1
|
Ye S, Yang B, Yang L, Wei W, Fu M, Yan Y, Wang B, Li X, Liang C, Zhao W. Stemness subtypes in lower-grade glioma with prognostic biomarkers, tumor microenvironment, and treatment response. Sci Rep 2024; 14:14758. [PMID: 38926605 PMCID: PMC11208487 DOI: 10.1038/s41598-024-65717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Our research endeavors are directed towards unraveling the stem cell characteristics of lower-grade glioma patients, with the ultimate goal of formulating personalized treatment strategies. We computed enrichment stemness scores and performed consensus clustering to categorize phenotypes. Subsequently, we constructed a prognostic risk model using weighted gene correlation network analysis (WGCNA), random survival forest regression analysis as well as full subset regression analysis. To validate the expression differences of key genes, we employed experimental methods such as quantitative Polymerase Chain Reaction (qPCR) and assessed cell line proliferation, migration, and invasion. Three subtypes were assigned to patients diagnosed with LGG. Notably, Cluster 2 (C2), exhibiting the poorest survival outcomes, manifested characteristics indicative of the subtype characterized by immunosuppression. This was marked by elevated levels of M1 macrophages, activated mast cells, along with higher immune and stromal scores. Four hub genes-CDCA8, ORC1, DLGAP5, and SMC4-were identified and validated through cell experiments and qPCR. Subsequently, these validated genes were utilized to construct a stemness risk signature. Which revealed that Lower-Grade Glioma (LGG) patients with lower scores were more inclined to demonstrate favorable responses to immune therapy. Our study illuminates the stemness characteristics of gliomas, which lays the foundation for developing therapeutic approaches targeting CSCs and enhancing the efficacy of current immunotherapies. By identifying the stemness subtype and its correlation with prognosis and TME patterns in glioma patients, we aim to advance the development of personalized treatments, enhancing the ability to predict and improve overall patient prognosis.
Collapse
Affiliation(s)
- Shengda Ye
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Yang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liu Yang
- Department of Neurosurgery, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingyue Fu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Yan
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan, China.
- Medical Research Institute, Wuhan University, Wuhan, China.
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan, China.
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Hospital of Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Clinical Study Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, China.
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Ming L, Han Z, Ai Z, Yang X, Lin F, Zhang N, Hao W. Up-regulated ORC1 promotes lung adenocarcinoma by inhibiting ferroptosis via SLC7A11 dependent pathway. Heliyon 2024; 10:e30506. [PMID: 38756571 PMCID: PMC11096963 DOI: 10.1016/j.heliyon.2024.e30506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Background Lung adenocarcinoma (LUAD) is a pulmonary malignant disease that poses a high risk of mortality and morbidity. Previous study indicated that ORC1 plays an oncogenic function. However, the precise regulatory function that ORC1 serves in the progression of LUAD is still not clearly known. Methods Bioinformatics analyses were performed using TCGA and GEO datasets. The human LUAD cell line NCIH1355, NCIH1568 as well as BEAS-2B cell line (human normal lung epithelial cell) were utilized for in vitro study. LUAD cell proliferation were determined via CCK-8 assays and RT-qPCR for ki-67. The relation of ORC1 and SLC7A11 was detected by Western blot and qPCR with or without sh-RNA. The expression level ACSL4, the biomarker of ferroptosis, were detected using RT-qPCR. Results ORC1 and SLC7A11 exhibit high expression levels in both LUAD patients and cell lines, and are strongly associated with poor prognosis. In vitro experiments demonstrate that ORC1 and SLC7A11 promote proliferation of LUAD cell lines while inhibiting gefitinib-induced ferroptosis. Additionally, the function of ORC1 in LUAD cells is dependent on SLC7A11. Conclusion ORC1 promotes LUAD cell proliferation and inhibits ferroptosis in a SLC7A11-dependent manner. This implies that ORC1 could potentially serve as a useful diagnosis biomarker and treatment target.
Collapse
Affiliation(s)
- Linlin Ming
- Cardiothoracic Surgery Ward 1, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Zhendong Han
- Cardiothoracic Surgery Ward 1, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Zhongwei Ai
- The Clinical Pathology Diagnosis Center of Qiqihar Medical University, Qiqihar, China
| | - Xiaofeng Yang
- The Clinical Pathology Diagnosis Center of Qiqihar Medical University, Qiqihar, China
| | - Fei Lin
- Endocrinology Ward 3, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Ning Zhang
- The Clinical Pathology Diagnosis Center of Qiqihar Medical University, Qiqihar, China
| | - Wenbo Hao
- Cardiothoracic Surgery Ward 1, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
3
|
Zhao D, Wu T, Tan Z, Xu J, Lu Z. Role of non-coding RNAs mediated pyroptosis on cancer therapy: a review. Expert Rev Anticancer Ther 2024; 24:239-251. [PMID: 38594965 DOI: 10.1080/14737140.2024.2341737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Non-coding RNAs (ncRNAs), which are incapable of encoding proteins, are involved in the progression of numerous tumors by altering transcriptional and post-transcriptional processing. Recent studies have revealed prominent features of ncRNAs in pyroptosis, a type of non-apoptotic programmed cellular destruction linked to an inflammatory reaction. Drug resistance has arisen gradually as a result of anti-apoptotic proteins, therefore strategies based on pyroptotic cell death have attracted increasing attention. We have observed that ncRNAs may exert significant influence on cancer therapy, chemotherapy, radio- therapy, targeted therapy and immunotherapy, by regulating pyroptosis. AREAS COVERED Literatures were searched (December 2023) for studies on cancer therapy for ncRNAs-mediated pyroptotic cell death. EXPERT OPINION The most universal mechanical strategy for ncRNAs to regulate target genes is competitive endogenous RNAs (ceRNA). Besides, certain ncRNAs could directly interact with proteins and modulate downstream genes to induce pyroptosis, resulting in tumor growth or inhibition. In this review, we aim to display that ncRNAs, predominantly long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), could function as potential biomarkers for diagnosis and prognosis and produce new insights into anti-cancer strategies modulated by pyroptosis for clinical applications.
Collapse
Affiliation(s)
- Dan Zhao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangwei Wu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheqiong Tan
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Xu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhongxin Lu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Research Institute of Wuhan, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Gabryelska MM, Conn SJ. The RNA interactome in the Hallmarks of Cancer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1786. [PMID: 37042179 PMCID: PMC10909452 DOI: 10.1002/wrna.1786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Ribonucleic acid (RNA) molecules are indispensable for cellular homeostasis in healthy and malignant cells. However, the functions of RNA extend well beyond that of a protein-coding template. Rather, both coding and non-coding RNA molecules function through critical interactions with a plethora of cellular molecules, including other RNAs, DNA, and proteins. Deconvoluting this RNA interactome, including the interacting partners, the nature of the interaction, and dynamic changes of these interactions in malignancies has yielded fundamental advances in knowledge and are emerging as a novel therapeutic strategy in cancer. Here, we present an RNA-centric review of recent advances in the field of RNA-RNA, RNA-protein, and RNA-DNA interactomic network analysis and their impact across the Hallmarks of Cancer. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Marta M Gabryelska
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
5
|
Ranga S, Yadav R, Chhabra R, Chauhan MB, Tanwar M, Yadav C, Kadian L, Ahuja P. Long non-coding RNAs as critical regulators and novel targets in cervical cancer: current status and future perspectives. Apoptosis 2023:10.1007/s10495-023-01840-6. [PMID: 37095313 PMCID: PMC10125867 DOI: 10.1007/s10495-023-01840-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 04/26/2023]
Abstract
Cervical cancer is among the leading causes of cancer-associated mortality in women. In spite of vaccine availability, improved screening procedures, and chemoradiation therapy, cervical cancer remains the most commonly diagnosed cancer in 23 countries and the leading cause of cancer deaths in 36 countries. There is, therefore, a need to come up with novel diagnostic and therapeutic targets. Long non-coding RNAs (lncRNAs) play a remarkable role in genome regulation and contribute significantly to several developmental and disease pathways. The deregulation of lncRNAs is often observed in cancer patients, where they are shown to affect multiple cellular processes, including cell cycle, apoptosis, angiogenesis, and invasion. Many lncRNAs are found to be involved in the pathogenesis as well as progression of cervical cancer and have shown potency to track metastatic events. This review provides an overview of lncRNA mediated regulation of cervical carcinogenesis and highlights their potential as diagnostic and prognostic biomarkers as well as therapeutic targets for cervical cancer. In addition, it also discusses the challenges associated with the clinical implication of lncRNAs in cervical cancer.
Collapse
Affiliation(s)
- Shalu Ranga
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Ravindresh Chhabra
- Assistant Professor, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, 151401, India.
| | - Meenakshi B Chauhan
- Department of Obstetrics and Gynaecology, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Mukesh Tanwar
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Chetna Yadav
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Lokesh Kadian
- School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Parul Ahuja
- Associate Professor, Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
6
|
Chen S, Liang Y, Shen Y, Wang X. lncRNA XIST/miR‑129‑2‑3p axis targets CCP110 to regulate the proliferation, invasion and migration of endometrial cancer cells. Exp Ther Med 2023; 25:159. [PMID: 36911384 PMCID: PMC9996364 DOI: 10.3892/etm.2023.11858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/06/2023] [Indexed: 02/24/2023] Open
Abstract
Centromere coiled-coil protein 110 (CCP110) plays a role in the development of several types of cancer; however, its regulatory mechanism and role in endometrial cancer is unclear. The present study revealed that CCP110 is regulated by a signaling pathway involving microRNA (miR/miRNA)-129-2-3p and the long non-coding RNA (lncRNA) X-inactive-specific transcript (XIST), and plays a role in controlling the proliferation, migration and invasion of endometrial cancer cells. CCP110 was upregulated in human endometrial cancer tissues, as revealed by immunohistochemistry, and high expression of the protein was related to reduced overall survival of the patients. Genetic knockdown of CCP110 by small interfering RNA promoted apoptosis and suppressed the proliferation, migration, invasion and colony formation of endometrial cancer cells significantly in the endometrial cancer Ishikawa and HEC-1B cell lines, as assessed by flow cytometry, and Cell Counting Kit-8, Transwell and colony formation assays. A bioinformatics analysis and luciferase reporter assay revealed that CCP110 is a target of miR-129-2-3p. Overexpression of miR-129-2-3p mimic fragments inhibited the proliferation, migration and invasion of endometrial cancer cells significantly, while co-overexpression of CCP110 counteracted these inhibitory effects. The expression level of the lncRNA XIST was upregulated significantly in endometrial cancer tissues, as assessed by reverse transcription-quantitative PCR assay, while that of miR-129-2-3p was downregulated significantly. A bioinformatics analysis and luciferase reporter assay showed that XIST could inhibit miR-129-2-3p via a miRNA sponge effect. Furthermore, co-overexpression of XIST antagonized the inhibitory effect of the miR-129-2-3p mimic on the luciferase reporter gene signal and protein expression of CCP110. Co-overexpression of XIST also abolished the inhibitory effect of the miR-129-2-3p mimic on the proliferation, migration and invasion of endometrial cancer cells. Overall, these data identified a novel regulatory mechanism of CCP110 involving XIST and miR-129-2-3p, which affected the development of endometrial carcinoma. CCP110, XIST and miR-129-2-3p could represent novel targets for the clinical treatment of endometrial cancer.
Collapse
Affiliation(s)
- Shu Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yaozhong Liang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Yuan Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiaoyu Wang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
7
|
Farzaneh M, Nasrolahi A, Ghaedrahmati F, Masoodi T, Najafi S, Sheykhi-Sabzehpoush M, Dari MAG, Radoszkiewicz K, Uddin S, Azizidoost S, Khoshnam SE. Potential roles of lncRNA-XIST/miRNAs/mRNAs in human cancer cells. Clin Transl Oncol 2023:10.1007/s12094-023-03110-y. [PMID: 36853400 DOI: 10.1007/s12094-023-03110-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) are non-coding RNAs that contain more than 200 nucleotides but do not code for proteins. In tumorigenesis, lncRNAs can have both oncogenic and tumor-suppressive properties. X inactive-specific transcript (XIST) is a known lncRNA that has been implicated in X chromosome silencing in female cells. Dysregulation of XIST is associated with an increased risk of various cancers. Therefore, XIST can be a beneficial prognostic biomarker for human malignancies. In this review, we attempt to summarize the emerging roles of XIST in human cancers.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ava Nasrolahi
- Infectious Ophthalmologic Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Cancer Research Department, Sidra Medicine, 26999, Doha, Qatar
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahrokh Abouali Gale Dari
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
8
|
Tang M, Chen J, Zeng T, Ye DM, Li YK, Zou J, Zhang YP. Systemic analysis of the DNA replication regulator origin recognition complex in lung adenocarcinomas identifies prognostic and expression significance. Cancer Med 2023; 12:5035-5054. [PMID: 36205357 PMCID: PMC9972100 DOI: 10.1002/cam4.5238] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND DNA replication alteration is a hallmark of patients with lung adenocarcinoma (LUAD) and is frequently observed in LUAD progression. Origin recognition complex (ORC) 1, ORC2, ORC3, ORC4, ORC5, and ORC6 form a replication-initiator complex to mediate DNA replication, which plays a key role in carcinogenesis, while their roles in LUAD remain poorly understood. METHODS The mRNA and protein expression of ORCs was confirmed by the GEPIA, HPA, CPTAC, and TCGA databases. The protein-protein interaction network was analyzed by the GeneMANIA database. Functional enrichment was confirmed by the Metascape database. The effects of ORCs on immune infiltration were validated by the TIMER database. The prognostic significance of ORCs in LUAD was confirmed by the KM-plot and GENT2 databases. DNA alteration and protein structure were determined in the cBioProtal and PDB databases. Moreover, the protein expression and prognostic value of ORCs were confirmed in our LUAD data sets by immunohistochemistry (IHC) staining. RESULTS ORC mRNA and protein were significantly increased in patients with LUAD compared with corresponding normal tissue samples. The results of IHC staining analysis were similar result to those of the above bioinformatics analysis. Furthermore, ORC1 and ORC6 had significant prognostic values for LUAD patients. Furthermore, the ORC cooperatively promoted LUAD development by driving DNA replication, cellular senescence, and metabolic processes. CONCLUSION The ORC, especially ORC1/6, has important prognostic and expression significance for LUAD patients.
Collapse
Affiliation(s)
- Min Tang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| | - Juan Chen
- Department of Radiotherapy, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| | - Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, People's Republic of China
| | - Dong-Mei Ye
- Department of Pathology, The First Hospital of Nanchang City, Nanchang, Jiangxi, People's Republic of China
| | - Yu-Kun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, People's Republic of China
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan, People's Republic of China
| | - Yu-Ping Zhang
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, People's Republic of China
| |
Collapse
|
9
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
10
|
Basera A, Hull R, Demetriou D, Bates DO, Kaufmann AM, Dlamini Z, Marima R. Competing Endogenous RNA (ceRNA) Networks and Splicing Switches in Cervical Cancer: HPV Oncogenesis, Clinical Significance and Therapeutic Opportunities. Microorganisms 2022; 10:1852. [PMID: 36144454 PMCID: PMC9501168 DOI: 10.3390/microorganisms10091852] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 09/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cervical cancer (CC) is the primary cause of female cancer fatalities in low-middle-income countries (LMICs). Persistent infections from the human papillomavirus (HPV) can result in cervical cancer. However, numerous different factors influence the development and progression of cervical cancer. Transcriptomic knowledge of the mechanisms with which HPV causes cervical cancer pathogenesis is growing. Nonetheless, there is an existing gap hindering the development of therapeutic approaches and the improvement of patient outcomes. Alternative splicing allows for the production of numerous RNA transcripts and protein isoforms from a single gene, increasing the transcriptome and protein diversity in eukaryotes. Cancer cells exhibit astounding transcriptome modifications by expressing cancer-specific splicing isoforms. High-risk HPV uses cellular alternative splicing events to produce viral and host splice variants and proteins that drive cancer progression or contribute to distinct cancer hallmarks. Understanding how viruses utilize alternative splicing to drive pathogenesis and tumorigenesis is essential. Although research into the role of miRNAs in tumorigenesis is advancing, the function of other non-coding RNAs, including lncRNA and circRNA, has been understudied. Through their interaction with mRNA, non-coding RNAs form a network of competing endogenous RNAs (ceRNAs), which regulate gene expression and promote cervical cancer development and advancement. The dysregulated expression of non-coding RNAs is an understudied and tangled process that promotes cervical cancer development. This review will present the role of aberrant alternative splicing and immunosuppression events in HPV-mediated cervical tumorigenesis, and ceRNA network regulation in cervical cancer pathogenesis will also be discussed. Furthermore, the therapeutic potential of splicing disruptor drugs in cervical cancer will be deliberated.
Collapse
Affiliation(s)
- Afra Basera
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
- Department of Medical Oncology, Steve Biko Academic Hospital and University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Demetra Demetriou
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - David Owen Bates
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
- David Owen Bates, Division of Cancer and Stem Cells, Centre for Cancer Sciences, Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreas Martin Kaufmann
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
- Clinic for Gynaecology, Laboratory for Gynaecologic Tumor Immunology, Institute of Health, Charité-Universitätsmedizin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburgerplatz 1, 13353 Berlin, Germany
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Rahaba Marima
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention, Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
11
|
Wang J, Huang J, Guo Y, Fu Y, Cao Y, Zhou K, Ma J, Lv B, Huang W. Identification and functional analysis of LncRNA-XIST ceRNA network in prostate cancer. BMC Cancer 2022; 22:935. [PMID: 36038831 PMCID: PMC9426231 DOI: 10.1186/s12885-022-10007-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) play a functional role in the progression of prostate cancer (PCa). However, the molecular mechanism, expression, or function of the lncRNA XIST in PCa is not well understood. Therefore, the major goal of this study was to investigate the involvement of XIST in PCa. METHODS We used the The Cancer Genome Atlas (TCGA) database to conduct a pan-cancer bioinformatics analysis of XIST and identified that it may play an important role in prostate cancer. This finding was verified using clinical samples and in vitro assays. Finally, we constructed an XIST ceRNA network for prostate cancer. RESULTS Our in vitro and in vivo results showed that the XIST gene expression level was higher in PCa derived cells and tissues compared to that in normal cells and tissues. XIST gene expression level was positively correlated with the invasion and proliferation of tumour cells. Furthermore, the downregulation of XIST inhibited the growth of subcutaneous 22Rv1 xenografts in nude mice. In addition, we constructed a XIST ceRNA network. Consistent with previous studies, we found that the role of XIST is mediated through via sponges, such as miRNA -96-5p, miRNA -153-3p, and miRNA-182-5p. CONCLUSION High expression level of XIST can lead to enhanced carcinogenicity in PCa. Therefore, XIST has the potential to be used as a prognostic marker and may become a new research focus for the treatment of PCa.
Collapse
Affiliation(s)
- Jie Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jie Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingxue Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuli Fu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifang Cao
- Urology Department, Jiaxing First Hospital, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Kang Zhou
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianxiong Ma
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bodong Lv
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Zhejia-Ng University, Hangzhou, China.
| | - Wenjie Huang
- Department of Urology, School of Medicine, The Second Affiliated Hospital, Zhejia-Ng University, Hangzhou, China.
| |
Collapse
|
12
|
Liu Y, Liu H, Sheng B, Pan S, Wang ZW, Zhu X. The functions of lncRNAs in the HPV-negative cervical cancer compared with HPV-positive cervical cancer. Apoptosis 2022; 27:685-696. [PMID: 35980559 DOI: 10.1007/s10495-022-01761-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2022] [Indexed: 12/24/2022]
Abstract
Cervical cancer is one of the most common female malignancies. Human papillomaviruses (HPV) are the main causative agents of virtually all cervical carcinomas. Nevertheless, emerging evidence has demonstrated that a small proportion of cervical cancer patients are HPV negative. Long noncoding RNAs (lncRNAs) have been identified to play a crucial role in cervical cancer development. Here, this review describes the incidence and development of HPV-negative cervical cancer. Moreover, HPV-negative cervical cancers are more likely diagnosed at non-squamous type, older ages, more advanced stage and metastases, and associated with poorer prognosis as compared to HPV-positive cervical cancer. Furthermore, the significant role and functions of lncRNAs underlying HPV-negative cervical cancer is clarified.
Collapse
Affiliation(s)
- Yi Liu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Hejing Liu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Sheng
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuya Pan
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhi-Wei Wang
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xueqiong Zhu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
13
|
Chen H, Chen X, Zeng F, Fu A, Huang M. Prognostic value of SOX9 in cervical cancer: Bioinformatics and experimental approaches. Front Genet 2022; 13:939328. [PMID: 36003340 PMCID: PMC9394184 DOI: 10.3389/fgene.2022.939328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Among gynecological cancers, cervical cancer is a common malignancy and remains the leading cause of cancer-related death for women. However, the exact molecular pathogenesis of cervical cancer is not known. Hence, understanding the molecular mechanisms underlying cervical cancer pathogenesis will aid in the development of effective treatment modalities. In this research, we attempted to discern candidate biomarkers for cervical cancer by using multiple bioinformatics approaches. First, we performed differential expression analysis based on cervical squamous cell carcinoma and endocervical adenocarcinoma data from The Cancer Genome Atlas database, then used differentially expressed genes for weighted gene co-expression network construction to find the most relevant gene module for cervical cancer. Next, the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed on the module genes, followed by using protein–protein interaction network analysis and Cytoscape to find the key gene. Finally, we validated the key gene by using multiple online sites and experimental methods. Through weighted gene co-expression network analysis, we found the turquoise module was the highest correlated module with cervical cancer diagnosis. The biological process of the module genes focused on cell proliferation, cell adhesion, and protein binding processes, while the Kyoto Encyclopedia of Genes and Genomes pathway of the module significantly enriched pathways related to cancer and cell circle. Among the module genes, SOX9 was identified as the hub gene, and its expression was associated with cervical cancer prognosis. We found the expression of SOX9 correlates with cancer-associated fibroblast immune infiltration in immune cells by Timer2.0. Furthermore, cancer-associated fibroblast infiltration is linked to cervical cancer patients’ prognosis. Compared to those in normal adjacent, immunohistochemical and real-time quantitative polymerase chain reaction (qPCR) showed that the protein and mRNA expression of SOX9 in cervical cancer were higher. Therefore, the SOX9 gene acts as an oncogene in cervical cancer, interactive with immune infiltration of cancer-associated fibroblasts, thereby affecting the prognosis of patients with cervical cancer.
Collapse
Affiliation(s)
- Huan Chen
- Department of Obstetrics and Gynecology, Zhu Zhou Central Hospital, Zhuzhou, Hunan China
| | - Xupeng Chen
- Laboratory Medicine Center, Zhu Zhou Central Hospital, Zhuzhou, Hunan China
| | - Fanhua Zeng
- Department of Obstetrics and Gynecology, Zhu Zhou Central Hospital, Zhuzhou, Hunan China
| | - Aizhen Fu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Meiyuan Huang
- Department of Pathology, Zhu Zhou Central Hospital, Zhuzhou, Hunan China
- *Correspondence: Meiyuan Huang,
| |
Collapse
|
14
|
Jian Y, Qiao Q, Tang J, Qin X. Origin recognition complex 1 regulates phospholipase Cδ1 to inhibit cell proliferation, migration and epithelial-mesenchymal transition in lung adenocarcinoma. Oncol Lett 2022; 24:252. [PMID: 35761947 PMCID: PMC9214705 DOI: 10.3892/ol.2022.13372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
As a common pulmonary malignant disease, lung adenocarcinoma exhibits high mortality and morbidity rate. Phospholipase Cδ1 (PLCD1), an enzyme involved in the homeostasis of energy metabolism, is downregulated in lung adenocarcinoma. According to GEPIA, origin recognition complex 1 (ORC1) is a highly expressed gene in lung adenocarcinoma and is negatively associated with PLCD1. To the best of our knowledge, the present study was the first to investigate the role of ORC1 in regulating PLCD1 in lung adenocarcinoma. According to TCGA database, low expression of PLCD1 was correlated with the low overall survival rate of patients suffering from lung adenocarcinoma. The protein and mRNA expression levels of PLCD1 and ORC1 were detected in A549 cells by western blot analysis and reverse transcription-quantitative PCR, respectively. Cell proliferation, invasion and migration were analyzed by MTT, colony formation, Transwell and wound healing assay. Immunofluorescence staining was adopted to estimate the content of Ki67 and western blot was applied for the evaluation of PLCD1, MMP2, MMP9, E-cadherin, N-cadherin, vimentin, Snail and ORC. The binding interaction between ORC1 and PLCD1 was analyzed using chromatin immunoprecipitation and luciferase reporter enzyme gene assays. The results indicated that PLCD1 was lowly expressed in lung adenocarcinoma cells in comparison with that in 16HBE. When PLCD1 was overexpressed in cancer cells, cell proliferation, invasion and migration were significantly inhibited. However, in the presence of both ORC1 and PLCD1 overexpression, the suppressive effects of PLCD1 overexpression alone on cell proliferation, invasion, migration and EMT were attenuated. In conclusion, ORC1 was indicated to inhibit PLCD1, thus regulating the proliferation, migration and EMT processes of lung adenocarcinoma cells, which suggested that ORC1 might be a target for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yao Jian
- Department of Respiratory Medicine, Public Health Clinical Center of Chengdu, Chengdu, Sichuan 610041, P.R. China
| | - Qing Qiao
- Department of Oncology, People's Hospital of Leshan, Leshan, Sichuan 614000, P.R. China
| | - Juanjuan Tang
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Xiaobing Qin
- Department of Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
15
|
Chen R, Gan Q, Zhao S, Zhang D, Wang S, Yao L, Yuan M, Cheng J. DNA methylation of miR-138 regulates cell proliferation and EMT in cervical cancer by targeting EZH2. BMC Cancer 2022; 22:488. [PMID: 35505294 PMCID: PMC9063191 DOI: 10.1186/s12885-022-09477-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Emerging evidence has identified miR-138 as a tumor suppressor that can suppress the proliferation of various cancers. Meanwhile, the cause of abnormal miR-138 expression in cervical cancer remains uncertain. This study clarified the mechanism by which miR-138 regulates proliferation, invasion, metastasis, and EMT in cervical cancer cells. RESULTS miR-138 expression in human cervical cancer and adjacent normal tissue was measured using qPCR. SiHa and C33A cells were used to determine the function of miR-138 via miR-138 mimic or inhibitor transfection, followed by wound healing, Cell Counting Kit-8, flow cytometry, and Transwell assays. Epithelial and mesenchymal marker expression was analyzed using Western blotting. DNA methylation in the miR-138 promoter was examined using bisulfite sequencing PCR. The downstream target genes of miR-138 were identified via bioinformatics analysis and luciferase reporter assays. A tumor xenograft model was employed to validate DNA methylation-induced miR-138 downregulation and tumor growth inhibition in cervical cancer in vivo. miR-138 levels were significantly lower in cervical cancer tissues than in adjacent control tissues. Furthermore, lower miR-138 expression and higher CpG methylation in the miR-138 promoter were identified in lymph node-positive metastatic cervical cancer tumors versus that in non-metastatic tumor tissues. Upon miR-138 overexpression, cell proliferation, metastasis, invasion, and EMT were suppressed. miR-138 agomir transfection and demethylating drug treatment significantly inhibited cervical tumor growth and EMT in tumor xenograft models. DNA methylation inhibited miR-138 transcription, and enhancer of zeste homolog 2 (EZH2) downregulation mediated the tumor suppressor function of miR-138 in cervical cancer. CONCLUSION We demonstrated that miR-138 suppresses tumor progression by targeting EZH2 in cervical cancer and uncovered the role of DNA methylation in the miR-138 promoter in its downregulation. These findings demonstrated the potential of miR-138 to predict disease metastasis and/or function as a therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Rui Chen
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Qiyu Gan
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Shuting Zhao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Dongrui Zhang
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Shunli Wang
- Department of Pathology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Lili Yao
- Department of Gynecology, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Min Yuan
- Department of Gynecology, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, People's Republic of China.
| | - Jingxin Cheng
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
16
|
Han L, Li F. Origin recognition complex subunit 1 (ORC1) augments malignant behaviors of lung adenocarcinoma cells via targeting Wnt signaling. Bioengineered 2022; 13:13520-13533. [PMID: 36700467 PMCID: PMC9275907 DOI: 10.1080/21655979.2022.2078562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
It has been reported that origin recognition complex subunit 1 (ORC1) plays an oncogenic role in certain human cancers. Nevertheless, its regulatory function in lung adenocarcinoma (LUAD) progression was poorly understood. In this study, gene and protein levels were measured via RT-qPCR and Western blotting. LUAD cell viability, apoptosis, and metastasis were determined via CCK-8, TUNEL, and Transwell assays. Bioinformatics analyses were performed using Genotype Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases. Herein, it was revealed that ORC1 was evidently upregulated and positively correlated to unsatisfactory prognosis in LUAD. Besides, single-sample gene set enrichment analysis (ssGSEA) revealed that ORC1 is negatively associated with 17 immune infiltrating cells and differently expressed in several kinds of immune cells. Also, Gene Ontology (GO) analysis indicated the involvement of ORC1 in several molecular functions. In addition, in vitro experiments demonstrated that ORC1 facilitated malignant behaviors of LUAD cells; moreover, animal assays further affirmed that ORC1 promoted LUAD tumor growth in vivo. As for the molecular mechanisms involved, it was found that ORC1 depletion inhibited the Wnt pathway in LUAD cells. Furthermore, rescue experiments demonstrated that Wnt signaling activation could abate the impacts of ORC1 knockdown on tumorigenic phenotypes of LUAD cells. In conclusion, our findings demonstrated that ORC1 promoted LUAD progression by regulating the Wnt signaling, indicating ORC1 could be an auspicious biomarker or target for LUAD diagnosis and treatment.
Collapse
Affiliation(s)
- Lu Han
- Department of Medical Oncology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu, China
| | - Feng Li
- Department of Medical Oncology, Xuzhou Cancer Hospital, Xuzhou, Jiangsu, China,CONTACT Feng Li Department of Medical Oncology, Xuzhou Cancer Hospital, No. 131 Huancheng Road, Gulou District, Xuzhou, Jiangsu, China
| |
Collapse
|
17
|
LncRNA XIST accelerates burn wound healing by promoting M2 macrophage polarization through targeting IL-33 via miR-19b. Cell Death Dis 2022; 8:220. [PMID: 35449128 PMCID: PMC9023461 DOI: 10.1038/s41420-022-00990-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 02/24/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Abstract
Burn injuries are a serious threat to quality of life. The aim of this study was to investigate the mechanism of burn wound healing. The lncRNA XIST has been associated with burn wound healing, but the mechanism is not clear. In the present study, in vitro and in vivo models of burn injuries were established by thermal injury treatment of human skin fibroblasts (HSFs) and mice, respectively. Pathological changes in skin tissues were detected by haematoxylin and eosin (HE) staining. Immunofluorescence double staining was performed to detect M2 macrophages. Furthermore, the changes of cell proliferation, apoptosis and migration by CCK-8, flow cytometry, scratch and Transwell assays to evaluate the effect of XIST on burn wound healing. The binding relationships among XIST, miR-19b and IL-33 were analyzed by RNA immunoprecipitation (RIP) and dual luciferase reporter assays. Our results found that there were targeted binding sites between XIST and miR-19b, miR-19b and IL-33. We investigated whether XIST enhanced the polarization of M2 macrophages to promote the healing of burn wounds. After fibroblast burn injury, the expression levels of XIST and IL-33 increased in a time-dependent manner, whereas miR-19b expression decreased in a time-dependent manner. XIST contributed to the proliferation and migration of skin fibroblasts by inhibiting miR-19b and enhanced fibroblast extracellular matrix production by promoting the transformation of macrophages to the M2 phenotype. In short, these findings indicate that XIST can promote burn wound healing and enhance the polarization of M2 macrophages by targeting the IL-33/miR-19b axis, which may serve as a potential theoretical basis for the treatment of burn wound healing.
Collapse
|
18
|
Li J, Ming Z, Yang L, Wang T, Liu G, Ma Q. Long noncoding RNA XIST: Mechanisms for X chromosome inactivation, roles in sex-biased diseases, and therapeutic opportunities. Genes Dis 2022; 9:1478-1492. [PMID: 36157489 PMCID: PMC9485286 DOI: 10.1016/j.gendis.2022.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Abstract
Sexual dimorphism has been reported in various human diseases including autoimmune diseases, neurological diseases, pulmonary arterial hypertension, and some types of cancers, although the underlying mechanisms remain poorly understood. The long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is involved in X chromosome inactivation (XCI) in female placental mammals, a process that ensures the balanced expression dosage of X-linked genes between sexes. XIST is abnormally expressed in many sex-biased diseases. In addition, escape from XIST-mediated XCI and skewed XCI also contribute to sex-biased diseases. Therefore, its expression or modification can be regarded as a biomarker for the diagnosis and prognosis of many sex-biased diseases. Genetic manipulation of XIST expression can inhibit the progression of some of these diseases in animal models, and therefore XIST has been proposed as a potential therapeutic target. In this manuscript, we summarize the current knowledge about the mechanisms for XIST-mediated XCI and the roles of XIST in sex-biased diseases, and discuss potential therapeutic strategies targeting XIST.
Collapse
|
19
|
LINC00885 promotes cervical cancer progression through sponging miR-3150b-3p and upregulating BAZ2A. Biol Direct 2022; 17:4. [PMID: 35012615 PMCID: PMC8744347 DOI: 10.1186/s13062-021-00314-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background Cervical cancer (CC) is one of the most common malignancies affecting female worldwide. Long non-coding RNAs (lncRNAs) are increasingly indicated as crucial participants and promising therapeutic targets in human cancers. The main objective of this study was to explore the functions and mechanism of LINC00885 in CC. Methods RT-qPCR and western blot were used to detect RNA and protein levels. Functional and mechanism assays were respectively done for the analysis of cell behaviors and molecular interplays. Results Long intergenic non-coding RNA 885 (LINC00885) was discovered to be upregulated in CC tissues and cell lines through bioinformatics analysis and RT-qPCR. Overexpression of LINC00885 promoted proliferation and inhibited apoptosis, whereas its silence exerted opposite effects. The cytoplasmic localization of LINC00885 was ascertained and furthermore, LINC00885 competitively bound with miR-3150b-3p to upregulate BAZ2A expression in CC cells. Rescue assays confirmed that LINC00885 regulated CC proliferation and apoptosis through miR-3150b-3p/BAZ2A axis. Finally, we confirmed that LINC00885 aggravated tumor growth through animal experiments. Conclusions LINC00885 exerted oncogenic function in CC via regulating miR-3150b-3p/BAZ2A axis. These findings suggested LINC00885 might serve as a potential promising therapeutic target for CC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-021-00314-6.
Collapse
|
20
|
The lncRNAs at X Chromosome Inactivation Center: Not Just a Matter of Sex Dosage Compensation. Int J Mol Sci 2022; 23:ijms23020611. [PMID: 35054794 PMCID: PMC8775829 DOI: 10.3390/ijms23020611] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated “competing endogenous RNA (ceRNA) networks” (“ceRNET”): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning “new” functions to “old” molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.
Collapse
|
21
|
Yang J, Qi M, Fei X, Wang X, Wang K. Long non-coding RNA XIST: a novel oncogene in multiple cancers. Mol Med 2021; 27:159. [PMID: 34930117 PMCID: PMC8686246 DOI: 10.1186/s10020-021-00421-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023] Open
Abstract
Long non-coding RNA (lncRNA) X-inactive specific transcript (XIST) is an important lncRNA derived from the XIST gene in mammals. XIST is abnormally expressed in numerous tumors, in most of which XIST functions as an oncogene. XIST is involved in multiple aspects of carcinogenesis, including tumor onset, progression, and prognosis. In our review, we collected and analyzed the recent studies on the impact of XIST in human tumor development. The multilevel molecular functions of XIST in human tumors are comprehensively reviewed to clarify the pathologic mechanisms and to offer a novel direction for further study.
Collapse
Affiliation(s)
- Jun Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Manlong Qi
- Department of Clinical Genetics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiang Fei
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping, Liaoning, 110004, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping, Liaoning, 110004, Shenyang, China
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping, Liaoning, 110004, Shenyang, China.
| |
Collapse
|
22
|
Xiao X, He Z, Tong S, Dai L, Xiao Q, Qin Z, Lin T. lncRNA XIST knockdown suppresses hypoxia/reoxygenation (H/R)-induced apoptosis of H9C2 cells by regulating miR-545-3p/G3BP2. IUBMB Life 2021; 73:1103-1114. [PMID: 34060227 DOI: 10.1002/iub.2512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
This study was aimed at determining the roles and functions of lncRNA XIST/miR-545-3p/G3BP2 axis during hypoxia/reoxygenation (H/R)-induced H9C2 cell apoptosis. H9C2 cells were distributed into two groups, the H/R injury and control groups. High-throughput lncRNA sequencing was applied in the determination of differentially expressed lncRNAs between H/R-induced H9C2 cells and normal H9C2 cells. Real-time polymerase chain reactions (RT-PCR) were used to confirm the expression levels of lncRNA XIST in H/R-induced H9C2 cells. H9C2 cells were then transfected with lncRNA XIST recombinant plasmid (lncRNA XIST), sh-LINC XIST, agomiR-545-3p, antagomiR-545-3p, pcDNA-G3BP2, sh-G3BP2, and a corresponding negative control (NC). Bioinformatic analyses revealed that MiR-545-3p was a target for lncRNA XIST. This finding was confirmed by dual-luciferase reporter assay. The degree of cell apoptosis was evaluated by a flow cytometer. RT-PCR and western blot were performed to assess the apoptotic-related proteins in each group. A total of 859 differentially expressed lncRNAs (up-regulated = 502, down-regulated = 357) were identified. LncRNA XIST was found to be down-regulated in H/R-induced H9C2 cells while miR-545-3p was distinctly up-regulated. miR-545-3p was established to be a direct target for LncRNA XIST. LncRNA XIST significantly enhanced the apoptotic rate, while its inhibition suppressed the apoptotic rate. AgomiR-545-3p partially blocked the lncRNA XIST and enhanced the apoptosis of H/R-induced H9C2 cells. Moreover, miR-545-3p was shown to be a direct target for G3BP2. The overexpression of G3BP2 partially reversed the apoptotic effects of miR-545-3p on H/R-induced H9C2 cells. lncRNA XIST/miR-545-3p/GBP2 was found to be an apoptotic regulator in H/R-induced H9C2 cells.
Collapse
Affiliation(s)
- Xiaohong Xiao
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhenzhen He
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Suiyang Tong
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Lixia Dai
- Department of Hematology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Qiuling Xiao
- Department of Hematology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Zhongxin Qin
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Tao Lin
- Department of Cardiology, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| |
Collapse
|
23
|
Lamsisi M, Wakrim L, Bouziyane A, Benhessou M, Oudghiri M, Laraqui A, Elkarroumi M, Ennachit M, El Mzibri M, Ennaji MM. The Biological Significance of Long noncoding RNAs Dysregulation and their Mechanism of Regulating Signaling Pathways in Cervical Cancer. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2021; 10:75-101. [PMID: 34703793 PMCID: PMC8496250 DOI: 10.22088/ijmcm.bums.10.2.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/01/2021] [Indexed: 12/19/2022]
Abstract
Despite the remarkable decrease in cervical cancer incidence due to the availability of the HPV vaccine and implementation of screening programs for early detection in developed countries, this cancer remains a major health problem globally, especially in developing countries where most of the cases and mortality occur. Therefore, more understanding of molecular mechanisms of cervical cancer development might lead to the discovery of more effective diagnosis and treatment options. Research on long noncoding RNAs (lncRNAs) demonstrates the important roles of these molecules in many physiological processes and diseases, especially cancer. In the present review, we discussed the significance of lncRNAs altered expression in cervical cancer, highlighting their roles in regulating highly conserved signaling pathways, such as mitogen-activated protein kinase (MAPK), Wnt/β-catenin, Notch, and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathways and their association with the progression of cervical cancer in order to bring more insight and understanding of this disease and their potential implications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Maryame Lamsisi
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
| | - Lahcen Wakrim
- Laboratory of Virology, Pasteur Institute of Morocco. Casablanca, Morocco.
| | - Amal Bouziyane
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
- University Mohammed VI of Health Science, Casablanca, Morocco.
| | - Mustapha Benhessou
- Team of Virology, Oncology and Medical Biotechnologies, Laboratory of Virology, Microbiology, Quality, and Biotechnologies/ ETB. Faculty of Science and Techniques Mohammedia, Hassan II University of Casablanca, Morocco.
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | - Mounia Oudghiri
- Immunology and Biodiversity laboratory, Faculty of Sciences Ain chock, Hassan II University of Casablanca, Morocco.
| | - Abdelilah Laraqui
- Research and Biosafety Laboratory, Mohammed V Military Hospital, University Mohammed V of Rabat, Morocco.
| | - Mohamed Elkarroumi
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | - Mohammed Ennachit
- School of Medicine and Pharmacy, University Hassan II of Casablanca, Morocco.
| | | | - Moulay Mustapha Ennaji
- Corresponding author: Faculty of Science and Techniques Mohammedia, University Hassan II of Casablanca, Morocco. E-mail:
| |
Collapse
|
24
|
Long non-coding RNA X-inactive-specific transcript contributes to cisplatin resistance in gastric cancer by sponging miR-let-7b. Anticancer Drugs 2021; 31:1018-1025. [PMID: 33009035 DOI: 10.1097/cad.0000000000000942] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
X-inactive-specific transcript (XIST) is a 19 kb noncoding RNA which is oncogenic in many cancers including gastric cancer. It is reported that XIST contributes to gastric cancer cells resistant to cisplatin, but specific mechanisms governing this resistance remain unclear. We firstly examined the XIST level in gastric cancer cells and tumor specimens. We confirmed that XIST is overexpressed in gastric cancer cells and tumors, which further contributed to the poor prognosis of patients with gastric cancer. We also confirmed that high XIST level contributes to the cisplatin resistance in gastric cancer cells. Subsequently, we predicted microRNAs that have the potential to interact with XIST and found that Let-7b-5p may directly interact with XIST. We confirmed the direct interaction between XIST and Let-7b-5p and identified a negative correlation between the level of Let-7b-5p and XIST in gastric cancer tumors. Meanwhile, Let-7b-5p inhibitor treatment can partially rescued the effect of XIST-specific small interfering RNA on cell proliferation and apoptosis by regulating Aurora kinase B expression. XIST functions as an oncogene in gastric cancer which contributes to the cisplatin resistance by interacting with Let-7b-5p.
Collapse
|
25
|
Yang X, Qu Y, Zhang J. Up-Regulated LncRNA FEZF1-AS1 Promotes the Progression of Cervical Carcinoma Cells via MiR-367-3p/SLC12A5 Signal Axis. Arch Med Res 2021; 53:9-19. [PMID: 34362591 DOI: 10.1016/j.arcmed.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/01/2021] [Accepted: 05/21/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cervical cancer (CC) is a common female malignant tumor. With the trend of younger onset, people pay more and more attention to it. Numberless evidence has been indicated that long non-coding RNAs (lncRNAs) can take part in progression of cancers and can exert the regulatory roles in assorted cancers. Nevertheless, the roles of FEZ family zinc finger 1-antisense RNA 1 (FEZF1-AS1) in CC cells are still undiscovered. AIM OF THE STUDY Thus, the central purpose of our research was to reveal the specific functions and molecular mechanisms of FEZF1-AS1 in CC cells. METHODS RT-qPCR was utilized to test FEZF1-AS1 expression in CC cells. In addition, functional assays were conducted to evaluate cell proliferation, apoptosis, and migration as well as invasion. In addition, mechanism experiments verified relationship among FEZF1-AS1, miR-367-3p and solute carrier family 12 member 5 (SLC12A5). RESULTS FEZF1-AS1 was highly expressed in CC cells. Moreover, FEZF1-AS1 depletion suppressed proliferation, migration, invasion, and induced cell apoptosis. Importantly, mechanism experiments confirmed that miR-367-3p could bissnd to FEZF1-AS1 and SLC12A5. The rescue assays determined that FEZF1-AS1 could up-regulate SLC12A5 through binding to miR-367-3p. CONCLUSIONS The up-regulated FEZF1-AS1 could accelerate the malignant behaviors of CC cells by miR-367-3p/SLC12A5 signal axis.
Collapse
Affiliation(s)
- Xiaowei Yang
- Department of Obstetrics, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Yuejie Qu
- Department of Obstetrics, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Jixian Zhang
- Department of Obstetrics, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China.
| |
Collapse
|
26
|
Ning D, Chen J, Du P, Liu Q, Cheng Q, Li X, Zhang B, Chen X, Jiang L. The crosstalk network of XIST/miR-424-5p/OGT mediates RAF1 glycosylation and participates in the progression of liver cancer. Liver Int 2021; 41:1933-1944. [PMID: 33909326 DOI: 10.1111/liv.14904] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Liver cancer is a major public health concern, but the mechanistic actions of biomarkers contributing to liver cancer remain to be determined. In this study, we aimed to investigate the regulatory cascade of microRNA-424-5p (miR-424-5p), X-inactive-specific transcript (XIST) and O-GlcNAc transferase (OGT) in liver cancer. METHODS Differentially expressed miRNAs and target genes related to liver cancer were predicted by bioinformatics analyses, and their expression was determined in liver tissues of patients with liver cancer and liver cancer cells. The RNA immunoprecipitation (RIP), RNA pull-down and dual luciferase reporter assay were used to examine the binding affinity among XIST and miR-424-5p and OGT. Then, gain- and loss-of-function assays were conducted to evaluate the effects of the XIST/miR-424-5p/OGT axis on malignant phenotypes. A nude mouse model of liver cancer was further established for in vivo substantiation. RESULTS XIST and OGT were up-regulated in liver cancer tissues and cells, responsible for poor prognosis in patients with liver cancer, while miR-424-5p was down-regulated. XIST competitively bound to miR-424-5p to increase OGT expression. XIST silencing inhibited malignant phenotypes of liver cancer cells, while miR-424-5p down-regulation negated its effect. miR-424-5p suppressed RAF1 glycosylation by negatively regulating OGT expression and promoted its ubiquitination/degradation. Furthermore, XIST knockdown inhibited tumour growth and metastasis in nude mice, while ectopic OGT reversed its effect. CONCLUSION These results reveal a novel mechanism by which the interaction of XIST/miR-424-5p/OGT participates in the malignancy and metastasis of liver cancer.
Collapse
Affiliation(s)
- Deng Ning
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Pengcheng Du
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Qiumeng Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Qi Cheng
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Xue Li
- Clinical Immunology Laboratory, School of Medical Laboratory, Tianjin Medical University, Tianjin, P.R. China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| | - Li Jiang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| |
Collapse
|
27
|
Zhang D, Wang Y, Yang Q. A High Epigenetic Risk Score Shapes the Non-Inflamed Tumor Microenvironment in Breast Cancer. Front Mol Biosci 2021; 8:675198. [PMID: 34381812 PMCID: PMC8350480 DOI: 10.3389/fmolb.2021.675198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/14/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Epigenetic dysregulation via aberrant DNA methylation has gradually become recognized as an efficacious signature for predicting tumor prognosis and response to therapeutic targets. However, reliable DNA methylation biomarkers describing tumorigenesis remain to be comprehensively explored regarding their prognostic and therapeutic potential in breast cancer (BC). Methods: Whole-genome methylation datasets integrated from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were profiled (n = 1,268). A three-stage selection procedure (discovery, training, and external validation) was utilized to screen out the prominent biomarkers and establish a robust risk score from more than 300,000 CpG sites after quality control, rigorous filtering, and reducing dimension. Moreover, gene set enrichment analyses guided us to systematically correlate this epigenetic risk score with immunological characteristics, including immunomodulators, anti-cancer immunity cycle, immune checkpoints, tumor-infiltrating immune cells and a series of signatures upon modulating components within BC tumor microenvironment (TME). Multi-omics data analyses were performed to decipher specific genomic alterations in low- and high-risk patients. Additionally, we also analyzed the role of risk score in predicting response to several treatment options. Results: A 10-CpG-based prognostic signature which could significantly and independently categorize BC patients into distinct prognoses was established and sufficiently validated. And we hypothesize that this signature designs a non-inflamed TME in BC based on the evidence that the derived risk score is negatively correlated with tumor-associated infiltrating immune cells, anti-cancer immunity cycle, immune checkpoints, immune cytolytic activity, T cell inflamed score, immunophenoscore, and the vast majority of immunomodulators. The identified high-risk patients were characterized by upregulation of immune inhibited oncogenic pathways, higher TP53 mutation and copy number burden, but lower response to cancer immunotherapy and chemotherapy. Conclusion: Our work highlights the complementary roles of 10-CpG-based signature in estimating overall survival in BC patients, shedding new light on investigating failed events concerning immunotherapy at present.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingnan Wang
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Clinical Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
28
|
Ghafouri-Fard S, Dashti S, Farsi M, Taheri M, Mousavinejad SA. X-Inactive-Specific Transcript: Review of Its Functions in the Carcinogenesis. Front Cell Dev Biol 2021; 9:690522. [PMID: 34179019 PMCID: PMC8226258 DOI: 10.3389/fcell.2021.690522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/13/2021] [Indexed: 01/03/2023] Open
Abstract
X-inactive-specific transcript (XIST) is one of the firstly discovered long non-coding RNAs with prominent roles in the process of X inactivation. Moreover, this transcript contributes in the carcinogenic process in different tissues. In addition to interacting with chromatin modifying molecules, XIST can be served as a molecular sponge for miRNAs to modulate expression of miRNA targets. Most of the studies have indicated an oncogenic role for XIST. However, in prostate cancer, a single study has indicated a tumor suppressor role for this lncRNA. Similar result has been reported for XIST in oral squamous cell carcinoma. In hepatocellular carcinoma, breast cancer, ovarian cancer, osteosarcoma, and renal cell carcinoma, different studies have reported inconsistent results. In the present manuscript, we review function of XIST in the carcinogenesis.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Dashti
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Molood Farsi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mousavinejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Wang W, Min L, Qiu X, Wu X, Liu C, Ma J, Zhang D, Zhu L. Biological Function of Long Non-coding RNA (LncRNA) Xist. Front Cell Dev Biol 2021; 9:645647. [PMID: 34178980 PMCID: PMC8222981 DOI: 10.3389/fcell.2021.645647] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression in a variety of ways at epigenetic, chromatin remodeling, transcriptional, and translational levels. Accumulating evidence suggests that lncRNA X-inactive specific transcript (lncRNA Xist) serves as an important regulator of cell growth and development. Despites its original roles in X-chromosome dosage compensation, lncRNA Xist also participates in the development of tumor and other human diseases by functioning as a competing endogenous RNA (ceRNA). In this review, we comprehensively summarized recent progress in understanding the cellular functions of lncRNA Xist in mammalian cells and discussed current knowledge regarding the ceRNA network of lncRNA Xist in various diseases. Long non-coding RNAs (lncRNAs) are transcripts that are more than 200 nt in length and without an apparent protein-coding capacity (Furlan and Rougeulle, 2016; Maduro et al., 2016). These RNAs are believed to be transcribed by the approximately 98-99% non-coding regions of the human genome (Derrien et al., 2012; Fu, 2014; Montalbano et al., 2017; Slack and Chinnaiyan, 2019), as well as a large variety of genomic regions, such as exonic, tronic, and intergenic regions. Hence, lncRNAs are also divided into eight categories: Intergenic lncRNAs, Intronic lncRNAs, Enhancer lncRNAs, Promoter lncRNAs, Natural antisense/sense lncRNAs, Small nucleolar RNA-ended lncRNAs (sno-lncRNAs), Bidirectional lncRNAs, and non-poly(A) lncRNAs (Ma et al., 2013; Devaux et al., 2015; St Laurent et al., 2015; Chen, 2016; Quinn and Chang, 2016; Richard and Eichhorn, 2018; Connerty et al., 2020). A range of evidence has suggested that lncRNAs function as key regulators in crucial cellular functions, including proliferation, differentiation, apoptosis, migration, and invasion, by regulating the expression level of target genes via epigenomic, transcriptional, or post-transcriptional approaches (Cao et al., 2018). Moreover, lncRNAs detected in body fluids were also believed to serve as potential biomarkers for the diagnosis, prognosis, and monitoring of disease progression, and act as novel and potential drug targets for therapeutic exploitation in human disease (Jiang W. et al., 2018; Zhou et al., 2019a). Long non-coding RNA X-inactive specific transcript (lncRNA Xist) are a set of 15,000-20,000 nt sequences localized in the X chromosome inactivation center (XIC) of chromosome Xq13.2 (Brown et al., 1992; Debrand et al., 1998; Kay, 1998; Lee et al., 2013; da Rocha and Heard, 2017; Yang Z. et al., 2018; Brockdorff, 2019). Previous studies have indicated that lncRNA Xist regulate X chromosome inactivation (XCI), resulting in the inheritable silencing of one of the X-chromosomes during female cell development. Also, it serves a vital regulatory function in the whole spectrum of human disease (notably cancer) and can be used as a novel diagnostic and prognostic biomarker and as a potential therapeutic target for human disease in the clinic (Liu et al., 2018b; Deng et al., 2019; Dinescu et al., 2019; Mutzel and Schulz, 2020; Patrat et al., 2020; Wang et al., 2020a). In particular, lncRNA Xist have been demonstrated to be involved in the development of multiple types of tumors including brain tumor, Leukemia, lung cancer, breast cancer, and liver cancer, with the prominent examples outlined in Table 1. It was also believed that lncRNA Xist (Chaligne and Heard, 2014; Yang Z. et al., 2018) contributed to other diseases, such as pulmonary fibrosis, inflammation, neuropathic pain, cardiomyocyte hypertrophy, and osteoarthritis chondrocytes, and more specific details can be found in Table 2. This review summarizes the current knowledge on the regulatory mechanisms of lncRNA Xist on both chromosome dosage compensation and pathogenesis (especially cancer) processes, with a focus on the regulatory network of lncRNA Xist in human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dongyi Zhang
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
30
|
Competing Endogenous RNAs in Cervical Carcinogenesis: A New Layer of Complexity. Processes (Basel) 2021. [DOI: 10.3390/pr9060991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) regulate gene expression by binding to complementary sequences within target mRNAs. Apart from working ‘solo’, miRNAs may interact in important molecular networks such as competing endogenous RNA (ceRNA) axes. By competing for a limited pool of miRNAs, transcripts such as long noncoding RNAs (lncRNAs) and mRNAs can regulate each other, fine-tuning gene expression. Several ceRNA networks led by different lncRNAs—described here as lncRNA-mediated ceRNAs—seem to play essential roles in cervical cancer (CC). By conducting an extensive search, we summarized networks involved in CC, highlighting the major impacts of such dynamic molecular changes over multiple cellular processes. Through the sponging of distinct miRNAs, some lncRNAs as HOTAIR, MALAT1, NEAT1, OIP5-AS1, and XIST trigger crucial molecular changes, ultimately increasing cell proliferation, migration, invasion, and inhibiting apoptosis. Likewise, several lncRNAs seem to be a sponge for important tumor-suppressive miRNAs (as miR-140-5p, miR-143-3p, miR-148a-3p, and miR-206), impairing such molecules from exerting a negative post-transcriptional regulation over target mRNAs. Curiously, some of the involved mRNAs code for important proteins such as PTEN, ROCK1, and MAPK1, known to modulate cell growth, proliferation, apoptosis, and adhesion in CC. Overall, we highlight important lncRNA-mediated functional interactions occurring in cervical cells and their closely related impact on cervical carcinogenesis.
Collapse
|
31
|
Berti FCB, Mathias C, Garcia LE, Gradia DF, de Araújo-Souza PS, Cipolla GA, de Oliveira JC, Malheiros D. Comprehensive analysis of ceRNA networks in HPV16- and HPV18-mediated cervical cancers reveals XIST as a pivotal competing endogenous RNA. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166172. [PMID: 34048924 DOI: 10.1016/j.bbadis.2021.166172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022]
Abstract
Cervical cancer (CC) is one of the most common cancers in women worldwide, being closely related to high-risk human papillomavirus (HR-HPVs). After a particular HR-HPV infects a cervical cell, transcriptional changes in the host cell are expected, including the regulation of lncRNAs, miRNAs, and mRNAs. Such transcripts may work independently or integrated in complex molecular networks - as in competing endogenous RNA (ceRNA) networks. In our research, we gathered transcriptome data from samples of HPV16/HPV18 cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), from The Cancer Genome Atlas (TCGA) project. Using GDCRNATools, we identified ceRNA networks that differentiate HPV16- from HPV18-mediated CESC. For HPV16-CESC, three lncRNA-mRNA co-expressed pairs were reported, all led by the X-inactive specific transcript (XIST): XIST | DLG5, XIST | LGR4, and XIST | ZNF81. The XIST | LGR4 and XIST | ZNF81 pairs shared 11 miRNAs, suggesting an increased impact on their final biological effect. XIST also stood out as an important lncRNA in HPV18-CESC, leading 35 of the 42 co-expressed pairs. Some mRNAs, such as ADAM9 and SLC38A2, emerged as important players in the ceRNA regulatory networks due to sharing a considerable amount of miRNAs with XIST. Furthermore, some XIST-associated axes, namely XIST | miR-23a-3p | LGR4 and XIST | miR-30b-5p or miR-30c-5p or miR-30e-5p I ADAM9, had a significant impact on the overall survival of HPV16- and HPV18-CESC patients, respectively. Together, these data suggest that XIST has an important role in HPV-mediated tumorigenesis, which may implicate different molecular signatures between HPV16 and HPV18-associated tumors.
Collapse
Affiliation(s)
- Fernanda Costa Brandão Berti
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Carolina Mathias
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Leandro Encarnação Garcia
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Daniela Fiori Gradia
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Patrícia Savio de Araújo-Souza
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Immunogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Gabriel Adelman Cipolla
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Jaqueline Carvalho de Oliveira
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil
| | - Danielle Malheiros
- Postgraduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil; Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná (UFPR), Centro Politécnico, Jardim das Américas, 81531-900 Curitiba, Paraná State, Brazil.
| |
Collapse
|
32
|
Yu P, Zhang X, Liu N, Tang L, Peng C, Chen X. Pyroptosis: mechanisms and diseases. Signal Transduct Target Ther 2021; 6:128. [PMID: 33776057 PMCID: PMC8005494 DOI: 10.1038/s41392-021-00507-5] [Citation(s) in RCA: 998] [Impact Index Per Article: 332.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
Currently, pyroptosis has received more and more attention because of its association with innate immunity and disease. The research scope of pyroptosis has expanded with the discovery of the gasdermin family. A great deal of evidence shows that pyroptosis can affect the development of tumors. The relationship between pyroptosis and tumors is diverse in different tissues and genetic backgrounds. In this review, we provide basic knowledge of pyroptosis, explain the relationship between pyroptosis and tumors, and focus on the significance of pyroptosis in tumor treatment. In addition, we further summarize the possibility of pyroptosis as a potential tumor treatment strategy and describe the side effects of radiotherapy and chemotherapy caused by pyroptosis. In brief, pyroptosis is a double-edged sword for tumors. The rational use of this dual effect will help us further explore the formation and development of tumors, and provide ideas for patients to develop new drugs based on pyroptosis.
Collapse
Affiliation(s)
- Pian Yu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Nian Liu
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Ling Tang
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China
| | - Cong Peng
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Changsha, Hunan, China.
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- Xiangya Clinical Research Center for Cancer Immunotherapy, Central South University, Changsha, Hunan, China.
| |
Collapse
|
33
|
LncRNA XIST Promotes Atherosclerosis by Regulating miR-599/TLR4 Axis. Inflammation 2021; 44:965-973. [PMID: 33566259 DOI: 10.1007/s10753-020-01391-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/18/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been reported to be implicated in various biological and pathological processes. However, the function and mechanism of XIST in vascular smooth muscle cells (VSMCs) remains unknown. The levels of XIST, miR-599, and TLR4 were tested by RT-qPCR. VSMCs and human mononuclear cells (U937) treated with ox-LDL were used as atherosclerosis (AS) cell models. The CCK-8 assay was adopted to detect cell viability. Cell apoptosis was examined by the TUNEL assay. A dual-luciferase reporter assay was employed to investigate the interaction between miR-599 and XIST or TLR4. In this research, we uncovered that the XIST level was elevated in the serum of AS patients and ox-LDL-treated AS cell models. Functional analysis revealed that XIST depletion restrained cell proliferation, while induced the apoptosis in AS cell models. Besides, miR-599 was verified to be a direct downstream target of XIST and miR-599 inhibitor reversed the effects of XIST knockdown on AS progression. Finally, we demonstrated that XIST increased TLR4 expression by serving as a ceRNA of miR-599. All these findings manifested the role of the XIST/miR-599/TLR4 axis in AS development.
Collapse
|
34
|
S S, Shukla V, Khan GN, Eswaran S, Adiga D, Kabekkodu SP. Integrated bioinformatic analysis of miR-15a/16-1 cluster network in cervical cancer. Reprod Biol 2021; 21:100482. [PMID: 33548740 DOI: 10.1016/j.repbio.2021.100482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 01/14/2023]
Abstract
The miR-15a/16-1 cluster is abnormally expressed in cervical cancer (CC) tissues and plays a vital role in cervical carcinogenesis. We aimed to evaluate the miR-15a/16-1 expression in healthy and cancerous cervical tissues, identify the associated networks, and to test its prognostic significance. miR-15a/16-1-MC expressions were analyzed in TCGA-CESC datasets by UALCAN, GEPIA2, and Datasetviewer. miR-15a/16-1 validated targets were extracted from mirTarBase and in silico functional analysis of the target genes were performed using WebGestalt. The interaction networks were constructed by the miRNet, STRING, and NetworkAnalyst tools. The prognostic significance and metastatic potential of the target genes were predicted using UALCAN and HCMDB. The FDA approved drugs to target miR-15a/16-1 and target gene network in CC were performed using DGIdb, STITCH and PanDrugs. TCGA-CESC and GEO data analysis suggested significant overexpression of miR-15a/16-1 in CC samples. The Kaplan-Meier survival analysis showed that miR-15a and its four target genes (BCL2, CCNE1, NUP50, and RBPJ) influence the overall survival of CC patients. Among the 66 differentially expressed target genes, 12 of them are linked to head, neck, or lung metastasis. Functional enrichment analysis predicted the association of this cluster with p53 signaling, human papillomavirus infection, PI3-AKT signaling pathway, and pathways in cancer. Drug-gene interaction analysis showed 52 potential FDA approved drugs to interact with the miR-15a/16-1 target genes. Nine of the 52 drugs are currently used as a chemotherapeutic agent for the treatment of CC patients. The present study shows that miR-15a/16-1 expression can be used as a clinical marker and target for therapy in CC.
Collapse
Affiliation(s)
- Sriharikrishnaa S
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - G Nadeem Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
35
|
Inhibition of long non-coding RNA XIST upregulates microRNA-149-3p to repress ovarian cancer cell progression. Cell Death Dis 2021; 12:145. [PMID: 33542185 PMCID: PMC7862378 DOI: 10.1038/s41419-020-03358-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) play critical roles in human diseases. We aimed to clarify the role of lncRNA X-inactive specific transcript (XIST)/miR-149-3p/forkhead box P3 (FOXP3) axis in ovarian cancer (OC) cell growth. XIST, miR-149-3p and FOXP3 expression in OC tissues and cell lines was assessed, and the predictive role of XIST in prognosis of OC patients was analyzed. The OC cell lines were screened and accordingly treated with silenced/overexpressed XIST plasmid or miR-149-3p mimic/inhibitor, and then the proliferation, invasion, migration, colony formation ability, apoptosis, and cell cycle distribution of OC cells were measured. Effect of altered XIST and miR-149-3p on tumor growth in vivo was observed. Online website prediction and dual luciferase reporter gene were implemented to detect the targeting relationship of lncRNA XIST, miR-149-3p, and FOXP3. XIST and FOXP3 were upregulated, whereas miR-149-3p was downregulated in OC tissues and cells. High XIST expression indicated a poor prognosis of OC. Inhibition of XIST or elevation of miR-149-3p repressed proliferation, invasion, migration, and colony formation ability, and promoted apoptosis and cell cycle arrest of HO-8910 cells. In SKOV3 cells upon treatment of overexpressed XIST or reduction of miR-149-3p, there exhibited an opposite tendency. Based on online website prediction, dual luciferase reporter gene, and RNA pull-down assays, we found that there was a negative relationship between XIST and miR-149-3p, and miR-149-3p downregulated FOXP3 expression. This study highlights that knockdown of XIST elevates miR-149-3p expression to suppress malignant behaviors of OC cells, thereby inhibiting OC development.
Collapse
|
36
|
Ghafouri-Fard S, Bahroudi Z, Shoorei H, Abak A, Ahin M, Taheri M. microRNA-140: A miRNA with diverse roles in human diseases. Biomed Pharmacother 2021; 135:111256. [PMID: 33434855 DOI: 10.1016/j.biopha.2021.111256] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNA-140 (miR-140) has been shown to be associated with the pathogenesis of a wide range of pathologies including osteoarthritis, osteoporosis, renal fibrosis, ischemic conditions, and most importantly neoplasia. This miRNA has been shown to be down-regulated in a diversity of cancers namely breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. miR-140 has a lot of immune-related targets. Moreover, several miR-140 targets regulate cell proliferation, cell cycle transition, and apoptosis. This miRNA has been shown to be sponged by a number of lncRNAs and circ-RNAs. miR-140 has essential roles in the determination of the sensitivity of neoplastic cells to chemotherapeutic agents such as temozolomide, doxorubicin, and cisplatin. Besides, expression quantities of miR-140 in cancer tissues can be used for the prediction of clinical outcomes of patients with neoplasia. In the present paper, we describe the impact of miR-140 in neoplastic and non-neoplastic disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maliheh Ahin
- Taleghani Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Liu W, Yao D, Huang B. LncRNA PVT1 promotes cervical cancer progression by sponging miR-503 to upregulate ARL2 expression. Open Life Sci 2021; 16:1-13. [PMID: 33817293 PMCID: PMC7874532 DOI: 10.1515/biol-2021-0002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 01/23/2023] Open
Abstract
Cervical cancer (CC) is a huge threat to the health of women worldwide. Long non-coding RNA plasmacytoma variant translocation 1 gene (PVT1) was proved to be associated with the development of diverse human cancers, including CC. Nevertheless, the exact mechanism of PVT1 in CC progression remains unclear. Levels of PVT1, microRNA-503 (miR-503), and ADP ribosylation factor-like protein 2 (ARL2) were measured by quantitative reverse transcription-polymerase chain reaction or western blot assay. 3-(4,5)-Dimethylthiazole-2-y1)-2,5-biphenyl tetrazolium bromide (MTT) and flow cytometry were used to examine cell viability and apoptosis, respectively. For migration and invasion detection, transwell assay was performed. The interaction between miR-503 and PVT1 or ARL2 was shown by dual luciferase reporter assay. A nude mouse model was constructed to clarify the role of PVT1 in vivo. PVT1 and ARL2 expressions were increased, whereas miR-503 expression was decreased in CC tissues and cells. PVT1 was a sponge of miR-503, and miR-503 targeted ARL2. PVT1 knockdown suppressed proliferation, migration, and invasion of CC cells, which could be largely reverted by miR-503 inhibitor. In addition, upregulated ARL2 could attenuate si-PVT1-mediated anti-proliferation and anti-metastasis effects on CC cells. Silenced PVT1 also inhibited CC tumor growth in vivo. PVT1 knockdown exerted tumor suppressor role in CC progression via the miR-503/ARL2 axis, at least in part.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Dongmei Yao
- Department of Gynecology, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, 430070, China
| | - Bo Huang
- Department of Gynaecology and Obstetrics, Hubei General Hospital, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, Hubei, 430060, China
| |
Collapse
|
38
|
Wang C, Zou H, Chen A, Yang H, Yu X, Yu X, Wang Y. C-Myc-activated long non-coding RNA PVT1 enhances the proliferation of cervical cancer cells by sponging miR-486-3p. J Biochem 2021; 167:565-575. [PMID: 31943014 DOI: 10.1093/jb/mvaa005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022] Open
Abstract
Cervical cancer is one of the most prevalent gynecological malignancies. Although the functions of long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) and c-Myc in tumorigenesis have been acknowledged, the roles of c-Myc and lncRNA-PVT1 in the proliferation of cervical cancer are still unclear. Our study is designed to demonstrate the regulatory network involving c-Myc and lncRNA-PVT1 in cervical cancer. Quantitative real-time PCR and western blot assays were performed in our research to estimate the expression levels of RNA and proteins. CCK8 assays were applied to demonstrate the viability of HeLa and SiHa cells. Immunofluorescence assay was then used to investigate the co-localization of lncRNA-PVT1 and miR-486-3p. Binding of c-Myc to the promoter region of PVT1 was identified by ChIP-assay. Functionally, upregulation of lncRNA-PVT1 enhanced the proliferation and viability of cervical cancer cells. Mechanistically, lncRNA-PVT1 sponged miR-486-3p and released its repression of extracellular matrix protein 1. Besides, c-Myc functioned as an activator of lncRNA-PVT1 and upregulated its expression by binding to the promoter of PVT1 in cervical cancer cells. lncRNA-PVT1 was upregulated by c-Myc and thus enhanced the proliferation of cervical cancer cells by sponging miR-486-3p.
Collapse
Affiliation(s)
- Chang Wang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| | - Hao Zou
- Department of Hepatopancreatobiliary Surgery, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| | - Aiping Chen
- Department of Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| | - Hongjuan Yang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| | - Xinping Yu
- Department of Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| | - Xiao Yu
- Department of Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| | - Yankui Wang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao 266000, Shandong, China
| |
Collapse
|
39
|
Cáceres-Durán MÁ, Ribeiro-dos-Santos Â, Vidal AF. Roles and Mechanisms of the Long Noncoding RNAs in Cervical Cancer. Int J Mol Sci 2020; 21:ijms21249742. [PMID: 33371204 PMCID: PMC7766288 DOI: 10.3390/ijms21249742] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cervical cancer (CC) continues to be one of the leading causes of death for women across the world. Although it has been determined that papillomavirus infection is one of the main causes of the etiology of the disease, genetic and epigenetic factors are also required for its progression. Among the epigenetic factors are included the long noncoding RNAs (lncRNAs), transcripts of more than 200 nucleotides (nt) that generally do not code for proteins and have been associated with diverse functions such as the regulation of transcription, translation, RNA metabolism, as well as stem cell maintenance and differentiation, cell autophagy and apoptosis. Recently, studies have begun to characterize the aberrant regulation of lncRNAs in CC cells and tissues, including Homeobox transcript antisense RNA (HOTAIR), H19, Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), Cervical Carcinoma High-Expressed 1 (CCHE1), Antisense noncoding RNA in the inhibitors of cyclin-dependent kinase 4 (ANRIL), Growth arrest special 5 (GAS5) and Plasmacytoma variant translocation 1 (PVT1). They have been associated with several disease-related processes such as cell growth, cell proliferation, cell survival, metastasis and invasion as well as therapeutic resistance, and are novel potential biomarkers for diagnosis and prognosis in CC. In this review, we summarize the current literature regarding the knowledge we have about the roles and mechanisms of the lncRNAs in cervical neoplasia.
Collapse
Affiliation(s)
- Miguel Ángel Cáceres-Durán
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
| | - Ândrea Ribeiro-dos-Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
- Graduate Program in Oncology and Medical Sciences, Center of Oncology Researches, Federal University of Pará, Belém 66073-005, Brazil
| | - Amanda Ferreira Vidal
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Graduate Program of Genetics and Molecular Biology, Federal University of Pará, Belém 66075-110, Brazil; (M.Á.C.-D.); (Â.R.-d.-S.)
- Correspondence: ; Tel.: +55-91-3201-7843
| |
Collapse
|
40
|
Fang H, Yang L, Fan Y, Mo C, Luo L, Liang D, Jiang Y. Upregulation of tissue long noncoding RNA X inactive specific transcript predicts poor postoperative survival in patients with non-small cell lung cancer. Medicine (Baltimore) 2020; 99:e21789. [PMID: 33327221 PMCID: PMC7738052 DOI: 10.1097/md.0000000000021789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
X inactive specific transcript (XIST) is a novel long noncoding RNA (lncRNA) which has been reported to be frequently upregulated in various human cancer types and to function as an oncogene. It has been reported that the expression of lncRNA XIST was upregulated in non-small cell lung cancer (NSCLC). In the present study, we aimed to investigate the clinical significance and prognostic value of XIST in patients with NSCLC.A total of 156 pairs of NSCLC and corresponding adjacent normal lung tissue samples were obtained from NSCLC patients who had undergone surgery from July 2014 to March 2019. The Student's t test was used in different treated groups for statistical analysis. The association between XIST expression and clinicopathological features of NSCLC patients was evaluated using the chi-squared test. Survival curves were plotted using Kaplan-Meier method and compared by log-rank test.The expression of XIST was significantly higher in NSCLC samples compared to non-cancerous samples (P < .001). Statistically significant correlations were observed between high tissue XIST expression level and lymph node metastasis (P = .036) and high Tumor Node Metastasis (TNM) stage (P = .002). The log-rank test indicated that patients with increased XIST expression experienced poor overall survival (P = .006). Multivariate Cox regression analysis showed that XIST expression level (hazard ratio = 2.645, 95% confidence interval: 1.672-7.393, P = .029) was an independent factors in predicting the overall survival of NSCLC patients.The present study found that XIST expression level was significantly associated with advanced pathological stage and high TNM stage in NSCLC. Furthermore, upregulation of tissue lncRNA XIST predicts poor postoperative survival in patients with NSCLC.
Collapse
|
41
|
Huang Y, Zhang K, Li Y, Dai Y, Zhao H. The DLG1-AS1/miR-497/YAP1 axis regulates papillary thyroid cancer progression. Aging (Albany NY) 2020; 12:23326-23336. [PMID: 33197895 PMCID: PMC7746333 DOI: 10.18632/aging.104121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/05/2020] [Indexed: 12/26/2022]
Abstract
The long non-coding RNA (lncRNA), DLG1-AS1, is upregulated in papillary thyroid cancer (PTC) tissues and cell lines. Here, we found that increased expression of DLG1-AS1 caused lymph node metastasis and advanced tumor-node-metastasis (TNM) stage. DLG1-AS1 knockdown inhibited proliferation, invasion, and migration of PTC cells, and impaired tumorigenesis in vivo in mouse xenografts. DLG1-AS1 functions as a competing endogenous RNA (ceRNA) for miR-497. Further investigation revealed that DLG1-AS1 regulated yes-associated protein 1 (YAP1; a known target of miR-497) by competitively binding to miR-497. Moreover, inhibition of miR-497 abrogated the inhibitory effects of DLG1-AS1 depletion on PTC cells. These findings demonstrate that the DLG1-AS1-miR-497-YAP1 axis promotes the growth and metastasis of PTC by forming a ceRNA network.
Collapse
Affiliation(s)
- Yong Huang
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - KeWei Zhang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Yinghua Li
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Yuyin Dai
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Hongguang Zhao
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
42
|
Chanda K, Mukhopadhyay D. LncRNA Xist, X-chromosome Instability and Alzheimer's Disease. Curr Alzheimer Res 2020; 17:499-507. [PMID: 32851944 DOI: 10.2174/1567205017666200807185624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Neurodegenerative Diseases (NDD) are the major contributors to age-related causes of mental disability on a global scale. Most NDDs, like Alzheimer's Disease (AD), are complex in nature - implying that they are multi-parametric both in terms of heterogeneous clinical outcomes and underlying molecular paradigms. Emerging evidence from high throughput genomic, transcriptomic and small RNA sequencing experiments hint at the roles of long non-coding RNAs (lncRNAs) in AD. X-inactive Specific Transcript (XIST), a component of the Xic, the X-chromosome inactivation centre, is an RNA gene on the X chromosome of the placental mammals indispensable for the X inactivation process. An extensive literature survey shows that aberrations in Xist expression and in some cases, a disruption of the Xchromosome inactivation as a whole play a significant role in AD. Considering the enormous potential of Xist as an endogenous silencing molecule, the idea of using Xist as a non-conventional chromosome silencer to treat diseases harboring chromosomal alterations is also being implemented. Comprehensive knowledge about how Xist could play such a role in AD is still elusive. In this review, we have collated the available knowledge on the possible Xist involvement and deregulation from the perspective of molecular mechanisms governing NDDs with a primary focus on Alzheimer's disease. Possibilities of XIST mediated therapeutic intervention and linkages between XIC and preferential predisposition of females to AD have also been discussed.
Collapse
Affiliation(s)
- Kaushik Chanda
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata 700 064, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata 700 064, India
| |
Collapse
|
43
|
Dudea-Simon M, Mihu D, Irimie A, Cojocneanu R, Korban SS, Oprean R, Braicu C, Berindan-Neagoe I. Identification of Core Genes Involved in the Progression of Cervical Cancer Using an Integrative mRNA Analysis. Int J Mol Sci 2020; 21:ijms21197323. [PMID: 33023042 PMCID: PMC7583959 DOI: 10.3390/ijms21197323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023] Open
Abstract
In spite of being a preventable disease, cervical cancer (CC) remains at high incidence, and it has a significant mortality rate. Although hijacking of the host cellular pathway is fundamental for developing a better understanding of the human papillomavirus (HPV) pathogenesis, a major obstacle is identifying the central molecular targets involved in HPV-driven CC. The aim of this study is to investigate transcriptomic patterns of HPV-infected and normal tissues to identify novel prognostic markers. Analyses of functional enrichment and interaction networks reveal that altered genes are mainly involved in cell cycle, DNA damage, and regulated cell-to-cell signaling. Analysis of The Cancer Genome Atlas (TCGA) data has suggested that patients with unfavorable prognostics are more likely to have DNA repair defects attributed, in most cases, to the presence of HPV. However, further studies are needed to fully unravel the molecular mechanisms of such genes involved in CC.
Collapse
Affiliation(s)
- Marina Dudea-Simon
- 2nd Obstetrics and Gynecology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.D.-S.); (D.M.)
| | - Dan Mihu
- 2nd Obstetrics and Gynecology Department, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.D.-S.); (D.M.)
| | - Alexandru Irimie
- Department of Surgery, “Prof. Dr. Ion Chiricuta” Oncology Institute, 400015 Cluj-Napoca, Romania;
- Department of Surgical Oncology and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (R.C.); (I.B.-N.)
| | - Schuyler S. Korban
- Department of Natural and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Radu Oprean
- Analytical Chemistry Department, Iuliu Hatieganu University of Medicine and Pharmacy, 4, Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (R.C.); (I.B.-N.)
- Correspondence:
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; (R.C.); (I.B.-N.)
- Department of Functional Genomics and Experimental Pathology, “Prof. Dr. Ion Chiricuţă” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
44
|
Epigenetic silencing of CDKN1A and CDKN2B by SNHG1 promotes the cell cycle, migration and epithelial-mesenchymal transition progression of hepatocellular carcinoma. Cell Death Dis 2020; 11:823. [PMID: 33009370 PMCID: PMC7532449 DOI: 10.1038/s41419-020-03031-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
Enhanced SNHG1 (small nucleolar RNA host gene 1) expression has been found to play a critical role in the initiation and progression of hepatocellular carcinoma (HCC) with its detailed mechanism largely unknown. In this study, we show that SNHG1 promotes the HCC progression through epigenetically silencing CDKN1A and CDKN2B in the nucleus, and competing with CDK4 mRNA for binding miR-140-5p in the cytoplasm. Using bioinformatics analyses, we found hepatocarcinogenesis is particularly associated with dysregulated expression of SNHG1 and activation of the cell cycle pathway. SNHG1 was upregulated in HCC tissues and cells, and its knockdown significantly inhibited HCC cell cycle, growth, metastasis, and epithelial–mesenchymal transition (EMT) both in vitro and in vivo. Chromatin immunoprecipitation and RNA immunoprecipitation assays demonstrate that SNHG1 inhibit the transcription of CDKN1A and CDKN2B through enhancing EZH2 mediated-H3K27me3 in the promoter of CDKN1A and CDKN2B, thus resulting in the de-repression of the cell cycle. Dual-luciferase assay and RNA pulldown revealed that SNHG1 promotes the expression of CDK4 by competitively binding to miR-140-5p. In conclusion, we propose that SNHG1 formed a regulatory network to confer an oncogenic function in HCC and SNHG1 may serve as a potential target for HCC diagnosis and treatment.
Collapse
|
45
|
Wei J, Wang L, Sun Y, Bao Y. LINC00662 contributes to the progression and the radioresistance of cervical cancer by regulating miR-497-5p and CDC25A. Cell Biochem Funct 2020; 38:1139-1151. [PMID: 32869878 DOI: 10.1002/cbf.3580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 12/11/2022]
Abstract
It is reported that long intergenic non-coding RNA 00662 (LINC00662) plays an oncogenic role in tumours. However, the mechanism of LINC00662 in regulating the progression and radiosensitivity of cervical cancer (CC) is not clear. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was adopted to detect LINC00662 and miR-497-5p expressions in CC tissues and cells. The expression of cell division cycle 25 A (CDC25A) in CC cells was examined by Western blot. CC cell proliferation was determined by cell counting kit-8 (CCK-8) and BrdU assays. The survival rate of CC cells was evaluated by colony formation assay under different doses of X-ray irradiation. CC cell migration and invasion were probed by Transwell assay. Besides, the interactions between miR-497-5p and LINC00662, and miR-497-5p and the 3'UTR of CDC25A were verified by dual-luciferase reporter assay, RIP assay, and RNA pull-down experiments. We demonstrated that, LINC00662 expression was remarkably raised in CC tissues and cell lines. LINC00662 overexpression promoted proliferation, migration, invasion and radioresistance of CC cells, and LINC00662 knockdown inhibited the above malignant phenotypes of CC cells. In terms of mechanism, LINC00662 facilitated CC progression and radioresistance by adsorbing miR-497-5p and indirectly up-regulating CDC25A expression. In a word, the LINC00662/miR-497-5p/CDC25A axis boosts proliferation and metastasis of CC cells and enhances the radioresistance of cancer cells. SIGNIFICANCE OF THE STUDY: CC poses a threat to the health of women all over the world. In this study, we demonstrated for the first time that LINC00662 expression was remarkably raised in CC tissues and cells. Cellular experiments confirmed that LINC00662 facilitated cell proliferation, migration, invasion and radiation resistance through the miR-497-5p/CDC25A axis, which might be a promising target for CC treatments.
Collapse
Affiliation(s)
- Jiemei Wei
- Department of Internal Medicine, Central Hospital of Linyi, Linyi, China
| | - Lili Wang
- Department of Laboratory, The Third People's Hospital of Linyi, Linyi, China
| | - Yanli Sun
- Department of Laboratory, Dongchangfu District Maternal and Child Health Hospital of Liaocheng, Liaocheng, China
| | - Yongxin Bao
- Department of Anesthesiology, Qingdao Women and Children's Hospital, Qingdao, China
| |
Collapse
|
46
|
Long noncoding RNA XIST knockdown suppresses the growth of colorectal cancer cells via regulating microRNA-338-3p/PAX5 axis. Eur J Cancer Prev 2020; 30:132-142. [PMID: 32826710 DOI: 10.1097/cej.0000000000000596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Colorectal cancer is one of the most common human cancers worldwide. Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) have been reported as the regulators in cancers. The purpose of this study was to reveal the functional mechanisms of lncRNA x inactive specific transcript (XIST) and miR-338-3p in colorectal cancer cells. METHODS The transcription level and protein level of genes were assessed by quantitative real-time PCR (qRT-PCR) and western blot assay, respectively. 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry analysis were used to determine cell proliferation ability and apoptosis rate, respectively. In addition, cell migratory ability and invasive ability were measured using transwell assay. Besides, the interaction between miR-338-3p and XIST or paired box 5 (PAX5) was predicted by starBase or TargetScan and then verified by the dual-luciferase reporter assay. RESULTS XIST and PAX5 expression were increased, and miR-338-3p expression was decreased in colorectal cancer tissues and cells. XIST knockdown significantly repressed cell proliferation, migration and invasion, and accelerated apoptosis in colorectal cancer cells. Interestingly, XIST directly downregulated miR-338-3p expression to increase PAX5 level. As expected, XIST knockdown inhibited colorectal cancer cell growth by modulating miR-338-3p expression. Furthermore, miR-338-3p suppressed cell growth via downregulation of PAX5 level in colorectal cancer cells. CONCLUSION Our results demonstrated that the downregulation of XIST inhibited cell proliferation, migration and invasion, and induced apoptosis through modulating miR-338-3p/PAX5 axis in colorectal cancer cells, providing potential target for the prevention and treatment of colorectal cancer.
Collapse
|
47
|
Li Z, Feng Y, Zhang Z, Cao X, Lu X. TMPO-AS1 promotes cell proliferation of thyroid cancer via sponging miR-498 to modulate TMPO. Cancer Cell Int 2020; 20:294. [PMID: 32669970 PMCID: PMC7346673 DOI: 10.1186/s12935-020-01334-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/09/2020] [Indexed: 01/14/2023] Open
Abstract
Background Thyroid cancer (TC) is the most frequent endocrine malignancy. Long noncoding RNAs (lncRNAs) have been confirmed to act as significant roles in tumor development. The role of lncRNA TMPO-AS1 in TC is still unclear, so it remains to be explored. The aim of the research is to investigate the role and regulatory mechanism of TMPO-AS1 in TC. Methods TMPO-AS1 and TMPO expression in TC tumors and cells was detected by TCGA database and QRT-PCR assay respectively. CCK-8, EDU, TUNEL and western blot assays were conducted to identify the biological functions of TMPO-AS1 in TC. Luciferase reporter and RNA pull down assays were conducted to measure the interaction among TMPO-AS1, TMPO and miR-498. Results TMPO-AS1 was overexpressed in TC tissues and cell lines. Knockdown of TMPO-AS1 suppressed cell growth and accelerated cell apoptosis in TC. Furthermore, downregulation of TMPO-AS1 suppressed TMPO expression in TC. The data suggested that TMPO expression was upregulated in TC tissues and cell lines and was positively correlated with TMPO-AS1 expression in TC. Furthermore, the expression of miR-498 presented low expression in TC cells. And miR-498 expression was negatively regulated by TMPO-AS1, meanwhile, TMPO expression was negatively regulated by miR-498 in TC cells. Besides, it was confirmed that TMPO-AS1 could bind with miR-498 and TMPO in TC cells. In addition, it was validated that TMPO-AS1 elevated the levels of TMPO via sponging miR-498 in TC cells. Conclusions TMPO-AS1 promotes cell proliferation in TC via sponging miR-498 to modulate TMPO.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhongyuan District, Zhengzhou, 450000 Henan China.,Department of Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000 Henan China
| | - Yun Feng
- Department of Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000 Henan China
| | - Zhen Zhang
- Department of Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000 Henan China
| | - Xiaozhong Cao
- Department of Thyroid Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, 471000 Henan China
| | - Xiubo Lu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East Road, Zhongyuan District, Zhengzhou, 450000 Henan China
| |
Collapse
|
48
|
Shen J, Xiong J, Shao X, Cheng H, Fang X, Sun Y, Di G, Mao J, Jiang X. Knockdown of the long noncoding RNA XIST suppresses glioma progression by upregulating miR-204-5p. J Cancer 2020; 11:4550-4559. [PMID: 32489472 PMCID: PMC7255366 DOI: 10.7150/jca.45676] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/26/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Gliomas are the most prevalent primary malignant tumors of the central nervous system. Our previous study showed that miR-204-5p is a tumor suppressor gene in glioma. Bioinformatic analyses suggest that long noncoding RNA (lncRNA) X-inactive specific transcript (XIST) is a potential target gene of miR-204-5p. Methods: We analyzed the expression of XIST and miR-204-5p in glioma tissues and the correlation with glioma grade. A series of in vitro experiments were carried out to elucidate the role of XIST in glioma progression. A mouse xenograft model was established to detect whether knockdown of XIST can inhibit glioma growth. A luciferase assay was performed to determine whether XIST can bind to miR-204-5p and the binding specificity. Cells stably expressing shXIST or shNC were transfected with anti-miR-204-5p or anti-miR-204-5p-NC to evaluate whether XIST mediates the tumor-suppressive effects of miR-204-5p. Results: XIST was upregulated in glioma tissues compared with normal brain tissues (NBTs), while miR-204-5p expression was significantly decreased in glioma tissues compared with NBTs. Both XIST and miR-204-5p expression levels were clearly related to glioma grade, and the expression of XIST was obviously negatively correlated with miR-204-5p expression. Knockdown of XIST inhibited glioma cell proliferation, migration, and invasion, promoted apoptosis of glioma cells, inhibited tumor growth and increased the survival time in nude mice. miR-204-5p could directly bind to XIST and negatively regulate XIST expression. XIST mediated glioma progression by targeting miR-204-5p in glioma cells. XIST crosstalk with miR-204-5p regulated Bcl-2 expression to promote apoptosis. Conclusion: Our results provide evidence that XIST, miR-204-5p and Bcl-2 form a regulatory axis that controls glioma progression and can serve as a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Jun Shen
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Jianhua Xiong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, P.R. China
| | - Xuefei Shao
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Hao Cheng
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Xinyun Fang
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Yongkang Sun
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Guangfu Di
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| | - Jie Mao
- Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, P.R. China
| | - Xiaochun Jiang
- Department of Neurosurgery, The First Affiliated Hospital (Yijishan Hospital) of Wannan Medical College, Wuhu, P.R. China
| |
Collapse
|
49
|
Tang B, Li W, Ji T, Li X, Qu X, Feng L, Zhu Y, Qi Y, Zhu C, Bai S. Downregulation of XIST ameliorates acute kidney injury by sponging miR-142-5p and targeting PDCD4. J Cell Physiol 2020; 235:8852-8863. [PMID: 32347551 DOI: 10.1002/jcp.29729] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) is a common kidney disease that markedly affects public health. To date, the roles of long noncoding RNA XIST in AKI are poorly understood. Here, we investigated the biological functions of XIST in AKI. We observed that XIST expression increased in patients with AKI and HK-2 cells stimulated by CoCl2 . In addition, a rat AKI model induced by ischemia-reperfusion was established. Tumor necrosis factor-α, interleukin-6, and cyclooxygenase-2 messenger RNA expression were induced in vivo; moreover, XIST expression was upregulated. Knockdown of XIST significantly repressed CoCl2 -triggered injury in HK-2 cells. However, microRNA (miR)-142-5p, a downstream target of XIST, was downregulated in AKI. miR-142-5p was repressed by XIST and miR-142-5p could inhibit CoCl2 -induced injury in HK-2 cells. Moreover, PDCD4 expression was significantly increased in AKI. PDCD4 was predicted to be the target of miR-142-5p. Subsequently, loss of PDCD4 was able to retard injury in HK-2 cells exposed to CoCl2. Thus, we suggest that XIST regulates miR-142-5p and PDCD4, and it has the potential to function as a biomarker in therapeutic strategies for AKI.
Collapse
Affiliation(s)
- Bo Tang
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weiliang Li
- Department of Urology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Tingting Ji
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaoying Li
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xiaolei Qu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Linhong Feng
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yingchun Zhu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yinghui Qi
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Chun Zhu
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shoujun Bai
- Department of Nephrology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
50
|
Sharma S, Munger K. The Role of Long Noncoding RNAs in Human Papillomavirus-associated Pathogenesis. Pathogens 2020; 9:pathogens9040289. [PMID: 32326624 PMCID: PMC7238103 DOI: 10.3390/pathogens9040289] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
Infections with high-risk human papillomaviruses cause ~5% of all human cancers. E6 and E7 are the only viral genes that are consistently expressed in cancers, and they are necessary for tumor initiation, progression, and maintenance. E6 and E7 encode small proteins that lack intrinsic enzymatic activities and they function by binding to cellular regulatory molecules, thereby subverting normal cellular homeostasis. Much effort has focused on identifying protein targets of the E6 and E7 proteins, but it has been estimated that ~98% of the human transcriptome does not encode proteins. There is a growing interest in studying noncoding RNAs as biochemical targets and biological mediators of human papillomavirus (HPV) E6/E7 oncogenic activities. This review focuses on HPV E6/E7 targeting cellular long noncoding RNAs, a class of biologically versatile molecules that regulate almost every known biological process and how this may contribute to viral oncogenesis.
Collapse
|