gene expression differences between the EHEC O157:H7 wild-type strain and an lmiA mutant strain using RNA-seq technology. Genes whose expression was affected by LmiA were identified and classified using the Cluster of Orthologous Groups (COG) database. Specifically, the expression of acid resistance genes (including gadA, gadB, and gadC) was significantly downregulated, whereas the transcript levels of biofilm-related genes (including Z_RS00105, yadN, Z_RS03020, and fdeC) were increased, in the ΔlmiA mutant compared to the EHEC O157:H7 wild-type strain. Further investigation revealed that LmiA enhanced the acid resistance of EHEC O157:H7 by directly activating the transcription of gadA and gadBC. In contrast, LmiA reduced EHEC O157:H7 biofilm formation by indirectly repressing the expression of biofilm-related genes. Furthermore, LmiA-mediated regulation of acid resistance and biofilm formation is highly conserved and widespread among EHEC and enteropathogenic E. coli (EPEC). Our findings provide essential insight into the regulatory function of LmiA in EHEC O157:H7, particularly its role in regulating acid resistance and biofilm formation.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Jun Yan
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Shuai Ma
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Houliang Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, P. R. China
| |
Collapse
|
2
|
Joos M, Vackier T, Mees MA, Coppola G, Alexandris S, Geunes R, Thielemans W, Steenackers HPL. Antimicrobial Activity of Glycyrrhizinic Acid Is pH-Dependent. ACS APPLIED BIO MATERIALS 2024; 7:8223-8235. [PMID: 39592134 DOI: 10.1021/acsabm.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
In recent years, antimicrobial hydrogels have attracted much attention in biomedical applications due to their biocompatibility and high water content. Glycyrrhizin (GA) is an antimicrobial that can form pH-dependent hydrogels due to the three carboxyl groups of GA that differ in pKa value. The influence of GA protonation on the antimicrobial activity, however, has never been studied before. Therefore, we investigated the effect of the pH on the antimicrobial activity of GA against Pseudomonas aeruginosa, Staphylococcus aureus, MRSA, Staphylococcus epidermidis, Acinetobacter baumannii, Klebsiella pneumoniae, Klebsiella aerogenes, and two strains of Escherichia coli. In general, the antimicrobial activity of GA increases as a function of decreasing pH (and thus increasing protonation of GA). More specifically, fully protonated GA hydrogels (pH = 3) are required for growth inhibition and killing of E. coli UTI89 and Klebsiella in the suspension above the hydrogel, while the staphylococci strains and A. baumannii are already inhibited by fully deprotonated GA (pH = 6.8). P. aeruginosa and E. coli DH5α showed moderate susceptibility, as they are completely inhibited by a hydrogel at pH 3.8, containing partly protonated GA, but not by fully deprotonated GA (pH = 6.8). The antimicrobial activity of the hydrogel cannot solely be attributed to the resulting pH decrease of the suspension, as the presence of GA significantly increases the activity. Instead, this increased activity is due to the release of GA from the hydrogel into the suspension, where it directly interacts with the bacteria. Moreover, we provide evidence indicating that the pH dependency of the antimicrobial activity is due to differences in GA protonation state by treating the pathogens with GA solutions differing in their GA protonation distribution. Finally, we show by LC-MS that there is no chemical or enzymatic breakdown of GA. Overall, our results demonstrate that the pH influences not only the physical but also the antimicrobial properties of the GA hydrogels.
Collapse
Affiliation(s)
- Mathieu Joos
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Thijs Vackier
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Maarten A Mees
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Guglielmo Coppola
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
- Department of Chemistry, KU Leuven - Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven 3001, Belgium
| | - Stelios Alexandris
- Department of Chemical Engineering, KU Leuven - Laboratory for Soft Matter, Rheology and Technology (SMaRT), Leuven 3001, Belgium
| | - Robbe Geunes
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Wim Thielemans
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Hans P L Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
3
|
Chen C, Liu YY. A Survey on Hyperlink Prediction. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:15034-15050. [PMID: 37363843 PMCID: PMC11584203 DOI: 10.1109/tnnls.2023.3286280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
As a natural extension of link prediction on graphs, hyperlink prediction aims for the inference of missing hyperlinks in hypergraphs, where a hyperlink can connect more than two nodes. Hyperlink prediction has applications in a wide range of systems, from chemical reaction networks and social communication networks to protein-protein interaction networks. In this article, we provide a systematic and comprehensive survey on hyperlink prediction. We adopt a classical taxonomy from link prediction to classify the existing hyperlink prediction methods into four categories: similarity-based, probability-based, matrix optimization-based, and deep learning-based methods. To compare the performance of methods from different categories, we perform a benchmark study on various hypergraph applications using representative methods from each category. Notably, deep learning-based methods prevail over other methods in hyperlink prediction.
Collapse
|
4
|
Giovannercole F, Gafeira Gonçalves L, Armengaud J, Varela Coelho A, Khomutov A, De Biase D. Integrated multi-omics unveil the impact of H-phosphinic analogs of glutamate and α-ketoglutarate on Escherichia coli metabolism. J Biol Chem 2024; 300:107803. [PMID: 39307306 PMCID: PMC11533085 DOI: 10.1016/j.jbc.2024.107803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024] Open
Abstract
Desmethylphosphinothricin (L-Glu-γ-PH) is the H-phosphinic analog of glutamate with carbon-phosphorus-hydrogen (C-P-H) bonds. In L-Glu-γ-PH the phosphinic group acts as a bioisostere of the glutamate γ-carboxyl group allowing the molecule to be a substrate of Escherichia coli glutamate decarboxylase, a pyridoxal 5'-phosphate-dependent α-decarboxylase. In addition, the L-Glu-γ-PH decarboxylation product, GABA-PH, is further metabolized by bacterial GABA-transaminase, another pyridoxal 5'-phosphate-dependent enzyme, and succinic semialdehyde dehydrogenase, a NADP+-dependent enzyme. The product of these consecutive reactions, the so-called GABA shunt, is succinate-PH, the H-phosphinic analog of succinate, a tricarboxylic acid cycle intermediate. Notably, L-Glu-γ-PH displays antibacterial activity in the same concentration range of well-established antibiotics in E. coli. The dipeptide L-Leu-Glu-γ-PH was shown to display an even higher efficacy, likely as a consequence of an improved penetration into the bacteria. Herein, to further understand the intracellular effects of L-Glu-γ-PH, 1H NMR-based metabolomics, and LC-MS-based shotgun proteomics were used. This study included also the keto-derivative of L-Glu-γ-PH, α-ketoglutarate-γ-PH (α-KG-γ-PH), which also exhibits antimicrobial activity. L-Glu-γ-PH and α-KG-γ-PH are found to similarly impact bacterial metabolism, although the overall effect of α-KG-γ-PH is more pervasive. Notably, α-KG-γ-PH is converted intracellularly into L-Glu-γ-PH, but the opposite was not found. In general, both molecules impact the pathways where aspartate, glutamate, and glutamine are used as precursors for the biosynthesis of related metabolites, activate the acid stress response, and deprive cells of nitrogen. This work highlights the multi-target drug potential of L-Glu-γ-PH and α-KG-γ-PH and paves the way for their exploitation as antimicrobials.
Collapse
Affiliation(s)
- Fabio Giovannercole
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Luís Gafeira Gonçalves
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Ceze, France
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica, António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Alex Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy.
| |
Collapse
|
5
|
Atasoy M, Bartkova S, Çetecioğlu-Gürol Z, P Mira N, O'Byrne C, Pérez-Rodríguez F, Possas A, Scheler O, Sedláková-Kaduková J, Sinčák M, Steiger M, Ziv C, Lund PA. Methods for studying microbial acid stress responses: from molecules to populations. FEMS Microbiol Rev 2024; 48:fuae015. [PMID: 38760882 PMCID: PMC11418653 DOI: 10.1093/femsre/fuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia. Much is to be gained from an increased general awareness of these methods, and so the present review looks at examples of the different methods that have been used to study acid resistance, acid tolerance, and acid stress responses, and the insights they can lead to, as well as some of the problems involved in using them. We hope this will be of interest both within and well beyond the acid stress research community.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University and Research, PO Box 9101, 6700 HB, the Netherlands
| | - Simona Bartkova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Zeynep Çetecioğlu-Gürol
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21 106 91 Stockholm, Stockholm, Sweden
| | - Nuno P Mira
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Conor O'Byrne
- Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Aricia Possas
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jana Sedláková-Kaduková
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Mirka Sinčák
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Matthias Steiger
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, 7505101 Rishon LeZion, Israel
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology of Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
6
|
Yang X, Yang J, Huang H, Yan X, Li X, Lin Z. Achieving robust synthetic tolerance in industrial E. coli through negative auto-regulation of a DsrA-Hfq module. Synth Syst Biotechnol 2024; 9:462-469. [PMID: 38634002 PMCID: PMC11021974 DOI: 10.1016/j.synbio.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/29/2024] [Accepted: 04/06/2024] [Indexed: 04/19/2024] Open
Abstract
In industrial fermentation processes, microorganisms often encounter acid stress, which significantly impact their productivity. This study focused on the acid-resistant module composed of small RNA (sRNA) DsrA and the sRNA chaperone Hfq. Our previous study had shown that this module improved the cell growth of Escherichia coli MG1655 at low pH, but failed to obtain this desired phenotype in industrial strains. Here, we performed a quantitative analysis of DsrA-Hfq module to determine the optimal expression mode. We then assessed the potential of the CymR-based negative auto-regulation (NAR) circuit for industrial application, under different media, strains and pH levels. Growth assay at pH 4.5 revealed that NAR-05D04H circuit was the best acid-resistant circuit to improve the cell growth of E. coli MG1655. This circuit was robust and worked well in the industrial lysine-producing strain E. coli SCEcL3 at a starting pH of 6.8 and without pH control, resulting in a 250 % increase in lysine titer and comparable biomass in shaking flask fermentation compared to the parent strain. This study showed the practical application of NAR circuit in regulating DsrA-Hfq module, effectively and robustly improving the acid tolerance of industrial strains, which provides a new approach for breeding industrial strains with tolerance phenotype.
Collapse
Affiliation(s)
- Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jingduan Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Haozheng Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaofang Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xiaofan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- School of Biomedicine, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
7
|
Lally P, Gómez-Romero L, Tierrafría VH, Aquino P, Rioualen C, Zhang X, Kim S, Baniulyte G, Plitnick J, Smith C, Babu M, Collado-Vides J, Wade JT, Galagan JE. Predictive Biophysical Neural Network Modeling of a Compendium of in vivo Transcription Factor DNA Binding Profiles for Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.594371. [PMID: 38826350 PMCID: PMC11142182 DOI: 10.1101/2024.05.23.594371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The DNA binding of most Escherichia coli Transcription Factors (TFs) has not been comprehensively mapped, and few have models that can quantitatively predict binding affinity. We report the global mapping of in vivo DNA binding for 139 E. coli TFs using ChIP-Seq. We used these data to train BoltzNet, a novel neural network that predicts TF binding energy from DNA sequence. BoltzNet mirrors a quantitative biophysical model and provides directly interpretable predictions genome-wide at nucleotide resolution. We used BoltzNet to quantitatively design novel binding sites, which we validated with biophysical experiments on purified protein. We have generated models for 125 TFs that provide insight into global features of TF binding, including clustering of sites, the role of accessory bases, the relevance of weak sites, and the background affinity of the genome. Our paper provides new paradigms for studying TF-DNA binding and for the development of biophysically motivated neural networks.
Collapse
Affiliation(s)
- Patrick Lally
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Laura Gómez-Romero
- Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Ciudad de México 14610, México
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, Ciudad de México, México
| | - Víctor H. Tierrafría
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, México
| | - Patricia Aquino
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Claire Rioualen
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, México
| | - Xiaoman Zhang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, SK S4S 0A2, Canada
| | | | - Jonathan Plitnick
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Carol Smith
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, Saskatchewan, SK S4S 0A2, Canada
| | - Julio Collado-Vides
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, México
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, USA
| | - James E. Galagan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215
- Bioinformatics Program, Boston University, 24 Cummington Mall, Boston, MA 02215
| |
Collapse
|
8
|
Gorelik MG, Yakhnin H, Pannuri A, Walker AC, Pourciau C, Czyz D, Romeo T, Babitzke P. Multitier regulation of the E. coli extreme acid stress response by CsrA. J Bacteriol 2024; 206:e0035423. [PMID: 38319100 PMCID: PMC11210196 DOI: 10.1128/jb.00354-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
CsrA is an RNA-binding protein that regulates processes critical for growth and survival, including central carbon metabolism, motility, biofilm formation, stress responses, and expression of virulence factors in pathogens. Transcriptomics studies in Escherichia coli suggested that CsrA repressed genes involved in surviving extremely acidic conditions. Here, we examine the effects of disrupting CsrA-dependent regulation on the expression of genes and circuitry for acid stress survival and demonstrate CsrA-mediated repression at multiple levels. We show that this repression is critical for managing the trade-off between growth and survival; overexpression of acid stress genes caused by csrA disruption enhances survival under extreme acidity but is detrimental for growth under mildly acidic conditions. In vitro studies confirmed that CsrA binds specifically to mRNAs of structural and regulatory genes for acid stress survival, causing translational repression. We also found that translation of the top-tier acid stress regulator, evgA, is coupled to that of a small leader peptide, evgL, which is repressed by CsrA. Unlike dedicated acid stress response genes, csrA and its sRNA antagonists, csrB and csrC, did not exhibit a substantial response to acid shock. Furthermore, disruption of CsrA regulation of acid stress genes impacted host-microbe interactions in Caenorhabditis elegans, alleviating GABA deficiencies. This study expands the known regulon of CsrA to genes of the extreme acid stress response of E. coli and highlights a new facet of the global role played by CsrA in balancing the opposing physiological demands of stress resistance with the capacity for growth and modulating host interactions.IMPORTANCETo colonize/infect the mammalian intestinal tract, bacteria must survive exposure to the extreme acidity of the stomach. E. coli does this by expressing proteins that neutralize cytoplasmic acidity and cope with molecular damage caused by low pH. Because of the metabolic cost of these processes, genes for surviving acid stress are tightly regulated. Here, we show that CsrA negatively regulates the cascade of expression responsible for the acid stress response. Increased expression of acid response genes due to csrA disruption improved survival at extremely low pH but inhibited growth under mildly acidic conditions. Our findings define a new layer of regulation in the acid stress response of E. coli and a novel physiological function for CsrA.
Collapse
Affiliation(s)
- Mark G. Gorelik
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Archana Pannuri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Alyssa C. Walker
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Christine Pourciau
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel Czyz
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Tony Romeo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
9
|
Bedoya-Pérez LP, Aguilar-Vera A, Sánchez-Pérez M, Utrilla J, Sohlenkamp C. Enhancing Escherichia coli abiotic stress resistance through ornithine lipid formation. Appl Microbiol Biotechnol 2024; 108:288. [PMID: 38587638 PMCID: PMC11001654 DOI: 10.1007/s00253-024-13130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/21/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
Escherichia coli is a common host for biotechnology and synthetic biology applications. During growth and fermentation, the microbes are often exposed to stress conditions, such as variations in pH or solvent concentrations. Bacterial membranes play a key role in response to abiotic stresses. Ornithine lipids (OLs) are a group of membrane lipids whose presence and synthesis have been related to stress resistance in bacteria. We wondered if this stress resistance could be transferred to bacteria not encoding the capacity to form OLs in their genome, such as E. coli. In this study, we engineered different E. coli strains to produce unmodified OLs and hydroxylated OLs by expressing the synthetic operon olsFC. Our results showed that OL formation improved pH resistance and increased biomass under phosphate limitation. Transcriptome analysis revealed that OL-forming strains differentially expressed stress- and membrane-related genes. OL-producing strains also showed better growth in the presence of the ionophore carbonyl cyanide 3-chlorophenylhydrazone (CCCP), suggesting reduced proton leakiness in OL-producing strains. Furthermore, our engineered strains showed improved heterologous violacein production at phosphate limitation and also at low pH. Overall, this study demonstrates the potential of engineering the E. coli membrane composition for constructing robust hosts with an increased abiotic stress resistance for biotechnology and synthetic biology applications. KEY POINTS: • Ornithine lipid production in E. coli increases biomass yield under phosphate limitation. • Engineered strains show an enhanced production phenotype under low pH stress. • Transcriptome analysis and CCCP experiments revealed reduced proton leakage.
Collapse
Affiliation(s)
- Leidy Patricia Bedoya-Pérez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México
| | - Alejandro Aguilar-Vera
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México
| | - Mishael Sánchez-Pérez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México
| | - José Utrilla
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México.
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad S/N Col. Chamilpa, C.P. 62210, Cuernavaca, Mor, México.
| |
Collapse
|
10
|
Yang S, Bao J, Shi R, Liu L, Wang Y, Hong X, Wu X. Bioinformatics-based diagnosis and evaluation of several pivotal genes and pathways associated with immune infiltration at different time points in spinal cord injury. Biotechnol Genet Eng Rev 2024; 40:65-91. [PMID: 36841940 DOI: 10.1080/02648725.2023.2178970] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 02/27/2023]
Abstract
Spinal Cord Injury (SCI) is a devastating neurological event. To assess the degree of spinal cord damage and classify the injury, it is recommended to use the 2019 version of the AIS standard. The severity of trauma was evaluated using the Trauma Severity Score, and various classification systems have been proposed for injuries at different parts and segments of the spine. Understanding the regulated signaling pathways and immune processes following SCI can lead to a better understanding of SCI-induced biomarkers and their underlying mechanisms. In this study, two gene expression datasets (GSE464 and GSE45006) from the Gene Expression Omnibus database were utilized. Differential gene expression and co-expression network analysis were performed, revealing 370 shared genes in the 3-day group and 111 shared genes in the 14-day group after SCI. The study used functional enrichment analysis methods such as Gene Set Enrichment Analysis, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. The ssGSEA method was used to assess the levels and composition of immune infiltration in both the sham (control) and SCI groups. The single-cell transcriptomics dataset GSE182803 was analyzed to identify genes associated with immune marker cells. Four key genes (Ptgs2, Fn1, Ccl2, and Icam1) were identified in the 3-day group, while only one gene (Cyp51) was identified in the 14-day group after SCI. The findings offer significant insights into the immune-related genes and signaling pathways involved in secondary SCI at different time points and hold potential for the development of intervention strategies for acute and chronic post-SCI.
Collapse
Affiliation(s)
- Shu Yang
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Junping Bao
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rui Shi
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lei Liu
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuntao Wang
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xin Hong
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xiaotao Wu
- Department of Spine Surgery, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Mun SY, Lee W, Lee SY, Chang JY, Chang HC. Pediococcus inopinatus with a well-developed CRISPR-Cas system dominates in long-term fermented kimchi, Mukeunji. Food Microbiol 2024; 117:104385. [PMID: 37919000 DOI: 10.1016/j.fm.2023.104385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/16/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023]
Abstract
Kimchi is produced through a low-temperature fermentation without pre-sterilization, resulting in a heterogeneous microbial community. As fermentation progresses, dominant lactic acid bacteria (LAB) species emerge and undergo a transition process. In this study, LAB were isolated from Mukeunji, a long-term fermented kimchi that is in the final stage of kimchi fermentation process. It was confirmed, through culture-dependent and independent analysis, as well as metagenome analysis, that Pediococcus inopinatus are generally dominant in long-term fermented kimchi. Comparative analysis of the de novo assembled whole genome of P. inopinatus with other kimchi LAB revealed that this species has a well-developed clustered regularly interspaced short palindromic repeats (CRISPR) system. The CRISPR system of P. inopinatus has an additional copy of the csa3 gene, a transcription factor for cas genes. Indeed, this species not only highly expresses cas1 and cas2, which induce spacer acquisition, but also has many diverse spacers that are actively expressed. These findings indicate that the well-developed CRISPR-Cas system is enabling P. inopinatus to dominate in long-fermented kimchi. Overall, this study revealed that LAB with a robust defense system dominate in the final stage of kimchi fermentation and presented a model for the succession mechanism of kimchi LAB.
Collapse
Affiliation(s)
- So Yeong Mun
- Research and Development Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755, South Korea; Department of Food and Nutrition, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, South Korea
| | - Wooje Lee
- Research and Development Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755, South Korea
| | - Soo-Young Lee
- Department of Food and Nutrition, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, South Korea
| | - Ji Yoon Chang
- Research and Development Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755, South Korea
| | - Hae Choon Chang
- Research and Development Division, World Institute of Kimchi, 86 Kimchi-ro, Nam-gu, Gwangju, 61755, South Korea; Department of Food and Nutrition, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, South Korea.
| |
Collapse
|
13
|
Miyakoshi M. Multilayered regulation of amino acid metabolism in Escherichia coli. Curr Opin Microbiol 2024; 77:102406. [PMID: 38061078 DOI: 10.1016/j.mib.2023.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024]
Abstract
Amino acid metabolism in Escherichia coli has long been studied and has established the basis for regulatory mechanisms at the transcriptional, posttranscriptional, and posttranslational levels. In addition to the classical signal transduction cascade involving posttranslational modifications (PTMs), novel PTMs in the two primary nitrogen assimilation pathways have recently been uncovered. The regulon of the master transcriptional regulator NtrC is further expanded by a small RNA derived from the 3´UTR of glutamine synthetase mRNA, which coordinates central carbon and nitrogen metabolism. Furthermore, recent advances in sequencing technologies have revealed the global regulatory networks of transcriptional and posttranscriptional regulators, Lrp and GcvB. This review provides an update of the multilayered and interconnected regulatory networks governing amino acid metabolism in E. coli.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Infection Biology, Institute of Medicine, University of Tsukuba, 305-8575 Ibaraki, Japan.
| |
Collapse
|
14
|
Mills S, Trego AC, Prevedello M, De Vrieze J, O’Flaherty V, Lens PN, Collins G. Unifying concepts in methanogenic, aerobic, and anammox sludge granulation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 17:100310. [PMID: 37705860 PMCID: PMC10495608 DOI: 10.1016/j.ese.2023.100310] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 06/17/2023] [Accepted: 08/05/2023] [Indexed: 09/15/2023]
Abstract
The retention of dense and well-functioning microbial biomass is crucial for effective pollutant removal in several biological wastewater treatment technologies. High solids retention is often achieved through aggregation of microbial communities into dense, spherical aggregates known as granules, which were initially discovered in the 1980s. These granules have since been widely applied in upflow anaerobic digesters for waste-to-energy conversions. Furthermore, granular biomass has been applied in aerobic wastewater treatment and anaerobic ammonium oxidation (anammox) technologies. The mechanisms underpinning the formation of methanogenic, aerobic, and anammox granules are the subject of ongoing research. Although each granule type has been extensively studied in isolation, there has been a lack of comparative studies among these granulation processes. It is likely that there are some unifying concepts that are shared by all three sludge types. Identifying these unifying concepts could allow a unified theory of granulation to be formed. Here, we review the granulation mechanisms of methanogenic, aerobic, and anammox granular sludge, highlighting several common concepts, such as the role of extracellular polymeric substances, cations, and operational parameters like upflow velocity and shear force. We have then identified some unique features of each granule type, such as different internal structures, microbial compositions, and quorum sensing systems. Finally, we propose that future research should prioritize aspects of microbial ecology, such as community assembly or interspecies interactions in individual granules during their formation and growth.
Collapse
Affiliation(s)
- Simon Mills
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Anna Christine Trego
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Marco Prevedello
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Vincent O’Flaherty
- Microbial Ecology Laboratory School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Piet N.L. Lens
- University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Gavin Collins
- Microbial Communities Laboratory, School of Biological and Chemical Sciences, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
15
|
Schumacher K, Gelhausen R, Kion-Crosby W, Barquist L, Backofen R, Jung K. Ribosome profiling reveals the fine-tuned response of Escherichia coli to mild and severe acid stress. mSystems 2023; 8:e0103723. [PMID: 37909716 PMCID: PMC10746267 DOI: 10.1128/msystems.01037-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Bacteria react very differently to survive in acidic environments, such as the human gastrointestinal tract. Escherichia coli is one of the extremely acid-resistant bacteria and has a variety of acid-defense mechanisms. Here, we provide the first genome-wide overview of the adaptations of E. coli K-12 to mild and severe acid stress at both the transcriptional and translational levels. Using ribosome profiling and RNA sequencing, we uncover novel adaptations to different degrees of acidity, including previously hidden stress-induced small proteins and novel key transcription factors for acid defense, and report mRNAs with pH-dependent differential translation efficiency. In addition, we distinguish between acid-specific adaptations and general stress response mechanisms using denoising autoencoders. This workflow represents a powerful approach that takes advantage of next-generation sequencing techniques and machine learning to systematically analyze bacterial stress responses.
Collapse
Affiliation(s)
- Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Rick Gelhausen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Willow Kion-Crosby
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- University of Würzburg, Faculty of Medicine, Würzburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
16
|
North H, McLaughlin M, Fiebig A, Crosson S. The Caulobacter NtrB-NtrC two-component system bridges nitrogen assimilation and cell development. J Bacteriol 2023; 205:e0018123. [PMID: 37791753 PMCID: PMC10601693 DOI: 10.1128/jb.00181-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/03/2023] [Indexed: 10/05/2023] Open
Abstract
A suite of molecular sensory systems enables Caulobacter to control growth, development, and reproduction in response to levels of essential elements. The bacterial enhancer-binding protein (bEBP) NtrC and its cognate sensor histidine kinase, NtrB, are key regulators of nitrogen assimilation in many bacteria, but their roles in Caulobacter metabolism and development are not well defined. Notably, Caulobacter NtrC is an unconventional bEBP that lacks the σ54-interacting loop commonly known as the GAFTGA motif. Here we show that deletion of Caulobacter crescentus ntrC slows cell growth in complex medium and that ntrB and ntrC are essential when ammonium is the sole nitrogen source due to their requirement for glutamine synthetase expression. Random transposition of a conserved IS3-family mobile genetic element frequently rescued the growth defect of ntrC mutant strains by restoring transcription of the glnBA operon, revealing a possible role for IS3 transposition in shaping the evolution of Caulobacter populations during nutrient limitation. We further identified dozens of direct NtrC-binding sites on the C. crescentus chromosome, with a large fraction located near genes involved in polysaccharide biosynthesis. The majority of binding sites align with those of the essential nucleoid-associated protein, GapR, or the cell cycle regulator, MucR1. NtrC is therefore predicted to directly impact the regulation of cell cycle and cell development. Indeed, loss of NtrC function led to elongated polar stalks and elevated synthesis of cell envelope polysaccharides. This study establishes regulatory connections between NtrC, nitrogen metabolism, polar morphogenesis, and envelope polysaccharide synthesis in Caulobacter. IMPORTANCE Bacteria balance cellular processes with the availability of nutrients in their environment. The NtrB-NtrC two-component signaling system is responsible for controlling nitrogen assimilation in many bacteria. We have characterized the effect of ntrB and ntrC deletion on Caulobacter growth and development and uncovered a role for spontaneous IS element transposition in the rescue of transcriptional and nutritional deficiencies caused by ntrC mutation. We further defined the regulon of Caulobacter NtrC, a bacterial enhancer-binding protein, and demonstrate that it shares specific binding sites with essential proteins involved in cell cycle regulation and chromosome organization. Our work provides a comprehensive view of transcriptional regulation mediated by a distinctive NtrC protein, establishing its connection to nitrogen assimilation and developmental processes in Caulobacter.
Collapse
Affiliation(s)
- Hunter North
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
17
|
North H, McLaughlin M, Fiebig A, Crosson S. The Caulobacter NtrB-NtrC two-component system bridges nitrogen assimilation and cell development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543975. [PMID: 37333394 PMCID: PMC10274813 DOI: 10.1101/2023.06.06.543975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
A suite of molecular sensory systems enables Caulobacter to control growth, development, and reproduction in response to levels of essential elements. The bacterial enhancer binding protein (bEBP) NtrC, and its cognate sensor histidine kinase NtrB, are key regulators of nitrogen assimilation in many bacteria, but their roles in Caulobacter metabolism and development are not well defined. Notably, Caulobacter NtrC is an unconventional bEBP that lacks the σ54-interacting loop commonly known as the GAFTGA motif. Here we show that deletion of C. crescentus ntrC slows cell growth in complex medium, and that ntrB and ntrC are essential when ammonium is the sole nitrogen source due to their requirement for glutamine synthetase (glnA) expression. Random transposition of a conserved IS3-family mobile genetic element frequently rescued the growth defect of ntrC mutant strains by restoring transcription of the glnBA operon, revealing a possible role for IS3 transposition in shaping the evolution of Caulobacter populations during nutrient limitation. We further identified dozens of direct NtrC binding sites on the C. crescentus chromosome, with a large fraction located near genes involved in polysaccharide biosynthesis. The majority of binding sites align with those of the essential nucleoid associated protein, GapR, or the cell cycle regulator, MucR1. NtrC is therefore predicted to directly impact the regulation of cell cycle and cell development. Indeed, loss of NtrC function led to elongated polar stalks and elevated synthesis of cell envelope polysaccharides. This study establishes regulatory connections between NtrC, nitrogen metabolism, polar morphogenesis, and envelope polysaccharide synthesis in Caulobacter .
Collapse
Affiliation(s)
- Hunter North
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan USA
| |
Collapse
|
18
|
Arber C, Casey JM, Crawford S, Rambarack N, Yaman U, Wiethoff S, Augustin E, Piers TM, Rostagno A, Ghiso J, Lewis PA, Revesz T, Hardy J, Pocock JM, Houlden H, Schott JM, Salih DA, Lashley T, Wray S. Microglia produce the amyloidogenic ABri peptide in familial British dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546552. [PMID: 37425748 PMCID: PMC10327149 DOI: 10.1101/2023.06.27.546552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Mutations in ITM2B cause familial British, Danish, Chinese and Korean dementias. In familial British dementia (FBD) a mutation in the stop codon of the ITM2B gene (also known as BRI2 ) causes a C-terminal cleavage fragment of the ITM2B/BRI2 protein to be extended by 11 amino acids. This fragment, termed amyloid-Bri (ABri), is highly insoluble and forms extracellular plaques in the brain. ABri plaques are accompanied by tau pathology, neuronal cell death and progressive dementia, with striking parallels to the aetiology and pathogenesis of Alzheimer's disease. The molecular mechanisms underpinning FBD are ill-defined. Using patient-derived induced pluripotent stem cells, we show that expression of ITM2B/BRI2 is 34-fold higher in microglia than neurons, and 15-fold higher in microglia compared with astrocytes. This cell-specific enrichment is supported by expression data from both mouse and human brain tissue. ITM2B/BRI2 protein levels are higher in iPSC-microglia compared with neurons and astrocytes. Consequently, the ABri peptide was detected in patient iPSC-derived microglial lysates and conditioned media but was undetectable in patient-derived neurons and control microglia. Pathological examination of post-mortem tissue support ABri expression in microglia that are in proximity to pre-amyloid deposits. Finally, gene co-expression analysis supports a role for ITM2B/BRI2 in disease-associated microglial responses. These data demonstrate that microglia are the major contributors to the production of amyloid forming peptides in FBD, potentially acting as instigators of neurodegeneration. Additionally, these data also suggest ITM2B/BRI2 may be part of a microglial response to disease, motivating further investigations of its role in microglial activation. This has implications for our understanding of the role of microglia and the innate immune response in the pathogenesis of FBD and other neurodegenerative dementias including Alzheimer's disease.
Collapse
|
19
|
Pountain AW, Jiang P, Yao T, Homaee E, Guan Y, Podkowik M, Shopsin B, Torres VJ, Golding I, Yanai I. Transcription-replication interactions reveal principles of bacterial genome regulation. RESEARCH SQUARE 2023:rs.3.rs-2724389. [PMID: 37034646 PMCID: PMC10081379 DOI: 10.21203/rs.3.rs-2724389/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Organisms determine the transcription rates of thousands of genes through a few modes of regulation that recur across the genome1. These modes interact with a changing cellular environment to yield highly dynamic expression patterns2. In bacteria, the relationship between a gene's regulatory architecture and its expression is well understood for individual model gene circuits3,4. However, a broader perspective of these dynamics at the genome-scale is lacking, in part because bacterial transcriptomics have hitherto captured only a static snapshot of expression averaged across millions of cells5. As a result, the full diversity of gene expression dynamics and their relation to regulatory architecture remains unknown. Here we present a novel genome-wide classification of regulatory modes based on each gene's transcriptional response to its own replication, which we term the Transcription-Replication Interaction Profile (TRIP). We found that the response to the universal perturbation of chromosomal replication integrates biological regulatory factors with biophysical molecular events on the chromosome to reveal a gene's local regulatory context. While the TRIPs of many genes conform to a gene dosage-dependent pattern, others diverge in distinct ways, including altered timing or amplitude of expression, and this is shaped by factors such as intra-operon position, repression state, or presence on mobile genetic elements. Our transcriptome analysis also simultaneously captures global properties, such as the rates of replication and transcription, as well as the nestedness of replication patterns. This work challenges previous notions of the drivers of expression heterogeneity within a population of cells, and unearths a previously unseen world of gene transcription dynamics.
Collapse
Affiliation(s)
- Andrew W. Pountain
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY USA
| | - Peien Jiang
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY USA
- Department of Biology, New York University, New York, NY, USA
| | - Tianyou Yao
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL USA
| | - Ehsan Homaee
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Yichao Guan
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL USA
| | - Magdalena Podkowik
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
| | - Bo Shopsin
- Department of Medicine, Division of Infectious Diseases, NYU Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY USA
| | - Victor J. Torres
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY USA
| | - Ido Golding
- Department of Physics, University of Illinois at Urbana Champaign, Urbana, IL USA
- Department of Microbiology, University of Illinois at Urbana Champaign, Urbana,IL USA
| | - Itai Yanai
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
20
|
Shokri Garjan H, Omidi Y, Poursheikhali Asghari M, Ferdousi R. In-silico computational approaches to study microbiota impacts on diseases and pharmacotherapy. Gut Pathog 2023; 15:10. [PMID: 36882861 PMCID: PMC9990230 DOI: 10.1186/s13099-023-00535-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Microorganisms have been linked to a variety of critical human disease, thanks to advances in sequencing technology and microbiology. The growing recognition of human microbe-disease relationships provides crucial insights into the underlying disease process from the perspective of pathogens, which is extremely useful for pathogenesis research, early diagnosis, and precision medicine and therapy. Microbe-based analysis in terms of diseases and related drug discovery can predict new connections/mechanisms and provide new concepts. These phenomena have been studied via various in-silico computational approaches. This review aims to elaborate on the computational works conducted on the microbe-disease and microbe-drug topics, discuss the computational model approaches used for predicting associations and provide comprehensive information on the related databases. Finally, we discussed potential prospects and obstacles in this field of study, while also outlining some recommendations for further enhancing predictive capabilities.
Collapse
Affiliation(s)
- Hassan Shokri Garjan
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Nova Southeastern University, College of Pharmacy, Fort Lauderdale, FL, USA
| | | | - Reza Ferdousi
- Department of Health Information Technology, School of Management and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
21
|
Widodo WS, Billerbeck S. Natural and engineered cyclodipeptides: Biosynthesis, chemical diversity, and engineering strategies for diversification and high-yield bioproduction. ENGINEERING MICROBIOLOGY 2023; 3:100067. [PMID: 39628525 PMCID: PMC11610984 DOI: 10.1016/j.engmic.2022.100067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/04/2022] [Accepted: 12/22/2022] [Indexed: 12/06/2024]
Abstract
Cyclodipeptides are diverse chemical scaffolds that show a broad range of bioactivities relevant for medicine, agriculture, chemical catalysis, and material sciences. Cyclodipeptides can be synthesized enzymatically through two unrelated enzyme families, non-ribosomal peptide synthetases (NRPS) and cyclodipeptide synthases (CDPSs). The chemical diversity of cyclodipeptides is derived from the two amino acid side chains and the modification of those side-chains by cyclodipeptide tailoring enzymes. While a large spectrum of chemical diversity is already known today, additional chemical space - and as such potential new bioactivities - could be accessed by exploring yet undiscovered NRPS and CDPS gene clusters as well as via engineering. Further, to exploit cyclodipeptides for applications, the low yield of natural biosynthesis needs to be overcome. In this review we summarize current knowledge on NRPS and CDPS-based cyclodipeptide biosynthesis, engineering approaches to further diversity the natural chemical diversity as well as strategies for high-yield production of cyclodipeptides, including a discussion of how advancements in synthetic biology and metabolic engineering can accelerate the translational potential of cyclodipeptides.
Collapse
Affiliation(s)
- Wahyu Setia Widodo
- Department of Molecular Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Sonja Billerbeck
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Huynh TN, Stewart V. Purine catabolism by enterobacteria. Adv Microb Physiol 2023; 82:205-266. [PMID: 36948655 DOI: 10.1016/bs.ampbs.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Purines are abundant among organic nitrogen sources and have high nitrogen content. Accordingly, microorganisms have evolved different pathways to catabolize purines and their metabolic products such as allantoin. Enterobacteria from the genera Escherichia, Klebsiella and Salmonella have three such pathways. First, the HPX pathway, found in the genus Klebsiella and very close relatives, catabolizes purines during aerobic growth, extracting all four nitrogen atoms in the process. This pathway includes several known or predicted enzymes not previously observed in other purine catabolic pathways. Second, the ALL pathway, found in strains from all three species, catabolizes allantoin during anaerobic growth in a branched pathway that also includes glyoxylate assimilation. This allantoin fermentation pathway originally was characterized in a gram-positive bacterium, and therefore is widespread. Third, the XDH pathway, found in strains from Escherichia and Klebsiella spp., at present is ill-defined but likely includes enzymes to catabolize purines during anaerobic growth. Critically, this pathway may include an enzyme system for anaerobic urate catabolism, a phenomenon not previously described. Documenting such a pathway would overturn the long-held assumption that urate catabolism requires oxygen. Overall, this broad capability for purine catabolism during either aerobic or anaerobic growth suggests that purines and their metabolites contribute to enterobacterial fitness in a variety of environments.
Collapse
Affiliation(s)
- TuAnh Ngoc Huynh
- Department of Food Science, University of Wisconsin, Madison, WI, United States
| | - Valley Stewart
- Department of Microbiology & Molecular Genetics, University of California, Davis, CA, United States.
| |
Collapse
|
23
|
Gold A, Chen L, Zhu J. More than Meets the Eye: Untargeted Metabolomics and Lipidomics Reveal Complex Pathways Spurred by Activation of Acid Resistance Mechanisms in Escherichia coli. J Proteome Res 2022; 21:2958-2968. [PMID: 36322795 PMCID: PMC10317704 DOI: 10.1021/acs.jproteome.2c00459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Escherichia coli is a ubiquitous group of bacteria that can be either commensal gut microbes or enterohemorrhagic food-borne pathogens. Regardless, both forms must survive acidic environments in the stomach and intestines to reach and colonize the gut, a process that partially relies on amino acid-dependent acid resistance (AR) mechanisms and modifications to membrane phospholipids. However, only the basic tenets of these mechanisms have been elucidated. In this paper, we aim to conduct a full-scale metabolic and lipidomic characterization of E. coli's adaptations to acid stress. We hypothesized that the use of untargeted metabolomics and lipidomics would reveal mechanisms downstream of AR processes that provide novel contributions to acid stress survival. We detected significant differences in the extracellular metabolome and the lipidome induced by amino acid supplementation (glutamine, arginine, or lysine) and contextualized these results using real-time quantitative polymerase chain reaction (RT-qPCR). We additionally identified several metabolic pathways as well as a significant alteration in phospholipid synthetic pathways induced by differential amino acid supplementation. These results demonstrate that AR may extend beyond canonical mechanisms to a coordinated metabolic phenotype. Future studies may benefit from our analysis to further elucidate distinct targets for prebiotic supplements to cultivate commensal strains or therapies to combat pathogenic ones.
Collapse
Affiliation(s)
- Andrew Gold
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Li Chen
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Human Nutrition Program & James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Schwarz J, Schumacher K, Brameyer S, Jung K. Bacterial battle against acidity. FEMS Microbiol Rev 2022; 46:6652135. [PMID: 35906711 DOI: 10.1093/femsre/fuac037] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/11/2022] [Accepted: 07/27/2022] [Indexed: 01/09/2023] Open
Abstract
The Earth is home to environments characterized by low pH, including the gastrointestinal tract of vertebrates and large areas of acidic soil. Most bacteria are neutralophiles, but can survive fluctuations in pH. Herein, we review how Escherichia, Salmonella, Helicobacter, Brucella, and other acid-resistant Gram-negative bacteria adapt to acidic environments. We discuss the constitutive and inducible defense mechanisms that promote survival, including proton-consuming or ammonia-producing processes, cellular remodeling affecting membranes and chaperones, and chemotaxis. We provide insights into how Gram-negative bacteria sense environmental acidity using membrane-integrated and cytosolic pH sensors. Finally, we address in more detail the powerful proton-consuming decarboxylase systems by examining the phylogeny of their regulatory components and their collective functionality in a population.
Collapse
Affiliation(s)
- Julia Schwarz
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kilian Schumacher
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-University München, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| |
Collapse
|
25
|
Gagarinova A, Hosseinnia A, Rahmatbakhsh M, Istace Z, Phanse S, Moutaoufik MT, Zilocchi M, Zhang Q, Aoki H, Jessulat M, Kim S, Aly KA, Babu M. Auxotrophic and prototrophic conditional genetic networks reveal the rewiring of transcription factors in Escherichia coli. Nat Commun 2022; 13:4085. [PMID: 35835781 PMCID: PMC9283627 DOI: 10.1038/s41467-022-31819-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Bacterial transcription factors (TFs) are widely studied in Escherichia coli. Yet it remains unclear how individual genes in the underlying pathways of TF machinery operate together during environmental challenge. Here, we address this by applying an unbiased, quantitative synthetic genetic interaction (GI) approach to measure pairwise GIs among all TF genes in E. coli under auxotrophic (rich medium) and prototrophic (minimal medium) static growth conditions. The resulting static and differential GI networks reveal condition-dependent GIs, widespread changes among TF genes in metabolism, and new roles for uncharacterized TFs (yjdC, yneJ, ydiP) as regulators of cell division, putrescine utilization pathway, and cold shock adaptation. Pan-bacterial conservation suggests TF genes with GIs are co-conserved in evolution. Together, our results illuminate the global organization of E. coli TFs, and remodeling of genetic backup systems for TFs under environmental change, which is essential for controlling the bacterial transcriptional regulatory circuits. The bacterium E. coli has around 300 transcriptional factors, but the functions of many of them, and the interactions between their respective regulatory networks, are unclear. Here, the authors study genetic interactions among all transcription factor genes in E. coli, revealing condition-dependent interactions and roles for uncharacterized transcription factors.
Collapse
Affiliation(s)
- Alla Gagarinova
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Ali Hosseinnia
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Zoe Istace
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Sadhna Phanse
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | | | - Mara Zilocchi
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Qingzhou Zhang
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Matthew Jessulat
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Sunyoung Kim
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Khaled A Aly
- Department of Biochemistry, University of Regina, Regina, SK, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK, Canada.
| |
Collapse
|
26
|
Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol 2022; 39:120. [PMID: 35704152 PMCID: PMC9198206 DOI: 10.1007/s12032-022-01711-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/14/2022] [Indexed: 10/28/2022]
Abstract
The advancement of precision medicine in medical care has led behind the conventional symptom-driven treatment process by allowing early risk prediction of disease through improved diagnostics and customization of more effective treatments. It is necessary to scrutinize overall patient data alongside broad factors to observe and differentiate between ill and relatively healthy people to take the most appropriate path toward precision medicine, resulting in an improved vision of biological indicators that can signal health changes. Precision and genomic medicine combined with artificial intelligence have the potential to improve patient healthcare. Patients with less common therapeutic responses or unique healthcare demands are using genomic medicine technologies. AI provides insights through advanced computation and inference, enabling the system to reason and learn while enhancing physician decision making. Many cell characteristics, including gene up-regulation, proteins binding to nucleic acids, and splicing, can be measured at high throughput and used as training objectives for predictive models. Researchers can create a new era of effective genomic medicine with the improved availability of a broad range of datasets and modern computer techniques such as machine learning. This review article has elucidated the contributions of ML algorithms in precision and genome medicine.
Collapse
Affiliation(s)
- Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka, 560043, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
| |
Collapse
|
27
|
Gallagher LA, Velazquez E, Peterson SB, Charity JC, Radey MC, Gebhardt MJ, Hsu F, Shull LM, Cutler KJ, Macareno K, de Moraes MH, Penewit KM, Kim J, Andrade PA, LaFramboise T, Salipante SJ, Reniere ML, de Lorenzo V, Wiggins PA, Dove SL, Mougous JD. Genome-wide protein-DNA interaction site mapping in bacteria using a double-stranded DNA-specific cytosine deaminase. Nat Microbiol 2022; 7:844-855. [PMID: 35650286 PMCID: PMC9159945 DOI: 10.1038/s41564-022-01133-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/25/2022] [Indexed: 12/20/2022]
Abstract
DNA-protein interactions are central to fundamental cellular processes, yet widely implemented technologies for measuring these interactions on a genome scale in bacteria are laborious and capture only a snapshot of binding events. We devised a facile method for mapping DNA-protein interaction sites in vivo using the double-stranded DNA-specific cytosine deaminase toxin DddA. In 3D-seq (DddA-sequencing), strains containing DddA fused to a DNA-binding protein of interest accumulate characteristic mutations in DNA sequence adjacent to sites occupied by the DNA-bound fusion protein. High-depth sequencing enables detection of sites of increased mutation frequency in these strains, yielding genome-wide maps of DNA-protein interaction sites. We validated 3D-seq for four transcription regulators in two bacterial species, Pseudomonas aeruginosa and Escherichia coli. We show that 3D-seq offers ease of implementation, the ability to record binding event signatures over time and the capacity for single-cell resolution.
Collapse
Affiliation(s)
- Larry A Gallagher
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Elena Velazquez
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Systems Biology Department, National Center of Biotechnology CSIC, Madrid, Spain
| | - S Brook Peterson
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - James C Charity
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew C Radey
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Michael J Gebhardt
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - FoSheng Hsu
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Lauren M Shull
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Kevin J Cutler
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Keven Macareno
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kelsi M Penewit
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Jennifer Kim
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Pia A Andrade
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Thomas LaFramboise
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Stephen J Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Victor de Lorenzo
- Systems Biology Department, National Center of Biotechnology CSIC, Madrid, Spain
| | - Paul A Wiggins
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Simon L Dove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Joseph D Mougous
- Department of Microbiology, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
28
|
Kim Y, Lee S, Park K, Yoon H. Cooperative Interaction between Acid and Copper Resistance in Escherichia coli. J Microbiol Biotechnol 2022; 32:602-611. [PMID: 35283428 PMCID: PMC9628877 DOI: 10.4014/jmb.2201.01034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 03/04/2022] [Indexed: 12/15/2022]
Abstract
The persistence of pathogenic Escherichia coli under acidic conditions poses a serious risk to food safety, especially in acidic foods such as kimchi. To identify the bacterial factors required for acid resistance, transcriptomic analysis was conducted on an acid-resistant enterotoxigenic E. coli strain and the genes with significant changes in their expression under acidic pH were selected as putative resistance factors against acid stress. These genes included those associated with a glutamatedependent acid resistance (GDAR) system and copper resistance. E. coli strains lacking GadA, GadB, or YbaST, the components of the GDAR system, exhibited significantly attenuated growth and survival under acidic stress conditions. Accordantly, the inhibition of the GDAR system by 3-mercaptopropionic acid and aminooxyacetic acid abolished bacterial adaptation and survival under acidic conditions, indicating the indispensable role of a GDAR system in acid resistance. Intriguingly, the lack of cueR encoding a transcriptional regulator for copper resistance genes markedly impaired bacterial resistance to acid stress as well as copper. Conversely, the absence of YbaST severely compromised bacterial resistance against copper, suggesting an interplay between acid and copper resistance. These results suggest that a GDAR system can be a promising target for developing control measures to prevent E. coli resistance to acid and copper treatments.
Collapse
Affiliation(s)
- Yeeun Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Seohyeon Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Kyungah Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea,Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Republic of Korea,Corresponding author Phone: +82-31-219-2450 Fax: +82-31-219-1610 E-mail:
| |
Collapse
|
29
|
Kobayashi I, Mochizuki K, Teramoto J, Imamura S, Takaya K, Ishihama A, Shimada T. Transcription Factor SrsR (YgfI) Is a Novel Regulator for the Stress-Response Genes in Stationary Phase in Escherichia coli K-12. Int J Mol Sci 2022; 23:ijms23116055. [PMID: 35682733 PMCID: PMC9181523 DOI: 10.3390/ijms23116055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Understanding the functional information of all genes and the biological mechanism based on the comprehensive genome regulation mechanism is an important task in life science. YgfI is an uncharacterized LysR family transcription factor in Escherichia coli. To identify the function of YgfI, the genomic SELEX (gSELEX) screening was performed for YgfI regulation targets on the E. coli genome. In addition, regulatory and phenotypic analyses were performed. A total of 10 loci on the E. coli genome were identified as the regulatory targets of YgfI with the YgfI binding activity. These predicted YgfI target genes were involved in biofilm formation, hydrogen peroxide resistance, and antibiotic resistance, many of which were expressed in the stationary phase. The TCAGATTTTGC sequence was identified as an YgfI box in in vitro gel shift assay and DNase-I footprinting assays. RT-qPCR analysis in vivo revealed that the expression of YgfI increased in the stationary phase. Physiological analyses suggested the participation of YgfI in biofilm formation and an increase in the tolerability against hydrogen peroxide. In summary, we propose to rename ygfI as srsR (a stress-response regulator in stationary phase).
Collapse
Affiliation(s)
- Ikki Kobayashi
- School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan;
| | - Kenji Mochizuki
- Micro-Nano Technology Research Center, Hosei University, Koganei 184-0003, Tokyo, Japan; (K.M.); (J.T.)
| | - Jun Teramoto
- Micro-Nano Technology Research Center, Hosei University, Koganei 184-0003, Tokyo, Japan; (K.M.); (J.T.)
| | - Sousuke Imamura
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi 180-8585, Tokyo, Japan; (S.I.); (K.T.)
| | - Kazuhiro Takaya
- Space Environment and Energy Laboratories, Nippon Telegraph and Telephone Corporation, Musashino-shi 180-8585, Tokyo, Japan; (S.I.); (K.T.)
| | - Akira Ishihama
- Micro-Nano Technology Research Center, Hosei University, Koganei 184-0003, Tokyo, Japan; (K.M.); (J.T.)
- Correspondence: (A.I.); (T.S.)
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan;
- Correspondence: (A.I.); (T.S.)
| |
Collapse
|
30
|
Tierrafría VH, Rioualen C, Salgado H, Lara P, Gama-Castro S, Lally P, Gómez-Romero L, Peña-Loredo P, López-Almazo AG, Alarcón-Carranza G, Betancourt-Figueroa F, Alquicira-Hernández S, Polanco-Morelos JE, García-Sotelo J, Gaytan-Nuñez E, Méndez-Cruz CF, Muñiz LJ, Bonavides-Martínez C, Moreno-Hagelsieb G, Galagan JE, Wade JT, Collado-Vides J. RegulonDB 11.0: Comprehensive high-throughput datasets on transcriptional regulation in Escherichia coli K-12. Microb Genom 2022; 8:mgen000833. [PMID: 35584008 PMCID: PMC9465075 DOI: 10.1099/mgen.0.000833] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/24/2022] [Indexed: 01/23/2023] Open
Abstract
Genomics has set the basis for a variety of methodologies that produce high-throughput datasets identifying the different players that define gene regulation, particularly regulation of transcription initiation and operon organization. These datasets are available in public repositories, such as the Gene Expression Omnibus, or ArrayExpress. However, accessing and navigating such a wealth of data is not straightforward. No resource currently exists that offers all available high and low-throughput data on transcriptional regulation in Escherichia coli K-12 to easily use both as whole datasets, or as individual interactions and regulatory elements. RegulonDB (https://regulondb.ccg.unam.mx) began gathering high-throughput dataset collections in 2009, starting with transcription start sites, then adding ChIP-seq and gSELEX in 2012, with up to 99 different experimental high-throughput datasets available in 2019. In this paper we present a radical upgrade to more than 2000 high-throughput datasets, processed to facilitate their comparison, introducing up-to-date collections of transcription termination sites, transcription units, as well as transcription factor binding interactions derived from ChIP-seq, ChIP-exo, gSELEX and DAP-seq experiments, besides expression profiles derived from RNA-seq experiments. For ChIP-seq experiments we offer both the data as presented by the authors, as well as data uniformly processed in-house, enhancing their comparability, as well as the traceability of the methods and reproducibility of the results. Furthermore, we have expanded the tools available for browsing and visualization across and within datasets. We include comparisons against previously existing knowledge in RegulonDB from classic experiments, a nucleotide-resolution genome viewer, and an interface that enables users to browse datasets by querying their metadata. A particular effort was made to automatically extract detailed experimental growth conditions by implementing an assisted curation strategy applying Natural language processing and machine learning. We provide summaries with the total number of interactions found in each experiment, as well as tools to identify common results among different experiments. This is a long-awaited resource to make use of such wealth of knowledge and advance our understanding of the biology of the model bacterium E. coli K-12.
Collapse
Affiliation(s)
- Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Claire Rioualen
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Heladia Salgado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Paloma Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Patrick Lally
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Laura Gómez-Romero
- Instituto Nacional de Medicina Genómica, INMEGEN, Periférico Sur 4809, Arenal Tepepan, Tlalpan 14610, CDMX, Mexico
| | - Pablo Peña-Loredo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Andrés G. López-Almazo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Gabriel Alarcón-Carranza
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Felipe Betancourt-Figueroa
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Shirley Alquicira-Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - J. Enrique Polanco-Morelos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Jair García-Sotelo
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro 76230, Querétaro, Mexico
| | - Estefani Gaytan-Nuñez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Carlos-Francisco Méndez-Cruz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Luis J. Muñiz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - César Bonavides-Martínez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
| | - Gabriel Moreno-Hagelsieb
- Department of Biology, Wilfrid Laurier University, 75 University Ave W, Waterloo, ON N2L 3C5, Canada
| | - James E. Galagan
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
| | - Joseph T. Wade
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, NY, USA
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Cuernavaca 62210, Morelos, Mexico
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA 02215, USA
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Universitat Pompeu Fabra(UPF), Barcelona, Spain
| |
Collapse
|
31
|
Li Z, Nees M, Bettenbrock K, Rinas U. Is energy excess the initial trigger of carbon overflow metabolism? Transcriptional network response of carbon-limited Escherichia coli to transient carbon excess. Microb Cell Fact 2022; 21:67. [PMID: 35449049 PMCID: PMC9027384 DOI: 10.1186/s12934-022-01787-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022] Open
Abstract
Background Escherichia coli adapted to carbon-limiting conditions is generally geared for energy-efficient carbon utilization. This includes also the efficient utilization of glucose, which serves as a source for cellular building blocks as well as energy. Thus, catabolic and anabolic functions are balanced under these conditions to minimize wasteful carbon utilization. Exposure to glucose excess interferes with the fine-tuned coupling of anabolism and catabolism leading to the so-called carbon overflow metabolism noticeable through acetate formation and eventually growth inhibition. Results Cellular adaptations towards sudden but timely limited carbon excess conditions were analyzed by exposing slow-growing cells in steady state glucose-limited continuous culture to a single glucose pulse. Concentrations of metabolites as well as time-dependent transcriptome alterations were analyzed and a transcriptional network analysis performed to determine the most relevant transcription and sigma factor combinations which govern these adaptations. Down-regulation of genes related to carbon catabolism is observed mainly at the level of substrate uptake and downstream of pyruvate and not in between in the glycolytic pathway. It is mainly accomplished through the reduced activity of CRP-cAMP and through an increased influence of phosphorylated ArcA. The initiated transcriptomic change is directed towards down-regulation of genes, which contribute to active movement, carbon uptake and catabolic carbon processing, in particular to down-regulation of genes which contribute to efficient energy generation. Long-term changes persisting after glucose depletion and consumption of acetete encompassed reduced expression of genes related to active cell movement and enhanced expression of genes related to acid resistance, in particular acid resistance system 2 (GABA shunt) which can be also considered as an inefficient bypass of the TCA cycle. Conclusions Our analysis revealed that the major part of the trancriptomic response towards the glucose pulse is not directed towards enhanced cell proliferation but towards protection against excessive intracellular accumulation of potentially harmful concentration of metabolites including among others energy rich compounds such as ATP. Thus, resources are mainly utilized to cope with “overfeeding” and not for growth including long-lasting changes which may compromise the cells future ability to perform optimally under carbon-limiting conditions (reduced motility and ineffective substrate utilization). Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01787-4.
Collapse
Affiliation(s)
- Zhaopeng Li
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany.,Technical Chemistry - Life Science, Leibniz University of Hannover, Callinstr. 5, 30167, Hannover, Germany
| | - Markus Nees
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Ursula Rinas
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany. .,Technical Chemistry - Life Science, Leibniz University of Hannover, Callinstr. 5, 30167, Hannover, Germany.
| |
Collapse
|
32
|
Bustos C, Quezada J, Veas R, Altamirano C, Braun-Galleani S, Fickers P, Berrios J. Advances in Cell Engineering of the Komagataella phaffii Platform for Recombinant Protein Production. Metabolites 2022; 12:346. [PMID: 35448535 PMCID: PMC9027633 DOI: 10.3390/metabo12040346] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 12/11/2022] Open
Abstract
Komagataella phaffii (formerly known as Pichia pastoris) has become an increasingly important microorganism for recombinant protein production. This yeast species has gained high interest in an industrial setting for the production of a wide range of proteins, including enzymes and biopharmaceuticals. During the last decades, relevant bioprocess progress has been achieved in order to increase recombinant protein productivity and to reduce production costs. More recently, the improvement of cell features and performance has also been considered for this aim, and promising strategies with a direct and substantial impact on protein productivity have been reported. In this review, cell engineering approaches including metabolic engineering and energy supply, transcription factor modulation, and manipulation of routes involved in folding and secretion of recombinant protein are discussed. A lack of studies performed at the higher-scale bioreactor involving optimisation of cultivation parameters is also evidenced, which highlights new research aims to be considered.
Collapse
Affiliation(s)
- Cristina Bustos
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium;
| | - Johan Quezada
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Rhonda Veas
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Claudia Altamirano
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Stephanie Braun-Galleani
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Av. de la Faculté 2B, 5030 Gembloux, Belgium;
| | - Julio Berrios
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2085, Valparaíso 2362803, Chile; (C.B.); (J.Q.); (R.V.); (C.A.); (S.B.-G.)
| |
Collapse
|
33
|
Division of labor and collective functionality in Escherichia coli under acid stress. Commun Biol 2022; 5:327. [PMID: 35393532 PMCID: PMC8989999 DOI: 10.1038/s42003-022-03281-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
The acid stress response is an important factor influencing the transmission of intestinal microbes such as the enterobacterium Escherichia coli. E. coli activates three inducible acid resistance systems - the glutamate decarboxylase, arginine decarboxylase, and lysine decarboxylase systems to counteract acid stress. Each system relies on the activity of a proton-consuming reaction catalyzed by a specific amino acid decarboxylase and a corresponding antiporter. Activation of these three systems is tightly regulated by a sophisticated interplay of membrane-integrated and soluble regulators. Using a fluorescent triple reporter strain, we quantitatively illuminated the cellular individuality during activation of each of the three acid resistance (AR) systems under consecutively increasing acid stress. Our studies highlight the advantages of E. coli in possessing three AR systems that enable division of labor in the population, which ensures survival over a wide range of low pH values.
Collapse
|
34
|
The Escherichia coli Amino Acid Uptake Protein CycA: Regulation of Its Synthesis and Practical Application in l-Isoleucine Production. Microorganisms 2022; 10:microorganisms10030647. [PMID: 35336222 PMCID: PMC8948829 DOI: 10.3390/microorganisms10030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Amino acid transport systems perform important physiological functions; their role should certainly be considered in microbial production of amino acids. Typically, in the context of metabolic engineering, efforts are focused on the search for and application of specific amino acid efflux pumps. However, in addition, importers can also be used to improve the industrial process as a whole. In this study, the protein CycA, which is known for uptake of nonpolar amino acids, was characterized from the viewpoint of regulating its expression and range of substrates. We prepared a cycA-overexpressing strain and found that it exhibited high sensitivity to branched-chain amino acids and their structural analogues, with relatively increased consumption of these amino acids, suggesting that they are imported by CycA. The expression of cycA was found to be dependent on the extracellular concentrations of substrate amino acids. The role of some transcription factors in cycA expression, including of Lrp and Crp, was studied using a reporter gene construct. Evidence for the direct binding of Crp to the cycA regulatory region was obtained using a gel-retardation assay. The enhanced import of named amino acids due to cycA overexpression in the l-isoleucine-producing strain resulted in a significant reduction in the generation of undesirable impurities. This work demonstrates the importance of uptake systems with respect to their application in metabolic engineering.
Collapse
|
35
|
Schwan WR, Luedtke J, Engelbrecht K, Mollinger J, Wheaton A, Foster JW, Wolchak R. Regulation of Escherichia coli fim gene transcription by GadE and other acid tolerance gene products. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001149. [PMID: 35316170 PMCID: PMC9558354 DOI: 10.1099/mic.0.001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) cause millions of urinary tract infections each year in the United States. Type 1 pili are important for adherence of UPEC to uroepithelial cells in the human and murine urinary tracts where osmolality and pH vary. Previous work has shown that an acidic pH adversely affects the expression of type 1 pili. To determine if acid tolerance gene products may be regulating E. coli fim gene expression, a bank of K-12 strain acid tolerance gene mutants were screened using fimA-lux, fimB-lux, and fimE-lux fusions on single copy number plasmids. We have determined that a mutation in gadE increased transcription of all three fim genes, suggesting that GadE may be acting as a repressor in a low pH environment. Complementation of the gadE mutation restored fim gene transcription to wild-type levels. Moreover, mutations in gadX, gadW, crp, and cya also affected transcription of the three fim genes. To verify the role GadE plays in type 1 pilus expression, the NU149 gadE UPEC strain was tested. The gadE mutant had higher fimE gene transcript levels, a higher frequency of Phase-OFF positioning of fimS, and hemagglutination titres that were lower in strain NU149 gadE cultured in low pH medium as compared to the wild-type bacteria. The data demonstrate that UPEC fim genes are regulated directly or indirectly by the GadE protein and this could have some future bearing on the ability to prevent urinary tract infections by acidifying the urine and shutting off fim gene expression.
Collapse
Affiliation(s)
| | | | | | | | | | - John W. Foster
- University South Alabama College of Medicine, Mobile, AL, USA
| | | |
Collapse
|
36
|
Femerling G, Gama-Castro S, Lara P, Ledezma-Tejeida D, Tierrafría VH, Muñiz-Rascado L, Bonavides-Martínez C, Collado-Vides J. Sensory Systems and Transcriptional Regulation in Escherichia coli. Front Bioeng Biotechnol 2022; 10:823240. [PMID: 35237580 PMCID: PMC8882922 DOI: 10.3389/fbioe.2022.823240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
In free-living bacteria, the ability to regulate gene expression is at the core of adapting and interacting with the environment. For these systems to have a logic, a signal must trigger a genetic change that helps the cell to deal with what implies its presence in the environment; briefly, the response is expected to include a feedback to the signal. Thus, it makes sense to think of genetic sensory mechanisms of gene regulation. Escherichia coli K-12 is the bacterium model for which the largest number of regulatory systems and its sensing capabilities have been studied in detail at the molecular level. In this special issue focused on biomolecular sensing systems, we offer an overview of the transcriptional regulatory corpus of knowledge for E. coli that has been gathered in our database, RegulonDB, from the perspective of sensing regulatory systems. Thus, we start with the beginning of the information flux, which is the signal's chemical or physical elements detected by the cell as changes in the environment; these signals are internally transduced to transcription factors and alter their conformation. Signals transduced to effectors bind allosterically to transcription factors, and this defines the dominant sensing mechanism in E. coli. We offer an updated list of the repertoire of known allosteric effectors, as well as a list of the currently known different mechanisms of this sensing capability. Our previous definition of elementary genetic sensory-response units, GENSOR units for short, that integrate signals, transport, gene regulation, and the biochemical response of the regulated gene products of a given transcriptional factor fit perfectly with the purpose of this overview. We summarize the functional heterogeneity of their response, based on our updated collection of GENSORs, and we use them to identify the expected feedback as part of their response. Finally, we address the question of multiple sensing in the regulatory network of E. coli. This overview introduces the architecture of sensing and regulation of native components in E.coli K-12, which might be a source of inspiration to bioengineering applications.
Collapse
Affiliation(s)
- Georgette Femerling
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Paloma Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | - Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Luis Muñiz-Rascado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | | | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
37
|
Duggal Y, Kurasz JE, Fontaine BM, Marotta NJ, Chauhan SS, Karls AC, Weinert EE. Cellular Effects of 2',3'-Cyclic Nucleotide Monophosphates in Gram-Negative Bacteria. J Bacteriol 2022; 204:e0020821. [PMID: 34662237 PMCID: PMC8765455 DOI: 10.1128/jb.00208-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Organismal adaptations to environmental stimuli are governed by intracellular signaling molecules such as nucleotide second messengers. Recent studies have identified functional roles for the noncanonical 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) in both eukaryotes and prokaryotes. In Escherichia coli, 2',3'-cNMPs are produced by RNase I-catalyzed RNA degradation, and these cyclic nucleotides modulate biofilm formation through unknown mechanisms. The present work dissects cellular processes in E. coli and Salmonella enterica serovar Typhimurium that are modulated by 2',3'-cNMPs through the development of cell-permeable 2',3'-cNMP analogs and a 2',3'-cyclic nucleotide phosphodiesterase. Utilization of these chemical and enzymatic tools, in conjunction with phenotypic and transcriptomic investigations, identified pathways regulated by 2',3'-cNMPs, including flagellar motility and biofilm formation, and by oligoribonucleotides with 3'-terminal 2',3'-cyclic phosphates, including responses to cellular stress. Furthermore, interrogation of metabolomic and organismal databases has identified 2',3'-cNMPs in numerous organisms and homologs of the E. coli metabolic proteins that are involved in key eukaryotic pathways. Thus, the present work provides key insights into the roles of these understudied facets of nucleotide metabolism and signaling in prokaryotic physiology and suggest broad roles for 2',3'-cNMPs among bacteria and eukaryotes. IMPORTANCE Bacteria adapt to environmental challenges by producing intracellular signaling molecules that control downstream pathways and alter cellular processes for survival. Nucleotide second messengers serve to transduce extracellular signals and regulate a wide array of intracellular pathways. Recently, 2',3'-cyclic nucleotide monophosphates (2',3'-cNMPs) were identified as contributing to the regulation of cellular pathways in eukaryotes and prokaryotes. In this study, we define previously unknown cell processes that are affected by fluctuating 2',3'-cNMP levels or RNA oligomers with 2',3'-cyclic phosphate termini in E. coli and Salmonella Typhimurium, providing a framework for studying novel signaling networks in prokaryotes. Furthermore, we utilize metabolomics databases to identify additional prokaryotic and eukaryotic species that generate 2',3'-cNMPs as a resource for future studies.
Collapse
Affiliation(s)
- Yashasvika Duggal
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | - Nick J. Marotta
- Molecular, Cellular and Integrative Biosciences Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Shikha S. Chauhan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Anna C. Karls
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Emily E. Weinert
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
38
|
Kotlyar M, Wong SWH, Pastrello C, Jurisica I. Improving Analysis and Annotation of Microarray Data with Protein Interactions. Methods Mol Biol 2022; 2401:51-68. [PMID: 34902122 DOI: 10.1007/978-1-0716-1839-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gene expression microarrays are one of the most widely used high-throughput technologies in molecular biology, with applications such as identification of disease mechanisms and development of diagnostic and prognostic gene signatures. However, the success of these tasks is often limited because microarray analysis does not account for the complex relationships among genes, their products, and overall signaling and regulatory cascades. Incorporating protein-protein interaction data into microarray analysis can help address these challenges. This chapter reviews how protein-protein interactions can help with microarray analysis, leading to benefits such as better explanations of disease mechanisms, more complete gene annotations, improved prioritization of genes for future experiments, and gene signatures that generalize better to new data.
Collapse
Affiliation(s)
- Max Kotlyar
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Serene W H Wong
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, ON, Canada.
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
39
|
Miyakoshi M, Morita T, Kobayashi A, Berger A, Takahashi H, Gotoh Y, Hayashi T, Tanaka K. Glutamine synthetase mRNA releases sRNA from its 3'UTR to regulate carbon/nitrogen metabolic balance in Enterobacteriaceae. eLife 2022; 11:82411. [PMID: 36440827 PMCID: PMC9731577 DOI: 10.7554/elife.82411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glutamine synthetase (GS) is the key enzyme of nitrogen assimilation induced under nitrogen limiting conditions. The carbon skeleton of glutamate and glutamine, 2-oxoglutarate, is supplied from the TCA cycle, but how this metabolic flow is controlled in response to nitrogen availability remains unknown. We show that the expression of the E1o component of 2-oxoglutarate dehydrogenase, SucA, is repressed under nitrogen limitation in Salmonella enterica and Escherichia coli. The repression is exerted at the post-transcriptional level by an Hfq-dependent sRNA GlnZ generated from the 3'UTR of the GS-encoding glnA mRNA. Enterobacterial GlnZ variants contain a conserved seed sequence and primarily regulate sucA through base-pairing far upstream of the translation initiation region. During growth on glutamine as the nitrogen source, the glnA 3'UTR deletion mutants expressed SucA at higher levels than the S. enterica and E. coli wild-type strains, respectively. In E. coli, the transcriptional regulator Nac also participates in the repression of sucA. Lastly, this study clarifies that the release of GlnZ from the glnA mRNA by RNase E is essential for the post-transcriptional regulation of sucA. Thus, the mRNA coordinates the two independent functions to balance the supply and demand of the fundamental metabolites.
Collapse
Affiliation(s)
- Masatoshi Miyakoshi
- Department of Infection Biology, Faculty of Medicine, University of TsukubaTsukubaJapan,Transborder Medical Research Center, University of TsukubaTsukubaJapan,International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of TsukubaTsukubaJapan
| | - Teppei Morita
- Institute for Advanced Biosciences, Keio UniversityTsuruokaJapan,Graduate School of Media and Governance, Keio UniversityFujisawaJapan
| | - Asaki Kobayashi
- Transborder Medical Research Center, University of TsukubaTsukubaJapan
| | - Anna Berger
- International Joint Degree Master’s Program in Agro-Biomedical Science in Food and Health (GIP-TRIAD), University of TsukubaTsukubaJapan
| | | | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu UniversityFukuokaJapan
| | - Kan Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
40
|
Keseler IM, Gama-Castro S, Mackie A, Billington R, Bonavides-Martínez C, Caspi R, Kothari A, Krummenacker M, Midford PE, Muñiz-Rascado L, Ong WK, Paley S, Santos-Zavaleta A, Subhraveti P, Tierrafría VH, Wolfe AJ, Collado-Vides J, Paulsen IT, Karp PD. The EcoCyc Database in 2021. Front Microbiol 2021; 12:711077. [PMID: 34394059 PMCID: PMC8357350 DOI: 10.3389/fmicb.2021.711077] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
The EcoCyc model-organism database collects and summarizes experimental data for Escherichia coli K-12. EcoCyc is regularly updated by the manual curation of individual database entries, such as genes, proteins, and metabolic pathways, and by the programmatic addition of results from select high-throughput analyses. Updates to the Pathway Tools software that supports EcoCyc and to the web interface that enables user access have continuously improved its usability and expanded its functionality. This article highlights recent improvements to the curated data in the areas of metabolism, transport, DNA repair, and regulation of gene expression. New and revised data analysis and visualization tools include an interactive metabolic network explorer, a circular genome viewer, and various improvements to the speed and usability of existing tools.
Collapse
Affiliation(s)
- Ingrid M. Keseler
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Socorro Gama-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Amanda Mackie
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Richard Billington
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | | | - Ron Caspi
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Anamika Kothari
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Markus Krummenacker
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Peter E. Midford
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Luis Muñiz-Rascado
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Wai Kit Ong
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Suzanne Paley
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Alberto Santos-Zavaleta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, México
| | - Pallavi Subhraveti
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| | - Víctor H. Tierrafría
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Alan J. Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Julio Collado-Vides
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Peter D. Karp
- Bioinformatics Research Group, Artificial Intelligence Center, SRI International, Menlo Park, CA, United States
| |
Collapse
|
41
|
Abstract
Choosing and optimizing treatment strategies for cancer requires
capturing its complex dynamics sufficiently well for understanding but
without being overwhelmed. Mathematical models are essential to
achieve this understanding, and we discuss the challenge of choosing
the right level of complexity to address the full range of tumor
complexity from growth, the generation of tumor heterogeneity, and
interactions within tumors and with treatments and the tumor
microenvironment. We discuss the differences between conceptual and
descriptive models, and compare the use of predator-prey models,
evolutionary game theory, and dynamic precision medicine approaches in
the face of uncertainty about mechanisms and parameter values.
Although there is of course no one-size-fits-all approach, we conclude
that broad and flexible thinking about cancer, based on combined
modeling approaches, will play a key role in finding creative and
improved treatments.
Collapse
Affiliation(s)
- Robert A Beckman
- Departments of Oncology and Biostatistics, Bioinformatics, & Biomathematics, Lombardi Comprehensive Cancer Center and Innovation Center for Biomedical Informatics, 12231Georgetown University Medical Center, Washington, DC, USA
| | - Irina Kareva
- Mathematical and Computational Sciences Center, School of Human Evolution and Social Change, 7864Arizona State University, Tempe, AZ, USA
| | - Frederick R Adler
- School of Biological Sciences, 415772University of Utah, Salt Lake City, UT, USA.,Department of Mathematics, 415772University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
42
|
Merchel Piovesan Pereira B, Adil Salim M, Rai N, Tagkopoulos I. Tolerance to Glutaraldehyde in Escherichia coli Mediated by Overexpression of the Aldehyde Reductase YqhD by YqhC. Front Microbiol 2021; 12:680553. [PMID: 34248896 PMCID: PMC8262776 DOI: 10.3389/fmicb.2021.680553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Glutaraldehyde is a widely used biocide on the market for about 50 years. Despite its broad application, several reports on the emergence of bacterial resistance, and occasional outbreaks caused by poorly disinfection, there is a gap of knowledge on the bacterial adaptation, tolerance, and resistance mechanisms to glutaraldehyde. Here, we analyze the effects of the independent selection of mutations in the transcriptional regulator yqhC for biological replicates of Escherichia coli cells subjected to adaptive laboratory evolution (ALE) in the presence of glutaraldehyde. The evolved strains showed improved survival in the biocide (11-26% increase in fitness) as a result of mutations in the activator yqhC, which led to the overexpression of the yqhD aldehyde reductase gene by 8 to over 30-fold (3.1-5.2 log2FC range). The protective effect was exclusive to yqhD as other aldehyde reductase genes of E. coli, such as yahK, ybbO, yghA, and ahr did not offer protection against the biocide. We describe a novel mechanism of tolerance to glutaraldehyde based on the activation of the aldehyde reductase YqhD by YqhC and bring attention to the potential for the selection of such tolerance mechanism outside the laboratory, given the existence of YqhD homologs in various pathogenic and opportunistic bacterial species.
Collapse
Affiliation(s)
- Beatriz Merchel Piovesan Pereira
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Muhammad Adil Salim
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Navneet Rai
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| | - Ilias Tagkopoulos
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
43
|
Ziegler CA, Freddolino PL. The leucine-responsive regulatory proteins/feast-famine regulatory proteins: an ancient and complex class of transcriptional regulators in bacteria and archaea. Crit Rev Biochem Mol Biol 2021; 56:373-400. [PMID: 34151666 DOI: 10.1080/10409238.2021.1925215] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Since the discovery of the Escherichia coli leucine-responsive regulatory protein (Lrp) almost 50 years ago, hundreds of Lrp homologs have been discovered, occurring in 45% of sequenced bacteria and almost all sequenced archaea. Lrp-like proteins are often referred to as the feast/famine regulatory proteins (FFRPs), reflecting their common regulatory roles. Acting as either global or local transcriptional regulators, FFRPs detect the environmental nutritional status by sensing small effector molecules (usually amino acids) and regulate the expression of genes involved in metabolism, virulence, motility, nutrient transport, stress tolerance, and antibiotic resistance to implement appropriate behaviors for the specific ecological niche of each organism. Despite FFRPs' complexity, a significant role in gene regulation, and prevalence throughout prokaryotes, the last comprehensive review on this family of proteins was published about a decade ago. In this review, we integrate recent notable findings regarding E. coli Lrp and other FFRPs across bacteria and archaea with previous observations to synthesize a more complete view on the mechanistic details and biological roles of this ancient class of transcription factors.
Collapse
Affiliation(s)
- Christine A Ziegler
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Virus-Host Interaction Gets Curiouser and Curiouser. PART II: Functional Transcriptomics of the E. coli DksA-Deficient Cell upon Phage P1 vir Infection. Int J Mol Sci 2021; 22:ijms22116159. [PMID: 34200430 PMCID: PMC8201110 DOI: 10.3390/ijms22116159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023] Open
Abstract
The virus–host interaction requires a complex interplay between the phage strategy of reprogramming the host machinery to produce and release progeny virions, and the host defense against infection. Using RNA sequencing, we investigated the phage–host interaction to resolve the phenomenon of improved lytic development of P1vir phage in a DksA-deficient E. coli host. Expression of the ant1 and kilA P1vir genes in the wild-type host was the highest among all and most probably leads to phage virulence. Interestingly, in a DksA-deficient host, P1vir genes encoding lysozyme and holin are downregulated, while antiholins are upregulated. Gene expression of RepA, a protein necessary for replication initiating at the phage oriR region, is increased in the dksA mutant; this is also true for phage genes responsible for viral morphogenesis and architecture. Still, it seems that P1vir is taking control of the bacterial protein, sugar, and lipid metabolism in both, the wild type and dksA− hosts. Generally, bacterial hosts are reacting by activating their SOS response or upregulating the heat shock proteins. However, only DksA-deficient cells upregulate their sulfur metabolism and downregulate proteolysis upon P1vir infection. We conclude that P1vir development is enhanced in the dksA mutant due to several improvements, including replication and virion assembly, as well as a less efficient lysis.
Collapse
|
45
|
Engineering of the Small Noncoding RNA (sRNA) DsrA Together with the sRNA Chaperone Hfq Enhances the Acid Tolerance of Escherichia coli. Appl Environ Microbiol 2021; 87:AEM.02923-20. [PMID: 33674434 DOI: 10.1128/aem.02923-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/21/2021] [Indexed: 11/20/2022] Open
Abstract
Acid tolerance of microorganisms is a desirable phenotype for many industrial fermentation applications. In Escherichia coli, the stress response sigma factor RpoS is a promising target for engineering acid-tolerant phenotypes. However, the simple overexpression of RpoS alone is insufficient to confer these phenotypes. In this study, we show that the simultaneous overexpression of the noncoding small RNA (sRNA) DsrA and the sRNA chaperone Hfq, which act as RpoS activators, significantly increased acid tolerance in terms of cell growth under modest acidic pH, as well as cell survival upon extreme acid shock. Directed evolution of the DsrA-Hfq module further improved the acid tolerance, with the best mutants showing a 51 to 72% increase in growth performance at pH 4.5 compared with the starting strain, MG1655. Further analyses found that the improved acid tolerance of these DsrA-Hfq strains coincided with activation of genes associated with proton-consuming acid resistance system 2 (AR2), protein chaperone HdeB, and reactive oxygen species (ROS) removal in the exponential phase. This study illustrated that the fine-tuning of sRNAs and their chaperones can be a novel strategy for improving the acid tolerance of E. coli IMPORTANCE Many of the traditional studies on bacterial acid tolerance generally focused on improving cell survival under extreme-pH conditions, but cell growth under less harsh acidic conditions is more relevant to industrial applications. Under normal conditions, the general stress response sigma factor RpoS is maintained at low levels in the growth phase through a number of mechanisms. This study showed that RpoS can be activated prior to the stationary phase via engineering its activators, the sRNA DsrA and the sRNA chaperone Hfq, resulting in significantly improved cell growth at modest acidic pH. This work suggests that the sigma factors and likely other transcription factors can be retuned or retimed by manipulating the respective regulatory sRNAs along with the sufficient supply of the respective sRNA chaperones (i.e., Hfq). This provides a novel avenue for strain engineering of microbes.
Collapse
|
46
|
Wang Z, Xue T, Hu D, Ma Y. A Novel Butanol Tolerance-Promoting Function of the Transcription Factor Rob in Escherichia coli. Front Bioeng Biotechnol 2020; 8:524198. [PMID: 33072717 PMCID: PMC7537768 DOI: 10.3389/fbioe.2020.524198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Producing high concentrations of biobutanol is challenging, primarily because of the toxicity of butanol toward cells. In our previous study, several butanol tolerance-promoting genes were identified from butanol-tolerant Escherichia coli mutants and inactivation of the transcriptional regulator factor Rob was shown to improve butanol tolerance. Here, the butanol tolerance characteristics and mechanism regulated by inactivated Rob are investigated. Comparative transcriptome analysis of strain DTrob, with a truncated rob in the genome, and the control BW25113 revealed 285 differentially expressed genes (DEGs) to be associated with butanol tolerance and categorized as having transport, localization, and oxidoreductase activities. Expression of 25 DEGs representing different functional categories was analyzed by quantitative reverse transcription PCR (qRT-PCR) to assess the reliability of the RNA-Seq data, and 92% of the genes showed the same expression trend. Based on functional complementation experiments of key DEGs, deletions of glgS and yibT increased the butanol tolerance of E. coli, whereas overexpression of fadB resulted in increased cell density and a slight increase in butanol tolerance. A metabolic network analysis of these DEGs revealed that six genes (fadA, fadB, fadD, fadL, poxB, and acs) associated with acetyl-CoA production were significantly upregulated in DTrob, suggesting that Rob inactivation might enhance butanol tolerance by increasing acetyl-CoA. Interestingly, DTrob produced more acetate in response to butanol stress than the wild-type strain, resulting in the upregulation expression of some genes involved in acetate metabolism. Altogether, the results of this study reveal the mechanism underlying increased butanol tolerance in E. coli regulated by Rob inactivation.
Collapse
Affiliation(s)
- Zhiquan Wang
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Tingli Xue
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Dongsheng Hu
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuanyuan Ma
- Biomass Conversion Laboratory, R&D Center for Petrochemical Technology, Tianjin University, Tianjin, China.,Collaborative Innovation Centre of Chemical Science and Engineering, and Key Laboratory for Green Chemical Technology, Tianjin University, Tianjin, China.,State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Frontier Technology Institute, Tianjin University, Tianjin, China
| |
Collapse
|
47
|
The impact of cell structure, metabolism and group behavior for the survival of bacteria under stress conditions. Arch Microbiol 2020; 203:431-441. [PMID: 32975620 DOI: 10.1007/s00203-020-02050-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/28/2020] [Accepted: 09/15/2020] [Indexed: 10/23/2022]
Abstract
Microbes from diverse types of habitats are continuously exposed to external challenges, which may include acidic, alkaline, and toxic metabolites stress as well as nutrient deficiencies. To promote their own survival, bacteria have to rapidly adapt to external perturbations by inducing particular stress responses that typically involve genetic and/or cellular changes. In addition, pathogenic bacteria need to sense and withstand these environmental stresses within a host to establish and maintain infection. These responses can be, in principle, induced by changes in bacterial cell structure, metabolism and group behavior. Bacterial nucleic acids may serve as the core part of the stress response, and the cell envelope and ribosomes protect genetic structures from damage. Cellular metabolism and group behavior, such as quorum sensing system, can play a more important role in resisting stress than we have now found. Since bacteria survival can be only appreciated if we better understand the mechanisms behind bacterial stress response, here we review how morphological and physiological features may lead to bacterial resistance upon exposure to particular stress-inducing factors.
Collapse
|
48
|
Pintara A, Jennison A, Rathnayake IU, Mellor G, Huygens F. Core and Accessory Genome Comparison of Australian and International Strains of O157 Shiga Toxin-Producing Escherichia coli. Front Microbiol 2020; 11:566415. [PMID: 33013798 PMCID: PMC7498637 DOI: 10.3389/fmicb.2020.566415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen, and serotype O157:H7 is typically associated with severe disease. Australian STEC epidemiology differs from many other countries, as severe outbreaks and HUS cases appear to be more often associated with non-O157 serogroups. It is not known why Australian strains of O157 STEC might differ in virulence to international strains. Here we investigate the reduced virulence of Australian strains. Multiple genetic analyses were performed, including SNP-typing, to compare the core genomes of the Australian to the international isolates, and accessory genome analysis to determine any significant differences in gene presence/absence that could be associated with their phenotypic differences in virulence. The most distinct difference between the isolates was the absence of the stx2a gene in all Australian isolates, with few other notable differences observed in the core and accessory genomes of the O157 STEC isolates analyzed in this study. The presence of stx1a in most Australian isolates was another notable observation. Acquisition of stx2a seems to coincide with the emergence of highly pathogenic STEC. Due to the lack of other notable genotypic differences observed between Australian and international isolates characterized as highly pathogenic, this may be further evidence that the absence of stx2a in Australian O157 STEC could be a significant characteristic defining its mild virulence. Further work investigating the driving force(s) behind Stx prophage loss and acquisition is needed to determine if this potential exists in Australian O157 isolates.
Collapse
Affiliation(s)
- Alexander Pintara
- Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Amy Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, QLD, Australia
| | - Irani U. Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Health, Brisbane, QLD, Australia
| | - Glen Mellor
- CSIRO Animal, Food and Health Sciences, Archerfield, QLD, Australia
| | - Flavia Huygens
- Centre for Immunology and Infection Control, Queensland University of Technology, Herston, QLD, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
49
|
The Adaptive Response to Long-Term Nitrogen Starvation in Escherichia coli Requires the Breakdown of Allantoin. J Bacteriol 2020; 202:JB.00172-20. [PMID: 32571968 PMCID: PMC7417836 DOI: 10.1128/jb.00172-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
Bacteria initially respond to nutrient starvation by eliciting large-scale transcriptional changes. The accompanying changes in gene expression and metabolism allow the bacterial cells to effectively adapt to the nutrient-starved state. How the transcriptome subsequently changes as nutrient starvation ensues is not well understood. We used nitrogen (N) starvation as a model nutrient starvation condition to study the transcriptional changes in Escherichia coli experiencing long-term N starvation. The results reveal that the transcriptome of N-starved E. coli undergoes changes that are required to maximize chances of viability and to effectively recover growth when N starvation conditions become alleviated. We further reveal that, over time, N-starved E. coli cells rely on the degradation of allantoin for optimal growth recovery when N becomes replenished. This study provides insights into the temporally coordinated adaptive responses that occur in E. coli experiencing sustained N starvation.IMPORTANCE Bacteria in their natural environments seldom encounter conditions that support continuous growth. Hence, many bacteria spend the majority of their time in states of little or no growth due to starvation of essential nutrients. To cope with prolonged periods of nutrient starvation, bacteria have evolved several strategies, primarily manifesting themselves through changes in how the information in their genes is accessed. How these coping strategies change over time under nutrient starvation is not well understood, and this knowledge is important not only to broaden our understanding of bacterial cell function but also to potentially find ways to manage harmful bacteria. This study provides insights into how nitrogen-starved Escherichia coli bacteria rely on different genes during long-term nitrogen starvation.
Collapse
|
50
|
Barth SA, Weber M, Schaufler K, Berens C, Geue L, Menge C. Metabolic Traits of Bovine Shiga Toxin-Producing Escherichia Coli (STEC) Strains with Different Colonization Properties. Toxins (Basel) 2020; 12:toxins12060414. [PMID: 32580365 PMCID: PMC7354573 DOI: 10.3390/toxins12060414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 01/14/2023] Open
Abstract
Cattle harbor Shiga toxin-producing Escherichia coli (STEC) in their intestinal tract, thereby providing these microorganisms with an ecological niche, but without this colonization leading to any clinical signs. In a preceding study, genotypic characterization of bovine STEC isolates unveiled that their ability to colonize cattle persistently (STECper) or only sporadically (STECspo) is more closely associated with the overall composition of the accessory rather than the core genome. However, the colonization pattern could not be unequivocally linked to the possession of classical virulence genes. This study aimed at assessing, therefore, if the presence of certain phenotypic traits in the strains determines their colonization pattern and if these can be traced back to distinctive genetic features. STECspo strains produced significantly more biofilm than STECper when incubated at lower temperatures. Key substrates, the metabolism of which showed a significant association with colonization type, were glyoxylic acid and L-rhamnose, which were utilized by STECspo, but not or only by some STECper. Genomic sequences of the respective glc and rha operons contained mutations and frameshifts in uptake and/or regulatory genes, particularly in STECper. These findings suggest that STECspo conserved features leveraging survival in the environment, whereas the acquisition of a persistent colonization phenotype in the cattle reservoir was accompanied by the loss of metabolic properties and genomic mutations in the underlying genetic pathways.
Collapse
Affiliation(s)
- Stefanie A. Barth
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
- Correspondence: ; Tel.: +49-3641-804-2270; Fax: +49-3641-804-2482
| | - Michael Weber
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| | - Katharina Schaufler
- Free University Berlin, Institute of Microbiology and Epizootics, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany;
- University of Greifswald, Pharmaceutical Microbiology, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| | - Lutz Geue
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| | - Christian Menge
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Naumburger Str. 96a, 07743 Jena, Germany; (M.W.); (C.B.); (L.G.); (C.M.)
| |
Collapse
|