1
|
Rasouli MA, Dumesic DA, Singhal V. Male infertility and obesity. Curr Opin Endocrinol Diabetes Obes 2024; 31:203-209. [PMID: 39253759 DOI: 10.1097/med.0000000000000883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The increasing rate of obesity is having an adverse impact on male reproduction. RECENT FINDINGS The negative effect of reactive oxygen species on male reproductive tissues and the age of onset of obesity are new areas of research on male infertility. SUMMARY This review highlights how obesity impairs male reproduction through complex mechanisms, including metabolic syndrome, lipotoxicity, sexual dysfunction, hormonal and adipokine alterations as well as epigenetic changes, and how new management strategies may improve the reproductive health of men throughout life.
Collapse
Affiliation(s)
| | | | - Vibha Singhal
- Division of Endocrinology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
2
|
Klein JA, St-Pierre J, Choi D, Lopez J, Rubin DT. Dramatic Changes in Thiopurine Metabolite Levels in a Patient With Inflammatory Bowel Disease Treated With Tirzepatide for Weight Loss. ACG Case Rep J 2024; 11:e01544. [PMID: 39507506 PMCID: PMC11540429 DOI: 10.14309/crj.0000000000001544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Thiopurines can be used to maintain remission in patients with inflammatory bowel disease. Thiopurines require regular blood count monitoring and, in specific patients, thiopurine metabolites for assessment of optimization and safety. We present the case of a 42-year-old woman with ulcerative colitis postcolectomy and ileal pouch-anal anastomosis with subsequent antibiotic-resistant diffuse pouchitis and prepouch ileitis. She was in stable remission with thiopurine monotherapy. Following tirzepatide initiation, she experienced elevated liver enzymes associated with a significant increase in thiopurine metabolite levels. This case underlines the importance of monitoring metabolite levels in patients with inflammatory bowel disease initiated on glucagon-like peptide 1-targeted therapies.
Collapse
Affiliation(s)
- Jeremy A. Klein
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL
| | - Joëlle St-Pierre
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL
| | - David Choi
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL
| | - Jacqueline Lopez
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL
| | - David T. Rubin
- Inflammatory Bowel Disease Center, University of Chicago Medicine, Chicago, IL
| |
Collapse
|
3
|
Kim TH, Lee K, Park S, Cho H, Park J, Jo H, Son Y, Kim S, Kang J, Smith L, Rahmati M, Fond G, Boyer L, Pizzol D, Lee H, Rhee SY, Hwang J, Sang H, Yon DK. Association between glucagon-like peptide-1 receptor agonists and risk of suicidality: A comprehensive analysis of the global pharmacovigilance database. Diabetes Obes Metab 2024; 26:5183-5191. [PMID: 39161072 DOI: 10.1111/dom.15864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024]
Abstract
AIM To evaluate the potential association between suicidality and glucagon-like peptide-1 receptor agonists (GLP-1RAs), as well as other medications used for obesity and diabetes, using comprehensive global data. MATERIALS AND METHODS This study utilized the World Health Organization's pharmacovigilance database, encompassing adverse drug reaction reports from 1967 to 2023, from 170 countries (total reports, N = 131 255 418). We present the reported odds ratios (RORs) with 95% confidence intervals (CIs) and information component (IC) with IC025 regarding the association between GLP-1RA use and suicidality. RESULTS Although reports of GLP-1RA-associated suicidality increased gradually from 2005 to 2023 (n = 332), no evidence of an association was observed (ROR 0.15 [95% CI 0.13 to 0.16]; IC -2.77 [IC025 -2.95]). The lack of evidence of an association persisted regardless of whether GLP-1RAs were used for diabetes treatment (ROR 0.13 [95% CI 0.11 to 0.14]; IC -2.95 [IC025 -3.14]) or obesity treatment (ROR 0.44 [95% CI 0.34 to 0.58]; IC -1.16 [IC025 -1.62]). However, an association was found between suicidality and other diabetes medications excluding GLP-1RAs (ROR 1.13 [95% CI 1.10 to 1.15]; IC 0.17 [IC025 0.13]). Similarly, the potential association with suicidality was observed in medications used to treat obesity excluding GLP-1RAs (ROR 1.08 [95% CI 1.01 to 1.14]; IC 0.10 [IC025 0.01]). CONCLUSIONS The suspected association between GLP-1RA use and suicidality, as raised by the European Medicines Agency, was not found in our global analysis. This indicates that the sporadic reports of GLP-1RA-associated suicidality are likely influenced by factors such as comorbidities present in the GLP-1RA user population.
Collapse
Affiliation(s)
- Tae Hyeon Kim
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Kyeongmin Lee
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Seoyoung Park
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hanseul Cho
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jaeyu Park
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Hyesu Jo
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Yejun Son
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Soeun Kim
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jiseung Kang
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Masoud Rahmati
- CEReSS-Health Service Research and Quality of Life Centre, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Guillaume Fond
- CEReSS-Health Service Research and Quality of Life Centre, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Laurent Boyer
- CEReSS-Health Service Research and Quality of Life Centre, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Damiano Pizzol
- Health Unit Eni, Maputo, Mozambique
- Health Unit, Eni, San Donato Milanese, Italy
| | - Hayeon Lee
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Sang Youl Rhee
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Endocrinology and Metabolism, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Jiyoung Hwang
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Hyunji Sang
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Endocrinology and Metabolism, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Dong Keon Yon
- Department of Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
- Department of Precision Medicine, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Paediatrics, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Stefanakis K, Kokkorakis M, Mantzoros CS. The impact of weight loss on fat-free mass, muscle, bone and hematopoiesis health: Implications for emerging pharmacotherapies aiming at fat reduction and lean mass preservation. Metabolism 2024; 161:156057. [PMID: 39481534 DOI: 10.1016/j.metabol.2024.156057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Similar to bariatric surgery, incretin receptor agonists have revolutionized the treatment of obesity, achieving up to 15-25 % weight loss in many patients, i.e., at a rate approaching that achieved with bariatric surgery. However, over 25 % of total weight lost from both surgery and pharmacotherapy typically comes from fat-free mass, including skeletal muscle mass, which is often overlooked and can impair metabolic health and increase the risk of subsequent sarcopenic obesity. Loss of muscle and bone as well as anemia can compromise physical function, metabolic rate, and overall health, especially in older adults. The myostatin-activin-follistatin-inhibin system, originally implicated in reproductive function and subsequently muscle regulation, appears to be crucial for muscle and bone maintenance during weight loss. Activins and myostatin promote muscle degradation, while follistatins inhibit their activity in states of negative energy balance, thereby preserving lean mass. Novel compounds in the pipeline, such as Bimagrumab, Trevogrumab, and Garetosmab-which inhibit activin and myostatin signaling-have demonstrated promise in preventing muscle loss while promoting fat loss. Either alone or combined with incretin receptor agonists, these medications may enhance fat loss while preserving or even increasing muscle and bone mass, offering a potential solution for improving body composition and metabolic health during significant weight loss. Since this dual therapeutic approach could help address the challenges of muscle and bone loss during weight loss, well-designed studies are needed to optimize these strategies and assess long-term benefits. For the time being, considerations like advanced age and prefrailty may affect the choice of suitable candidates in clinical practice for current and emerging anti-obesity medications due to the associated risk of sarcopenia.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michail Kokkorakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Xia Y, Jin J, Sun Y, Kong X, Shen Z, Yan R, Huang R, Liu X, Xia W, Ma J, Zhu X, Li Q, Ma J. Tirzepatide's role in targeting adipose tissue macrophages to reduce obesity-related inflammation and improve insulin resistance. Int Immunopharmacol 2024; 143:113499. [PMID: 39471690 DOI: 10.1016/j.intimp.2024.113499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Obesity and type 2 diabetes mellitus (T2DM) are significant global health challenges, with adipose tissue inflammation being a pivotal contributor to metabolic dysfunction. The involvement of adipose tissue macrophages (ATMs) in obesity-associated inflammation is well recognized, yet the therapeutic strategies specifically targeting ATM-mediated inflammation remain limited. OBJECTIVE This study aims to explore the effects of tirzepatide, a novel dual GLP-1 and GIP receptor agonist, on ATMs, adipose tissue inflammation, and insulin resistance in the context of obesity. METHODS Obese mouse models were established through high-fat diet feeding and subsequently treated with tirzepatide at a dose of 1.2 mg/kg twice weekly for 12 weeks. The study assessed the impact on ATM phenotype, inflammatory markers, and key metabolic indicators. RESULTS Tirzepatide treatment significantly mitigated the infiltration of pro-inflammatory M1 ATMs within adipose tissue and concurrently reduced levels of inflammatory cytokines, thereby enhancing insulin sensitivity. Tirzepatide demonstrated therapeutic efficacy through its modulation of the ERK signaling pathway and promotion of M1-type macrophage apoptosis. CONCLUSION Tirzepatide's potential as a therapeutic strategy for addressing metabolic diseases associated with obesity and T2DM by targeting ATM activity and mitigating obesity-associated inflammation.
Collapse
Affiliation(s)
- Yin Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jing Jin
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yaqin Sun
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Rengna Yan
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Rong Huang
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xiaomei Liu
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jingjing Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Qian Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
6
|
Rabbani N, Thornalley PJ. Unraveling the impaired incretin effect in obesity and type 2 diabetes: Key role of hyperglycemia-induced unscheduled glycolysis and glycolytic overload. Diabetes Res Clin Pract 2024; 217:111905. [PMID: 39447679 DOI: 10.1016/j.diabres.2024.111905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) agonists and GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) co-agonists are major treatment options for subjects with obesity and patients with type 2 diabetes mellitus (T2DM). They counter without addressing the mechanistic cause of the impaired incretin effect associated with obesity and T2DM. Incretin effect impairment is characterized by decreased secretion of incretins from enteroendocrine cells and incretin resistance of pancreatic β-cells. It is linked to hyperglycemia. We present evidence that subversion of the gating of glucose entry into glycolysis, mainly by glucokinase (hexokinase-4), during persistent hyperglycemia in enteroendocrine cells, pancreatic β- and α-cells and appetite-regulating neurons contributes to the biochemical mechanism of the impaired incretin effect. Unscheduled glycolysis and glycolytic overload thereby produced decreases cell signalling of incretin secretion to glucose and other secretion stimuli and incretin receptor responses. This mechanism provides a guide for development of alternative therapies targeting recovery of the impaired incretin effect.
Collapse
Affiliation(s)
- Naila Rabbani
- QU Health, Qatar University, University Street, PO Box 2713, Doha, Qatar
| | - Paul J Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, PO Box 34110, Doha, Qatar.
| |
Collapse
|
7
|
Wang X, Yang X, Qi X, Fan G, Zhou L, Peng Z, Yang J. Anti-atherosclerotic effect of incretin receptor agonists. Front Endocrinol (Lausanne) 2024; 15:1463547. [PMID: 39493783 PMCID: PMC11527663 DOI: 10.3389/fendo.2024.1463547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Incretin receptor agonists (IRAs), primarily composed of glucagon-like peptide-1 receptor agonists (GLP-1RAs) and glucose-dependent insulinotropic polypeptide receptor agonists (GIPRAs), work by mimicking the actions of the endogenous incretin hormones in the body. GLP-1RAs have been approved for use as monotherapy and in combination with GIPRAs for the management of type 2 diabetes mellitus (T2DM). In addition to their role in glucose regulation, IRAs have demonstrated various benefits such as cardiovascular protection, obesity management, and regulation of bone turnover. Some studies have suggested that IRAs not only aid in glycemic control but also exhibit anti-atherosclerotic effects. These agents have been shown to modulate lipid abnormalities, reduce blood pressure, and preserve the structural and functional integrity of the endothelium. Furthermore, IRAs have the ability to mitigate inflammation by inhibiting macrophage activation and promoting M2 polarization. Research has also indicated that IRAs can decrease macrophage foam cell formation and prevent vascular smooth muscle cell (VSMC) phenotype switching, which are pivotal in atheromatous plaque formation and stability. This review offers a comprehensive overview of the protective effects of IRAs in atherosclerotic disease, with a focus on their impact on atherogenesis.
Collapse
Affiliation(s)
- Xin Wang
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin Yang
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaoyan Qi
- Department of Metabolism and Endocrinology, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Gang Fan
- Department of Urology, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Lingzhi Zhou
- Department of pediatrics, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Zhengliang Peng
- Department of Emergency, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Metabolism and Endocrinology, Shenzhen Nanshan People's Hospital; The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Idrees M, Taimuri MA, Azhar A, Khan NA, Kalsoom U, Sajid A, Akilimali A. Deep brain stimulation for post-stroke rehabilitation in Pakistan. Ann Med Surg (Lond) 2024; 86:5966-5972. [PMID: 39359821 PMCID: PMC11444625 DOI: 10.1097/ms9.0000000000002511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024] Open
Abstract
Stroke has a high prevalence in Pakistan, at an alarming rate of 250 per 100 000 people. Although various treatment options are available, they are not ideal for Pakistan due to their high cost, restricted availability, and time sensitivity. In 1997, the FDA-approved deep brain stimulation (DBS) for Parkinson's disease and it was first performed in Pakistan in 2014. DBS has also proved effective for restoring post-stroke mobility, according to a trial from August 2023. DBS has the potential to revolutionize post-stroke rehabilitation in Pakistan; however, further research is required into its effectiveness and its limitations must be addressed first.
Collapse
Affiliation(s)
| | - Muskan A Taimuri
- Department of Internal Medicine, Dow University of Health Sciences
| | - Ayesha Azhar
- Department of Internal Medicine, Dow University of Health Sciences
| | - Najam A Khan
- Department of Internal Medicine, Dow University of Health Sciences
| | | | - Aiman Sajid
- Sir Syed College of Medical Sciences, Karachi
| | - Aymar Akilimali
- Department of Research, Medical Research Circle, Goma, DR Congo
| |
Collapse
|
9
|
Jordan G, Young S, Alemán JO. Weight Loss Pharmacotherapy: Current and Future Therapies. Gastrointest Endosc Clin N Am 2024; 34:591-608. [PMID: 39277293 PMCID: PMC11407733 DOI: 10.1016/j.giec.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The rising prevalence of obesity is of major concern. There are currently 5 Food and Drug Administration-approved medications for the treatment of obesity: orlistat, phentermine/topiramate, naltrexone/bupropion, liraglutide 3.0 mg, and semaglutide 2.4 mg. Surgical options such as bariatric surgery and endoscopic surgery induce more durable weight loss than pharmacotherapy or lifestyle interventions alone. However, patients often experience weight regain and weight loss plateau after surgery. The addition of multimodal or multihormonal pharmacotherapy is a promising tool to address these challenges. The optimal timing of obesity pharmacotherapy with surgical and endoscopic interventions requires further investigation.
Collapse
Affiliation(s)
- Gabriela Jordan
- Department of Medicine, Margaret Corbin Campus of the VA New York Harbor Health Care System, New York, NY, USA; Laboratory of Translational Obesity Research, NYU Langone Health, New York, NY, USA
| | - Sigrid Young
- Department of Medicine, Margaret Corbin Campus of the VA New York Harbor Health Care System, New York, NY, USA; Laboratory of Translational Obesity Research, NYU Langone Health, New York, NY, USA
| | - José O Alemán
- Department of Medicine, Margaret Corbin Campus of the VA New York Harbor Health Care System, New York, NY, USA; Laboratory of Translational Obesity Research, NYU Langone Health, New York, NY, USA; Holman Division of Endocrinology, New York University Langone Health, 423 East 23rd Street, Room 16-048W, New York, NY 10010, USA.
| |
Collapse
|
10
|
Chan LJ, Kaur M, Kaffenberger BH. A case of recalcitrant hidradenitis suppurativa concomitantly treated with tirzepatide. JAAD Case Rep 2024; 52:101-102. [PMID: 39319185 PMCID: PMC11421363 DOI: 10.1016/j.jdcr.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Affiliation(s)
- Lina J. Chan
- Division of Research, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, Las Vegas, Nevada
| | - Manjit Kaur
- Department of Dermatology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Benjamin H. Kaffenberger
- Division of Research, Kirk Kerkorian School of Medicine at University of Nevada, Las Vegas, Las Vegas, Nevada
| |
Collapse
|
11
|
Mullur N, Morissette A, Morrow NM, Mulvihill EE. GLP-1 receptor agonist-based therapies and cardiovascular risk: a review of mechanisms. J Endocrinol 2024; 263:e240046. [PMID: 39145614 PMCID: PMC11466209 DOI: 10.1530/joe-24-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Cardiovascular outcome trials (CVOTs) in people living with type 2 diabetes mellitus and obesity have confirmed the cardiovascular benefits of glucagon-like peptide 1 receptor agonists (GLP-1RAs), including reduced cardiovascular mortality, lower rates of myocardial infarction, and lower rates of stroke. The cardiovascular benefits observed following GLP-1RA treatment could be secondary to improvements in glycemia, blood pressure, postprandial lipidemia, and inflammation. Yet, the GLP-1R is also expressed in the heart and vasculature, suggesting that GLP-1R agonism may impact the cardiovascular system. The emergence of GLP-1RAs combined with glucose-dependent insulinotropic polypeptide and glucagon receptor agonists has shown promising results as new weight loss medications. Dual-agonist and tri-agonist therapies have demonstrated superior outcomes in weight loss, lowered blood sugar and lipid levels, restoration of tissue function, and enhancement of overall substrate metabolism compared to using GLP-1R agonists alone. However, the precise mechanisms underlying their cardiovascular benefits remain to be fully elucidated. This review aims to summarize the findings from CVOTs of GLP-1RAs, explore the latest data on dual and tri-agonist therapies, and delve into potential mechanisms contributing to their cardioprotective effects. It also addresses current gaps in understanding and areas for further research.
Collapse
Affiliation(s)
- Neerav Mullur
- The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | | | - Nadya M Morrow
- The University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| | - Erin E Mulvihill
- The University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, The University of Ottawa, Faculty of Medicine, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Stefanou MI, Palaiodimou L, Theodorou A, Safouris A, Fischer U, Kelly PJ, Dawson J, Katan M, Katsanos AH, Lambadiari V, Giannopoulos S, Alexandrov AV, Siasos G, Tsivgoulis G. Risk of major adverse cardiovascular events and all-cause mortality under treatment with GLP-1 RAs or the dual GIP/GLP-1 receptor agonist tirzepatide in overweight or obese adults without diabetes: a systematic review and meta-analysis. Ther Adv Neurol Disord 2024; 17:17562864241281903. [PMID: 39345822 PMCID: PMC11437580 DOI: 10.1177/17562864241281903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Background Among the currently approved antiobesity medications, the glucagon-like-peptide-1 receptor-agonists (GLP-1 RAs) liraglutide and semaglutide, and the dual glucose-dependent-insulinotropic-polypeptide (GIP)/GLP-1 RA tirzepatide have been suggested to reduce cardiovascular-risk in overweight or obesity without diabetes. Objectives The objective of this study was to evaluate the cardio- and neuroprotective potential of these novel agents in the nondiabetic overweight/obese adult population. Data sources and methods A systematic review and meta-analysis of randomized-controlled clinical trials (RCTs) was performed to estimate the risk of major adverse cardiovascular events (MACE), all-cause and cardiovascular mortality in overweight or obese adults without diabetes treated with GLP-1 or GIP/GLP-1 RAs (vs placebo). Secondary outcomes included the risk of myocardial infarction (MI) and stroke. Results Sixteen RCTs (13 and 3 on GLP-1 RAs and tirzepatide, respectively) comprising 28,168 participants were included. GLP-1 or GIP/GLP-1 RAs reduced MACE (odds ratio (OR): 0.79; 95% confidence interval (CI): 0.71-0.89; p < 0.01; I 2 = 0) and all-cause mortality (OR: 0.80; 95% CI: 0.70-0.92; p < 0.01; I 2 = 0), while there was a trend toward lower cardiovascular-mortality (OR: 0.84; 95% CI: 0.71-1.01; p = 0.06; I 2 = 0%) compared to placebo. Additionally, GLP-1 or GIP/GLP-1 RAs reduced the odds of MI (OR: 0.72; 95% CI: 0.61-0.86; p < 0.01; I 2 = 0%) and nonfatal-MI (OR: 0.72; 95% CI: 0.61-0.85; p < 0.01; I 2 = 0%); while no associations between antiobesity treatment and fatal-MI, stroke, nonfatal, or fatal stroke were uncovered. Conclusion GLP-1 and GIP/GLP-1 RAs reduce cardiovascular-risk and all-cause mortality in overweight or obese adults without diabetes. Additionally, GLP-1 RAs and GIP/GLP-1 RAs attenuate the risk of MI. Since data on stroke are still limited, future RCTs are warranted to evaluate the neuroprotective potential of these novel antiobesity agents. Trial registration PROSPERO CRD42024515966.
Collapse
Affiliation(s)
- Maria-Ioanna Stefanou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Lina Palaiodimou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Theodorou
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Apostolos Safouris
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Stroke Unit, Metropolitan Hospital, Piraeus, Greece
| | - Urs Fischer
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Peter J Kelly
- Stroke Service, Mater University Hospital and University College Dublin, Dublin, Ireland
| | - Jesse Dawson
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Mira Katan
- Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Aristeidis H Katsanos
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, ON, Canada
| | - Vaia Lambadiari
- Second Department of Internal Medicine, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andrei V Alexandrov
- Department of Neurology, University of Tennessee Health Science Center, Memphis, USA
| | - Gerasimos Siasos
- Third Department of Cardiology, Sotiria Thoracic Diseases General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, School of Medicine, National and Kapodistrian University of Athens, Rimini 1, Chaidari, Athens 12462, Greece
| |
Collapse
|
13
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
14
|
Fareed A, Ghanem L, Vaid R, Iftikhar Z, Ur Rehman A, Sarwar A, Asif MI. Charting New Territories in Obesity Management- Traditional Techniques to Tirzepatide. Endocr Pract 2024:S1530-891X(24)00670-0. [PMID: 39278353 DOI: 10.1016/j.eprac.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Obesity, a pervasive global health challenge affecting more than 2 billion people, requires comprehensive interventions. Traditional approaches, including lifestyle modification, and diverse drugs targeting a gastrointestinal hormone, including glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (Liraglutide, Semaglutide, Exenatide, Albiglutide, Dulaglutide, Lixisenatide, Orlistat, Phentermine/Topiramate, Lorcaserin, Sibutramine, and Rimonabant) offer tailored strategies; yet their effectiveness is limited and some drugs were taken off the market. Moreover, various surgical modalities, such as Roux-en-Y Bypass surgery, sleeve gastrectomy, intragastric balloons, biliopancreatic diversion with duodenal switch, laparoscopic adjustable gastric band, and vagal nerve blockade can be considered but are associated with numerous side effects and require careful monitoring. Consequently, there is a pressing need for novel anti-obesity treatments. METHODS This comprehensive review was based on the available data to discuss the traditional pharmaceutical and surgical therapeutical strategies for obesity, going further to discuss tirzepatide's mode of action, its outcomes for obesity, and the associated side effects. RESULTS In this landscape, tirzepatide, initially designed for type 2 diabetes management, emerges as a potential game-changer. Functioning as a dual glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 receptor agonist, it not only addresses control but also introduces a fresh perspective on weight reduction. This review intricately explores tirzepatide's mechanism, dissecting insights from clinical studies and positioning it as a major force in obesity treatment. CONCLUSIONS In the middle of significant shifts in obesity management, tirzepatide presents itself as a promising and cost-effective intervention. Its Food and Drug Administration approval marks a milestone in the realm of obesity therapeutics. Going beyond a recapitulation of findings, the conclusion emphasizes the imperative for ongoing exploration and vigilant safety monitoring in tirzepatide's application.
Collapse
Affiliation(s)
- Areeba Fareed
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Laura Ghanem
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| | - Rayyan Vaid
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Zoha Iftikhar
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Adeel Ur Rehman
- Department of Medicine, United Medical and Dental College, Karachi, Pakistan
| | - Ayesha Sarwar
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| | - Muhammad Iqbal Asif
- Department of Medicine, Karachi Medical and Dental College, Karachi, Pakistan
| |
Collapse
|
15
|
Ma J, Liu Y, Hu J, Liu X, Xia Y, Xia W, Shen Z, Kong X, Wu X, Mao L, Li Q. Tirzepatide administration improves cognitive impairment in HFD mice by regulating the SIRT3-NLRP3 axis. Endocrine 2024:10.1007/s12020-024-04013-w. [PMID: 39222203 DOI: 10.1007/s12020-024-04013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE High-fat diet (HFD) currently is reported that in connection with cognitive impairment. Tirzepatide is a novel dual receptor agonist for glycemic control. But whether Tirzepatide exerts a protective effect in HFD-related cognitive impairment remains to be explore. METHODS During the study, the cognitive dysfunction mice model induced by HFD were established. The expressions synapse-associated protein and other target proteins were detected. The oxidative stress parameters, levels of inflammatory cytokine were also detected. RESULTS Our findings proved that Tirzepatide administration attenuates high fat diet-related cognitive impairment. Tirzepatide administration suppresses microglia activation, alleviates oxidative stress as well as suppressed the expression of NLRP3 in HFD mice by up-regulating SIRT3 expression. In conclusion, Tirzepatide attenuates HFD-induced cognitive impairment through reducing oxidative stress and neuroinflammation via SIRT3-NLRP3 signaling. CONCLUSION This study suggest that Tirzepatide has neuroprotective effects in HFD-related cognitive dysfunction mice model, which provides a promising treatment of HFD-related cognitive impairment.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
- Department of Endocrinology, The Affifiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Yuanyuan Liu
- Department of Endocrinology, The Affifiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Junya Hu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
| | - Xingjing Liu
- Department of Endocrinology, The Affifiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China
| | - Yin Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
| | - Wenqing Xia
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
| | - Ziyang Shen
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
| | - Xiaocen Kong
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China
| | - Xia Wu
- Department of Endocrinology, Affiliated Jiangyin Hospital of Nantong University, Wuxi, 214400, China
| | - Li Mao
- Department of Endocrinology, The Affifiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.
| | - Qian Li
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Qinhuai District, Nanjing, 21006, China.
| |
Collapse
|
16
|
Stefanou MI, Theodorou A, Malhotra K, Aguiar de Sousa D, Katan M, Palaiodimou L, Katsanos AH, Koutroulou I, Lambadiari V, Lemmens R, Giannopoulos S, Alexandrov AV, Siasos G, Tsivgoulis G. Risk of major adverse cardiovascular events and stroke associated with treatment with GLP-1 or the dual GIP/GLP-1 receptor agonist tirzepatide for type 2 diabetes: A systematic review and meta-analysis. Eur Stroke J 2024; 9:530-539. [PMID: 38400569 PMCID: PMC11418422 DOI: 10.1177/23969873241234238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Mounting evidence suggests that glucagon-like-peptide-1 receptor-agonists (GLP-1 RAs) attenuate cardiovascular-risk in type-2 diabetes (T2DM). Tirzepatide is the first-in-class, dual glucose-dependent-insulinotropic-polypeptide GIP/GLP-1 RA approved for T2DM. PATIENTS AND METHODS A systematic review and meta-analysis of randomized-controlled clinical trials (RCTs) was performed to estimate: (i) the incidence of major adverse cardiovascular events (MACE); and (ii) incidence of stroke, fatal, and nonfatal stroke in T2DM-patients treated with GLP-1 or GIP/GLP-1 RAs (vs placebo). RESULTS Thirteen RCTs (9 and 4 on GLP-1 RAs and tirzepatide, respectively) comprising 65,878 T2DM patients were included. Compared to placebo, GLP-1RAs or GIP/GLP-1 RAs reduced MACE (OR: 0.87; 95% CI: 0.81-0.94; p < 0.01; I2 = 37%), all-cause mortality (OR: 0.88; 95% CI: 0.82-0.96; p < 0.01; I2 = 21%) and cardiovascular-mortality (OR: 0.88; 95% CI: 0.80-0.96; p < 0.01; I2 = 14%), without differences between GLP-1 versus GIP/GLP-1 RAs. Additionally, GLP-1 RAs reduced the odds of stroke (OR: 0.84; 95% CI: 0.76-0.93; p < 0.01; I2 = 0%) and nonfatal stroke (OR: 0.85; 95% CI: 0.76-0.94; p < 0.01; I2 = 0%), whereas no association between fatal stroke and GLP-1RAs was uncovered (OR: 0.80; 95% CI: 0.61-1.05; p = 0.105; I2 = 0%). In secondary analyses, GLP-1 RAs prevented ischemic stroke (OR: 0.74; 95% CI: 0.61-0.91; p < 0.01; I2 = 0%) and MACE-recurrence, but not hemorrhagic stroke (OR: 0.92; 95% CI: 0.51-1.66; p = 0.792; I2 = 0%). There was no association between GLP-1RAs or GIP/GLP-1 RAs and fatal or nonfatal myocardial infarction. DISCUSSION AND CONCLUSION GLP-1 and GIP/GLP-1 RAs reduce cardiovascular-risk and mortality in T2DM. While there is solid evidence that GLP-1 RAs significantly attenuate the risk of ischemic stroke in T2DM, dedicated RCTs are needed to evaluate the efficacy of novel GIP/GLP-1 RAs for primary and secondary stroke prevention.
Collapse
Affiliation(s)
- Maria-Ioanna Stefanou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini Theodorou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konark Malhotra
- Department of Neurology, Allegheny Health Network, Pittsburgh, PA, USA
| | - Diana Aguiar de Sousa
- Stroke Center, Centro Hospitalar Universitário Lisboa Central and Institute of Anatomy, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mira Katan
- Department of Neurology, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Lina Palaiodimou
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristeidis H Katsanos
- Division of Neurology, McMaster University/Population Health Research Institute, Hamilton, ON, Canada
| | - Ioanna Koutroulou
- Second Department of Neurology, Aristotle University of Thessaloniki, School of Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Vaia Lambadiari
- Second Department of Internal Medicine, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, KU Leuven - University of Leuven, Leuven, Belgium
| | - Sotirios Giannopoulos
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andrei V Alexandrov
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Gerasimos Siasos
- Third Department of Cardiology, Sotiria Thoracic Diseases General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, “Attikon” University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Kochis M, Bizimana C, Zitsman JL, Pratt JSA, Griggs CL. Practice Patterns of Glucagon-Like Peptide-1 Agonist Use Among Pediatric Bariatric Surgeons: A National Survey. J Surg Res 2024; 301:172-179. [PMID: 38941713 DOI: 10.1016/j.jss.2024.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/08/2024] [Indexed: 06/30/2024]
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonist (GLP-1A) medications are gaining widespread popularity for the treatment of obesity. The optimal use of these drugs in pediatric bariatric populations, and especially in those considering metabolic and bariatric surgery (MBS), is yet to be established. We sought to characterize current practice patterns of GLP-1A use at major pediatric bariatric centers across the United States. MATERIALS AND METHODS We administered an online survey to a purposive sample of 46 surgeons who perform MBS on children and adolescents. Survey questions explored practices prescribing GLP-1As in patients considering MBS, holding them prior to elective operations, and restarting them postoperatively following MBS. Responses were summarized with descriptive statistics and inductive content analysis. RESULTS There were 22 responses (48% response rate) representing 19 institutions. Most (86%) respondents do sometimes prescribe GLP-1As for patients considering MBS, but the specific indications vary. Practices for holding GLP-1As preoperatively also vary, from not at all to holding for 2 wk. Over half (55%) of respondents sometimes restart GLP-1As after MBS. Free-response themes included still-evolving preoperative utilization patterns, difficulty with access and insurance coverage, and a lack of data informing GLP-1A use in the pre and postoperative periods. CONCLUSIONS Given the increasing use of these medications for weight loss purposes, this substantial variation in practice highlights a need for further research to examine the safest and most effective use of GLP-1As in the pre and postoperative periods and for practice guidelines to standardize care pathways in pediatric bariatric contexts.
Collapse
Affiliation(s)
- Michael Kochis
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts.
| | - Christa Bizimana
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Jeffrey L Zitsman
- Department of Surgery, NewYork-Presbyterian Morgan Stanley Children's Hospital, New York, New York
| | - Janey S A Pratt
- Department of Surgery, Lucile Packard Children's Hospital Stanford, Palo Alto, California
| | - Cornelia L Griggs
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
18
|
Rabbani SA, El-Tanani M, Matalka II, Rangraze IR, Aljabali AAA, Khan MA, Tambuwala MM. Tirzepatide: unveiling a new dawn in dual-targeted diabetes and obesity management. Expert Rev Endocrinol Metab 2024:1-19. [PMID: 39194153 DOI: 10.1080/17446651.2024.2395540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Incretin-based therapies have emerged as effective treatments for type 2 diabetes (T2D) and obesity. However, not all patients achieve optimal outcomes with existing treatments, highlighting the need for more effective solutions. AREAS COVERED We present a comprehensive evaluation of Tirzepatide (TZP), a novel dual glucose-dependent insulinotropic polypeptide/glucagon-like peptide-1 (GIP/GLP-1) receptor agonist, for managing obesity and T2D. We conducted a systematic search of Cochrane, PubMed, Scopus, and Web of Science databases from inception to April 2024. The focus of the review is on the development and therapeutic potential of TZP, with detailed exploration on pharmacodynamics, pharmacokinetics, clinical efficacy, and safety. Furthermore, it reviews TZP's impacts on glycemic control, weight management, and its potential cardiovascular (CV) benefits. EXPERT OPINION TZP represents a significant advancement in the dual-targeted approach to treating T2D and obesity. Its unique mechanism of action offers superior efficacy in reducing glycemic levels and body weight compared to existing therapies. New data suggesting improvements in CV outcomes indicate that TZP could set a new standard in the treatment paradigm. While long-term data on efficacy and safety are still forthcoming, current evidence positions TZP as a promising option for patients who have not reached their therapeutic goals with existing treatments.
Collapse
Affiliation(s)
- Syed Arman Rabbani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Mohamed El-Tanani
- RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Ismail I Matalka
- RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Imran Rashid Rangraze
- Internal Medicine Department, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | | |
Collapse
|
19
|
Psaltis JP, Marathe JA, Nguyen MT, Le R, Bursill CA, Marathe CS, Nelson AJ, Psaltis PJ. Incretin-based therapies for the management of cardiometabolic disease in the clinic: Past, present, and future. Med Res Rev 2024. [PMID: 39139038 DOI: 10.1002/med.22070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/30/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Among newer classes of drugs for type 2 diabetes mellitus (T2DM), glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are incretin-based agents that lower both blood sugar levels and promote weight loss. They do so by activating pancreatic GLP-1 receptors (GLP-1R) to promote glucose-dependent insulin release and inhibit glucagon secretion. They also act on receptors in the brain and gastrointestinal tract to suppress appetite, slow gastric emptying, and delay glucose absorption. Phase 3 clinical trials have shown that GLP-1 RAs improve cardiovascular outcomes in the setting of T2DM or overweight/obesity in people who have, or are at high risk of having atherosclerotic cardiovascular disease. This is largely driven by reductions in ischemic events, although emerging evidence also supports benefits in other cardiovascular conditions, such as heart failure with preserved ejection fraction. The success of GLP-1 RAs has also seen the evolution of other incretin therapies. Tirzepatide has emerged as a dual glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 RA, with more striking effects on glycemic control and weight reduction than those achieved by isolated GLP-1R agonism alone. This consists of lowering glycated hemoglobin levels by more than 2% and weight loss exceeding 15% from baseline. Here, we review the pharmacological properties of GLP-1 RAs and tirzepatide and discuss their clinical effectiveness for T2DM and overweight/obesity, including their ability to reduce adverse cardiovascular outcomes. We also delve into the mechanistic basis for these cardioprotective effects and consider the next steps in implementing existing and future incretin-based therapies for the broader management of cardiometabolic disease.
Collapse
Affiliation(s)
- James P Psaltis
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | - Jessica A Marathe
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| | - Mau T Nguyen
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| | - Richard Le
- Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, Australia
| | - Christina A Bursill
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Chinmay S Marathe
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Department of Endocrinology, Central Adelaide Local Health Network, Adelaide, Australia
| | - Adam J Nelson
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| | - Peter J Psaltis
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- Heart and Vascular Health Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
20
|
De Fano M, Malara M, Vermigli C, Murdolo G. Adipose Tissue: A Novel Target of the Incretin Axis? A Paradigm Shift in Obesity-Linked Insulin Resistance. Int J Mol Sci 2024; 25:8650. [PMID: 39201336 PMCID: PMC11354636 DOI: 10.3390/ijms25168650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/01/2024] [Indexed: 09/02/2024] Open
Abstract
Adipose tissue (AT) represents a plastic organ that can undergo significant remodeling in response to metabolic demands. With its numerous checkpoints, the incretin system seems to play a significant role in controlling glucose homeostasis and energy balance. The importance of the incretin hormones, namely the glucagon-like peptide-1 (GLP-1) and the glucose-dependent insulinotropic peptide (GIP), in controlling the function of adipose cells has been brought to light by recent studies. Notably, a "paradigm shift" in reevaluating the role of the incretin system in AT as a potential target to treat obesity-linked metabolic disorders resulted from the demonstration that a disruption of the GIP and GLP-1 signaling axis in fat is associated with adiposity-induced insulin-resistance (IR) and/or type 2 diabetes mellitus (T2D). We will briefly discuss the (patho)physiological functions of GLP-1 and GIP signaling in AT in this review, emphasizing their potential impacts on lipid storage, adipogenesis, glucose metabolism and inflammation. We will also address the conundrum with the perturbation of the incretin axis in white or brown fat tissue and the emergence of metabolic disorders. In order to reduce or avoid adiposity-related metabolic complications, we will finally go over a potential scientific rationale for suggesting AT as a novel target for GLP-1 and GIP receptor agonists and co-agonists.
Collapse
Affiliation(s)
- Michelantonio De Fano
- Complex Structure of Endocrinology and Metabolism, Department of Medicine, Azienda Ospedaliera Santa Maria Misericordia, Ospedale di Perugia, 06081 Perugia, Italy; (M.M.); (C.V.); (G.M.)
| | | | | | | |
Collapse
|
21
|
Buckley A, Suliman S, Allum M, Mohammed N, Lessan N, le Roux CW, Suliman M. Real world use of tirzepatide in the treatment of type 2 diabetes in an Arab population. Diabetes Obes Metab 2024; 26:3381-3391. [PMID: 38783825 DOI: 10.1111/dom.15680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
AIM Tirzepatide is a glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 (GLP-1) dual receptor agonist (RA) that reduces glycated haemoglobin (HbA1c) and weight in patients with type 2 diabetes. We assessed the effectiveness of tirzepatide in real-world use in an Arab population. METHODS Review of clinical data from a specialist outpatient diabetes centre; study time points and outcome measures were pre-specified. RESULTS Tirzepatide was initiated in 8945 patients between 24 October 2022 and 31 December 2023. Of these, 3686 individuals reached 40 weeks of follow-up. At initiation, the mean ± SD age was 54.1 ± 11.5 years, body mass index 34.6 ± 6.0 kg/m2 and HbA1c 7.3 ± 1.5% (56 ± 17 mmol/mol); 2296 (62%) were switched to tirzepatide from another GLP-RA and 317 (8.6%) reported previous bariatric surgery. The maximum dose dispensed was ≥12.5 mg/week in 1087, 7.5-10.0 mg/week in 1688 and 2.5-5.0 mg/week in 911. The mean 40-week reduction in HbA1c was 0.6 ± 1.2% (8 ± 13 mmol/mol) and the reduction in weight was 4.5 ± 6.9 kg (4.8 ± 7.3%). GLP-RA-naïve patients experienced a significantly greater reduction in HbA1c [1.0 ± 1.3% (11 ± 14 mmol/mol) versus 0.5 ± 1.2% (6 ± 13 mmol/mol), p < .0001] and weight (7.2 ± 8.6 vs. 4.2 ± 6.6 kg, p < .0001) compared with previously exposed individuals. Post-metabolic bariatric surgery patients lost significantly more weight (7.8 ± 9.4 vs. 4.5 ± 7.0 kg, p < .0001). Improvements in blood pressure, lipid profile, and liver transaminases were noted at 40 weeks. Tirzepatide was well tolerated, with 288 (7.8%) of patients discontinuing treatment because of adverse effects, predominantly gastrointestinal. CONCLUSION In real-world use, tirzepatide significantly reduced HbA1c levels and weight and was well tolerated. Previous GLP-RA use was associated with significantly lesser HbA1c and weight reduction, and previous metabolic bariatric surgery was associated with greater weight loss.
Collapse
Affiliation(s)
- Adam Buckley
- Imperial College London Diabetes Centre (ICLDC), Abu Dhabi, UAE
| | - Sara Suliman
- Imperial College London Diabetes Centre (ICLDC), Abu Dhabi, UAE
| | - Matthew Allum
- Imperial College London Diabetes Centre (ICLDC), Abu Dhabi, UAE
| | - Nagi Mohammed
- Imperial College London Diabetes Centre (ICLDC), Abu Dhabi, UAE
| | - Nader Lessan
- Imperial College London Diabetes Centre (ICLDC), Abu Dhabi, UAE
| | - Carel W le Roux
- Divisions of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Diabetes Complications Research Centre, Conway Institute, University College Dublin, Dublin, Ireland
| | - Mohamed Suliman
- Imperial College London Diabetes Centre (ICLDC), Abu Dhabi, UAE
| |
Collapse
|
22
|
Zaki MK, Abed MN, Alassaf FA. Antidiabetic Agents and Bone Quality: A Focus on Glycation End Products and Incretin Pathway Modulations. J Bone Metab 2024; 31:169-181. [PMID: 39307518 PMCID: PMC11416877 DOI: 10.11005/jbm.2024.31.3.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 09/26/2024] Open
Abstract
Diabetes mellitus is associated with inadequate bone health and quality and heightened susceptibility to fractures, even in patients with normal or elevated bone mineral density. Elevated advanced glycation end-products (AGEs) and a suppressed incretin pathway are among the mechanisms through which diabetes affects the bone. Accordingly, the present review aimed to investigate the effects of antidiabetic medications on bone quality, primarily through AGEs and the incretin pathway. Google Scholar, Cochrane Library, and PubMed were used to examine related studies until February 2024. Antidiabetic medications influence AGEs and the incretin pathway directly or indirectly. Certain antidiabetic drugs including metformin, glucagon-like peptide-1 receptor agonists (GLP-1RA), dipeptidyl-peptidase-4 (DDP-4) inhibitors, α-glucosidase inhibitors (AGIs), sodium-glucose co-transporter-2 inhibitors, and thiazolidinediones (TZDs), directly affect AGEs through multiple mechanisms. These mechanisms include decreasing the formation of AGEs and the expression of AGEs receptor (RAGE) in tissue and increasing serum soluble RAGE levels, resulting in the reduced action of AGEs. Similarly, metformin, GLP-1RA, DDP-4 inhibitors, AGIs, and TZDs may enhance incretin hormones directly by increasing their production or suppressing their metabolism. Additionally, these medications could influence AGEs and the incretin pathway indirectly by enhancing glycemic control. In contrast, sulfonylureas have not demonstrated any obvious effects on AGEs or the incretin pathway. Considering their favorable effects on AGEs and the incretin pathway, a suitable selection of antidiabetic drugs may facilitate more protective effects on the bone in diabetic patients.
Collapse
Affiliation(s)
- Muthanna K. Zaki
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul,
Iraq
| | - Mohammed N. Abed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul,
Iraq
| | - Fawaz A. Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul,
Iraq
| |
Collapse
|
23
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
24
|
Huo Y, Ma M, Liao X. Data mining study on adverse events of tirzepatide based on FAERS database. Expert Opin Drug Saf 2024:1-9. [PMID: 39007672 DOI: 10.1080/14740338.2024.2376686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/03/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Tirzepatide is a novel dual gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 receptor agonist (GLP-1 RA) for type 2 diabetes or obesity. To explore the safety profile of tirzepatide in real-world clinical applications. RESEARCH DESIGN AND METHODS A retrospective analysis of adverse events (AEs) reports associated with tirzepatide was conducted from the second quarter of 2022 through the fourth quarter of 2023, utilizing the FDA Adverse Event Reporting System (FAERS) database. Signal mining utilized the reporting odds ratio (ROR) method, and onset time was analyzed utilizing the Weibull Shape Parameter (WSP). RESULTS We identified 25,215 AE reports related to tirzepatide, predominantly in the 65 to 85 age group. Four positive signals were found at the system organ classes level. Additionally,109 AEs at the preferred terms level with positive signals were indicated. Included among these are novel signals, such as the presence of thyroid mass, medullary thyroid carcinoma, and conditions affecting the reproductive system and breast. Most AEs occurred within the first 30 days. The WSP was 0.66, indicating a propensity for early failure type. CONCLUSIONS This study identified several novel AE signals for tirzepatide, highlighting the need for careful monitoring, especially in the early stages of treatment.
Collapse
Affiliation(s)
- Yan Huo
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Minghua Ma
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaolan Liao
- Department of Pharmacy, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Taktaz F, Fontanella RA, Scisciola L, Pesapane A, Basilicata MG, Ghosh P, Franzese M, Tortorella G, Puocci A, Vietri MT, Capuano A, Paolisso G, Barbieri M. Bridging the gap between GLP1-receptor agonists and cardiovascular outcomes: evidence for the role of tirzepatide. Cardiovasc Diabetol 2024; 23:242. [PMID: 38987789 PMCID: PMC11238498 DOI: 10.1186/s12933-024-02319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024] Open
Abstract
Tirzepatide is a new drug targeting glucagon-like peptide 1(GLP1) and gastric inhibitory polypeptide (GIP) receptors. This drug has demonstrated great potential in improving the clinical outcomes of patients with type 2 diabetes. It can lead to weight loss, better glycemic control, and reduced cardiometabolic risk factors. GLP1 receptor agonists have been proven effective antidiabetic medications with possible cardiovascular benefits. Even though they have been proven to reduce the risk of major adverse cardiovascular events, their effectiveness in treating heart failure is unknown. Unlike traditional GLP1 receptor agonists, tirzepatide is more selective for the GIP receptor, resulting in a more balanced activation of these receptors. This review article discusses the possible mechanisms tirzepatide may use to improve cardiovascular health. That includes the anti-inflammatory effect, the ability to reduce cell death and promote autophagy, and also its indirect effects through blood pressure, obesity, and glucose/lipid metabolism. Additionally, tirzepatide may benefit atherosclerosis and lower the risk of major adverse cardiac events. Currently, clinical trials are underway to evaluate the safety and efficacy of tirzepatide in patients with heart failure. Overall, tirzepatide's dual agonism of GLP1 and GIP receptors appears to provide encouraging cardiovascular benefits beyond glycemic control, offering a potential new therapeutic option for treating cardiovascular diseases and heart failure.
Collapse
Affiliation(s)
- Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
26
|
Yang Y, Wang Y, Zhou Y, Deng J, Wu L. Tirzepatide alleviates oxidative stress and inflammation in diabetic nephropathy via IL-17 signaling pathway. Mol Cell Biochem 2024:10.1007/s11010-024-05066-1. [PMID: 38965127 DOI: 10.1007/s11010-024-05066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Oxidative stress (OS) and inflammation play essential roles in the development of diabetic nephropathy (DN). Tirzepatide (TZP) has a protective effect in diabetes. However, its underlying mechanism in DN remains unclear. DN model mice were induced by intraperitoneal injection of streptozotocin (STZ; 60 mg/kg), followed by administration of different doses of TZP (3 and 10 nmol/kg) via intraperitoneal injection for 8 weeks. The effects of TZP on DN were evaluated by detecting DN-related biochemical indicators, kidney histopathology, apoptosis, OS, and inflammation levels. Additionally, to further reveal the potential mechanism, we investigated the role of TZP in modulating the IL-17 pathway. TZP reduced serum creatinine (sCR), blood urea nitrogen (BUN), and advanced glycosylation end products (AGEs) levels, while simultaneously promoting insulin secretion in diabetic mice. Additionally, TZP attenuated tubular and glomerular injury and reduced renal apoptosis levels. Further studies found that TZP increased the levels of SOD and CAT, and decreased MDA. Meanwhile, TZP also reduced the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in both mouse serum and kidney homogenates. TZP effectively inhibited the IL-17 pathway, and subsequent intervention with an IL-17 pathway agonist (IL-17A) reversed the suppressive effects of TZP on OS and inflammation. TZP can improve DN by inhibiting OS and inflammation through the suppression of the IL-17 pathway.
Collapse
Affiliation(s)
- Yong Yang
- Division of Cardiac Arrhythmia, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Shenzhen, Guangdong, China.
- Department of Cardiovascular Internal Medicine, Shenzhen Hospital of Southern Medical University, No. 1333 Xinhu Road, Shenzhen, 518053, Guangdong, China.
| | - Yiyong Wang
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| | - Yong Zhou
- Department of Oncology, Shenzhen Hospital of Southern Medical University, No. 1333 Xinhu Road, Shenzhen, Guangdong, China
| | - Jing Deng
- Department of Cardiovascular Internal Medicine, Shenzhen Hospital of Southern Medical University, No. 1333 Xinhu Road, Shenzhen, 518053, Guangdong, China
| | - Lihao Wu
- Department of Cardiovascular Medicine, University of Chinese Academy of Science Shenzhen Hospital, No. 4253 Matian Street, Shenzhen, Guangdong, China
| |
Collapse
|
27
|
Bauri R, Bele S, Edelli J, Reddy NC, Kurukuti S, Devasia T, Ibrahim A, Rai V, Mitra P. Reduced incretin receptor trafficking upon activation enhances glycemic control and reverses obesity in diet-induced obese mice. Am J Physiol Cell Physiol 2024; 327:C74-C96. [PMID: 38738303 DOI: 10.1152/ajpcell.00474.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
Activation of incretin receptors by their cognate agonist augments sustained cAMP generation both from the plasma membrane as well as from the endosome. To address the functional outcome of this spatiotemporal signaling, we developed a nonacylated glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor dual agonist I-M-150847 that reduced receptor internalization following activation of the incretin receptors. The incretin receptor dual agonist I-M-150847 was developed by replacing the tryptophan cage of exendin-4 tyrosine substituted at the amino terminus with the C-terminal undecapeptide sequence of oxyntomodulin that placed lysine 30 of I-M-150847 in frame with the corresponding lysine residue of GIP. The peptide I-M-150847 is a partial agonist of GLP-1R and GIPR; however, the receptors, upon activation by I-M-150847, undergo reduced internalization that promotes agonist-mediated iterative cAMP signaling and augments glucose-stimulated insulin exocytosis in pancreatic β cells. Chronic administration of I-M-150847 improved glycemic control, enhanced insulin sensitivity, and provided profound weight loss in diet-induced obese (DIO) mice. Our results demonstrated that despite being a partial agonist, I-M-150847, by reducing the receptor internalization upon activation, enhanced the incretin effect and reversed obesity.NEW & NOTEWORTHY Replacement of the tryptophan cage (Trp-cage) with the C-terminal oxyntomodulin undecapeptide along with the tyrosine substitution at the amino terminus converts the selective glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 to a novel GLP-1R and GIPR dual agonist I-M-150847. Reduced internalization of incretin receptors upon activation by the GLP-1R and GIPR dual agonist I-M-150847 promotes iterative receptor signaling that enhances the incretin effect and reverses obesity.
Collapse
Affiliation(s)
- Rathin Bauri
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Shilpak Bele
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Jhansi Edelli
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
| | - Neelesh C Reddy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | | | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Manipal, India
| | - Ahamed Ibrahim
- Division of Lipid Chemistry, National Institute of Nutrition Hyderabad, Hyderabad, India
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | - Prasenjit Mitra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad, India
- Institute of Transformative Molecular medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States
| |
Collapse
|
28
|
Rosenkilde MM, Lindquist P, Kizilkaya HS, Gasbjerg LS. GIP-derived GIP receptor antagonists - a review of their role in GIP receptor pharmacology. Peptides 2024; 177:171212. [PMID: 38608836 DOI: 10.1016/j.peptides.2024.171212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Surprisingly, agonists, as well as antagonists of the glucose-dependent insulinotropic polypeptide receptor (GIPR), are currently being used or investigated as treatment options for type 2 diabetes and obesity - and both, when combined with glucagon-like peptide 1 receptor (GLP-1R) agonism, enhance GLP-1-induced glycemia and weight loss further. This paradox raises several questions regarding not only the mechanisms of actions of GIP but also the processes engaged during the activation of both the GIP and GLP-1 receptors. Here, we provide an overview of studies of the properties and actions of peptide-derived GIPR antagonists, focusing on GIP(3-30)NH2, a naturally occurring N- and C-terminal truncation of GIP(1-42). GIP(3-30)NH2 was the first GIPR antagonist administered to humans. GIP(3-30)NH2 and a few additional antagonists, like Pro3-GIP, have been used in both in vitro and in vivo studies to elucidate the molecular and cellular consequences of GIPR inhibition, desensitization, and internalization and, at a larger scale, the role of the GIP system in health and disease. We provide an overview of these studies combined with recent knowledge regarding the effects of naturally occurring variants of the GIPR system and species differences within the GIP system to enhance our understanding of the GIPR as a drug target.
Collapse
Affiliation(s)
- Mette Marie Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Peter Lindquist
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hüsün Sheyma Kizilkaya
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lærke Smidt Gasbjerg
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
29
|
Dardano A, Bianchi C, Garofolo M, Del Prato S. The current landscape for diabetes treatment: Preventing diabetes-associated CV risk. Atherosclerosis 2024; 394:117560. [PMID: 38688748 DOI: 10.1016/j.atherosclerosis.2024.117560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Despite the risk of atherosclerosis has progressively declined over the past few decades, subjects with type 2 diabetes mellitus (T2DM) continue to experience substantial excess of atherosclerotic cardiovascular disease (ASCVD)-related events. Therefore, there is urgent need to treat ASCVD disease in T2DM earlier, more intensively, and with greater precision. Many factors concur to increase the risk of atherosclerosis, and multifactorial intervention remains the basis for effective prevention or reduction of atherosclerotic events. The role of anti-hyperglycemic medications in reducing the risk of ASCVD in subjects with T2DM has evolved over the past few years. Multiple cardiovascular outcome trials (CVOTs) with new and emerging glucose-lowering agents, namely SGLT2 inhibitors (SGLT2i) and GLP-1 receptor agonists (GLP1-RA), have demonstrated significant reductions of major cardiovascular events and additional benefits. This robust evidence has changed the landscape for managing people with T2DM. In addition to glycemic and ancillary extra-glycemic properties, SGLT2i and GLP1-RA might exert favorable effects on subclinical and clinical atherosclerosis. Therefore, the objective of this review is to discuss the available evidence supporting anti-atherosclerotic properties of SGLT2i and GLP1-RA, with a quick nod to sotagliflozin and tirzepatide.
Collapse
Affiliation(s)
- Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, Italy; Section of Diabetes and Metabolic Diseases, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Cristina Bianchi
- Section of Diabetes and Metabolic Diseases, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Monia Garofolo
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Stefano Del Prato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy.
| |
Collapse
|
30
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
31
|
Sztanek F, Tóth LI, Pető A, Hernyák M, Diószegi Á, Harangi M. New Developments in Pharmacological Treatment of Obesity and Type 2 Diabetes-Beyond and within GLP-1 Receptor Agonists. Biomedicines 2024; 12:1320. [PMID: 38927527 PMCID: PMC11201978 DOI: 10.3390/biomedicines12061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Guidelines for the management of obesity and type 2 diabetes (T2DM) emphasize the importance of lifestyle changes, including a reduced-calorie diet and increased physical activity. However, for many people, these changes can be difficult to maintain over the long term. Medication options are already available to treat obesity, which can help reduce appetite and/or reduce caloric intake. Incretin-based peptides exert their effect through G-protein-coupled receptors, the receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and glucagon peptide hormones are important regulators of insulin secretion and energy metabolism. Understanding the role of intercellular signaling pathways and inflammatory processes is essential for the development of effective pharmacological agents in obesity. GLP-1 receptor agonists have been successfully used, but it is assumed that their effectiveness may be limited by desensitization and downregulation of the target receptor. A growing number of new agents acting on incretin hormones are becoming available for everyday clinical practice, including oral GLP-1 receptor agonists, the dual GLP-1/GIP receptor agonist tirzepatide, and other dual and triple GLP-1/GIP/glucagon receptor agonists, which may show further significant therapeutic potential. This narrative review summarizes the therapeutic effects of different incretin hormones and presents future prospects in the treatment of T2DM and obesity.
Collapse
Affiliation(s)
- Ferenc Sztanek
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Imre Tóth
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Pető
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Third Department of Internal Medicine, Semmelweis Hospital of Borsod-Abauj-Zemplen County Central Hospital and University Teaching Hospital, H-3529 Miskolc, Hungary
| | - Marcell Hernyák
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Diószegi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- ELKH-UD Vascular Pathophysiology Research Group 11003, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
32
|
Yuan W, Shi X, Lee LTO. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102195. [PMID: 38741614 PMCID: PMC11089380 DOI: 10.1016/j.omtn.2024.102195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.
Collapse
Affiliation(s)
- Wanjun Yuan
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, People’s Republic of China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa 999078, Macau, China
| |
Collapse
|
33
|
Popovic DS, Patoulias D, Karakasis P, Koufakis T, Papanas N. Effect of tirzepatide on the risk of diabetic retinopathy in type 2 diabetes. Diabetes Obes Metab 2024; 26:2497-2500. [PMID: 38456523 DOI: 10.1111/dom.15535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/09/2024]
Affiliation(s)
- Djordje S Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, Novi Sad, Serbia
- Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Karakasis
- Second Department of Cardiology, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, Alexandroupoli, Greece
| |
Collapse
|
34
|
Hur KY. Enteroendocrine Reprogramming by Altered Epithelial-Mesenchymal Crosstalk in Metabolic Surgery. JOURNAL OF METABOLIC AND BARIATRIC SURGERY 2024; 13:1-7. [PMID: 38974890 PMCID: PMC11224006 DOI: 10.17476/jmbs.2024.13.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
Metabolic surgery is an effective treatment option for type 2 diabetes. However, the therapeutic scope has been limited by unexpected inconsistent outcomes. This study aims to overcome these obstacles by determining fundamental mechanisms from a novel perspective by analyzing and comparing the surgical anatomy, clinical characteristics, and outcomes of metabolic surgery, including duodenal-jejunal bypass, Roux-en-Y gastric bypass, biliopancreatic diversion, one anastomosis gastric bypass, and their modified procedures, predominantly focusing on nonobese patients to mitigate confounding effects from overweighted type 2 diabetes. Regional epithelial cell growth and unique villus formation along the anterior-posterior axis of the small intestine depend on crosstalk between the epithelium and the underlying mesenchyme. Due to altered crosstalk between the epithelium and the opposite mesenchyme at the anastomotic site, the enteroendocrine lineage of the distal intestine is replaced by the proximal epithelium after the bypass procedure. Subsequent intestinal compensatory proliferation accelerates the expansion of the replaced epithelium, including enteroendocrine cells. The primary reasons for unsatisfactory results are incomplete duodenal exclusion and insufficient biliopancreatic limb length. We anticipate that this novel mechanism will have a significant impact on metabolic surgery outcomes and provide valuable insight into optimizing its effectiveness in type 2 diabetes.
Collapse
Affiliation(s)
- Kyung Yul Hur
- Department of Surgery, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
35
|
Hsiao MH, Miao Y, Liu Z, Schütze K, Limjunyawong N, Chien DCC, Monteiro WD, Chu LS, Morgenlander W, Jayaraman S, Jang SE, Gray JJ, Zhu H, Dong X, Steinegger M, Larman HB. Molecular Display of the Animal Meta-Venome for Discovery of Novel Therapeutic Peptides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595990. [PMID: 38854075 PMCID: PMC11160688 DOI: 10.1101/2024.05.27.595990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Animal venoms, distinguished by their unique structural features and potent bioactivities, represent a vast and relatively untapped reservoir of therapeutic molecules. However, limitations associated with extracting or expressing large numbers of individual venoms and venom-like molecules have precluded their therapeutic evaluation via high throughput screening. Here, we developed an innovative computational approach to design a highly diverse library of animal venoms and "metavenoms". We employed programmable M13 hyperphage display to preserve critical disulfide-bonded structures for highly parallelized single-round biopanning with quantitation via high-throughput DNA sequencing. Our approach led to the discovery of Kunitz type domain containing proteins that target the human itch receptor Mas-related G protein-coupled receptor X4 (MRGPRX4), which plays a crucial role in itch perception. Deep learning-based structural homology mining identified two endogenous human homologs, tissue factor pathway inhibitor (TFPI) and serine peptidase inhibitor, Kunitz type 2 (SPINT2), which exhibit agonist-dependent potentiation of MRGPRX4. Highly multiplexed screening of animal venoms and metavenoms is therefore a promising approach to uncover new drug candidates.
Collapse
Affiliation(s)
- Meng-Hsuan Hsiao
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- These authors contributed equally to this work
| | - Yang Miao
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- These authors contributed equally to this work
| | - Zixing Liu
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biology, Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Konstantin Schütze
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Nathachit Limjunyawong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Daphne Chun-Che Chien
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Wayne Denis Monteiro
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lee-Shin Chu
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - William Morgenlander
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sahana Jayaraman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sung-eun Jang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jeffrey J. Gray
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Viral Oncology Program, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - H. Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
36
|
Argyrakopoulou G, Gitsi E, Konstantinidou SK, Kokkinos A. The effect of obesity pharmacotherapy on body composition, including muscle mass. Int J Obes (Lond) 2024:10.1038/s41366-024-01533-3. [PMID: 38745020 DOI: 10.1038/s41366-024-01533-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Obesity pharmacotherapy represents a promising approach to treating obesity and may provide benefits beyond weight loss alone. Maintaining or even increasing muscle mass during weight loss is important to overall health, metabolic function and weight loss maintenance. Drugs such as liraglutide, semaglutide, tirzepatide, and naltrexone/bupropion have shown significant weight loss effects, and emerging evidence suggests they may also have effects on body composition, particularly a positive influence on muscle mass. However, further research is needed to fully understand the mechanism of action of these drugs and their effects on muscle mass. Clinicians should consider these factors when developing an obesity treatment plan for an individual patient.
Collapse
Affiliation(s)
| | - Evdoxia Gitsi
- Diabetes and Obesity Unit, Athens Medical Center, 15125, Athens, Greece
| | - Sofia K Konstantinidou
- Diabetes and Obesity Unit, Athens Medical Center, 15125, Athens, Greece
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Alexander Kokkinos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|
37
|
Syed FZ. Pharmacologic Treatments in Adults With Type 2 Diabetes: Cost-Effectiveness and Comorbidity Considerations. Ann Intern Med 2024; 177:680-681. [PMID: 38639544 DOI: 10.7326/m24-0861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Affiliation(s)
- Fatima Z Syed
- Duke University Division of General Internal Medicine, Durham, North Carolina
| |
Collapse
|
38
|
Gong B, Yao Z, Zhou C, Wang W, Sun L, Han J. Glucagon-like peptide-1 analogs: Miracle drugs are blooming? Eur J Med Chem 2024; 269:116342. [PMID: 38531211 DOI: 10.1016/j.ejmech.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by L cells in the small intestine, assumes a central role in managing type 2 diabetes mellitus (T2DM) and obesity. Its influence on insulin secretion and gastric emptying positions it as a therapeutic linchpin. However, the limited applicability of native GLP-1 stems from its short half-life, primarily due to glomerular filtration and the inactivating effect of dipeptidyl peptidase-IV (DPP-IV). To address this, various structural modification strategies have been developed to extend GLP-1's half-life. Despite the commendable efficacy displayed by current GLP-1 receptor agonists, inherent limitations persist. A paradigm shift emerges with the advent of unimolecular multi-agonists, such as the recently introduced tirzepatide, wherein GLP-1 is ingeniously combined with other gastrointestinal hormones. This novel approach has captured the spotlight within the diabetes and obesity research community. This review summarizes the physiological functions of GLP-1, systematically explores diverse structural modifications, delves into the realm of unimolecular multi-agonists, and provides a nuanced portrayal of the developmental prospects that lie ahead for GLP-1 analogs.
Collapse
Affiliation(s)
- Binbin Gong
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Zhihong Yao
- College of Medicine, Jiaxing University, Jiaxing, 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Chenxu Zhou
- College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Wenxi Wang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310000, China
| | - Lidan Sun
- College of Medicine, Jiaxing University, Jiaxing, 314001, China.
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
39
|
Tobaiqy M, Elkout H. Psychiatric adverse events associated with semaglutide, liraglutide and tirzepatide: a pharmacovigilance analysis of individual case safety reports submitted to the EudraVigilance database. Int J Clin Pharm 2024; 46:488-495. [PMID: 38265519 PMCID: PMC10960895 DOI: 10.1007/s11096-023-01694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND Semaglutide, liraglutide and tirzepatide are glucagon-like peptide-1 (GLP-1) receptor agonists that are effective for weight reduction. Recent reports of patients experiencing suicidal thoughts and other psychiatric adverse events while using GLP-1 agonists have raised concerns about the potential risk of self-harm and led the European Medicines Agency to investigate these medications. AIM To identify and analyse the psychiatric adverse events associated with semaglutide, liraglutide and tirzepatide. METHOD All individual case safety reports for semaglutide, liraglutide, and tirzepatide reported to the EudraVigilance database from 01/01/2021 to 30/05/2023 were analysed. Descriptive statistics were used to explore study population characteristics. RESULTS During the study period, 31,444 adverse event reports were identified: semaglutide (n = 13,956; 44.4%), liraglutide (n = 16,748; 53.2%), and tirzepatide (n = 740; 2.3%). There were 372 reports with psychiatric adverse event reports (n = 372; 1.18%) with a total of 481 adverse events. Women accounted for 65% (n = 242) of these reports. Depression was the most commonly reported adverse event (n = 187; 50.3%), followed by anxiety (n = 144; 38.7%) and suicidal ideation (n = 73; 19.6%). Nine deaths (8 with liraglutide and 1 with semaglutide) and 11 life-threatening outcomes (4 associated with liraglutide and 7 with semaglutide) were reported. The fatal outcomes occurred primarily among men (8 out of 9) resulting from completed suicidal attempts and depression. CONCLUSION Psychiatric adverse events comprised only 1.2% of the total reports for semaglutide, liraglutide, and tirzepatide. However, the severity and fatal outcomes of some of these reports warrant further investigation.
Collapse
Affiliation(s)
- Mansour Tobaiqy
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia.
| | - Hajer Elkout
- Department of Family and Community Medicine, Medical Faculty, University of Tripoli, Tripoli, 13275, Libya
| |
Collapse
|
40
|
Radzioch E, Dąbek B, Balcerczyk-Lis M, Frąk W, Fularski P, Młynarska E, Rysz J, Franczyk B. Diabetic Cardiomyopathy-From Basics through Diagnosis to Treatment. Biomedicines 2024; 12:765. [PMID: 38672121 PMCID: PMC11048005 DOI: 10.3390/biomedicines12040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is the development of myocardial dysfunction in patients with diabetes despite the absence of comorbidities such as hypertension, atherosclerosis or valvular defect. The cardiovascular complications of poorly controlled diabetes are very well illustrated by the U.K. Prospective Diabetes Study (UKPDS), which showed a clear association between increasing levels of glycated hemoglobin and the development of heart failure (HF). The incidence of HF in patients with diabetes is projected to increase significantly, which is why its proper diagnosis and treatment is so important. Providing appropriate therapy focusing on antidiabetic and hypolipemic treatment with the consideration of pharmacotherapy for heart failure reduces the risk of CMD and reduces the incidence of cardiovascular complications. Health-promoting changes made by patients such as a low-carbohydrate diet, regular exercise and weight reduction also appear to be important in achieving appropriate outcomes. New hope for the development of therapies for DCM is offered by novel methods using stem cells and miRNA, which, however, require more thorough research to confirm their efficacy.
Collapse
Affiliation(s)
- Ewa Radzioch
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Marta Balcerczyk-Lis
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Fularski
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
41
|
Ali A, Flatt PR, Irwin N. Gut-Derived Peptide Hormone Analogues and Potential Treatment of Bone Disorders in Obesity and Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2024; 17:11795514241238059. [PMID: 38486712 PMCID: PMC10938612 DOI: 10.1177/11795514241238059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Obesity and diabetes mellitus are prevalent metabolic disorders that have a detrimental impact on overall health. In this regard, there is now a clear link between these metabolic disorders and compromised bone health. Interestingly, both obesity and diabetes lead to elevated risk of bone fracture which is independent of effects on bone mineral density (BMD). In this regard, gastrointestinal (GIT)-derived peptide hormones and their related long-acting analogues, some of which are already clinically approved for diabetes and/or obesity, also seem to possess positive effects on bone remodelling and microarchitecture to reduce bone fracture risk. Specifically, the incretin peptides, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), as well as glucagon-like peptide-2 (GLP-2), exert key direct and/or indirect benefits on bone metabolism. This review aims to provide an initial appraisal of the relationship between obesity, diabetes and bone, with a focus on the positive impact of these GIT-derived peptide hormones for bone health in obesity/diabetes. Brief discussion of related peptides such as parathyroid hormone, leptin, calcitonin and growth hormone is also included. Taken together, drugs engineered to promote GIP, GLP-1 and GLP-2 receptor signalling may have potential to offer therapeutic promise for improving bone health in obesity and diabetes.
Collapse
Affiliation(s)
- Asif Ali
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
42
|
Patoulias D, Popovic DS, Koufakis T, Stavropoulos K, Doumas M. Effect of tirzepatide on blood pressure levels in overweight/obese individuals without diabetes. Eur J Intern Med 2024; 121:155-156. [PMID: 38151420 DOI: 10.1016/j.ejim.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Dimitrios Patoulias
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Konstantinoupoleos 49, Postal code 54642, Greece.
| | - Djordje S Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, Novi Sad, Serbia; Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Konstantinoupoleos 49, Postal code 54642, Greece
| | - Konstantinos Stavropoulos
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Konstantinoupoleos 49, Postal code 54642, Greece
| | - Michael Doumas
- Second Propedeutic Department of Internal Medicine, General Hospital "Hippokration", Aristotle University of Thessaloniki, Konstantinoupoleos 49, Postal code 54642, Greece
| |
Collapse
|
43
|
Chong K, Chang JKJ, Chuang LM. Recent advances in the treatment of type 2 diabetes mellitus using new drug therapies. Kaohsiung J Med Sci 2024; 40:212-220. [PMID: 38183334 DOI: 10.1002/kjm2.12800] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/08/2024] Open
Abstract
Several recent advances provide multiple health benefits to individuals with type 2 diabetes mellitus (T2DM). Pharmacological therapy is governed by person-centered factors, including comorbidities and treatment goals. Adults with T2DM who have an established/high risk of atherosclerotic cardiovascular disease, heart failure, and/or chronic kidney disease, require a treatment regimen that includes agents that are proven to reduce cardiorenal risk. Weight management plays a key role in reducing glucose for patients with T2DM. A glucose-reduction treatment regimen must consider weight management. Sodium glucose co-transporter 2 (SGLT2) inhibitors reduce the risk of heart failure, cardiovascular and renal events. Glucagon-like peptide-1 (GLP-1) receptor agonists allow better control of glycemia, promote weight loss and reduce the risk of cardiovascular events. Newer Glucose-dependent insulinotropic polypeptide (GIP) and GLP-1 dual agonist, which activate GIP and GLP-1 receptors improve glycemic control and promote greater weight loss than GLP-1 receptor agonists. Several novel drugs are in the clinical development phase. This review pertains to recent advances in pharmacological management of type 2 diabetes.
Collapse
Affiliation(s)
- Keong Chong
- Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | | | - Lee-Ming Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
44
|
Omura T, Inami A, Sugimoto T, Kawashima S, Sakurai T, Tokuda H. Tirzepatide and Glycemic Control Metrics Using Continuous Glucose Monitoring in Older Patients with Type 2 Diabetes Mellitus: An Observational Pilot Study. Geriatrics (Basel) 2024; 9:27. [PMID: 38525744 PMCID: PMC10961786 DOI: 10.3390/geriatrics9020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/26/2024] Open
Abstract
This observational pilot study aimed to investigate continuous glucose monitoring (CGM) metrics in older Japanese patients with type 2 diabetes mellitus (T2DM) using a CGM system (FreeStyle Libre Pro) during the first tirzepatide administration and compare the glycemic control measures before and after the initial injection. The four patients had a mean age of 79.5 years (standard deviation [SD]: 5.8), a mean body mass index of 24.6 kg/m2 (SD: 4.7), a mean glycated hemoglobin level of 9.1% (SD: 2.1), and a mean measurement period of 10.5 days (SD: 3.5). After the inclusion of tirzepatide treatment, the mean of time in range, time above range, and time below range changed from 53.2% to 78.9% (p = 0.041), 45.8% to 19.7% (p = 0.038), and 1.0% to 1.5% (p = 0.206), respectively. Improved hyperglycemia reduced the oral hypoglycemic medication in two cases and decreased the frequency of insulin injections in two cases. To elucidate the potential benefits of tirzepatide, future studies should investigate the long-term impact on functional prognosis, safety, and tolerability and distinguish between the use of other weekly agonists, especially in nonobese older Asian patients. However, tirzepatide-associated robust glycemic improvement may simplify diabetes treatment regimens in older patients with T2DM.
Collapse
Affiliation(s)
- Takuya Omura
- Department of Endocrinology and Metabolism, Hospital, National Center for Geriatrics and Gerontology, 7–430 Morioka-cho, Obu 474-8511, Aichi, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, 7–430 Morioka-cho, Obu 474-8511, Aichi, Japan
| | - Akemi Inami
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, 7–430 Morioka-cho, Obu 474-8511, Aichi, Japan
| | - Taiki Sugimoto
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, 7–430 Morioka-cho, Obu 474-8511, Aichi, Japan
- Department of Medicine, University of Washington, Box 359780, 325 Ninth Avenue, Seattle, WA 98104, USA
| | - Shuji Kawashima
- Department of Endocrinology and Metabolism, Hospital, National Center for Geriatrics and Gerontology, 7–430 Morioka-cho, Obu 474-8511, Aichi, Japan
| | - Takashi Sakurai
- Department of Prevention and Care Science, Research Institute, National Center for Geriatrics and Gerontology, 7–430 Morioka-cho, Obu 474-8511, Aichi, Japan
| | - Haruhiko Tokuda
- Department of Endocrinology and Metabolism, Hospital, National Center for Geriatrics and Gerontology, 7–430 Morioka-cho, Obu 474-8511, Aichi, Japan
- Department of Metabolic Research, Research Institute, National Center for Geriatrics and Gerontology, 7–430 Morioka-cho, Obu 474-8511, Aichi, Japan
- Department of Clinical Laboratory, Hospital, National Center for Geriatrics and Gerontology, 7–430 Morioka-cho, Obu 474-8511, Aichi, Japan
| |
Collapse
|
45
|
Bedo D, Beaudrey T, Florens N. Unraveling Chronic Cardiovascular and Kidney Disorder through the Butterfly Effect. Diagnostics (Basel) 2024; 14:463. [PMID: 38472936 DOI: 10.3390/diagnostics14050463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Chronic Cardiovascular and Kidney Disorder (CCKD) represents a growing challenge in healthcare, characterized by the complex interplay between heart and kidney diseases. This manuscript delves into the "butterfly effect" in CCKD, a phenomenon in which acute injuries in one organ lead to progressive dysfunction in the other. Through extensive review, we explore the pathophysiology underlying this effect, emphasizing the roles of acute kidney injury (AKI) and heart failure (HF) in exacerbating each other. We highlight emerging therapies, such as renin-angiotensin-aldosterone system (RAAS) inhibitors, SGLT2 inhibitors, and GLP1 agonists, that show promise in mitigating the progression of CCKD. Additionally, we discuss novel therapeutic targets, including Galectin-3 inhibition and IL33/ST2 pathway modulation, and their potential in altering the course of CCKD. Our comprehensive analysis underscores the importance of recognizing and treating the intertwined nature of cardiac and renal dysfunctions, paving the way for more effective management strategies for this multifaceted syndrome.
Collapse
Affiliation(s)
- Dimitri Bedo
- Nephrology Department, Hopitaux Universitaires de Strasbourg, F-67091 Strasbourg, France
- Faculté de Médecine, Université de Strasbourg, Team 3072 "Mitochondria, Oxidative Stress and Muscle Protection", Translational Medicine Federation of Strasbourg (FMTS), F-67000 Strasbourg, France
| | - Thomas Beaudrey
- Nephrology Department, Hopitaux Universitaires de Strasbourg, F-67091 Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France
| | - Nans Florens
- Nephrology Department, Hopitaux Universitaires de Strasbourg, F-67091 Strasbourg, France
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, ITI TRANSPLANTEX NG, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
46
|
Shen Z, Hou Y, Zhao G, Tan L, Chen J, Dong Z, Ni C, Pei L. Physiological functions of glucose transporter-2: From cell physiology to links with diabetes mellitus. Heliyon 2024; 10:e25459. [PMID: 38333863 PMCID: PMC10850595 DOI: 10.1016/j.heliyon.2024.e25459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Glucose is a sugar crucial for human health since it participates in many biochemical reactions. It produces adenosine 5'-triphosphate (ATP) and nucleosides through glucose metabolic and pentose phosphate pathways. These processes require many transporter proteins to assist in transferring glucose across cells, and the most notable ones are glucose transporter-2 (GLUT-2) and sodium/glucose cotransporter 1 (SGLT1). Glucose enters small intestinal epithelial cells from the intestinal lumen by crossing the brush boundary membrane via the SGLT1 cotransporter. It exits the cells by traversing the basolateral membrane through the activity of the GLUT-2 transporter, supplying energy throughout the body. Dysregulation of these glucose transporters is involved in the pathogenesis of several metabolic diseases, such as diabetes. Natural loss of GLUT-2 or its downregulation causes abnormal blood glucose concentrations in the body, such as fasting hypoglycemia and glucose tolerance. Therefore, understanding GLUT-2 physiology is necessary for exploring the mechanisms of diabetes and targeted treatment development. This article reviews how the apical GLUT-2 transporter maintains normal physiological functions of the human body and the adaptive changes this transporter produces under pathological conditions such as diabetes.
Collapse
Affiliation(s)
- Zhean Shen
- Xinjiang Institute of Technology, Aksu, China
| | - Yingze Hou
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Guo Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Libi Tan
- School of Laboratory Medicine and Biotechnology, Southern Medical University, China
| | - Jili Chen
- Department of Nutrition and Food Hygiene School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziqi Dong
- School of Public Health, Peking University Health Science Center, Beijing 100021, China
| | - Chunxiao Ni
- Hangzhou Lin ‘an District Center for Disease Control and Prevention, Hangzhou, China
| | | |
Collapse
|
47
|
Ansari HUH, Qazi SU, Sajid F, Altaf Z, Ghazanfar S, Naveed N, Ashfaq AS, Siddiqui AH, Iqbal H, Qazi S. Efficacy and Safety of Glucagon-Like Peptide-1 Receptor Agonists on Body Weight and Cardiometabolic Parameters in Individuals With Obesity and Without Diabetes: A Systematic Review and Meta-Analysis. Endocr Pract 2024; 30:160-171. [PMID: 38029929 DOI: 10.1016/j.eprac.2023.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE Glucagon-like peptide-1 receptor agonists (GLP-1 RAs), initially for type 2 diabetes mellitus, show promise in promoting weight loss and improving heart health in obese individuals without diabetes. Our goal was to examine existing research for conclusive evidence on various types of GLP-1 RAs for weight loss and cardiometabolic benefits in obesity without diabetes. METHODS We conducted an electronic search on PubMed, Scopus, and Cochrane Central using keywords, such as "GLP-1 RA," "obesity," and "weight loss." We considered all available global GLP-1 RAs for inclusion. Our analysis focused on weight loss, blood pressure (BP) changes (systolic and diastolic BPs), and lipid profile effects (high-density lipoprotein, low-density lipoprotein, total cholesterol, and triacylglycerol). We used a random-effects meta-analysis with the standardized mean difference (SMD), mean difference (MD), odds ratio, and relative risk to present the results. RESULTS Our search yielded a total of 7535 articles. We included 15 trials in our study. GLP-1 RAs led to significant weight loss (MD, -8.77 kg; P <.01) in obese individuals. GLP-1 RAs also improved the systolic BP (MD, -4.13 mm Hg; P <.01), diastolic BP (MD, -1.39 mm Hg; P <.01), and lipid profiles, including improved levels of triacylglycerol (SMD, -0.99 mg/dL; P <.01), total cholesterol (SMD, -0.73 mg/dL; P <.01), very low-density lipoprotein (SMD, -1.11 mg/dL; P <.01), and low-density lipoprotein (SMD, -0.27 mg/dL; P <.01), and significantly increased high-density lipoprotein levels (SMD, 0.11 mg/dL; P <.01). However, GLP-1 RAs were associated with an increased risk of gastrointestinal adverse events. CONCLUSION GLP-1 RAs were found to be beneficial for not only weight loss but also reduction in risk factors for cardiovascular disease such as BP and lipid profile. Consistent beneficial results were observed across the various subtypes of GLP-1 RAs.
Collapse
Affiliation(s)
| | - Shurjeel Uddin Qazi
- Department of Internal Medicine, Dow University of Health Sciences, Pakistan
| | - Faiza Sajid
- Department of Medicine, Liaquat National Hospital and Medical College, Pakistan
| | - Zahabia Altaf
- Department of Internal Medicine, Dow University of Health Sciences, Pakistan
| | - Shamas Ghazanfar
- Department of Internal Medicine, Dow University of Health Sciences, Pakistan
| | - Naveen Naveed
- Department of Medicine, Jinnah Sindh Medical University, Pakistan
| | - Amna Shakil Ashfaq
- Department of Internal Medicine, Dow University of Health Sciences, Pakistan
| | | | - Hamza Iqbal
- Department of Internal Medicine, Dow University of Health Sciences, Pakistan
| | - Sana Qazi
- Department of Internal Medicine, Dow University of Health Sciences, Pakistan
| |
Collapse
|
48
|
Mather KJ, Coskun T, Pratt EJ, Milicevic Z, Weerakkody G, Thomas MK, Haupt A, Ruotolo G. Improvements in post-challenge lipid response following tirzepatide treatment in patients with type 2 diabetes. Diabetes Obes Metab 2024; 26:785-789. [PMID: 37989596 DOI: 10.1111/dom.15365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Affiliation(s)
| | - Tamer Coskun
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | | | | | | | - Axel Haupt
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | |
Collapse
|
49
|
Wu W, Li G, Dong S, Huihan Chu C, Ma S, Zhang Z, Yuan S, Wu J, Guo Z, Shen Y, Wang J, Tang C. Bomidin attenuates inflammation of periodontal ligament stem cells and periodontitis in mice via inhibiting ferroptosis. Int Immunopharmacol 2024; 127:111423. [PMID: 38141410 DOI: 10.1016/j.intimp.2023.111423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
AIM Periodontitis is a prevalent oral immunoinflammatory condition that is distinguished by the compromised functionality of periodontal ligament stem cells (PDLSCs). Bomidin, a new recombinant antimicrobial peptide (AMP), exhibits antibacterial properties and modulates immune responses. Nevertheless, the precise anti-inflammatory impact of bomidin in periodontitis has yet to be fully elucidated. Thus, the study aimed to clarified the role of bomidin in modulating inflammation and its underlying mechanisms. METHODS TNF-α was applied to treating PDLSCs for establishing a cell model of periodontitis. Bomidin, RSL3, ML385 and cycloheximide were also used to treat PDLSCs. Transcriptome sequencing, RT-qPCR, western blot, immunofluorescence, immunohistochemistry, Fe2+ detection probe, molecular docking, Co-IP assay, ubiquitination assay and murine models of periodontitis were used. RESULTS Our study demonstrated that bomidin effectively suppressed inflammation in PDLSCs stimulated by TNF-α, through down-regulating the MAPK and NF-κB signaling pathways. Furthermore, bomidin exerted inhibitory effects on ferroptosis and activated the Keap1/Nrf2 pathway in the TNF-α group. There is a strong likelihood of bonding bomidin with Keap1 protein, which facilitated the degradation of Keap1 protein via the ubiquitin-proteasome pathway, leading to an enhanced translocation of Nrf2 protein to the nucleus. CONCLUSIONS Bomidin can directly bond to Keap1 protein, resulting in the degradation of Keap1 through the ubiquitin-proteasome pathway, thereby further activating the Keap1/Nrf2 pathway. The upregulation of the Keap1/Nrf2 signaling pathway was found to contribute to the suppression of ferroptosis, ultimately alleviating inflammation in treatment of periodontitis.
Collapse
Affiliation(s)
- Wei Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Guoqing Li
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shuo Dong
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Catherine Huihan Chu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China; Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shanshan Ma
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zhewei Zhang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Shanshan Yuan
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jin Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Zixiang Guo
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Yue Shen
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Jiaohong Wang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
50
|
Deng W, Zhao Z, Zou T, Kuang T, Wang J. Research Advances in Fusion Protein-Based Drugs for Diabetes Treatment. Diabetes Metab Syndr Obes 2024; 17:343-362. [PMID: 38288338 PMCID: PMC10823413 DOI: 10.2147/dmso.s421527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/22/2023] [Indexed: 01/31/2024] Open
Abstract
Diabetes mellitus (DM) is a chronic metabolic disease characterized by elevated blood glucose levels, resulting in multi-organ dysfunction and various complications. Fusion proteins can form multifunctional complexes by combining the target proteins with partner proteins. It has significant advantages in improving the performance of the target proteins, extending their biological half-life, and enhancing patient drug compliance. Fusion protein-based drugs have emerged as promising new drugs in diabetes therapeutics. However, there has not been a systematic review of fusion protein-based drugs for diabetes therapeutics. Hence, we conducted a comprehensive review of published literature on diabetic fusion protein-based drugs for diabetes, with a primary focus on immunoglobulin G (IgG) fragment crystallizable (Fc) region, albumin, and transferrin (TF). This review aims to provide a reference for the subsequent development and clinical application of fusion protein-based drugs in diabetes therapeutics.
Collapse
Affiliation(s)
- Wenying Deng
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Zeyi Zhao
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Tao Zou
- Department of Cardiovascular Medicine, First Affiliated Hospital of University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| | - Tongdong Kuang
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi Province, 541199, People’s Republic of China
| | - Jing Wang
- School of Basic Medical Sciences, University of South China, Hengyang, Hunan Province, 421001, People’s Republic of China
| |
Collapse
|