1
|
You X, Niu L, Song X, Fu J, Miao Y, Diao F, Wu C, Zhuang P, Zhang Y. Linking severe traumatic brain injury to pulmonary Infections: Translocation of intestinal bacteria mediated by nociceptor neurons. Brain Behav Immun 2024; 122:604-616. [PMID: 39187048 DOI: 10.1016/j.bbi.2024.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024] Open
Abstract
The prevalence of bacterial infections significantly increases among patients with severe traumatic brain injury (STBI), leading to a notable rise in mortality rates. While immune dysfunctions are linked to the incidence of pneumonia, our observations indicate that endogenous pathogens manifest in the lungs post-STBI due to the migration of gut commensal bacteria. This translocation involves gut-innervating nociceptor sensory neurons, which are crucial for host defense. Following STBI, the expression of transient receptor potential vanilloid 1 (TRPV1) in dorsal root ganglion (DRG) neurons significantly decreases, despite an initial brief increase. The timing of TRPV1 defects coincides with the occurrence of pulmonary infections post-STBI. This alteration in TRPV1+ neurons diminishes their ability to signal bacterial injuries, weakens defense mechanisms against intestinal bacteria, and increases susceptibility to pulmonary infections via bacterial translocation. Experimental evidence demonstrates that pulmonary infections can be successfully replicated through the chemical ablation and gene interference of TRPV1+ nociceptors, and that these infections can be mitigated by TRPV1 activation, thereby confirming the crucial role of nociceptor neurons in controlling intestinal bacterial migration. Furthermore, TRPV1+ nociceptors regulate the immune response of microfold cells by releasing calcitonin gene-related peptide (CGRP), thereby influencing the translocation of gut bacteria to the lungs. Our study elucidates how changes in nociceptive neurons post-STBI impact intestinal pathogen defense. This new understanding of endogenous risk factors within STBI pathology offers novel insights for preventing and treating pulmonary infections.
Collapse
Affiliation(s)
- Xinyu You
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
| | - Lin Niu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xuejiao Song
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiafeng Fu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yulu Miao
- Department of Pharmacology, Basic Medical Sciences Center, School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China
| | - Fengyin Diao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chongming Wu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengwei Zhuang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Yanjun Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China.
| |
Collapse
|
2
|
Shao W, Pan B, Li Z, Peng R, Yang W, Xie Y, Han D, Fang X, Li J, Zhu Y, Zhao Z, Kan H, Ying Z, Xu Y. Gut microbiota mediates ambient PM 2.5 exposure-induced abnormal glucose metabolism via short-chain fatty acids. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135096. [PMID: 38996677 PMCID: PMC11342392 DOI: 10.1016/j.jhazmat.2024.135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
PM2.5 exposure has been found to cause gut dysbiosis and impair glucose homeostasis in human and animals, yet their underlying biological connection remain unclear. In the present study, we aim to investigate the biological significance of gut microbiota in PM2.5-induced glucose metabolic abnormalities. Our results showed that microbiota depletion by antibiotics treatment significantly alleviated PM2.5-induced glucose intolerance and insulin resistance, as indicated by the intraperitoneal glucose tolerance test, glucose-induced insulin secretion, insulin tolerance test, insulin-induced phosphorylation levels of Akt and GSK-3β in insulin sensitive tissues. In addition, faecal microbiota transplantation (FMT) from PM2.5-exposed donor mice successfully remodeled the glucose metabolism abnormalities in recipient mice, while the transplantation of autoclaved faecal materials did not. Faecal microbiota analysis demonstrated that the composition and alpha diversity of the gut bacterial community were altered by PM2.5 exposure and in FMT recipient mice. Furthermore, short-chain fatty acids levels analysis showed that the circulating acetate was significantly decreased in PM2.5-exposed donor and FMT recipient mice, and supplementation of sodium acetate for 3 months successfully improved the glucose metabolism abnormalities induced by PM2.5 exposure. These results indicate that manipulating gut microbiota or its metabolites could be a potential strategy for preventing the adverse health effects of ambient PM2.5.
Collapse
Affiliation(s)
- Wenpu Shao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Bin Pan
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Wenhui Yang
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Yuanting Xie
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Xinyi Fang
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Jingyu Li
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Yaning Zhu
- Department of Pathology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Chen P, Hu T, Jiang H, Li B, Li G, Ran P, Zhou Y. The effects of different lung parts, age, and batches on the lung microbiota of healthy rats. Ann Med 2024; 56:2381085. [PMID: 39099020 PMCID: PMC11299442 DOI: 10.1080/07853890.2024.2381085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/21/2023] [Accepted: 05/16/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Rat models are valuable tools to study the lung microbiota in diseases. Yet the impacts of different lung parts, young and mature adult stages, and the different batches of the same conditions on the healthy rat lung microbiome have not been investigated. METHODS The rat lung microbiome was analyzed to clarify the lung part-dependent and age-dependent differences and to evaluate the effects of several 'batch environmental factors' on normal rats, after eliminating potential contamination. RESULTS The results showed that the contamination could be identified and excluded. The lung microbiome from left and right lung parts was very similar so one representative part could be used in the microbiome study. There were significantly different lung microbial communities between the young and mature adult groups, and also between the different feeding batches groups of the same repetitive feeding conditions, but a common lung microbiota characterized by Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria as the most dominant phyla were present in all adult rats. It indicated that the experiment under the same condition of the same rats batch was needed to compare the difference in the lung microbiota and repeated experiments were necessary to confirm the results. CONCLUSION These data represented that the lung bacterial communities were dynamic and rapidly susceptible to environmental influence, clustered strongly by age or different feeding batches but similar in the different lung tissue parts. This study improved the basic understanding of the potential effects on the lung microbiome of healthy rats.
Collapse
Affiliation(s)
- Ping Chen
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tingting Hu
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Haonan Jiang
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, the Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China
| | - Guiying Li
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Bioland, Guangzhou, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Cheng ZX, Zhang J. Exploring the Role of Gut-Lung Interactions in COPD Pathogenesis: A Comprehensive Review on Microbiota Characteristics and Inflammation Modulation. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:311-325. [PMID: 38563747 PMCID: PMC11216226 DOI: 10.15326/jcopdf.2023.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a paramount contributor to global morbidity and mortality. Over the past decade, the concept of the "gut-lung axis" has emerged, offering a lens through which to examine the intricate interplay between the host, microbiome, and respiratory diseases, including COPD. An expanding body of evidence underscores that the composition of both the gastrointestinal and respiratory microbiome deviates in COPD patients compared to healthy individuals, leading to distinct host immune responses and clinical manifestations. The objective of this review is to provide a concise overview of the role both gut and respiratory microbiome play in the development of COPD. This was accomplished by compiling current literature on the microbiome profile in stable and exacerbated cases of COPD, as well as exploring the biological mechanisms through a discussion of relevant experiments conducted on murine models. Hallmark characteristics of the microbial profile in COPD encompass reduced Prevotella species in the respiratory microbiome, culminating in a loss of anti-inflammatory protection, and diminished Bacteroidetes in the gut microbiome, leading to a decrease in protective short-chain fatty acids. The proliferation of Proteobacteria, particularly the Haemophilus species, Moraxellaspecies, and Pseudomonas species contribute to COPD pathologies via recognition of proinflammatory lipopolysaccharide via Toll-like receptors. As a consequence, deteriorated pulmonary function, enhanced severity, increased onset of exacerbations, and elevated mortality were observed.
Collapse
Affiliation(s)
- Zi-Xuan Cheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai, China
- *PhD candidate
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai, China
| |
Collapse
|
5
|
Cheng XF, Min SH, Guo RQ, Zhang JD, Zhang YL, Li B. Disease burden of COPD attributable to PM 2.5 in China, Japan and South Korea from 1990 to 2019: a comparative study based on Global Burden of Disease Study 2019. BMJ Open 2024; 14:e078887. [PMID: 38355185 PMCID: PMC10868288 DOI: 10.1136/bmjopen-2023-078887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
OBJECTIVE We hope to reveal the changing trends of chronic obstructive pulmonary disease (COPD) burden attributable to particulate matter pollution (PM2.5) and its age, period and cohort effects in China, Japan and Korea. DESIGN We analysed the trend of COPD disease burden attributable to PM2.5 from 1990 to 2019 based on the latest Global Burden of Disease Database (GBD 2019) using JoinPoint model and analysed the effect of age, period and cohort on COPD burden attributable to PM2.5 in China, Japan and Korea from 1990 to 2019 using age-period-cohort model (model). SETTING GBD data from 1990 to 2019. PARTICIPANTS Data were publicly available and individuals were not involved. MAIN OUTCOMES Outcomes included the age standardised mortality rate (ASMR), the age-standardised disability-adjusted life year (DALY), average annual per cent change (AAPC), net drift, local drift, longitudinal age curves, period (cohort) rate ratios, age (period, cohort) bias coefficient. RESULTS From 1990 to 2019, the ASMR of COPD attributable to PM2.5 in China (AAPC=-5.862), Japan (AAPC=-1.715) and Korea (AAPC=-1.831) showed a downward trend. The age-standardised DALY of COPD attributable to PM2.5 in China (AAPC=-5.821), Japan (AAPC=-1.39) and Korea (AAPC=-1.239) showed a downward trend. Mortality of COPD attributable to PM2.5 increased slowly with age in Korea and Japan. Mortality of COPD attributable to PM2.5 in China decreased after rising (95% CI: 404.66 to 466.01). Mortality of COPD attributable to PM2.5 decreased over time in China and Korea, while it increased in Japan from 2015 to 2019. In China and Japan, mortality of COPD attributable to PM2.5 was approximately lower the later the birth, while in Korea it decreased after an increase (95% CI: 2.13 to 2.40) in the 1900-1910. CONCLUSIONS Most COPD burden attributable to PM2.5 is on the decline; COPD mortality attributable to PM2.5 both increased with age and decreased with time and cohort. Countries with high burden should develop targeted measures to control PM2.5.
Collapse
Affiliation(s)
| | - Shu-Hui Min
- Southern Medical University, Guangzhou, China
| | - Rui-Qi Guo
- Southern Medical University, Guangzhou, China
| | | | - Yi-Li Zhang
- Southern Medical University, Guangzhou, China
| | - Bei Li
- Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Song X, Dou X, Chang J, Zeng X, Xu Q, Xu C. The role and mechanism of gut-lung axis mediated bidirectional communication in the occurrence and development of chronic obstructive pulmonary disease. Gut Microbes 2024; 16:2414805. [PMID: 39446051 PMCID: PMC11509012 DOI: 10.1080/19490976.2024.2414805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
The current studies have shown that the occurrence and development of chronic obstructive pulmonary disease (COPD) are closely related to the changes in gut health and its microenvironment, and even some gut diseases have significant clinical correlation with COPD. The dysbiosis of gut microbiota observed in COPD patients also suggests a potential bidirectional interaction between the gut and lung. Communication between the gut and lung may occur through circulating inflammatory cells, gut microbial metabolites, and circulating inflammatory mediators, but the mechanism of bidirectional communication between the gut and lung in COPD is still under study. Therefore, more research is still needed in this area. In this review, we summarize recent clinical studies and animal models on the role of the gut-lung axis in the occurrence and development of COPD and its mechanisms, so as to provide ideas for further research in this field. In addition, we also summarized the negative effects of COPD medication on gut microbiota and the gut microbiota risk factors for COPD and proposed the potential prevention and treatment strategies.
Collapse
Affiliation(s)
- Xiaofan Song
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiajing Chang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaonan Zeng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Qinhong Xu
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
7
|
Wu W, Li Z, Wang Y, Huang C, Zhang T, Zhao H. Advances in metabolomics of chronic obstructive pulmonary disease. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2023; 1:223-230. [PMID: 39171278 PMCID: PMC11332835 DOI: 10.1016/j.pccm.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 08/23/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease with limited airflow. COPD is characterized by chronic bronchitis and emphysema, and is often accompanied by malnutrition with fatigue, muscle weakness, and an increased risk of infection. Although the pulmonary function test is used as the gold criterion for diagnosing COPD, it is unable to identify early COPD or classify the subtypes, thereby impeding early intervention and the precise diagnosis of COPD. Recent evidence suggests that metabolic dysfunction, such as changes in lipids, amino acids, glucose, nucleotides, and microbial metabolites in the lungs and intestine, have a great potential for diagnosing COPD in the early stage. However, a comprehensive summary of these metabolites and their effects on COPD is still lacking. This review summarizes the metabolites that are changed in COPD and highlights some promising early diagnostic markers and therapeutic targets. We emphasize that intensified dietary management may be among the most feasible methods to improve metabolism in the body.
Collapse
Affiliation(s)
- Wenqian Wu
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zhiwei Li
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yongqiang Wang
- Department of Respiratory and Critical Care Medicine, 302 Hospital of China Guizhou Aviation Industry Group, An Shun, Guizhou 561000, China
| | - Chuan Huang
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Tiantian Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Hongmei Zhao
- The State Key Laboratory of Complex, Severe, and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
8
|
Lim EY, Song EJ, Shin HS. Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease. J Microbiol Biotechnol 2023; 33:1111-1118. [PMID: 37164760 PMCID: PMC10580882 DOI: 10.4014/jmb.2301.01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.
Collapse
Affiliation(s)
- Eun Yeong Lim
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Eun-Ji Song
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
9
|
Qin J, Wang J. Research progress on the effects of gut microbiome on lung damage induced by particulate matter exposure. ENVIRONMENTAL RESEARCH 2023; 233:116162. [PMID: 37348637 DOI: 10.1016/j.envres.2023.116162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/28/2023] [Accepted: 05/14/2023] [Indexed: 06/24/2023]
Abstract
Air pollution is one of the top five causes of death in the world and has become a research hotspot. In the past, the health effects of particulate matter (PM), the main component of air pollutants, were mainly focused on the respiratory and cardiovascular systems. However, in recent years, the intestinal damage caused by PM and its relationship with gut microbiome (GM) homeostasis, thereby affecting the composition and function of GM and bringing disease burden to the host lung through different mechanisms, have attracted more and more attention. Therefore, this paper reviews the latest research progress in the effect of PM on GM-induced lung damage and its possible interaction pathways and explores the potential immune inflammatory mechanism with the gut-lung axis as the hub in order to understand the current research situation and existing problems, and to provide new ideas for further research on the relationship between PM pollution, GM, and lung damage.
Collapse
Affiliation(s)
- Jiali Qin
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Junling Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
10
|
Li N, Yi X, Chen C, Dai Z, Deng Z, Pu J, Zhou Y, Li B, Wang Z, Ran P. The gut microbiome as a potential source of non-invasive biomarkers of chronic obstructive pulmonary disease. Front Microbiol 2023; 14:1173614. [PMID: 37555072 PMCID: PMC10405926 DOI: 10.3389/fmicb.2023.1173614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The link between gut microbial dysbiosis and the development of chronic obstructive pulmonary disease (COPD) is of considerable interest. However, little is known regarding the potential for the use of the fecal metagenome for the diagnosis of COPD. METHODS A total of 80 healthy controls, 31 patients with COPD severity stages I or II, and 49 patients with COPD severity stages III or IV fecal samples were subjected to metagenomic analysis. We characterized the gut microbiome, identified microbial taxonomic and functional markers, and constructed a COPD disease classifier using samples. RESULTS The fecal microbial diversity of patients with COPD stages I or II was higher than that of healthy controls, but lower in patients with COPD stages III or IV. Twenty-one, twenty-four, and eleven microbial species, including potential pathogens and pro-inflammatory bacteria, were significantly enriched or depleted in healthy controls, patients with COPD stages I or II, and patients with COPD stages III & IV. The KEGG orthology (KO) gene profiles derived demonstrated notable differences in gut microbial function among the three groups. Moreover, gut microbial taxonomic and functional markers could be used to differentiate patients with COPD from healthy controls, on the basis of areas under receiver operating characteristic curves (AUCs) of 0.8814 and 0.8479, respectively. Notably, the gut microbial taxonomic features differed between healthy individuals and patients in stages I-II COPD, which suggests the utility of fecal metagenomic biomarkers for the diagnosis of COPD (AUC = 0.9207). CONCLUSION Gut microbiota-targeted biomarkers represent potential non-invasive tools for the diagnosis of COPD.
Collapse
Affiliation(s)
- Naijian Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xinzhu Yi
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou, Guangdong, China
| | - Chiyong Chen
- The GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhouli Dai
- College of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Zhishan Deng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinding Pu
- Department of Respiratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumin Zhou
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Li
- The GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhang Wang
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou, Guangdong, China
| | - Pixin Ran
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Van Pee T, Nawrot TS, van Leeuwen R, Hogervorst J. Ambient particulate air pollution and the intestinal microbiome; a systematic review of epidemiological, in vivo and, in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162769. [PMID: 36907413 DOI: 10.1016/j.scitotenv.2023.162769] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 05/13/2023]
Abstract
A healthy indigenous intestinal microbiome is indispensable for intra- and extra-intestinal human health. Since well-established factors such as diet and antibiotic use only explain 16 % of the inter-individual variation in gut microbiome composition, recent studies have focused on the association between ambient particulate air pollution and the intestinal microbiome. We systematically summarize and discuss all evidence concerning the effect of particulate air pollution on intestinal bacterial diversity indices, specific bacterial taxa, and potential underlying intestinal mechanisms. To this end, all possibly relevant publications published between February 1982 and January 2023 were screened, and eventually, 48 articles were included. The vast majority (n = 35) of these studies were animal studies. The exposure periods investigated in the human epidemiological studies (n = 12) ranged from infancy through elderly. This systematic review found that intestinal microbiome diversity indices were generally negatively associated with particulate air pollution in epidemiological studies, with an increase in taxa belonging to Bacteroidetes (two studies), Deferribacterota (one study), and Proteobacteria (four studies), a decrease in taxa belonging to Verrucomicrobiota (one study), and no consensus for taxa belonging to Actinobacteria (six studies) and Firmicutes (seven studies). There was no unequivocal effect of ambient particulate air pollution exposure on bacterial indices and taxa in animal studies. Only one study in humans examined a possible underlying mechanism; yet, the included in vitro and animal studies depicted higher gut damage, inflammation, oxidative stress, and permeability in exposed versus unexposed animals. Overall, the population-based studies showed a dose-related continuum of short- and long-term ambient particulate air pollution exposure on lower gut diversity and shifts in taxa over the entire life course.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Department of Public Health and Primary Care, Leuven University, Herestraat 49-box 706, 3000 Leuven, Belgium.
| | - Romy van Leeuwen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
12
|
Li W, Sun B, Li H, An Z, Li J, Jiang J, Song J, Wu W. Association between short-term exposure to PM 2.5 and nasal microbiota dysbiosis, inflammation and oxidative stress: A panel study of healthy young adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115156. [PMID: 37343487 DOI: 10.1016/j.ecoenv.2023.115156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Fine particulate matter (PM2.5) is the primary environmental stressor and a significant threat to public health. However, the effect of PM2.5 exposure on human nasal microbiota and its pathophysiological implication remain less understood. This study aimed to explore the associations of PM2.5 exposure with indices of nasal microbiota and biomarkers of nasal inflammation and oxidative stress. We conducted a panel study with 75 students in Xinxiang, Henan Province, China, from September to December 2017. Biomarkers of nasal inflammation and oxidative stress including interleukin-6 (IL-6), IL-8, tumor necrosis factor-α (TNF-α), 8-epi-prostaglandin F2 alpha (8-epi-PGF2α) and indices of nasal microbiota diversity and phenotypes were measured. Linear mixed-effect models and bioinformatic analyses were performed to assess the association of PM2.5 concentrations with the abovementioned biomarkers and indices. It was found that per 1 μg/m3 increase in PM2.5 was associated with increments of 13.15% (95 % CI: 5.53-20.76 %) and 78.98 % (95 % CI: 21.61-136.36 %) in TNF-α on lag2 and lag02. Indices of microbial diversity and phenotypes including equitability, Shannon index, biofilm forming, and oxidative stress tolerant decreased to different extent with the increment in PM2.5. Notably, thirteen differential microbes in Clostridia, Bacilli, and Gammaproteobacteria classes were recognized as keystone taxa and eight of them were associated with TNF-α, IL-6, or 8-epi-PGF2α. Moreover, environmental adaptation was the most critical functional pathway of nasal microbiota associated with PM2.5 exposure. In summary, short-term exposure to PM2.5 is associated with nasal inflammation, microbiota diversity reduction, and the microbiota phenotype alterations.
Collapse
Affiliation(s)
- Wenlong Li
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China; Institute of Infectious Disease Prevention and Control, Zhengzhou Center for Disease Control and Prevention, Zhengzhou, Henan Province 450000, China
| | - Beibei Sun
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Huijun Li
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Zhen An
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Juan Li
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jing Jiang
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Jie Song
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China
| | - Weidong Wu
- Henan International Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province 453003, China.
| |
Collapse
|
13
|
Wu X, Li RF, Lin ZS, Xiao C, Liu B, Mai KL, Zhou HX, Zeng DY, Cheng S, Weng YC, Zhao J, Chen RF, Jiang HM, Chen LP, Deng LZ, Xie PF, Yang WM, Xia XS, Yang ZF. Coinfection with influenza virus and non-typeable Haemophilus influenzae aggregates inflammatory lung injury and alters gut microbiota in COPD mice. Front Microbiol 2023; 14:1137369. [PMID: 37065141 PMCID: PMC10098174 DOI: 10.3389/fmicb.2023.1137369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/15/2023] [Indexed: 04/01/2023] Open
Abstract
BackgroundAcute exacerbation of chronic obstructive pulmonary disease (AECOPD) is associated with high mortality rates. Viral and bacterial coinfection is the primary cause of AECOPD. How coinfection with these microbes influences host inflammatory response and the gut microbiota composition is not entirely understood.MethodsWe developed a mouse model of AECOPD by cigarette smoke exposure and sequential infection with influenza H1N1 virus and non-typeable Haemophilus influenzae (NTHi). Viral and bacterial titer was determined using MDCK cells and chocolate agar plates, respectively. The levels of cytokines, adhesion molecules, and inflammatory cells in the lungs were measured using Bio-Plex and flow cytometry assays. Gut microbiota was analyzed using 16S rRNA gene sequencing. Correlations between cytokines and gut microbiota were determined using Spearman’s rank correlation coefficient test.ResultsCoinfection with H1N1 and NTHi resulted in more severe lung injury, higher mortality, declined lung function in COPD mice. H1N1 enhanced NTHi growth in the lungs, but NTHi had no effect on H1N1. In addition, coinfection increased the levels of cytokines and adhesion molecules, as well as immune cells including total and M1 macrophages, neutrophils, monocytes, NK cells, and CD4 + T cells. In contrast, alveolar macrophages were depleted. Furthermore, coinfection caused a decline in the diversity of gut bacteria. Muribaculaceae, Lactobacillus, Akkermansia, Lachnospiraceae, and Rikenella were further found to be negatively correlated with cytokine levels, whereas Bacteroides was positively correlated.ConclusionCoinfection with H1N1 and NTHi causes a deterioration in COPD mice due to increased lung inflammation, which is correlated with dysbiosis of the gut microbiota.
Collapse
Affiliation(s)
- Xiao Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Run-Feng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Zheng-Shi Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Bin Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai-Lin Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | | | - De-You Zeng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Sha Cheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yun-Ceng Weng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui-Feng Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hai-Ming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li-Ping Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ling-Zhu Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pei-Fang Xie
- The Affiliated Anning First Hospital and Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Wei-Min Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- Wei-Min Yang,
| | - Xue-Shan Xia
- The Affiliated Anning First Hospital and Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Xue-Shan Xia,
| | - Zi-Feng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
- *Correspondence: Zi-Feng Yang,
| |
Collapse
|
14
|
Cheng TY, Chang CC, Luo CS, Chen KY, Yeh YK, Zheng JQ, Wu SM. Targeting Lung-Gut Axis for Regulating Pollution Particle-Mediated Inflammation and Metabolic Disorders. Cells 2023; 12:901. [PMID: 36980242 PMCID: PMC10047528 DOI: 10.3390/cells12060901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Cigarette smoking (CS) or ambient particulate matter (PM) exposure is a risk factor for metabolic disorders, such as insulin resistance (IR), increased plasma triglycerides, hyperglycemia, and diabetes mellitus (DM); it can also cause gut microbiota dysbiosis. In smokers with metabolic disorders, CS cessation decreases the risks of serious pulmonary events, inflammation, and metabolic disorder. This review included recent studies examining the mechanisms underlying the effects of CS and PM on gut microbiota dysbiosis and metabolic disorder development; one of the potential mechanisms is the disruption of the lung-gut axis, leading to gut microbiota dysbiosis, intestinal dysfunction, systemic inflammation, and metabolic disease. Short-chain fatty acids (SCFAs) are the primary metabolites of gut bacteria, which are derived from the fermentation of dietary fibers. They activate G-protein-coupled receptor (GPCR) signaling, suppress histone deacetylase (HDAC) activity, and inhibit inflammation, facilitating the maintenance of gut health and biofunction. The aforementioned gut microbiota dysbiosis reduces SCFA levels. Treatment targeting SCFA/GPCR signaling may alleviate air pollution-associated inflammation and metabolic disorders, which involve lung-gut axis disruption.
Collapse
Affiliation(s)
- Tzu-Yu Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Cheng Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Kai Yeh
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Jing-Quan Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (C.-C.C.); (C.-S.L.); (K.-Y.C.); (Y.-K.Y.); (J.-Q.Z.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Thoracic Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
15
|
Wang Q, Liu S. The Effects and Pathogenesis of PM2.5 and Its Components on Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:493-506. [PMID: 37056681 PMCID: PMC10086390 DOI: 10.2147/copd.s402122] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a heterogeneous disease, is the leading cause of death worldwide. In recent years, air pollution, especially particulate matter (PM), has been widely studied as a contributing factor to COPD. As an essential component of PM, PM2.5 is associated with COPD prevalence, morbidity, and acute exacerbations. However, the specific pathogenic mechanisms were still unclear and deserve further research. The diversity and complexity of PM2.5 components make it challenging to get its accurate effects and mechanisms for COPD. It has been determined that the most toxic PM2.5 components are metals, polycyclic aromatic hydrocarbons (PAHs), carbonaceous particles (CPs), and other organic compounds. PM2.5-induced cytokine release and oxidative stress are the main mechanisms reported leading to COPD. Nonnegligibly, the microorganism in PM 2.5 may directly cause mononuclear inflammation or break the microorganism balance contributing to the development and exacerbation of COPD. This review focuses on the pathophysiology and consequences of PM2.5 and its components on COPD.
Collapse
Affiliation(s)
- Qi Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
| | - Sha Liu
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, People’s Republic of China
- Correspondence: Sha Liu, Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, 35 Jiefang Avenue, Zhengxiang District, Hengyang, Hunan, 421001, People’s Republic of China, Email
| |
Collapse
|
16
|
Wang L, Pelgrim CE, Peralta Marzal LN, Korver S, van Ark I, Leusink-Muis T, van Helvoort A, Keshavarzian A, Kraneveld AD, Garssen J, Henricks PAJ, Folkerts G, Braber S. Changes in intestinal homeostasis and immunity in a cigarette smoke- and LPS-induced murine model for COPD: the lung-gut axis. Am J Physiol Lung Cell Mol Physiol 2022; 323:L266-L280. [PMID: 35699290 PMCID: PMC9423728 DOI: 10.1152/ajplung.00486.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/10/2022] [Accepted: 06/01/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is often associated with intestinal comorbidities. In this study, changes in intestinal homeostasis and immunity in a cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD model were investigated. Mice were exposed to cigarette smoke or air for 72 days, except days 42, 52, and 62 on which the mice were treated with saline or LPS via intratracheal instillation. Cigarette smoke exposure increased the airway inflammatory cell numbers, mucus production, and different inflammatory mediators, including C-reactive protein (CRP) and keratinocyte-derived chemokine (KC), in bronchoalveolar lavage (BAL) fluid and serum. LPS did not further impact airway inflammatory cell numbers or mucus production but decreased inflammatory mediator levels in BAL fluid. T helper (Th) 1 cells were enhanced in the spleen after cigarette smoke exposure; however, in combination with LPS, cigarette exposure caused an increase in Th1 and Th2 cells. Histomorphological changes were observed in the proximal small intestine after cigarette smoke exposure, and addition of LPS had no effect. Cigarette smoke activated the intestinal immune network for IgA production in the distal small intestine that was associated with increased fecal sIgA levels and enlargement of Peyer's patches. Cigarette smoke plus LPS decreased fecal sIgA levels and the size of Peyer's patches. In conclusion, cigarette smoke with or without LPS affects intestinal health as observed by changes in intestinal histomorphology and immune network for IgA production. Elevated systemic mediators might play a role in the lung-gut cross talk. These findings contribute to a better understanding of intestinal disorders related to COPD.
Collapse
Affiliation(s)
- Lei Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Charlotte E Pelgrim
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Lucía N Peralta Marzal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Stephanie Korver
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ardy van Helvoort
- Danone Nutricia Research, Utrecht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Rush Medical College, Rush University, Chicago, Illinois
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Danone Nutricia Research, Utrecht, The Netherlands
| | - Paul A J Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Deng R, Ma P, Li B, Wu Y, Yang X. Development of allergic asthma and changes of intestinal microbiota in mice under high humidity and/or carbon black nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113786. [PMID: 35738102 DOI: 10.1016/j.ecoenv.2022.113786] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
In respiratory diseases, the induction of allergic asthma is one of the hottest issues of international concern. The adjuvant effect of air pollutants including nanoparticles (NPs) has be pointed out to facilitate the occurrence and development of allergic asthma. This work studied the development of allergic asthma upon exposures of carbon black nanoparticles (CB NPs, 30-50 nm) and/or high environmental humidity (90% relative humidity). The mechanisms involved were investigated from perspectives of the activation of oxidative stress and transient receptor potential vanilloid 1 (TRPV1) pathways and the alteration in intestinal microbiota. Both high humidity and CB NPs aggravated the airway hyperreactivity, remodeling, and inflammation in Balb/c mice sensitized by ovalbumin. The co-exposure of these two risk factors exhibited adjuvant effect on the development of asthma likely through activating oxidative stress pathway and TRPV1 pathway and then facilitating type I hypersensitivity. Additionally, exposures of high humidity and/or CB NPs reduced the richness of intestinal microbes, altered microbial community composition, and weakened corresponding biological functions, which may interact with the development of asthma. The findings will add new toxicological knowledge to the health risk assessment and management of co-exposures of NPs and other risk factors in the environment.
Collapse
Affiliation(s)
- Rui Deng
- School of Civil Engineering, Chongqing University, Chongqing 400045, China.
| | - Ping Ma
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Baizhan Li
- School of Civil Engineering, Chongqing University, Chongqing 400045, China
| | - Yang Wu
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xu Yang
- Xianning Engineering Research Center for Healthy Environment, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China; Institute of Eastern-Himalaya Biodiversity Research, Dali university, Dali 671003, China
| |
Collapse
|
18
|
Xiao J, Cheng P, Ma P, Wu Y, Feng F, Miao Y, Deng Q. Toxicological effects of traffic-related air pollution on the lungs: Evidence, biomarkers and intervention. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113570. [PMID: 35512471 DOI: 10.1016/j.ecoenv.2022.113570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Numerous epidemiological studies have recently observed that exposure to traffic-related air pollution (TRAP) is associated with increased risk of various respiratory diseases. Major gaps in knowledge remain regarding the toxicological effects. OBJECTIVES We examined the toxicological effects of the gasoline exhaust particles (GEP), a paradigm of TRAP, in rats, with an objective to provide the evidence, obtain the biomarkers, and suggest effective intervention measure. METHODS We measured the airway hyperresponsiveness (AHR), inflammatory cells in the bronchoalveolar lavage (BAL) fluid, histological changes in the lung tissues, and the biomarkers so as to systematically examine the toxicological effects of GEPs at different dose levels (0.5, 2.5, 5 mg/kg BW). The intervention of vitamin E (VE), a natural antioxidant, on the toxicological effects was investigated. RESULTS The lung injury caused by GEP exposure was first indicated by the airway hyperresponsiveness (AHR). Compared with the control group, GEP exposure significantly increased the airway resistances and decreased the lung compliance; the higher the dose of GEP, the more serious the lung injury. Lung injury was also revealed by the increase of inflammatory cells, including the lymphocytes and neutrophils, in the BAL fluid. With the increase of GEP dose, histological changes in the lung tissues were further observed: inflammatory cell infiltration increased and alveolar wall thickened. The toxicology of GEP was demonstrated by the increase of the biomarkers of the oxidative stress, the pro-inflammatory cytokines and the apoptosis cytokine. However, administration of VE was found to be effective in restoring airway injury. CONCLUSION The toxicological effects of traffic-related air pollution (TRAP) on rat lungs are supported by evidence and biomarkers, and vitamin E intervention is feasible.
Collapse
Affiliation(s)
- Jiani Xiao
- XiangYa School of Public Health, Central South University, Changsha 410078, China
| | - Ping Cheng
- XiangYa School of Public Health, Central South University, Changsha 410078, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Ping Ma
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Yang Wu
- Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Feifei Feng
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yufeng Miao
- School of Energy Science and Engineering, Central South University, Changsha 430081, China.
| | - Qihong Deng
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Kotlyarov S. Role of Short-Chain Fatty Acids Produced by Gut Microbiota in Innate Lung Immunity and Pathogenesis of the Heterogeneous Course of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2022; 23:4768. [PMID: 35563159 PMCID: PMC9099629 DOI: 10.3390/ijms23094768] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a widespread socially significant disease. The development of COPD involves the innate immune system. Interestingly, the regulation of the innate lung immune system is related to the gut microbiota. This connection is due to the production by gut microorganisms of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate. Nutritional disturbances and changes in the structure of the intestinal microbiota lead to a decrease in SCFAs production and their effect on pulmonary immunity. The presence of a metabolic and immune axis linking the lungs and gut plays an important role in the pathogenesis of COPD. In addition, the nature of nutrition and SCFAs may participate in the development of the clinically heterogeneous course of COPD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
20
|
Wang S, Chen Y, Hong W, Li B, Zhou Y, Ran P. Chronic exposure to biomass ambient particulate matter triggers alveolar macrophage polarization and activation in the rat lung. J Cell Mol Med 2022; 26:1156-1168. [PMID: 34994052 PMCID: PMC8831949 DOI: 10.1111/jcmm.17169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
The role of alveolar macrophages (AMs) in chronic obstructive pulmonary disease is unclear. We characterized the function of AMs in rats chronically exposed to biomass fuel smoke (BMF) and studied the signal pathways that regulate AMs polarization. One hundred and eighty male Sprague‐Dawley rats were divided into BMF group and clean air control (CON) group. After BMF smoke exposure for 4 days, 1 month and 6 months, the cytokine secretion and function of AMs were determined by flow cytometry, quantitative polymerase chain reaction, Western blotting and immunofluorescence. Bone marrow‐derived macrophages were cultured and exposed to particulate matter (PM) from the smoke. Exposure initially promoted pro‐inflammatory factors, but pro‐inflammatory macrophages shared features of anti‐inflammatory macrophages. Consistent with IL‐4 upregulated in bronchoalveolar lavage fluid, p‐Stat6 and peroxisome proliferator‐activated receptor γ (PPARγ) in AMs elevated at 4 days of exposure. After 6 months of exposure, CD206, TGF‐β1 and p‐Smad3 were significantly higher than the control groups. PPARγ reversed the M1 phenotype induced by PM in vitro and drove the macrophages into the M2 phenotype. Altogether, the study demonstrates the dynamic phenotype and functional changes in AMs during exposure to BMF smoke.
Collapse
Affiliation(s)
- Shenlin Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Department of Respiratory Medicine, Ningxia Hui Autonomous Region People's Hospital, The First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, Ningxia, China
| | - Yuhua Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bing Li
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yumin Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Pixin Ran
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Kotlyarov S, Kotlyarova A. Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222312803. [PMID: 34884621 PMCID: PMC8657960 DOI: 10.3390/ijms222312803] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism plays an important role in many lung functions. Disorders of lipid metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids are involved in numerous cross-linkages with inflammation. Recent studies strongly support the involvement of fatty acids as participants in inflammation. They are involved in the initiation and resolution of inflammation, including acting as a substrate for the formation of lipid mediators of inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty acids, are now described. Disorders of their production and function are part of the pathogenesis of COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty acids are another important participant in metabolic and immune processes, and their role in the pathogenesis of COPD is of great clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
22
|
Li N, Dai Z, Wang Z, Deng Z, Zhang J, Pu J, Cao W, Pan T, Zhou Y, Yang Z, Li J, Li B, Ran P. Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respir Res 2021; 22:274. [PMID: 34696775 PMCID: PMC8543848 DOI: 10.1186/s12931-021-01872-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dysbiosis of the gut microbiome is involved in the pathogenesis of various diseases, but the contribution of gut microbes to the progression of chronic obstructive pulmonary disease (COPD) is still poorly understood. METHODS We carried out 16S rRNA gene sequencing and short-chain fatty acid analyses in stool samples from a cohort of 73 healthy controls, 67 patients with COPD of GOLD stages I and II severity, and 32 patients with COPD of GOLD stages III and IV severity. Fecal microbiota from the three groups were then inoculated into recipient mice for a total of 14 times in 28 days to induce pulmonary changes. Furthermore, fecal microbiota from the three groups were inoculated into mice exposed to smoke from biomass fuel to induce COPD-like changes. RESULTS We observed that the gut microbiome of COPD patients varied from that of healthy controls and was characterized by a distinct overall microbial diversity and composition, a Prevotella-dominated gut enterotype and lower levels of short-chain fatty acids. After 28 days of fecal transplantation from COPD patients, recipient mice exhibited elevated lung inflammation. Moreover, when mice were under both fecal transplantation and biomass fuel smoke exposure for a total of 20 weeks, accelerated declines in lung function, severe emphysematous changes, airway remodeling and mucus hypersecretion were observed. CONCLUSION These data demonstrate that altered gut microbiota in COPD patients is associated with disease progression in mice model.
Collapse
Affiliation(s)
- Naijian Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhouli Dai
- College of Medicine, Lishui University, Lishui, Zhejiang, People's Republic of China
| | - Zhang Wang
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou, Guangdong, People's Republic of China
| | - Zhishan Deng
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Jiahuan Zhang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Jinding Pu
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Weitao Cao
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Tianhui Pan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Yumin Zhou
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Jing Li
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China
| | - Bing Li
- The GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Pixin Ran
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
23
|
Jheng YT, Putri DU, Chuang HC, Lee KY, Chou HC, Wang SY, Han CL. Prolonged exposure to traffic-related particulate matter and gaseous pollutants implicate distinct molecular mechanisms of lung injury in rats. Part Fibre Toxicol 2021; 18:24. [PMID: 34172050 PMCID: PMC8235648 DOI: 10.1186/s12989-021-00417-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to air pollution exerts direct effects on respiratory organs; however, molecular alterations underlying air pollution-induced pulmonary injury remain unclear. In this study, we investigated the effect of air pollution on the lung tissues of Sprague-Dawley rats with whole-body exposure to traffic-related PM1 (particulate matter < 1 μm in aerodynamic diameter) pollutants and compared it with that in rats exposed to high-efficiency particulate air-filtered gaseous pollutants and clean air controls for 3 and 6 months. Lung function and histological examinations were performed along with quantitative proteomics analysis and functional validation. RESULTS Rats in the 6-month PM1-exposed group exhibited a significant decline in lung function, as determined by decreased FEF25-75% and FEV20/FVC; however, histological analysis revealed earlier lung damage, as evidenced by increased congestion and macrophage infiltration in 3-month PM1-exposed rat lungs. The lung tissue proteomics analysis identified 2673 proteins that highlighted the differential dysregulation of proteins involved in oxidative stress, cellular metabolism, calcium signalling, inflammatory responses, and actin dynamics under exposures to PM1 and gaseous pollutants. The presence of PM1 specifically enhanced oxidative stress and inflammatory reactions under subchronic exposure to traffic-related PM1 and suppressed glucose metabolism and actin cytoskeleton signalling. These factors might lead to repair failure and thus to lung function decline after chronic exposure to traffic-related PM1. A detailed pathogenic mechanism was proposed to depict temporal and dynamic molecular regulations associated with PM1- and gaseous pollutants-induced lung injury. CONCLUSION This study explored several potential molecular features associated with early lung damage in response to traffic-related air pollution, which might be used to screen individuals more susceptible to air pollution.
Collapse
Affiliation(s)
- Yu-Teng Jheng
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Mailing address: 250 Wuxing St, Taipei, 11031, Taiwan
| | - Denise Utami Putri
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Pulmonary Research Center, Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - San-Yuan Wang
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Mailing address: 250 Wuxing St, Taipei, 11031, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Mailing address: 250 Wuxing St, Taipei, 11031, Taiwan.
| |
Collapse
|