1
|
Wang S, Li X, Ma J, Duan X, Wang H, Wang L, Hu D, Jiang W, Li X, Qian P. Structural and functional analysis reveals the catalytic mechanism and substrate binding mode of the broad-spectrum endolysin Ply2741. Virulence 2025; 16:2449025. [PMID: 39810299 PMCID: PMC11740692 DOI: 10.1080/21505594.2024.2449025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 12/09/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
The emergence of antibiotic-resistant bacteria has attracted interest in the field of endolysins. Here, we analyzed the diversity of Streptococcus endolysins and identified a new endolysin, Ply2741, that exhibited broad-spectrum bactericidal activity. Our results demonstrated that Ply2741 could effectively eradicate multidrug-resistant gram-positive pathogens in vitro and in vivo. Structural analysis revealed that the bactericidal activity of Ply2741 depends on the classic "Cys-His-Asn" catalytic triad. Site-directed mutagenesis results further identified that the conserved residue Gln29, located near the catalytic triad, also contributes to the lytic activity of Ply2741. Furthermore, the key residues (R189 and W250) in the Ply2741 cell wall binding domain (CBD) responsible for binding to peptidoglycan were revealed by molecular docking and fluorescence-activated cell sorting (FACS) analysis. Ply2741 demonstrates a broad lytic spectrum, with significant bactericidal activity against Enterococcus, Staphylococcus, and Streptococcus and species. To the best of our knowledge, we found that residue Gln29 participated in the lytic activity of endolysin for the first time. Additionally, we systematically elucidate the binding mode and key residues of the Ply2741CBD. This study proposes Ply2741 as a potential antibiotic substitute and provides a structural basis for the modification and design of endolysins.
Collapse
Affiliation(s)
- Shuang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xinxin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jiahui Ma
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiaochao Duan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haiyan Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Linkang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dayue Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Wenwu Jiang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Centre for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Teymouri S, Yousefi MH, Heidari S, Farokhi S, Afkhami H, Kashfi M. Beyond antibiotics: mesenchymal stem cells and bacteriophages-new approaches to combat bacterial resistance in wound infections. Mol Biol Rep 2024; 52:64. [PMID: 39699690 DOI: 10.1007/s11033-024-10163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Wound management is a major global health problem. With the rising incidence of diabetic wounds, accidents, and other injuries, the demand for prompt wound treatment has become increasingly critical. Millions of people suffer from serious, large wounds resulting from major accidents, surgeries, and wars. These wounds require considerable time to heal and are susceptible to infection. Furthermore, chronic wounds, particularly in elderly and diabetic patients, often require frequent medical interventions to prevent complications. Consequently, wound management imposes a significant economic burden worldwide. The complications arising from wound infections can vary from localized issues to systemic effects. The most severe local complication of wound infection is the non-healing, which results from the disruption of the wound-healing process. This often leads to significant pain, discomfort, and psychological trauma for the patient. Systemic complications may include cellulitis, osteomyelitis, and septicemia. Mesenchymal stem cells are characterized by their high capacity for division, making them suitable candidates for the treatment of tissue damage. Additionally, they produce antimicrobial peptides and various cytokines, which enhance their antimicrobial activity. Evidence shows that phages are effective in treating wound-related infections, and phage therapy has proven to be highly effective for patients when administered correctly. The purpose of this article is to explore the use of bacteriophages and mesenchymal stem cells in wound healing and infection management.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Ponikowska M, Żebrowska J, Skowron PM. New-Generation Antibacterial Agent-Cellulose-Binding Thermostable TP84_Endolysin. Int J Mol Sci 2024; 25:13111. [PMID: 39684821 DOI: 10.3390/ijms252313111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
The increasing antibiotic resistance among bacteria challenges the biotech industry to search for new antibacterial molecules. Endolysin TP84_28 is a thermostable, lytic enzyme, encoded by the bacteriophage (phage) TP-84, and it effectively digests host bacteria cell wall. Biofilms, together with antibiotic resistance, are major problems in clinical medicine and industry. The challenge is to keep antibacterial molecules at the site of desired action, as their diffusion leads to a loss of efficacy. The TP84_28 endolysin gene was cloned into an expression-fusion vector, forming a fusion gene cbd_tp84_28_his with a cellulose-binding domain from the cellulase enzyme. The Cellulose-Binding Thermostable TP84_Endolysin (CBD_TP84_28_His) fusion protein was biosynthesized in Escherichia coli and purified. Thermostability and enzymatic activities against various bacterial species were measured by a turbidity reduction assay, a spot assay, and biofilm removal. Cellulose-binding properties were confirmed via interactions with microcellulose and cellulose paper-based immunoblotting. The high affinity of the CBD allows for a high concentration of the fusion enzyme at desired target sites such as cellulose-based wound dressings, artificial heart valves and food packaging. CBD_TP84_28_His exhibits a lytic effect against thermophilic bacteria Geobacillus stearothemophilus, Thermus aquaticus, Bacillus stearothermophilus, and Geobacillus ICI and minor effects against mesophilic Bacillus cereus and Bacillus subtilis. CBD_TP84_28_His retains full activity after preincubation in the temperatures of 30-65 °C and exhibits significant activity up to its melting point at 73 °C. CBD_TP84_28_His effectively reduces biofilms. These findings suggest that integrating CBDs into thermostable endolysins could enable the development of targeted antibacterial recombinant proteins with diverse clinical and industrial applications.
Collapse
Affiliation(s)
- Małgorzata Ponikowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
- Department of Biology and Medical Genetics, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland
| | - Joanna Żebrowska
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, 80-309 Gdansk, Poland
| |
Collapse
|
4
|
Kajsikova M, Kajsik M, Bocanova L, Papayova K, Drahovska H, Bukovska G. Endolysin EN572-5 as an alternative to treat urinary tract infection caused by Streptococcus agalactiae. Appl Microbiol Biotechnol 2024; 108:79. [PMID: 38189950 PMCID: PMC10774192 DOI: 10.1007/s00253-023-12949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/13/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an opportunistic pathogen causing urinary tract infection (UTI). Endolysin EN572-5 was identified in prophage KMB-572-E of the human isolate Streptococcus agalactiae KMB-572. The entire EN572-5 gene was cloned into an expression vector and the corresponding recombinant protein EN572-5 was expressed in Escherichia coli in a soluble form, isolated by affinity chromatography, and characterized. The isolated protein was highly active after 30 min incubation in a temperature range of - 20 °C to 37 °C and in a pH range of 5.5-8.0. The endolysin EN572-5 lytic activity was tested on different Streptococcus spp. and Lactobacillus spp. The enzyme lysed clinical GBS (n = 31/31) and different streptococci (n = 6/8), and also exhibited moderate lytic activity against UPEC (n = 4/4), but no lysis of beneficial vaginal lactobacilli (n = 4) was observed. The ability of EN572-5 to eliminate GBS during UTI was investigated using an in vitro model of UPSA. After the administration of 3 μM EN572-5, a nearly 3-log decrease of urine bacterial burden was detected within 3 h. To date, no studies have been published on the use of endolysins against S. agalactiae during UTI. KEY POINTS: • A lytic protein, EN572-5, from a prophage of a human GBS isolate has been identified. • This protein is easily produced, simple to prepare, and stable after lyophilization. • The bacteriolytic activity of EN572-5 was demonstrated for the first time in human urine.
Collapse
Affiliation(s)
- Maria Kajsikova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Michal Kajsik
- Comenius University Science Park, Ilkovicova 8, 841 04, Bratislava, Slovakia
| | - Lucia Bocanova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Kristina Papayova
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia
| | - Hana Drahovska
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 841 15, Bratislava, Slovakia
| | - Gabriela Bukovska
- Department of Genomics and Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, 845 51, Bratislava, Slovakia.
| |
Collapse
|
5
|
Liu H, Wei X, Peng H, Yang Y, Hu Z, Rao Y, Wang Z, Dou J, Huang X, Hu Q, Tan L, Wang Y, Chen J, Liu L, Yang Y, Wu J, Hu X, Lu S, Shang W, Rao X. LysSYL-Loaded pH-Switchable Self-Assembling Peptide Hydrogels Promote Methicillin-Resistant Staphylococcus Aureus Elimination and Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412154. [PMID: 39548922 DOI: 10.1002/adma.202412154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/26/2024] [Indexed: 11/18/2024]
Abstract
Staphylococcus aureus (S. aureus), especially methicillin-resistant S. aureus (MRSA), causes wound infections, whose treatment remains a clinical challenge. Bacterium-infected wounds often create acidic niches with a pH 4.5-6.5. Endolysin LysSYL, which is derived from phage SYL, shows promise as an antistaphylococcal agent. However, endolysins generally exhibit instability and possess low bioavailability in acidic microenvironments. Here, an array of self-assembling peptides is designed, and peptide L5 is screened out based on its gel formation property and bioavailability. L5 exerted a pH-switchable antimicrobial effect (pH 5.5) and formed biocompatible hydrogels at neutral pH (pH 7.4). The LysSYL-loaded L5 can assemble L5@LysSYL hydrogels, increase thermal stability, and exhibit the slow-release effect of LysSYL. Effective elimination of S. aureus is achieved by L5@LysSYL through bacterial membrane disruption and cell separation inhibition. Moreover, L5@LysSYL hydrogels exhibit great potential in promoting wound healing in a mouse wound model infected by MRSA. Furthermore, L5@LysSYL hydrogels are safe and can decrease the cytokine levels and increase the number of key factors for vessel formation, which contribute to wound healing. Overall, the self-assembling L5@LysSYL can effectively clean MRSA and promote wound healing, which suggests its potential as a pH-sensitive wound dressing for the management of wound infections.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Xuemei Wei
- Institute of Biomedical Research, Southwest University, Chongqing, 400037, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Yifan Rao
- Department of Emergency Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Zhefen Wang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jianxiong Dou
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Li Tan
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Juan Chen
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Lu Liu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Yuhua Yang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Jianghong Wu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Xiaomei Hu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Chongqing, 400038, China
- Institute of Biomedical Research, Southwest University, Chongqing, 400037, China
| |
Collapse
|
6
|
Park JM, Kim JH, Choi KS, Kwon HJ. Deleterious Effects of Histidine Tagging to the SH3b Cell Wall-Binding Domain on Recombinant Endolysin Activity. J Microbiol Biotechnol 2024; 34:2331-2337. [PMID: 39467703 PMCID: PMC11637818 DOI: 10.4014/jmb.2408.08003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/30/2024]
Abstract
Natural and artificial endolysins exhibit bactericidal effects by destroying peptidoglycans in the cell wall of gram-positive bacteria and are usually composed of an N-terminal catalytic domain (CTD) and a C-terminal cell wall-binding domain (CBD). The structures and receptors of CBDs are variable, but bacterial Src homology 3 (SH3b) CBDs are prevalent among the natural endolysins of Staphylococcus aureus. Moreover, although recombinant endolysins with a C-terminal 6x histidine tag (His-tag) are often produced and convenient to purify, the deleterious effects of His-tags on antibacterial activity have not been evaluated thoroughly. Recently, we reported that the antibacterial activity of a commercial lysostaphin without a His-tag differed from that of cell-free lysostaphin with a C-terminal His-tag, and lysostaphin also contains a C-terminal SH3b CBD. In this study, we directly compared the effects of His-tags on the antibacterial activities of lysostaphin and several chimeric lysins possessing different SH3b CBDs. We confirmed that antibacterial activity decreased 16.0-32.0-fold after a His-tag was added to the SH3b CBD.
Collapse
Affiliation(s)
- Jin-Mi Park
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Jun-Hyun Kim
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, Department of Farm Animal Medicine, College of Veterinary Medicine and BK21 PLUS for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul 08826, Republic of Korea
- Farm Animal Clinical Training and Research Center (FACTRC), GBST, Seoul National University, Gangwon-do 25354, Republic of Korea
- GeNiner Inc., Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Golban M, Charostad J, Kazemian H, Heidari H. Phage-Derived Endolysins Against Resistant Staphylococcus spp.: A Review of Features, Antibacterial Activities, and Recent Applications. Infect Dis Ther 2024:10.1007/s40121-024-01069-z. [PMID: 39549153 DOI: 10.1007/s40121-024-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024] Open
Abstract
Antimicrobial resistance is a significant global public health issue, and the dissemination of antibiotic resistance in Gram-positive bacterial pathogens has significantly increased morbidity, mortality rates, and healthcare costs. Among them, Staphylococcus, especially methicillin-resistant Staphylococcus aureus (MRSA), causes a wide range of diseases due to its diverse pathogenic factors and infection strategies. These bacteria also present significant issues in veterinary medicine and food safety. Effectively managing staphylococci-related problems necessitates a concerted effort to implement preventive measures, rapidly detect the pathogen, and develop new and safe antimicrobial therapies. In recent years, there has been growing interest in using endolysins to combat bacterial infections. These enzymes, which are also referred to as lysins, are a unique class of hydrolytic enzymes synthesized by double-stranded DNA bacteriophages. They possess glycosidase, lytic transglycosylase, amidase, and endopeptidase activities, effectively destroying the peptidoglycan layer and resulting in bacterial lysis. This unique property makes endolysins powerful antimicrobial agents, particularly against Gram-positive organisms with more accessible peptidoglycan layers. Therefore, considering the potential benefits of endolysins compared to conventional antibiotics, we have endeavored to gather and review the characteristics and uses of endolysins derived from staphylococcal bacteriophages, as well as their antibacterial effectiveness against Staphylococcus spp. based on conducted experiments and trials.
Collapse
Affiliation(s)
- Mina Golban
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Charostad
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Kazemian
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Hamid Heidari
- Department of Microbiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
8
|
Munetomo S, Uchiyama J, Takemura-Uchiyama I, Wanganuttara T, Yamamoto Y, Tsukui T, Hagiya H, Kanamaru S, Kanda H, Matsushita O. Examination of yield, bacteriolytic activity and cold storage of linker deletion mutants based on endolysin S6_ORF93 derived from Staphylococcus giant bacteriophage S6. PLoS One 2024; 19:e0310962. [PMID: 39441843 PMCID: PMC11498662 DOI: 10.1371/journal.pone.0310962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Methicillin-resistant Staphylococcus spp. present challenges in clinical and veterinary settings because effective antimicrobial agents are limited. Phage-encoded peptidoglycan-degrading enzyme, endolysin, is expected to be a novel antimicrobial agent. The enzymatic activity has recently been shown to be influenced by the linker between functional domains in the enzyme. S6_ORF93 (ORF93) is one of the endolysins derived from previously isolated Staphylococcus giant phage S6. The ORF93 was speculated to have a catalytic and peptidoglycan-binding domain with a long linker. In this study, we examined the influence of linker shortening on the characteristics of ORF93. We produce wild-type ORF93 and the linker deletion mutants using an Escherichia coli expression system. These mutants were designated as ORF93-Δ05, ORF93-Δ10, ORF93-Δ15, and ORF93-Δ20, from which 5, 10, 15, and 20 amino acids were removed from the linker, respectively. Except for the ORF93-Δ20, ORF93 and its mutants were expressed as soluble proteins. Moreover, ORF93-Δ15 showed the highest yield and bacteriolytic activity, while the antimicrobial spectrum was homologous. The cold storage experiment showed a slight effect by the linker deletion. According to our results and other studies, linker investigations are crucial in endolysin development.
Collapse
Affiliation(s)
- Sosuke Munetomo
- Department of Public Health, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Jumpei Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Iyo Takemura-Uchiyama
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Thamonwan Wanganuttara
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Yumiko Yamamoto
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | | | - Hideharu Hagiya
- Department of Infectious Diseases, Okayama University Hospital, Kita-ku, Okayama, Japan
| | - Shuji Kanamaru
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama Kanagawa, Japan
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Kita-ku, Okayama, Japan
| |
Collapse
|
9
|
Chu D, Lan J, Liang L, Xia K, Li L, Yang L, Liu H, Zhang T. The antibacterial activity of a novel highly thermostable endolysin, LysKP213, against Gram-negative pathogens is enhanced when combined with outer membrane permeabilizing agents. Front Microbiol 2024; 15:1454618. [PMID: 39439944 PMCID: PMC11493673 DOI: 10.3389/fmicb.2024.1454618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/26/2024] [Indexed: 10/25/2024] Open
Abstract
Phages and phage-encoded lytic enzymes are promising antimicrobial agents. In this study, we report the isolation and identification of bacteriophage KP2025 from Klebsiella pneumoniae. Bioinformatics analysis of KP2025 revealed a putative endolysin, LysKP213, containing a T4-like_lys domain. Purified LysKP213 was found to be highly thermostable, retaining approximately 44.4% of its lytic activity after 20 h of incubation at 95°C, and approximately 57.5% residual activity after 30 min at 121°C. Furthermore, when administered in combination with polymyxin B or fused at the N-terminus with the antimicrobial peptide cecropin A (CecA), LysKP213 exhibited increased antibacterial activity against Gram-negative pathogens, including K. pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli, both in vitro and in vivo. These results indicated that LysKP213 is a highly thermostable endolysin that, when combined with or fused with an outer membrane permeabilizer, has enhanced antibacterial activity and is a candidate agent for the control of infections by Gram-negative pathogens.
Collapse
Affiliation(s)
- Dingjian Chu
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Jing Lan
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Lu Liang
- Guiyang Maternal and Child Health Hospital, Guiyang, China
| | - Kaide Xia
- Guiyang Maternal and Child Health Hospital, Guiyang, China
| | - Linlin Li
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lan Yang
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Hongmei Liu
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| | - Tingting Zhang
- Engineering Research Center of Health Medicine Biotechnology of Institution of Higher Education of Guizhou Province, School of Biology and Engineering (School of Modern Industry for Health and Medicine), Guizhou Medical University, Guiyang, China
| |
Collapse
|
10
|
Bałdysz S, Da Browska K, Barylski J. What do we need to move enzybiotic bioinformatics forward? Front Microbiol 2024; 15:1474633. [PMID: 39301191 PMCID: PMC11410608 DOI: 10.3389/fmicb.2024.1474633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Sophia Bałdysz
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Krystyna Da Browska
- Faculty of Medicine, Wroclaw Institute of Science and Technology, Wrocław, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
11
|
Bin Yahia NM, Shan M, Zhu Y, Yang Y, Zhang S, Yang Y. From crisis to cure: harnessing the potential of mycobacteriophages in the battle against tuberculosis. J Appl Microbiol 2024; 135:lxae208. [PMID: 39134510 DOI: 10.1093/jambio/lxae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/30/2024]
Abstract
Tuberculosis (TB) is a serious and fatal disease caused by Mycobacterium tuberculosis (Mtb). The World Health Organization reported an estimated 1.30 million TB-related deaths in 2022. The escalating prevalence of Mtb strains classified as being multi-, extensively, extremely, or totally drug resistant, coupled with the decreasing efficacies of conventional therapies, necessitates the development of novel treatments. As viruses that infect Mycobacterium spp., mycobacteriophages may represent a strategy to combat and eradicate drug-resistant TB. More exploration is needed to provide a comprehensive understanding of mycobacteriophages and their genome structure, which could pave the way toward a definitive treatment for TB. This review focuses on the properties of mycobacteriophages, their potential in diagnosing and treating TB, the benefits and drawbacks of their application, and their use in human health. Specifically, we summarize recent research on mycobacteriophages targeted against Mtb infection and newly developed mycobacteriophage-based tools to diagnose and treat diseases caused by Mycobacterium spp. We underscore the urgent need for innovative approaches and highlight the potential of mycobacteriophages as a promising avenue for developing effective diagnosis and treatment to combat drug-resistant Mycobacterium strains.
Collapse
Affiliation(s)
- Noura M Bin Yahia
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Minghai Shan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
- General Hospital of Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Yue Zhu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Yuma Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Sihan Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
| | - Yanhui Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004 P.R. China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750004 P.R. China
| |
Collapse
|
12
|
Zhang Y, Li R, Zou G, Guo Y, Wu R, Zhou Y, Chen H, Zhou R, Lavigne R, Bergen PJ, Li J, Li J. Discovery of Antimicrobial Lysins from the "Dark Matter" of Uncharacterized Phages Using Artificial Intelligence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404049. [PMID: 38899839 PMCID: PMC11348152 DOI: 10.1002/advs.202404049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Indexed: 06/21/2024]
Abstract
The rapid rise of antibiotic resistance and slow discovery of new antibiotics have threatened global health. While novel phage lysins have emerged as potential antibacterial agents, experimental screening methods for novel lysins pose significant challenges due to the enormous workload. Here, the first unified software package, namely DeepLysin, is developed to employ artificial intelligence for mining the vast genome reservoirs ("dark matter") for novel antibacterial phage lysins. Putative lysins are computationally screened from uncharacterized Staphylococcus aureus phages and 17 novel lysins are randomly selected for experimental validation. Seven candidates exhibit excellent in vitro antibacterial activity, with LLysSA9 exceeding that of the best-in-class alternative. The efficacy of LLysSA9 is further demonstrated in mouse bloodstream and wound infection models. Therefore, this study demonstrates the potential of integrating computational and experimental approaches to expedite the discovery of new antibacterial proteins for combating increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Yue Zhang
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Runze Li
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Geng Zou
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Yating Guo
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Renwei Wu
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Yang Zhou
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
| | - Huanchun Chen
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Rui Zhou
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Rob Lavigne
- Department of BiosystemsLaboratory of Gene TechnologyKU LeuvenLeuven3001Belgium
| | - Phillip J. Bergen
- Monash Biomedicine Discovery InstituteDepartment of MicrobiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourne3800Australia
| | - Jian Li
- Monash Biomedicine Discovery InstituteDepartment of MicrobiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourne3800Australia
| | - Jinquan Li
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| |
Collapse
|
13
|
Vasina DV, Antonova NP, Gushchin VA, Aleshkin AV, Fursov MV, Fursova AD, Gancheva PG, Grigoriev IV, Grinkevich P, Kondratev AV, Kostarnoy AV, Lendel AM, Makarov VV, Nikiforova MA, Pochtovyi AA, Prudnikova T, Remizov TA, Shevlyagina NV, Siniavin AE, Smirnova NS, Terechov AA, Tkachuk AP, Usachev EV, Vorobev AM, Yakimakha VS, Yudin SM, Zackharova AA, Zhukhovitsky VG, Logunov DY, Gintsburg AL. Development of novel antimicrobials with engineered endolysin LysECD7-SMAP to combat Gram-negative bacterial infections. J Biomed Sci 2024; 31:75. [PMID: 39044206 PMCID: PMC11267749 DOI: 10.1186/s12929-024-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/08/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Among the non-traditional antibacterial agents in development, only a few targets critical Gram-negative bacteria such as carbapenem-resistant Pseudomonas aeruginosa, Acinetobacter baumannii or cephalosporin-resistant Enterobacteriaceae. Endolysins and their genetically modified versions meet the World Health Organization criteria for innovation, have a novel mode of antibacterial action, no known bacterial cross-resistance, and are being intensively studied for application against Gram-negative pathogens. METHODS The study presents a multidisciplinary approach, including genetic engineering of LysECD7-SMAP and production of recombinant endolysin, its analysis by crystal structure solution following molecular dynamics simulations and evaluation of antibacterial properties. Two types of antimicrobial dosage forms were formulated, resulting in lyophilized powder for injection and hydroxyethylcellulose gel for topical administration. Their efficacy was estimated in the treatment of sepsis, and pneumonia models in BALB/c mice, diabetes-associated wound infection in the leptin receptor-deficient db/db mice and infected burn wounds in rats. RESULTS In this work, we investigate the application strategies of the engineered endolysin LysECD7-SMAP and its dosage forms evaluated in preclinical studies. The catalytic domain of the enzyme shares the conserved structure of endopeptidases containing a putative antimicrobial peptide at the C-terminus of polypeptide chain. The activity of endolysins has been demonstrated against a range of pathogens, such as Klebsiella pneumoniae, A. baumannii, P. aeruginosa, Staphylococcus haemolyticus, Achromobacter spp, Burkholderia cepacia complex and Haemophylus influenzae, including those with multidrug resistance. The efficacy of candidate dosage forms has been confirmed in in vivo studies. Some aspects of the interaction of LysECD7-SMAP with cell wall molecular targets are also discussed. CONCLUSIONS Our studies demonstrate the potential of LysECD7-SMAP therapeutics for the systemic or topical treatment of infectious diseases caused by susceptible Gram-negative bacterial species and are critical to proceed LysECD7-SMAP-based antimicrobials trials to advanced stages.
Collapse
Affiliation(s)
- Daria V Vasina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Nataliia P Antonova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir A Gushchin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey V Aleshkin
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Mikhail V Fursov
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Anastasiia D Fursova
- State Research Center for Applied Microbiology and Biotechnology, Obolensk, Russia
| | - Petya G Gancheva
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Igor V Grigoriev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Pavel Grinkevich
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Alexey V Kondratev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexey V Kostarnoy
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiya M Lendel
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Valentine V Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Maria A Nikiforova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei A Pochtovyi
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Timofey A Remizov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalia V Shevlyagina
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Andrei E Siniavin
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Nina S Smirnova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander A Terechov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Artem P Tkachuk
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Evgeny V Usachev
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Aleksei M Vorobev
- G.N. Gabrichevsky Moscow Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - Victoria S Yakimakha
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Sergey M Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow, Russia
| | - Anastasia A Zackharova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir G Zhukhovitsky
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Russian Medical Academy of Continuing Professional Education (RMANPO), Ministry of Public Health, Moscow, Russia
| | - Denis Y Logunov
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander L Gintsburg
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Infectiology and Virology, Federal State Autonomous Educational Institution of Higher Education I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
14
|
Hülpüsch C, Rohayem R, Reiger M, Traidl-Hoffmann C. Exploring the skin microbiome in atopic dermatitis pathogenesis and disease modification. J Allergy Clin Immunol 2024; 154:31-41. [PMID: 38761999 DOI: 10.1016/j.jaci.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/20/2024]
Abstract
Inflammatory skin diseases such as atopic eczema (atopic dermatitis [AD]) affect children and adults globally. In AD, the skin barrier is impaired on multiple levels. Underlying factors include genetic, chemical, immunologic, and microbial components. Increased skin pH in AD is part of the altered microbial microenvironment that promotes overgrowth of the skin microbiome with Staphylococcus aureus. The secretion of virulence factors, such as toxins and proteases, by S aureus further aggravates the skin barrier deficiency and additionally disrupts the balance of an already skewed immune response. Skin commensal bacteria, however, can inhibit the growth and pathogenicity of S aureus through quorum sensing. Therefore, restoring a healthy skin microbiome could contribute to remission induction in AD. This review discusses direct and indirect approaches to targeting the skin microbiome through modulation of the skin pH; UV treatment; and use of prebiotics, probiotics, and postbiotics. Furthermore, exploratory techniques such as skin microbiome transplantation, ozone therapy, and phage therapy are discussed. Finally, we summarize the latest findings on disease and microbiome modification through targeted immunomodulatory systemic treatments and biologics. We believe that targeting the skin microbiome should be considered a crucial component of successful AD treatment in the future.
Collapse
Affiliation(s)
- Claudia Hülpüsch
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Robin Rohayem
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland; Dermatology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Matthias Reiger
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany
| | - Claudia Traidl-Hoffmann
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany; Chair of Environmental Medicine, Technical University of Munich, Munich, Germany; Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany; Christine-Kühne Center for Allergy Research and Education, Davos, Switzerland; ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
15
|
Kairamkonda M, Saxena H, Gulati K, Poluri KM. Analyzing the impact of T7L variants overexpression on the metabolic profile of Escherichia coli. Metabolomics 2024; 20:68. [PMID: 38941046 DOI: 10.1007/s11306-024-02133-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Exploring metabolic changes within host E. coli through an untargeted metabolomic study of T7L variants overexpression to optimize engineered endolysins for clinical/therapeutic use. AIM AND OBJECTIVE This study aims to assess the impact of overexpressing T7L variants on the metabolic profiles of E. coli. The two variants considered include T7L-H37A, which has enhanced lytic activity compared to its wild-type protein, and T7L-H48K, a dead mutant with no significant activity. METHODS 1H NMR-based metabolomics was employed to compare the metabolic profiles of E. coli cells overexpressing T7L wild-type protein and its variants. RESULTS Overexpression of the T7L wild-type (T7L-WT) protein and its variants (T7L-H48K and T7L-H37A) was compared to RNAP overexpression in E. coli cells using 1H NMR-based metabolomics, analyzing a total of 75 annotated metabolites, including organic acids, amino acids, sugars, and nucleic acids. The results showed distinct clustering patterns for the two T7L variant groups compared with the WT, in which the dead mutant (H48K) group showed clustering close to that of RNAP. Pathway impact analysis revealed different effects of T7L variants on E. coli metabolic profiles, with T7L-H48K showing minimal alterations in energy and amino acid pathways linked to osmotic stress compared to noticeable alterations in these pathways for both T7L-H37A and T7L-WT. CONCLUSIONS This study uncovered distinct metabolic fingerprints when comparing the overexpression of active and inactive mutants of T7L lytic enzymes in E. coli cells. These findings could contribute to the optimization and enhancement of suitable endolysins as potential alternatives to antibiotics.
Collapse
Affiliation(s)
- Manikyaprabhu Kairamkonda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Harshi Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Khushboo Gulati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
16
|
Nakonieczna A, Abramowicz K, Kwiatek M, Kowalczyk E. Lysins as a powerful alternative to combat Bacillus anthracis. Appl Microbiol Biotechnol 2024; 108:366. [PMID: 38850320 PMCID: PMC11162388 DOI: 10.1007/s00253-024-13194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
This review gathers all, to the best of our current knowledge, known lysins, mainly bacteriophage-derived, that have demonstrated activity against Bacillus anthracis strains. B. anthracis is a spore-forming, toxin-producing bacteria, naturally dwelling in soil. It is best known as a potential biowarfare threat, an etiological agent of anthrax, and a severe zoonotic disease. Anthrax can be treated with antibiotics (ciprofloxacin, penicillin, doxycycline); however, their administration may take up even to 60 days, and different factors can compromise their effectiveness. Bacterial viruses, bacteriophages (phages), are natural enemies of bacteria and use their lytic enzymes, endolysins (lysins), to specifically kill bacterial cells. Harnessing the potential of lysins to combat bacterial infections holds promise for diminishing antibiotic usage and, consequently, addressing the escalating antibiotic resistance in bacteria. In this context, we list the lysins with the activity against B. anthracis, providing a summary of their lytic properties in vitro and the outcomes observed in animal models. Bacillus cereus strain ATCC 4342/RSVF1, a surrogate for B. anthracis, was also included as a target bacteria. KEY POINTS: • More than a dozen different B. anthracis lysins have been identified and studied. • They fall into three blocks regarding their amino acid sequence similarity and most of them are amidases. • Lysins could be used in treating B. anthracis infections.
Collapse
Affiliation(s)
- Aleksandra Nakonieczna
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, Puławy, 24-100, Poland.
| | - Karolina Abramowicz
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, Puławy, 24-100, Poland
| | - Magdalena Kwiatek
- Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, Puławy, 24-100, Poland
| | | |
Collapse
|
17
|
Carratalá JV, Ferrer‐Miralles N, Garcia‐Fruitós E, Arís A. LysJEP8: A promising novel endolysin for combating multidrug-resistant Gram-negative bacteria. Microb Biotechnol 2024; 17:e14483. [PMID: 38864495 PMCID: PMC11167605 DOI: 10.1111/1751-7915.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is an escalating global health crisis, driven by the overuse and misuse of antibiotics. Multidrug-resistant Gram-negative bacteria, such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae, are particularly concerning due to their high morbidity and mortality rates. In this context, endolysins, derived from bacteriophages, offer a promising alternative to traditional antibiotics. This study introduces LysJEP8, a novel endolysin derived from Escherichia phage JEP8, which exhibits remarkable antimicrobial activity against key Gram-negative members of the ESKAPE group. Comparative assessments highlight LysJEP8's superior performance in reducing bacterial survival rates compared to previously described endolysins, with the most significant impact observed against P. aeruginosa, and notable effects on A. baumannii and K. pneumoniae. The study found that LysJEP8, as predicted by in silico analysis, worked best at lower pH values but lost its effectiveness at salt concentrations close to physiological levels. Importantly, LysJEP8 exhibited remarkable efficacy in the disruption of P. aeruginosa biofilms. This research underscores the potential of LysJEP8 as a valuable candidate for the development of innovative antibacterial agents, particularly against Gram-negative pathogens, and highlights opportunities for further engineering and optimization to address AMR effectively.
Collapse
Affiliation(s)
- Jose Vicente Carratalá
- Institute of Biotechnology and BiomedicineAutonomous University of BarcelonaBarcelonaSpain
- Department of Genetics and MicrobiologyAutonomous University of BarcelonaBarcelonaSpain
- Department of Ruminant ProductionInstitute of Agriculture and Agrifood Research and Technology (IRTA)BarcelonaSpain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER‐BBN)MadridSpain
| | - Neus Ferrer‐Miralles
- Institute of Biotechnology and BiomedicineAutonomous University of BarcelonaBarcelonaSpain
- Department of Genetics and MicrobiologyAutonomous University of BarcelonaBarcelonaSpain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER‐BBN)MadridSpain
| | - Elena Garcia‐Fruitós
- Department of Ruminant ProductionInstitute of Agriculture and Agrifood Research and Technology (IRTA)BarcelonaSpain
| | - Anna Arís
- Department of Ruminant ProductionInstitute of Agriculture and Agrifood Research and Technology (IRTA)BarcelonaSpain
| |
Collapse
|
18
|
Sabri M, El Handi K, Cara O, De Stradis A, Valentini F, Elbeaino T. Xylella phage MATE 2: a novel bacteriophage with potent lytic activity against Xylella fastidiosa subsp. pauca. Front Microbiol 2024; 15:1412650. [PMID: 38863752 PMCID: PMC11165191 DOI: 10.3389/fmicb.2024.1412650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Xylella fastidiosa (Xf) is a major phytosanitary threat to global agricultural production. The complexity and difficulty of controlling Xf underscore the pressing need for novel antibacterial agents, i.e., bacteriophages, which are natural predators of bacteria. In this study, a novel lytic bacteriophage of Xf subsp. pauca, namely Xylella phage MATE 2 (MATE 2), was isolated from sewage water in southern Italy. Biological characterization showed that MATE 2 possessed a broad-spectrum of antibacterial activity against various phytobacteria within the family Xanthomonadaceae, a rapid adsorption time (10 min), and high resistance to a broad range of pH (4-10) and temperatures (4-60°C). Most importantly, MATE 2 was able to suppress the growth of Xf subsp. pauca cells in liquid culture for 7 days, demonstrating its potential as an effective antibacterial agent against Xf. The genomic and electron microscopy analyses revealed that MATE 2 is a new species tentatively belonging to the genus Carpasinavirus within the class Caudoviricetes, with an isometric capsid head of 60 ± 5 nm along with a contractile tail of 120 ± 7.5 nm. Furthermore, the high-throughput sequencing and de novo assembly generated a single contig of 63,695 nucleotides in length; representing a complete genome composed of 95 Open Reading Frames. Bioinformatics analysis performed on MATE 2 genome revealed the absence of lysogenic mediated genes, and genes encoding virulence factors, antibiotic resistance, and toxins. This study adds a new phage to the very short list of Xf-infecting lytic phages, whose in-vitro antibacterial activity has been ascertained, while its efficacy on Xf-infected olive trees in the field has yet to be determined.
Collapse
Affiliation(s)
- Miloud Sabri
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
| | - Kaoutar El Handi
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
| | - Orges Cara
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
- Department of Soil, Plant and Food Science, University of Bari, Bari, Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), University of Bari, Bari, Italy
| | - Franco Valentini
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
| | - Toufic Elbeaino
- International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Valenzano, Italy
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Portici, Italy
| |
Collapse
|
19
|
Chen W, Han LM, Chen XZ, Yi PC, Li H, Ren YY, Gao JH, Zhang CY, Huang J, Wang WX, Hu ZL, Hu CM. Engineered endolysin of Klebsiella pneumoniae phage is a potent and broad-spectrum bactericidal agent against "ESKAPEE" pathogens. Front Microbiol 2024; 15:1397830. [PMID: 38784808 PMCID: PMC11112412 DOI: 10.3389/fmicb.2024.1397830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
The rise of antimicrobial resistance in ESKAPEE pathogens poses significant clinical challenges, especially in polymicrobial infections. Bacteriophage-derived endolysins offer promise in combating this crisis, but face practical hurdles. Our study focuses on engineering endolysins from a Klebsiella pneumoniae phage, fusing them with ApoE23 and COG133 peptides. We assessed the resulting chimeric proteins' bactericidal activity against ESKAPEE pathogens in vitro. ApoE23-Kp84B (CHU-1) reduced over 3 log units of CFU for A. baumannii, E. faecalis, K. pneumoniae within 1 h, while COG133-Kp84B (CHU-2) showed significant efficacy against S. aureus. COG133-L1-Kp84B, with a GS linker insertion in CHU-2, exhibited outstanding bactericidal activity against E. cloacae and P. aeruginosa. Scanning electron microscopy revealed alterations in bacterial morphology after treatment with engineered endolysins. Notably, CHU-1 demonstrated promising anti-biofilm and anti-persister cell activity against A. baumannii and E. faecalis but had limited efficacy in a bacteremia mouse model of their coinfection. Our findings advance the field of endolysin engineering, facilitating the customization of these proteins to target specific bacterial pathogens. This approach holds promise for the development of personalized therapies tailored to combat ESKAPEE infections effectively.
Collapse
Affiliation(s)
- Wei Chen
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Li-Mei Han
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiu-Zhen Chen
- Department of Infectious Diseases, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng-Cheng Yi
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun-Yao Ren
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing-Han Gao
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Cai-Yun Zhang
- Clinical Research Center, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Huang
- Department of Clinical Laboratory, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei-Xiao Wang
- Department of Infectious Diseases, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi-Liang Hu
- Department of Infectious Diseases, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chun-Mei Hu
- Department of Tuberculosis, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
- Innovation Center for Infectious Diseases of Jiangsu Province, Nanjing, China
| |
Collapse
|
20
|
Liu H, Wei X, Wang Z, Huang X, Li M, Hu Z, Zhang K, Hu Q, Peng H, Shang W, Yang Y, Wang Y, Lu S, Rao X. LysSYL: a broad-spectrum phage endolysin targeting Staphylococcus species and eradicating S. aureus biofilms. Microb Cell Fact 2024; 23:89. [PMID: 38528536 DOI: 10.1186/s12934-024-02359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Staphylococcus aureus and its single or mixed biofilm infections seriously threaten global public health. Phage therapy, which uses active phage particles or phage-derived endolysins, has emerged as a promising alternative strategy to antibiotic treatment. However, high-efficient phage therapeutic regimens have yet to be established. RESULTS In this study, we used an enrichment procedure to isolate phages against methicillin-resistant S. aureus (MRSA) XN108. We characterized phage SYL, a new member of the Kayvirus genus, Herelleviridae family. The phage endolysin LysSYL was expressed. LysSYL demonstrated stability under various conditions and exhibited a broader range of efficacy against staphylococcal strains than its parent phage (100% vs. 41.7%). Moreover, dynamic live/dead bacterial observation demonstrated that LysSYL could completely lyse MRSA USA300 within 10 min. Scan and transmission electron microscopy revealed evident bacterial cell perforation and deformation. In addition, LysSYL displayed strong eradication activity against single- and mixed-species biofilms associated with S. aureus. It also had the ability to kill bacterial persisters, and proved highly effective in eliminating persistent S. aureus when combined with vancomycin. Furthermore, LysSYL protected BALB/c mice from lethal S. aureus infections. A single-dose treatment with 50 mg/kg of LysSYL resulted in a dramatic reduction in bacterial loads in the blood, liver, spleen, lungs, and kidneys of a peritonitis mouse model, which resulted in rescuing 100% of mice challenged with 108 colony forming units of S. aureus USA300. CONCLUSIONS Overall, the data provided in this study highlight the strong therapeutic potential of endolysin LysSYL in combating staphylococcal infections, including mono- and mixed-species biofilms related to S. aureus.
Collapse
Affiliation(s)
- He Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Xuemei Wei
- Medical Research Institute, Southwest University, Chongqing, 400700, China
| | - Zhefen Wang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Xiaonan Huang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Mengyang Li
- Department of Microbiology, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Zhen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Kexin Zhang
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 400700, China
| | - Qiwen Hu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Huagang Peng
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Yuting Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China
| | - Shuguang Lu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, 400038, China.
- Medical Research Institute, Southwest University, Chongqing, 400700, China.
| |
Collapse
|
21
|
Kang D, Bagchi D, Chen IA. Pharmacokinetics and Biodistribution of Phages and their Current Applications in Antimicrobial Therapy. ADVANCED THERAPEUTICS 2024; 7:2300355. [PMID: 38933919 PMCID: PMC11198966 DOI: 10.1002/adtp.202300355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Indexed: 06/28/2024]
Abstract
Antimicrobial resistance remains a critical global health concern, necessitating the investigation of alternative therapeutic approaches. With the diminished efficacy of conventional small molecule drugs due to the emergence of highly resilient bacterial strains, there is growing interest in the potential for alternative therapeutic modalities. As naturally occurring viruses of bacteria, bacteriophage (or phage) are being re-envisioned as a platform to engineer properties that can be tailored to target specific bacterial strains and employ diverse antibacterial mechanisms. However, limited understanding of key pharmacological properties of phage is a major challenge to translating its use from preclinical to clinical settings. Here, we review modern advancements in phage-based antimicrobial therapy and discuss the in vivo pharmacokinetics and biodistribution of phage, addressing critical challenges in their application that must be overcome for successful clinical implementation.
Collapse
Affiliation(s)
- Dayeon Kang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| | - Damayanti Bagchi
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| | - Irene A. Chen
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 90024 USA
| |
Collapse
|
22
|
Asadi-Saghandi A, Bandehpour M, Hashemi A, Kazemi B. Enzymatic and antibacterial activity of the recombinant endolysin PVP-SE1gp146 expressed in Hansenula polymorpha. Protein Expr Purif 2024; 215:106402. [PMID: 37956916 DOI: 10.1016/j.pep.2023.106402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Antibiotic resistance, a major global concern, highlights the need for discovering alternative therapies. Recently, endolysins have garnered attention as antibacterial tools with a lower resistance development rate compared to conventional antibiotics, and their production in various expression hosts holds significance. Given its generally recognized as safe (GRAS) status and other advantages, Hansenula polymorpha offers a promising host for endolysin production. PVP-SE1gp146 originates from the Salmonella Enteritidis-specific phage PVP-SE1, which has been previously characterized. We inserted the PVP-SE1gp146 coding gene into the H. polymorpha expression vector pHIPX4. The resulting recombinant, pHIPX4-PVP-SE1gp146, was then introduced into H. polymorpha NCYC495 to facilitate the production of the endolysin PVP-SE1gp146. The expression level of the PVP-SE1gp146 protein was assessed, and it was determined to be approximately 43 mg/l of yeast culture medium. The enzymatic (muralytic) activity of this endolysin was also evaluated, corresponding to the version produced by the E. coli Bl21 strain. The endolysin exhibited admissible antibacterial activity against several gram-negative species, including P. aeruginosa, E. coli, and A. baumannii, while showing an almost negligible impact on K. pneumoniae. Endolysin production within GRAS-approved hosts holds potential for combating antibiotic-resistant bacteria. Challenges involve optimizing concentrations, targeting gram-negative species and improving attachment to bacterial cell walls. Addressing these issues requires dedicated research in endolysin engineering and a comprehensive evaluation of their production in diverse expression hosts.
Collapse
Affiliation(s)
- Abolghasem Asadi-Saghandi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Golosova NN, Matveev AL, Tikunova NV, Khlusevich YA, Kozlova YN, Morozova VV, Babkin IV, Ushakova TA, Zhirakovskaya EV, Panina EA, Ryabchikova EI, Tikunov AY. Bacteriophage vB_SepP_134 and Endolysin LysSte_134_1 as Potential Staphylococcus-Biofilm-Removing Biological Agents. Viruses 2024; 16:385. [PMID: 38543751 PMCID: PMC10975630 DOI: 10.3390/v16030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/19/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Bacteria of the genus Staphylococcus are significant challenge for medicine, as many species are resistant to multiple antibiotics and some are even to all of the antibiotics we use. One of the approaches to developing new therapeutics to treat staphylococcal infections is the use of bacteriophages specific to these bacteria or the lytic enzymes of such bacteriophages, which are capable of hydrolyzing the cell walls of these bacteria. In this study, a new bacteriophage vB_SepP_134 (St 134) specific to Staphylococcus epidermidis was described. This podophage, with a genome of 18,275 bp, belongs to the Andhravirus genus. St 134 was able to infect various strains of 12 of the 21 tested coagulase-negative Staphylococcus species and one clinical strain from the Staphylococcus aureus complex. The genes encoding endolysin (LysSte134_1) and tail tip lysin (LysSte134_2) were identified in the St 134 genome. Both enzymes were cloned and produced in Escherichia coli cells. The endolysin LysSte134_1 demonstrated catalytic activity against peptidoglycans isolated from S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus warneri. LysSte134_1 was active against S. aureus and S. epidermidis planktonic cells and destroyed the biofilms formed by clinical strains of S. aureus and S. epidermidis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Artem Y. Tikunov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (N.N.G.); (N.V.T.); (Y.A.K.); (Y.N.K.); (V.V.M.); (I.V.B.); (T.A.U.); (E.A.P.); (E.I.R.)
| |
Collapse
|
24
|
Samir S. Molecular Machinery of the Triad Holin, Endolysin, and Spanin: Key Players Orchestrating Bacteriophage-Induced Cell Lysis and their Therapeutic Applications. Protein Pept Lett 2024; 31:85-96. [PMID: 38258777 DOI: 10.2174/0109298665181166231212051621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/24/2024]
Abstract
Phage therapy, a promising alternative to combat multidrug-resistant bacterial infections, harnesses the lytic cycle of bacteriophages to target and eliminate bacteria. Key players in this process are the phage lysis proteins, including holin, endolysin, and spanin, which work synergistically to disrupt the bacterial cell wall and induce lysis. Understanding the structure and function of these proteins is crucial for the development of effective therapies. Recombinant versions of these proteins have been engineered to enhance their stability and efficacy. Recent progress in the field has led to the approval of bacteriophage-based therapeutics as drugs, paving the way for their clinical use. These proteins can be combined in phage cocktails or combined with antibiotics to enhance their activity against bacterial biofilms, a common cause of treatment failure. Animal studies and clinical trials are being conducted to evaluate the safety and efficacy of phage therapy in humans. Overall, phage therapy holds great potential as a valuable tool in the fight against multidrug- resistant bacteria, offering hope for the future of infectious disease treatment.
Collapse
Affiliation(s)
- Safia Samir
- Department of Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
25
|
Pottie I, Vázquez Fernández R, Van de Wiele T, Briers Y. Phage lysins for intestinal microbiome modulation: current challenges and enabling techniques. Gut Microbes 2024; 16:2387144. [PMID: 39106212 PMCID: PMC11305034 DOI: 10.1080/19490976.2024.2387144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024] Open
Abstract
The importance of the microbiota in the intestinal tract for human health has been increasingly recognized. In this perspective, microbiome modulation, a targeted alteration of the microbial composition, has gained interest. Phage lysins, peptidoglycan-degrading enzymes encoded by bacteriophages, are a promising new class of antibiotics currently under clinical development for treating bacterial infections. Due to their high specificity, lysins are considered microbiome-friendly. This review explores the opportunities and challenges of using lysins as microbiome modulators. First, the high specificity of endolysins, which can be further modulated using protein engineering or targeted delivery methods, is discussed. Next, obstacles and possible solutions to assess the microbiome-friendliness of lysins are considered. Finally, lysin delivery to the intestinal tract is discussed, including possible delivery methods such as particle-based and probiotic vehicles. Mapping the hurdles to developing lysins as microbiome modulators and identifying possible ways to overcome these hurdles can help in their development. In this way, the application of these innovative antimicrobial agents can be expanded, thereby taking full advantage of their characteristics.
Collapse
Affiliation(s)
- Iris Pottie
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Roberto Vázquez Fernández
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
| |
Collapse
|
26
|
Atto B, Anteneh Y, Bialasiewicz S, Binks MJ, Hashemi M, Hill J, Thornton RB, Westaway J, Marsh RL. The Respiratory Microbiome in Paediatric Chronic Wet Cough: What Is Known and Future Directions. J Clin Med 2023; 13:171. [PMID: 38202177 PMCID: PMC10779485 DOI: 10.3390/jcm13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Chronic wet cough for longer than 4 weeks is a hallmark of chronic suppurative lung diseases (CSLD), including protracted bacterial bronchitis (PBB), and bronchiectasis in children. Severe lower respiratory infection early in life is a major risk factor of PBB and paediatric bronchiectasis. In these conditions, failure to clear an underlying endobronchial infection is hypothesised to drive ongoing inflammation and progressive tissue damage that culminates in irreversible bronchiectasis. Historically, the microbiology of paediatric chronic wet cough has been defined by culture-based studies focused on the detection and eradication of specific bacterial pathogens. Various 'omics technologies now allow for a more nuanced investigation of respiratory pathobiology and are enabling development of endotype-based models of care. Recent years have seen substantial advances in defining respiratory endotypes among adults with CSLD; however, less is understood about diseases affecting children. In this review, we explore the current understanding of the airway microbiome among children with chronic wet cough related to the PBB-bronchiectasis diagnostic continuum. We explore concepts emerging from the gut-lung axis and multi-omic studies that are expected to influence PBB and bronchiectasis endotyping efforts. We also consider how our evolving understanding of the airway microbiome is translating to new approaches in chronic wet cough diagnostics and treatments.
Collapse
Affiliation(s)
- Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
| | - Yitayal Anteneh
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| | - Seweryn Bialasiewicz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Michael J. Binks
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mostafa Hashemi
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
| | - Jane Hill
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (M.H.); (J.H.)
- Spire Health Technology, PBC, Seattle, WA 98195, USA
| | - Ruth B. Thornton
- Centre for Child Health Research, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, WA 6009, Australia
| | - Jacob Westaway
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD 4811, Australia
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia;
- Child and Maternal Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT 0811, Australia; (Y.A.); (M.J.B.); (J.W.)
| |
Collapse
|
27
|
Garvey M. Medical Device-Associated Healthcare Infections: Sterilization and the Potential of Novel Biological Approaches to Ensure Patient Safety. Int J Mol Sci 2023; 25:201. [PMID: 38203372 PMCID: PMC10778788 DOI: 10.3390/ijms25010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Healthcare-associated infections caused by multi-drug-resistant pathogens are increasing globally, and current antimicrobial options have limited efficacy against these robust species. The WHO details the critically important bacterial and fungal species that are often associated with medical device HAIs. The effective sterilization of medical devices plays a key role in preventing infectious disease morbidity and mortality. A lack of adherence to protocol and limitations associated with each sterilization modality, however, allows for the incidence of disease. Furthermore, issues relating to carcinogenic emissions from ethylene oxide gas (EtO) have motivated the EPA to propose limiting EtO use or seeking alternative sterilization methods for medical devices. The Food and Drug Administration supports the sterilization of healthcare products using low-temperature VH2O2 as an alternative to EtO. With advances in biomaterial and medical devices and the increasing use of combination products, current sterilization modalities are becoming limited. Novel approaches to disinfection and sterilization of medical devices, biomaterials, and therapeutics are warranted to safeguard public health. Bacteriophages, endolysins, and antimicrobial peptides are considered promising options for the prophylactic and meta-phylactic control of infectious diseases. This timely review discusses the application of these biologics as antimicrobial agents against critically important WHO pathogens, including ESKAPE bacterial species.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland;
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
28
|
Son SM, Kim J, Ryu S. Development of sensitizer peptide-fused endolysin Lys1S-L9P acting against multidrug-resistant gram-negative bacteria. Front Microbiol 2023; 14:1296796. [PMID: 38075915 PMCID: PMC10701683 DOI: 10.3389/fmicb.2023.1296796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/01/2023] [Indexed: 06/21/2024] Open
Abstract
The advent of multidrug-resistant (MDR) bacteria poses a major threat to public health, garnering attention to novel antibiotic replacements. Endolysin, a bacteriophage-derived cell wall-degrading enzyme, is a promising alternative to conventional antibiotics. However, it is challenging to control Gram-negative bacteria due to the presence of the outer membrane that shields the peptidoglycan layer from enzymatic degradation. To overcome this threshold, we constructed the fusion endolysin Lys1S-L9P by combining endolysin LysSPN1S with KL-L9P, a sensitizer peptide known to extend efficacy of antibiotics by perturbing the outer membrane of Gram-negative bacteria. In addition, we established a new endolysin purification procedure that increases solubility allowing a 4-fold increase in production yield of Lys1S-L9P. The sensitizer peptide-fused endolysin Lys1S-L9P exhibited high bactericidal effects against many MDR Gram-negative pathogens and was more effective in eradicating biofilms compared to LysSPN1S. Moreover, Lys1S-L9P showed potential for clinical use, maintaining stability at various storage temperatures without cytotoxicity against human cells. In the in vivo Galleria mellonella model, Lys1S-L9P demonstrated potent antibacterial activity against MDR Gram-negative bacteria without inducing any toxic activity. This study suggest that Lys1S-L9P could be a potential biocontrol agent to combat MDR Gram-negative bacteria.
Collapse
Affiliation(s)
- Su Min Son
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| | - Joonbeom Kim
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
29
|
McCallin S, Drulis-Kawa Z, Ferry T, Pirnay JP, Nir-Paz R. Phages and phage-borne enzymes as new antibacterial agents. Clin Microbiol Infect 2023:S1198-743X(23)00528-1. [PMID: 37866680 DOI: 10.1016/j.cmi.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Persistent and resistant infections caused by bacteria are increasing in numbers and pose a treatment challenge to the medical community and public health. However, solutions with new agents that will enable effective treatment are lacking or delayed by complex development and authorizations. Bacteriophages are known as a possible solution for invasive infections for decades but were seldom used in the Western world. OBJECTIVES To provide an overview of the current status and emerging use of bacteriophage therapy and phage-based products, as well as touch on the socioeconomic and regulatory issues surrounding their development. SOURCES Peer-reviewed articles and authors' first-hand experience. CONTENT Although phage therapy is making a comeback since its early discovery, there are many hurdles to its current use. The lack of appropriate standardized bacterial susceptibility testing; lack of a simple business model and authorization for the need of many phages to treat a single species infection; and the lack of knowledge on predictable outcome measures are just a few examples. In this review, we explore the possible routes for phage use, either based on local specialty centres or by industry; the current status of phage therapy, which is mainly based on single-centre or single-bacterial cohorts, and emerging clinical trials; local country-level frameworks for phage utilization even without full authorization; and the use of phage-derived products as alternatives to antibiotics. We also explore what may be the current indications based on the possible availability of phages. IMPLICATIONS Although phages are emerging as a potential treatment for non-resolving and life-threatening infections, the models for their use and production still need to be defined by the medical community, regulatory bodies, and industry. Bacteriophages may have a great potential for infection treatment but many aspects still need to be defined before their routine use in the clinic.
Collapse
Affiliation(s)
- Shawna McCallin
- Department of Neuro-Urology, Balgrist University Hospital, University of Zürich, Zürich, Switzerland; ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland
| | - Zuzanna Drulis-Kawa
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Department of Pathogen Biology and Immunology, University of Wroclaw, Wroclaw, Poland
| | - Tristan Ferry
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Centre interrégional de référence pour la prise en charge des infections ostéoarticulaires complexes, CRIOAc Lyon, Hospices Civils de Lyon, Lyon, France; Infectious Diseases, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, Lyon, France; CIRI-Centre International de Recherche en Infectiologie, Inserm, Universite Claude Bernard Lyon, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Jean-Paul Pirnay
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Ran Nir-Paz
- ESGNTA - ESCMID study group for non-traditional antibacterials, Basel, Switzerland; Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Israeli Phage Therapy Center of Hadassah Medical Center and the Hebrew University, Jerusalem, Israel.
| |
Collapse
|
30
|
Nazir A, Xu X, Liu Y, Chen Y. Phage Endolysins: Advances in the World of Food Safety. Cells 2023; 12:2169. [PMID: 37681901 PMCID: PMC10486871 DOI: 10.3390/cells12172169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
As antimicrobial resistance continues to escalate, the exploration of alternative approaches to safeguard food safety becomes more crucial than ever. Phage endolysins are enzymes derived from phages that possess the ability to break down bacterial cell walls. They have emerged as promising antibacterial agents suitable for integration into food processing systems. Their application as food preservatives can effectively regulate pathogens, thus contributing to an overall improvement in food safety. This review summarizes the latest techniques considering endolysins' potential for food safety. These techniques include native and engineered endolysins for controlling bacterial contamination at different points within the food production chain. However, we find that characterizing endolysins through in vitro methods proves to be time consuming and resource intensive. Alternatively, the emergence of advanced high-throughput sequencing technology necessitates the creation of a robust computational framework to efficiently characterize recently identified endolysins, paving the way for future research. Machine learning encompasses potent tools capable of analyzing intricate datasets and pattern recognition. This study briefly reviewed the use of these industry 4.0 technologies for advancing the research in food industry. We aimed to provide current status of endolysins in food industry and new insights by implementing these industry 4.0 strategies revolutionizes endolysin development. It will enhance food safety, customization, efficiency, transparency, and collaboration while reducing regulatory hurdles and ensuring timely product availability.
Collapse
Affiliation(s)
- Amina Nazir
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (A.N.); (X.X.); (Y.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Xiaohui Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (A.N.); (X.X.); (Y.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (A.N.); (X.X.); (Y.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yibao Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (A.N.); (X.X.); (Y.L.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
31
|
Miernikiewicz P, Barylski J, Wilczak A, Dragoš A, Rybicka I, Bałdysz S, Szymczak A, Dogsa I, Rokush K, Harhala MA, Ciekot J, Ferenc S, Gnus J, Witkiewicz W, Dąbrowska K. New Phage-Derived Antibacterial Enzyme PolaR Targeting Rothia spp. Cells 2023; 12:1997. [PMID: 37566076 PMCID: PMC10417112 DOI: 10.3390/cells12151997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
Rothia is an opportunistic pathogen, particularly life-threatening for the immunocompromised. It is associated with pneumonia, endocarditis, peritonitis and many other serious infections, including septicemia. Of note, Rothia mucilaginousa produces metabolites that support and increase overgrowth of Pseudomonas aeruginosa, one of the ESKAPE bacteria. Endolysins are considered as antibacterial enzymes derived from bacteriophages that selectively and efficiently kill susceptible bacteria without harming human cells or the normal microbiome. Here, we applied a computational analysis of metagenomic sequencing data of the gastric mucosa phageome extracted from human patients' stomach biopsies. A selected candidate anti-Rothia sequence was produced in an expression system, purified and confirmed as a Rothia mucilaginosa- and Rothia dentocariosa-specific endolysin PolaR, able to destroy bacterial cells even when aggregated, as in a biofilm. PolaR had no cytotoxic or antiproliferative effects on mammalian cells. PolaR is the first described endolysin selectively targeting Rothia species, with a high potential to combat infections caused by Rothia mucilaginosa and Rothia dentocariosa, and possibly other bacterial groups. PolaR is the first antibacterial enzyme selected from the gastric mucosa phageome, which underlines the biological complexity and probably underestimated biological role of the phageome in the human gastric mucosa.
Collapse
Affiliation(s)
- Paulina Miernikiewicz
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznań, Poland; (J.B.); (S.B.)
| | - Aleksandra Wilczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Anna Dragoš
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.D.); (I.D.)
| | - Izabela Rybicka
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Sophia Bałdysz
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznań, Poland; (J.B.); (S.B.)
| | - Aleksander Szymczak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Iztok Dogsa
- Department of Microbiology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (A.D.); (I.D.)
| | - Kostiantyn Rokush
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Marek Adam Harhala
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Jarosław Ciekot
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
| | - Stanisław Ferenc
- Research and Development Center, Regional Specialist Hospital in Wrocław, 51-124 Wrocław, Poland; (S.F.); (J.G.); (W.W.)
| | - Jan Gnus
- Research and Development Center, Regional Specialist Hospital in Wrocław, 51-124 Wrocław, Poland; (S.F.); (J.G.); (W.W.)
- Faculty of Health Sciences, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialist Hospital in Wrocław, 51-124 Wrocław, Poland; (S.F.); (J.G.); (W.W.)
| | - Krystyna Dąbrowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (A.W.); (I.R.); (A.S.); (K.R.); (M.A.H.); (J.C.); (K.D.)
- Research and Development Center, Regional Specialist Hospital in Wrocław, 51-124 Wrocław, Poland; (S.F.); (J.G.); (W.W.)
| |
Collapse
|
32
|
Biondo C, Ponzo E, Midiri A, Ostone GB, Mancuso G. The Dark Side of Nosocomial Infections in Critically Ill COVID-19 Patients. Life (Basel) 2023; 13:1408. [PMID: 37374189 DOI: 10.3390/life13061408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a potentially serious acute respiratory infection caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Since the World Health Organization (WHO) declared COVID-19 a global pandemic, the virus has spread to more than 200 countries with more than 500 million cases and more than 6 million deaths reported globally. It has long been known that viral respiratory tract infections predispose patients to bacterial infections and that these co-infections often have an unfavourable clinical outcome. Moreover, nosocomial infections, also known as healthcare-associated infections (HAIs), are those infections that are absent at the time of admission and acquired after hospitalization. However, the impact of coinfections or secondary infections on the progression of COVID-19 disease and its lethal outcome is still debated. The aim of this review was to assess the literature on the incidence of bacterial co-infections and superinfections in patients with COVID-19. The review also highlights the importance of the rational use of antibiotics in patients with COVID-19 and the need to implement antimicrobial stewardship principles to prevent the transmission of drug-resistant organisms in healthcare settings. Finally, alternative antimicrobial agents to counter the emergence of multidrug-resistant bacteria causing healthcare-associated infections in COVID-19 patients will also be discussed.
Collapse
Affiliation(s)
- Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Elena Ponzo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|