1
|
Nowak K, Oluwayiose OA, Houle E, Maxwell DL, Sawant S, Paskavitz A, Ford JB, Minguez-Alarcon L, Calafat AM, Hauser R, Pilsner JR. Urinary concentrations of phthalate and phthalate alternative metabolites and sperm DNA methylation: A multi-cohort and meta-analysis of men in preconception studies. ENVIRONMENT INTERNATIONAL 2024; 192:109049. [PMID: 39393261 DOI: 10.1016/j.envint.2024.109049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/12/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Phthalates are ubiquitous pollutants in the environment; however, the mechanisms of phthalate-associated reproductive disorders in men are not fully understood. The aim of this study is to investigate associations between urinary phthalate metabolite concentrations and sperm DNA methylation. The study was conducted on 697 men from three prospective pregnancy cohorts: Longitudinal Investigation of Fertility and the Environment (LIFE) Study, Sperm Environmental Epigenetics and Development Study (SEEDS), and Environment and Reproductive Health (EARTH) Study. Eighteen phthalate and two phthalate alternative metabolites were quantified by mass spectrometry in preconception urinary samples and sperm DNA methylation was measured via Illumina EPIC Array (v1). Regional methylation analyses were conducted to identify cohort-specific loci associated with urinary phthalate metabolites. Models were adjusted for age, body mass index (BMI), race, smoking status, urinary creatinine/specific gravity, and analytical batch for phthalate measurements. The cohort-specific results were meta-analyzed using METAL. Participants had an average age of 30 years, most (79.6 %) of whom had BMI>25 kg/m2 and were non-smokers (90.1 %). A total of 7,979 differentially methylated regions (DMRs; 7,979 LIFE-specific DMRs, 72 SEEDS-specific DMRs, and 23 EARTH-specific DMRs) were associated with urinary MBzP, MiBP, MMP, MCNP, MCPP, MBP, and MCOCH. Meta-analysis identified fewer DMRs than cohort-specific models: 946 DMRs were associated with MBzP, 27 DMRs associated with MiBP, and 1 DMR associated with MEHP. The majority of cohort-specific and meta-analysis-derived DMRs displayed a positive association with phthalate metabolite concentrations and were enriched in genes associated with spermatogenesis, response to hormones and their metabolism, embryonic organ development and developmental growth. In conclusion, several preconception urinary phthalate metabolites were associated with increased DNA methylation patterns in sperm. These findings provide an epigenetic pathway by which environmental phthalate exposures can impact couples' reproductive outcomes.
Collapse
Affiliation(s)
- Karolina Nowak
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Oladele A Oluwayiose
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Emily Houle
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - DruAnne L Maxwell
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Savni Sawant
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Amanda Paskavitz
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Jennifer B Ford
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Lidia Minguez-Alarcon
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Russ Hauser
- Departments of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - J Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
2
|
Bolormaa E, Kim T, Gwak E, Choe SA, Martin Hilber A. Neighbourhood environment and early menarche among adolescent girls of five countries. EUR J CONTRACEP REPR 2024:1-6. [PMID: 39166721 DOI: 10.1080/13625187.2024.2387648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/15/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION We aim to investigate the relationship between individuals' perceptions of their neighbourhood environment and early menarche. METHODS This was a retrospective cohort study of 7,486 girls of Ethiopia, India, South Korea, the United Kingdom (UK), and the United States (US), born in 1997-2011 was analysed. Early menarche was defined as being below the 10th to 20th percentiles in each cohort, considering the varying distributions across countries. Perceived neighbourhood environments were assessed based on the responses for neighbourhood pollution, safety, and recreational facilities. We calculated the relative risk (RR) of early menarche for unfavourable environment. RESULTS The mean age at menarche was lowest in South Korea (10.6 years) and highest in Ethiopia (13.7 years). Unfavourable environment was associated with higher risk of early menarche overall (RR = 1.34, 95% confidence interval [CI]:1.09-1.65) and each country (3.03, 95% CI: 1.15-7.96 in Ethiopia; 1.99, 95% CI: 0.97-4.10 in India, 1.23, 95% CI: 0.67-2.27 in Korea; 1.26, 95% CI: 0.96-1.64 in the UK). Specifically, pollution (1.29, 95% CI: 1.03-1.62) and low safety (1.19, 95% CI: 1.60-1.88) were associated with early menarche. CONCLUSIONS Our finding highlights the potential role of perceived neighbourhood environment in the timing of puberty.
Collapse
Affiliation(s)
| | - Taemi Kim
- Department of Public Health, Korea University, Seoul, South Korea
| | - Eunson Gwak
- Department of Preventive Medicine, Korea University College of Medicine, Korea University, Seoul, South Korea
| | - Seung-Ah Choe
- Department of Preventive Medicine, Korea University College of Medicine, Korea University, Seoul, South Korea
- Research and Management Center for Health Risk of Particulate Matter, Seoul, Republic of Korea
| | - Adriane Martin Hilber
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
3
|
Kim S, Cho SY, Yoon S, Kim D, Park HW, Kang J, Huh SW. Relationship between the use of hair products and urine benzophenone-3: the Korean National Environmental Health Survey (KoNEHS) cycle 4. Ann Occup Environ Med 2024; 36:e20. [PMID: 39188668 PMCID: PMC11345219 DOI: 10.35371/aoem.2024.36.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 08/28/2024] Open
Abstract
Background Benzophenone-3 is a type of ketone with 2 benzene rings attached to a carbonyl group (C=O) and one benzene ring attached to a hydroxyl group (-OH). As an endocrine-disrupting chemical, benzophenone-3 is known to be associated with reproductive, developmental, thyroid, and endocrine toxicities. Benzophenone-3 is commonly used in hair products, cosmetics, and ultraviolet (UV) filters because of its characteristic property to absorb UV light. This study aims to investigate the association between the use of hair products and urine benzophenone-3 using the data from the Korean National Environmental Health Survey (KoNEHS) cycle 4 (2018-2020), which represents the Korean population. Methods Using the KoNEHS cycle 4 survey, the data of 3,796 adults aged ≥ 19 years were analyzed. Based on the 75th percentile concentration of urine benzophenone-3, the participants were divided into the low- and high-concentration groups. Chi-square test was conducted to analyze the association of urine benzophenone-3 with distribution of general characteristics, use of personal care products, consumption of marine foods, and use of plastic products as the variable. Logistic regression analysis was conducted to calculate odds ratios (ORs) for the high-concentration group of urine benzophenone-3 based on the use of hair products. Results Women with < 6 times or ≥ 6 times of hair product usage had significantly higher adjusted ORs compared to those who did not use hair products. The calculated ORs were 1.24 (95% confidence interval [CI]: 1.12-1.38) for women with < 6 times of usage and 1.54 (95% CI: 1.33-1.79) for women with ≥ 6 times of usage. Conclusions This study revealed the association between the use of hair products and the concentration of urine benzophenone-3 in the general Korean population.
Collapse
Affiliation(s)
- Siyoung Kim
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Seong-yong Cho
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Seongyong Yoon
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Daehwan Kim
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Hyun Woo Park
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Jisoo Kang
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Sung Woo Huh
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| |
Collapse
|
4
|
Khodasevich D, Holland N, Harley KG, Eskenazi B, Barcellos LF, Cardenas A. Prenatal exposure to environmental phenols and phthalates and altered patterns of DNA methylation in childhood. ENVIRONMENT INTERNATIONAL 2024; 190:108862. [PMID: 38972116 DOI: 10.1016/j.envint.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Epigenetic marks are key biomarkers linking the prenatal environment to health and development. However, DNA methylation associations and persistence of marks for prenatal exposure to multiple Endocrine Disrupting Chemicals (EDCs) in human populations have not been examined in great detail. METHODS We measured Bisphenol-A (BPA), triclosan, benzophenone-3 (BP3), methyl-paraben, propyl-paraben, and butyl-paraben, as well as 11 phthalate metabolites, in two pregnancy urine samples, at approximately 13 and 26 weeks of gestation in participants of the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study (N = 309). DNA methylation of cord blood at birth and child peripheral blood at ages 9 and 14 years was measured with 450K and EPIC arrays. Robust linear regression was used to identify differentially methylated probes (DMPs), and comb-p was used to identify differentially methylated regions (DMRs) in association with pregnancy-averaged EDC concentrations. Quantile g-computation was used to assess associations of the whole phenol/phthalate mixture with DMPs and DMRs. RESULTS Prenatal BPA exposure was associated with 1 CpG among males and Parabens were associated with 10 CpGs among females at Bonferroni-level significance in cord blood. Other suggestive DMPs (unadjusted p-value < 1 × 10-6) and several DMRs associated with the individual phenols and whole mixture were also identified. A total of 10 CpG sites at least suggestively associated with BPA, Triclosan, BP3, Parabens, and the whole mixture in cord blood were found to persist into adolescence in peripheral blood. CONCLUSIONS We found sex-specific associations between prenatal phenol exposure and DNA methylation, particularly with BPA in males and Parabens in females. Additionally, we found several DMPs that maintained significant associations with prenatal EDC exposures at age 9 and age 14 years.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Division of Environmental Health Sciences, Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Nina Holland
- Center for Environmental Research and Community Health (CERCH), Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kim G Harley
- Center for Environmental Research and Community Health (CERCH), Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Community Health (CERCH), Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Lisa F Barcellos
- Division of Epidemiology, Berkeley Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Freire C, Castiello F, Babarro I, Anguita-Ruiz A, Casas M, Vrijheid M, Sarzo B, Beneito A, Kadawathagedara M, Philippat C, Thomsen C, Sakhi AK, Lopez-Espinosa MJ. Association of prenatal exposure to phthalates and synthetic phenols with pubertal development in three European cohorts. Int J Hyg Environ Health 2024; 261:114418. [PMID: 38968838 DOI: 10.1016/j.ijheh.2024.114418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND There is limited epidemiological evidence on the association of prenatal exposure to phthalates and synthetic phenols with altered pubertal timing. OBJECTIVE To examine the association of prenatal exposure to phthalates, bisphenol A (BPA), parabens, benzophenone 3 (BP-3), and triclosan (TCS) with pubertal development in girls and boys from three European cohorts. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP), BPA, methyl- (MePB), ethyl- (EtPB), propyl- (PrPB), and butyl-paraben (BuPB), BP-3, and TCS were quantified in one or two (1st and 3rd trimester) urine samples collected during pregnancy (1999-2008) from mothers in three birth cohorts: INMA (Spain), EDEN (France), and MoBa (Norway). Pubertal development of their children was assessed at a single visit at age 7-12 years (579 girls, 644 boys) using the parent-reported Pubertal Development Scale (PDS). Mixed-effect Poisson and g-computation and Bayesian Kernel Machine Regression (BKMR) were employed to examine associations of individual and combined prenatal chemical exposure, respectively, with the probability of overall pubertal onset, adrenarche, and gonadarche (stage 2+) in girls and boys. Effect modification by child body mass index (BMI) was also assessed. RESULTS Maternal concentrations of the molar sum of DEHP and of DiNP metabolites were associated with a slightly higher probability of having started puberty in boys (relative risk, RR [95% CI] = 1.13 [0.98-1.30] and 1.20 [1.06-1.34], respectively, for a two-fold increase in concentrations), with a stronger association for DiNP in boys with overweight or obesity. In contrast, BPA, BuPB, EtPB, and PrPB were associated with a lower probability of pubertal onset, adrenarche, and/or gonadarche in all boys (e.g. overall puberty, BPA: RR [95% CI] = 0.93 [0.85-1.01] and BuPB: 0.95 [0.90-1.00], respectively), and the association with BPA was stronger in boys with underweight/normal weight. In girls, MEHP and BPA were associated with delayed gonadarche in those with underweight/normal weight (RR [95% CI] = 0.86 [0.77-0.95] and 0.90 [0.84-0.97], respectively). Most of these associations were trimester specific. However, the chemical mixture was not associated with any pubertal outcome in boys or girls. CONCLUSIONS Prenatal exposure to certain phthalates and synthetic phenols such as BPA may impact the pubertal development of boys, and weight status may modify this effect. BPA may also alter the pubertal development of girls.
Collapse
Affiliation(s)
- Carmen Freire
- Department of Legal Medicine, Toxicology, and Physical Anthropology, School of Medicine, University of Granada, 18016, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Francesca Castiello
- Pediatric Unit, Germans Trias I Pujol University Hospital, 08916, Badalona, Spain
| | - Izaro Babarro
- Faculty of Medicine and Nursing, University of the Basque Country (UPV/EU), 20014, Donostia/San Sebastián, Spain; Biogipuzkoa Health Research Institute, 20014, Donostia/San Sebastián, Spain
| | - Augusto Anguita-Ruiz
- ISGlobal, 08036, Barcelona, Spain; CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Maribel Casas
- ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Martine Vrijheid
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain
| | - Blanca Sarzo
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, 75004, Paris, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm, U1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Amrit Kaur Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, 0456, Oslo, Norway
| | - Maria-Jose Lopez-Espinosa
- CIBER of Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, 28029, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain
| |
Collapse
|
6
|
Li Z, Xian H, Ye R, Zhong Y, Liang B, Huang Y, Dai M, Guo J, Tang S, Ren X, Bai R, Feng Y, Deng Y, Yang X, Chen D, Yang Z, Huang Z. Gender-specific effects of polystyrene nanoplastic exposure on triclosan-induced reproductive toxicity in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172876. [PMID: 38692326 DOI: 10.1016/j.scitotenv.2024.172876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/20/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Nanoplastics (NPs) and triclosan (TCS) are ubiquitous emerging environmental contaminants detected in human samples. While the reproductive toxicity of TCS alone has been studied, its combined effects with NPs remain unclear. Herein, we employed Fourier transform infrared spectroscopy and dynamic light scattering to characterize the coexposure of polystyrene nanoplastics (PS-NPs, 50 nm) with TCS. Then, adult zebrafish were exposed to TCS at environmentally relevant concentrations (0.361-48.2 μg/L), with or without PS-NPs (1.0 mg/L) for 21 days. TCS biodistribution in zebrafish tissues was investigated using ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry. Reproductive toxicity was assessed through gonadal histopathology, fertility tests, changes in steroid hormone synthesis and gene expression within the hypothalamus-pituitary-gonad-liver (HPGL) axis. Transcriptomics and proteomics were applied to explore the underlying mechanisms. The results showed that PS-NPs could adsorb TCS, thus altering the PS-NPs' physical characteristics. Our observations revealed that coexposure with PS-NPs reduced TCS levels in the ovaries, livers, and brains of female zebrafish. Conversely, in males, coexposure with PS-NPs increased TCS levels in the testes and livers, while decreasing them in the brain. We found that co-exposure mitigated TCS-induced ovary development inhibition while exacerbated TCS-induced spermatogenesis suppression, resulting in increased embryonic mortality and larval malformations. This co-exposure influenced the expression of genes linked to steroid hormone synthesis (cyp11a1, hsd17β, cyp19a1) and attenuated the TCS-decreased estradiol (E2) in females. Conversely, testosterone levels were suppressed, and E2 levels were elevated due to the upregulation of specific genes (cyp11a1, hsd3β, cyp19a1) in males. Finally, the integrated analysis of transcriptomics and proteomics suggested that the aqp12-dctn2 pathway was involved in PS-NPs' attenuation of TCS-induced reproductive toxicity in females, while the pck2-katnal1 pathway played a role in PS-NPs' exacerbation of TCS-induced reproductive toxicity in males. Collectively, PS-NPs altered TCS-induced reproductive toxicity by disrupting the HPGL axis, with gender-specific effects.
Collapse
Affiliation(s)
- Zhiming Li
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hongyi Xian
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Rongyi Ye
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yizhou Zhong
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Boxuan Liang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yuji Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Mingzhu Dai
- Hunter Biotechnology, Inc., Hangzhou 310051, China
| | - Jie Guo
- Hunter Biotechnology, Inc., Hangzhou 310051, China
| | - Shuqin Tang
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xiaohu Ren
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Ruobing Bai
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yu Feng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Yanhong Deng
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Xingfen Yang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Da Chen
- College of Environment and Climate, Guangdong Provincial Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Department of Biology, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region, China
| | - Zhenlie Huang
- NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China; Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
7
|
Wang Z, Asokan G, Onnela JP, Baird DD, Jukic AMZ, Wilcox AJ, Curry CL, Fischer-Colbrie T, Williams MA, Hauser R, Coull BA, Mahalingaiah S. Menarche and Time to Cycle Regularity Among Individuals Born Between 1950 and 2005 in the US. JAMA Netw Open 2024; 7:e2412854. [PMID: 38809557 PMCID: PMC11137638 DOI: 10.1001/jamanetworkopen.2024.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/01/2024] [Indexed: 05/30/2024] Open
Abstract
Importance Early menarche is associated with adverse health outcomes. Trends toward earlier menarche have been observed in the US, but data remain limited on differences by sociodemographic factors and body mass index (BMI). Time from menarche to cycle regularity is another understudied early-life characteristic with health implications. Objectives To evaluate the temporal trends and disparities in menarche and time to regularity and explore early-life BMI as a mediator. Design, Setting, and Participants This ongoing cohort study enrolled participants from an ongoing mobile application-based US cohort from November 14, 2019, to March 20, 2023. Exposures Birth year (categorized as 1950-1969, 1970-1979, 1980-1989, 1990-1999, and 2000-2005). Main Outcomes and Measures Main outcomes were age at menarche and time to regularity, which were self-recalled at enrollment. In addition, early (aged <11 years), very early (aged <9 years), and late (aged ≥16 years) age at menarche was assessed. Results Among the 71 341 female individuals who were analyzed (mean [SD] age at menarche, 12.2 [1.6] years; 2228 [3.1%] Asian, 3665 [5.1%] non-Hispanic Black, 4918 [6.9%] Hispanic, 49 518 [69.4%] non-Hispanic White, and 8461 [11.9%] other or multiple races or ethnicities), 5223 were born in 1950 to 1969, 12 226 in 1970 to 1979, 22 086 in 1980 to 1989, 23 894 in 1990 to 1999, and 7912 in 2000 to 2005. The mean (SD) age at menarche decreased from 12.5 (1.6) years in 1950 to 1969 to 11.9 (1.5) years in 2000 to 2005. The number of individuals experiencing early menarche increased from 449 (8.6%) to 1223 (15.5%), the number of individuals experiencing very early menarche increased from 31 (0.6%) to 110 (1.4%), and the number of individuals experiencing late menarche decreased from 286 (5.5%) to 137 (1.7%). For 61 932 participants with reported time to regularity, the number reaching regularity within 2 years decreased from 3463 (76.3%) to 4075 (56.0%), and the number not yet in regular cycles increased from 153 (3.4%) to 1375 (18.9%). The magnitude of the trend toward earlier menarche was greater among participants who self-identified as Asian, non-Hispanic Black, or other or multiple races (vs non-Hispanic White) (P = .003 for interaction) and among participants self-rated with low (vs high) socioeconomic status (P < .001 for interaction). Within a subset of 9865 participants with data on BMI at menarche, exploratory mediation analysis estimated that 46% (95% CI, 35%-61%) of the temporal trend in age at menarche was explained by BMI. Conclusions and Relevance In this cohort study of 71 341 individuals in the US, as birth year increased, mean age at menarche decreased and time to regularity increased. The trends were stronger among racial and ethnic minority groups and individuals of low self-rated socioeconomic status. These trends may contribute to the increase in adverse health outcomes and disparities in the US.
Collapse
Affiliation(s)
- Zifan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Gowtham Asokan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jukka-Pekka Onnela
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Donna D. Baird
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| | - Anne Marie Z. Jukic
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| | - Allen J. Wilcox
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| | | | | | - Michelle A. Williams
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Brent A. Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shruthi Mahalingaiah
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
8
|
Laue HE, Lanphear BP, Calafat AM, Cecil KM, Chen A, Xu Y, Kalkwarf HJ, Madan JC, Karagas MR, Yolton K, Fleisch AF, Braun JM. Time-varying associations of gestational and childhood triclosan with pubertal and adrenarchal outcomes in early adolescence. Environ Epidemiol 2024; 8:e305. [PMID: 38617430 PMCID: PMC11008648 DOI: 10.1097/ee9.0000000000000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/07/2024] [Indexed: 04/16/2024] Open
Abstract
Background Triclosan is an endocrine-disrupting chemical, but associations with pubertal outcomes remain unclear. We examined associations of gestational and childhood triclosan with adolescent hormone concentrations and pubertal stage. Methods We quantified urinary triclosan concentrations twice during pregnancy and seven times between birth and 12 years in participants recruited from Cincinnati, OH (2003-2006). We averaged concentrations across pregnancy and childhood and separately considered individual exposure periods in multiple informant models. At 12 years, we measured serum hormone concentrations (males [n = 72] and females [n = 84]-dehydroepiandrosterone-sulfate, luteinizing hormone, follicle-stimulating hormone; males-testosterone; females-estradiol). Also at age 12 years, participants self-reported physical development and menarchal timing. We estimated associations (95% confidence interval) of triclosan with hormone concentrations, more advanced physical development, and age at menarche. Results For females, each doubling of childhood triclosan was associated with 16% lower estradiol concentrations (-29%, 0%), with stronger associations for measures closer to adolescence. We found suggestive evidence that higher triclosan at any age was associated with ~10% (for gestational triclosan: -18%, -2%) lower follicle-stimulating hormone concentrations among males and early postnatal (1-3 years) triclosan was associated with 63% (5%, 96%) lower odds of advanced pubic hair development in females. In multiple informant models, each doubling of gestational triclosan concentrations was associated with 5% (0%, 9%) earlier age at menarche, equivalent to 5.5 months. Conclusion Gestational and childhood triclosan concentrations were related to some pubertal outcomes including hormone concentrations and age at menarche. Our findings highlight the relevance of elucidating potential sex-specific and time-dependent actions of triclosan.
Collapse
Affiliation(s)
- Hannah E. Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kim M. Cecil
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Cincinnati, Ohio
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Cincinnati, Ohio
| | - Heidi J. Kalkwarf
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Cincinnati, Ohio
| | - Juliette C. Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
- Departments of Pediatrics and Psychiatry, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine Cincinnati, Cincinnati, Ohio
| | - Abby F. Fleisch
- Center for Interdisciplinary and Population Health Research, Maine Institute for Research, Portland, Maine
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, Maine
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island
| |
Collapse
|
9
|
Kim MR, Jung MK, Jee HM, Ha EK, Lee S, Han MY, Yoo EG. The association between phthalate exposure and pubertal development. Eur J Pediatr 2024; 183:1675-1682. [PMID: 38206396 DOI: 10.1007/s00431-023-05416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/19/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Antiandrogenic effect of phthalates have been reported; however, results regarding the effect of phthalate exposure in pubertal children have been inconsistent. We aimed to investigate the relationship between phthalate exposure and pubertal development, especially whether high molecular weight phthalates (HMWP) and low molecular weight phthalates (LMWP) are differently associated in boys and girls. Urinary phthalate metabolites (4 HMWPs and 3 LMWPs) in Korean children (236 boys and 202 girls, aged 10 to 12 years) were measured. The association between phthalate levels and pubertal development (pubertal stages self-reported by parents and sex steroid levels) was analyzed by generalized linear regression after adjusting for age, body mass index z score, and premature birth and/or low birth weight. Both the highest quartile of HMWP (Q4 vs Q1, adjusted odds ratio [OR], 0.238; 95% confidence interval [CI], 0.090-0.627; p = 0.004) and LMWP (Q4 vs Q1, adjusted OR, 0.373; 95% CI, 0.151-0.918; p = 0.032) were inversely associated with pubertal stages in boys, whereas the highest quartile of LMWP (Q4 vs Q1, adjusted OR, 2.431; 95% CI, 1.024-5.768; p = 0.044) was significantly related to advanced pubertal stages in girls. Testosterone levels in boys were significantly lower at the highest quartile of HMWP (adjusted β = - 0.251; 95% CI, - 0.476 to - 0.027; p = 0.028). However, in girls, we could not find any significant relationship between HMWP or LMWP and estradiol levels. CONCLUSIONS Our results suggest that phthalate exposure, especially exposure to the HMWP, may have inverse association with male pubertal development. Further investigation is required to verify the relationship of phthalate exposure and pubertal development in girls. WHAT IS KNOWN • Exposure to phthalates may have antiandrogenic effects. • Studies on the association between phthalates and pubertal development have yielded inconsistent results. WHAT IS NEW • Phthalate levels were inversely associated with self-reported pubertal stages in boys. • Exposure to phthalates might have a negative influence on male pubertal development.
Collapse
Affiliation(s)
- Mi Ra Kim
- Department of Pediatrics, CHA Ilsan Medical Center, CHA University School of Medicine, Goyang, Korea
| | - Mo Kyung Jung
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hye Mi Jee
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Eun Kyo Ha
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul, Korea
| | - Sanghoo Lee
- Center for Companion Biomarker, Seoul Clinical Laboratories Healthcare, Yongin, Korea
| | - Man Yong Han
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
| | - Eun-Gyong Yoo
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea.
| |
Collapse
|
10
|
Wang L, Ye X, Liu J. Effects of pharmaceutical and personal care products on pubertal development: Evidence from human and animal studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123533. [PMID: 38341062 DOI: 10.1016/j.envpol.2024.123533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/20/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Pharmaceutical and personal care products (PPCPs) include a wide range of drugs, personal care products and household chemicals that are produced and used in significant quantities. The safety of PPCPs has become a growing concern in recent decades due to their ubiquitous presence in the environment and potential risks to human health. PPCPs have been detected in various human biological samples, including those from children and adolescents, at concentrations ranging from several ng/L to several thousand μg/L. Epidemiological studies have shown associations between exposure to PPCPs and changes in the timing of puberty in children and adolescents. Animal studies have shown that exposure to PPCPs results in advanced or delayed pubertal onset. Mechanisms by which PPCPs regulate pubertal development include alteration of the hypothalamic kisspeptin and GnRH networks, disruption of steroid hormones, and modulation of metabolic function and epigenetics. Gaps in knowledge and further research needs include the assessment of environmental exposure to pharmaceuticals in children and adolescents, low-dose and long-term effects of exposure to PPCPs, and the modes of action of PPCPs on pubertal development. In summary, this comprehensive review examines the potential effects of exposure to PPCPs on pubertal development based on evidence from human and animal studies.
Collapse
Affiliation(s)
- Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Peralta M, Lizcano F. Endocrine Disruptors and Metabolic Changes: Impact on Puberty Control. Endocr Pract 2024; 30:384-397. [PMID: 38185329 DOI: 10.1016/j.eprac.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
OBJECTIVE This study aims to explore the significant impact of environmental chemicals on disease development, focusing on their role in developing metabolic and endocrine diseases. The objective is to understand how these chemicals contribute to the increasing prevalence of precocious puberty, considering various factors, including epigenetic changes, lifestyle, and emotional disturbances. METHODS The study employs a comprehensive review of descriptive observational studies in both human and animal models to identify a degree of causality between exposure to environmental chemicals and disease development, specifically focusing on endocrine disruption. Due to ethical constraints, direct causation studies in human subjects are not feasible; therefore, the research relies on accumulated observational data. RESULTS Puberty is a crucial life period with marked physiological and psychological changes. The age at which sexual characteristics develop is changing in many regions. The findings indicate a correlation between exposure to endocrine-disrupting chemicals and the early onset of puberty. These chemicals have been shown to interfere with normal hormonal processes, particularly during critical developmental stages such as adolescence. The research also highlights the interaction of these chemical exposures with other factors, including nutritional history, social and lifestyle changes, and emotional stress, which together contribute to the prevalence of precocious puberty. CONCLUSION Environmental chemicals significantly contribute to the development of certain metabolic and endocrine diseases, particularly in the rising incidence of precocious puberty. Although the evidence is mainly observational, it adequately justifies regulatory actions to reduce exposure risks. Furthermore, these findings highlight the urgent need for more research on the epigenetic effects of these chemicals and their wider impact on human health, especially during vital developmental periods.
Collapse
Affiliation(s)
- Marcela Peralta
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia
| | - Fernando Lizcano
- Center of Biomedical Investigation Universidad de La Sabana, CIBUS, Chía, Colombia; Department of Endocrinology, Diabetes and Nutrition, Fundación CardioInfantil-Instituto de Cardiología, Bogotá, Colombia.
| |
Collapse
|
12
|
Park S, Lee I, Park YJ, Kim TY, Kim H, Choi K. Association of blood metal exposure with age at menarche in Korean women: KNHANES (2008-2017). Int J Hyg Environ Health 2024; 256:114312. [PMID: 38142537 DOI: 10.1016/j.ijheh.2023.114312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/26/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Humans are exposed to metals in their daily lives and this metal exposure is responsible for various adverse health effects. Delayed pubertal development has been suggested as an adverse outcome of metal exposure; however, evidence in nationally representative populations, especially in Asia, is limited. We evaluated the association of blood cadmium (Cd), lead (Pb), and mercury (Hg) levels with the age at menarche in Korean females whose blood heavy metals were measured as part of the Korean National Health and Nutrition Examination Survey (KNHANES) 2008-2017. Among the females 16 years of age or older, all measured heavy metals in blood, i.e., Cd, Pb, and Hg, were positively associated with age at menarche. These associations remained significant in a model adjusted for age, survey year, income, education, body mass index, smoking history, and menopausal status as covariates (β: 0.10, 95% confidence interval (CI): 0.03-0.18 for Cd; β: 0.17, 95%CI: 0.06-0.27 for Pb; β: 0.12, 95%CI: 0.05-0.19 for Hg). When the population was separated by age group at the time of the survey, the significance between heavy metal levels and age at menarche became inconsistent, but the general trends were similar. Among those in their 20s and 40s, blood Cd showed a significant association, while Pb was significant among those in their 40s and 50s. A similar trend was observed in the sensitivity analysis in the girls aged 10-15 years at the time of the survey. Blood Cd levels were associated with decreased odds of precocious menarche (OR: 0.57, 95%CI: 0.31-1.03). Delayed menarche is a risk factor for cardiovascular and chronic kidney diseases in later life; hence, public health implication of heavy metal exposure warrants a public health attention.
Collapse
Affiliation(s)
- Suhyun Park
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inae Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Health & Environment, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Tae Yong Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ho Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Health & Environment, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Health & Environment, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
13
|
Gan H, Lan H, Hu Z, Zhu B, Sun L, Jiang Y, Wu L, Liu J, Ding Z, Ye X. Triclosan induces earlier puberty onset in female mice via interfering with L-type calcium channels and activating Pik3cd. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115772. [PMID: 38043413 DOI: 10.1016/j.ecoenv.2023.115772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antibacterial chemical widely presents in people's daily lives. Epidemiological studies have revealed that TCS exposure may affect female puberty development. However, the developmental toxicity after low-dose TCS continuous exposure remains to be confirmed. In our study, 8-week-old ICR female mice were continuously exposed to TCS (30, 300, 3000 μg/kg/day) or vehicle (corn oil) from 2 weeks before mating to postnatal day 21 (PND 21) of F1 female mice, while F1 female mice were treated with TCS intragastric administration from PND 22 until PND 56. Vaginal opening (VO) observation, hypothalamic-pituitary-ovarian (HPO) axis related hormones and genes detection, and ovarian transcriptome analysis were carried out to investigate the effects of TCS exposure on puberty onset. Meanwhile, human granulosa-like tumor cell lines (KGN cells) were exposed to TCS to further explore the biological mechanism of the ovary in vitro. The results showed that long-term exposure to low-dose TCS led to approximately a 3-day earlier puberty onset in F1 female mice. Moreover, TCS up-regulated the secretion of estradiol (E2) and the expression of ovarian steroidogenesis genes. Notably, ovarian transcriptomes analysis as well as bidirectional validation in KGN cells suggested that L-type calcium channels and Pik3cd were involved in TCS-induced up-regulation of ovarian-related hormones and genes. In conclusion, our study demonstrated that TCS interfered with L-type calcium channels and activated Pik3cd to up-regulate the expression of ovarian steroidogenesis and related genes, thereby inducing the earlier puberty onset in F1 female mice.
Collapse
Affiliation(s)
- Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Huili Lan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Zhiqin Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Ling Sun
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Yan Jiang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Lixiang Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|
14
|
Taylor KW, Howdeshell KL, Bommarito PA, Sibrizzi CA, Blain RB, Magnuson K, Lemeris C, Tracy W, Baird DD, Jackson CL, Gaston SA, Rider CV, Walker VR, Rooney AA. Systematic evidence mapping informs a class-based approach to assessing personal care products and pubertal timing. ENVIRONMENT INTERNATIONAL 2023; 181:108307. [PMID: 37948866 DOI: 10.1016/j.envint.2023.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Personal care products (PCPs) contain many different compounds and are a source of exposure to endocrine disrupting chemicals (EDCs), including phthalates and phenols. Early-life exposure to EDCs commonly found in PCPs has been linked to earlier onset of puberty. OBJECTIVE To characterize the human and animal evidence on the association between puberty-related outcomes and exposure to PCPs and their chemical constituents and, if there is sufficient evidence, identify groups of chemicals and outcomes to support a systematic review for a class-based hazard or risk assessment. METHODS We followed the OHAT systematic review framework to characterize the human and animal evidence on the association between puberty-related health outcomes and exposure to PCPs and their chemical constituents. RESULTS Ninety-eight human and 299 animal studies that evaluated a total of 96 different chemicals were identified and mapped by key concepts including chemical class, data stream, and puberty-related health outcome. Among these studies, phthalates and phenols were the most well-studied chemical classes. Most of the phthalate and phenol studies examined secondary sex characteristics and changes in estradiol and testosterone levels. Studies evaluating PCP use and other chemical classes (e.g., parabens) had less data. CONCLUSIONS This systematic evidence map identified and mapped the published research evaluating the association between exposure to PCPs and their chemical constituents and puberty-related health outcomes. The resulting interactive visualization allows researchers to make evidence-based decisions on the available research by enabling them to search, sort, and filter the literature base of puberty-related studies by key concepts. This map can be used by researchers and regulators to prioritize and target future research and funding to reduce uncertainties and address data gaps. It also provides information to inform a class-based hazard or risk assessment on the association between phthalate and phenol exposures and puberty-related health outcomes.
Collapse
Affiliation(s)
- Kyla W Taylor
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | - Kembra L Howdeshell
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Paige A Bommarito
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | - Donna D Baird
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Chandra L Jackson
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; National Institute on Minority Health and Health Disparities, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | - Symielle A Gaston
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Cynthia V Rider
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Vickie R Walker
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Andrew A Rooney
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
15
|
Hood RB, Hart JE, Laden F, Rosner B, Chavarro JE, Gaskins AJ. Exposure to Particulate Matter Air Pollution and Age of Menarche in a Nationwide Cohort of U.S. Girls. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107003. [PMID: 37792557 PMCID: PMC10549984 DOI: 10.1289/ehp12110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND It remains unclear whether in utero and childhood exposure to air pollution affects pubertal development, particularly age of menarche in girls. OBJECTIVE The aim of this study was to determine whether residential ambient particulate matter (PM) exposure in utero and during childhood is associated with age of menarche. METHODS We studied 5,201 girls in the Growing Up Today Study 2 (2004-present) who were 10-17 y of age at enrollment (47.7% premenarchal; 52.3% postmenarchal). Exposure to three size fractions of PM [fine PM with aerodynamic diameter ≤ 2.5 μ m (PM 2.5 ), PM with aerodynamic diameters between 2.5 μ m and 10 μ m (PM 2.5 - 10 ), and PM with aerodynamic diameter 10 μ m (PM 10 )] was assigned based on maternal residential address, updated every 2 y, using nationwide spatiotemporal models. We estimated average PM exposure in utero, and time-varying windows: annual average exposure in the prior 1 and 2 y and cumulative average from birth. Age of menarche was self-reported on three surveys administered in 2004, 2006, and 2008. We calculated hazard ratios (HR) for menarche for an interquartile range (IQR) increase in PM exposure using Cox proportional hazard models adjusting for potential confounders. RESULTS Girls attained menarche at 12.3 y of age on average. In the adjusted model, higher residential exposure to ambient PM 2.5 during all time windows was associated with earlier age of menarche. The HRs of menarche for each IQR (4 μ g / m 3 ) increase in exposure to PM 2.5 during the in utero period, 1 y prior to menarche, and throughout childhood were 1.03 [95% confidence interval (CI): 1.00, 1.06], 1.06 (95% CI: 1.02, 1.10) and 1.06 (95% CI: 1.02, 1.10), respectively. Effect estimates for PM 10 exposure were similar, albeit attenuated, for all time windows. PM 2.5 - 10 exposure was not associated with age of menarche. DISCUSSION Among a large, nationwide, prospective cohort of U.S. girls, higher exposure to PM 2.5 and PM 10 in utero and throughout childhood was associated with an earlier age of menarche. Our results suggest that PM 2.5 and PM 10 may have endocrine-disrupting properties that could lead to altered timing of menarche. https://doi.org/10.1289/EHP12110.
Collapse
Affiliation(s)
- Robert B. Hood
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| | - Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Francine Laden
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Bernard Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jorge E. Chavarro
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Audrey J. Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia, USA
| |
Collapse
|
16
|
Casey JA, Daouda M, Babadi RS, Do V, Flores NM, Berzansky I, González DJ, Van Horne YO, James-Todd T. Methods in Public Health Environmental Justice Research: a Scoping Review from 2018 to 2021. Curr Environ Health Rep 2023; 10:312-336. [PMID: 37581863 PMCID: PMC10504232 DOI: 10.1007/s40572-023-00406-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2023] [Indexed: 08/16/2023]
Abstract
PURPOSE OF REVIEW The volume of public health environmental justice (EJ) research produced by academic institutions increased through 2022. However, the methods used for evaluating EJ in exposure science and epidemiologic studies have not been catalogued. Here, we completed a scoping review of EJ studies published in 19 environmental science and epidemiologic journals from 2018 to 2021 to summarize research types, frameworks, and methods. RECENT FINDINGS We identified 402 articles that included populations with health disparities as a part of EJ research question and met other inclusion criteria. Most studies (60%) evaluated EJ questions related to socioeconomic status (SES) or race/ethnicity. EJ studies took place in 69 countries, led by the US (n = 246 [61%]). Only 50% of studies explicitly described a theoretical EJ framework in the background, methods, or discussion and just 10% explicitly stated a framework in all three sections. Among exposure studies, the most common area-level exposure was air pollution (40%), whereas chemicals predominated personal exposure studies (35%). Overall, the most common method used for exposure-only EJ analyses was main effect regression modeling (50%); for epidemiologic studies the most common method was effect modification (58%), where an analysis evaluated a health disparity variable as an effect modifier. Based on the results of this scoping review, current methods in public health EJ studies could be bolstered by integrating expertise from other fields (e.g., sociology), conducting community-based participatory research and intervention studies, and using more rigorous, theory-based, and solution-oriented statistical research methods.
Collapse
Affiliation(s)
- Joan A. Casey
- University of Washington School of Public Health, Seattle, WA USA
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Misbath Daouda
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Ryan S. Babadi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Vivian Do
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Nina M. Flores
- Columbia University Mailman School of Public Health, New York, NY USA
| | - Isa Berzansky
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| | - David J.X. González
- Department of Environmental Science, Policy & Management and School of Public Health, University of California, Berkeley, Berkeley, CA 94720 USA
| | | | - Tamarra James-Todd
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
| |
Collapse
|
17
|
Cox B, Wauters N, Rodríguez-Carrillo A, Portengen L, Gerofke A, Kolossa-Gehring M, Lignell S, Lindroos AK, Fabelova L, Murinova LP, Desalegn A, Iszatt N, Schillemans T, Åkesson A, Colles A, Den Hond E, Koppen G, Van Larebeke N, Schoeters G, Govarts E, Remy S. PFAS and Phthalate/DINCH Exposure in Association with Age at Menarche in Teenagers of the HBM4EU Aligned Studies. TOXICS 2023; 11:711. [PMID: 37624216 PMCID: PMC10459167 DOI: 10.3390/toxics11080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Early puberty has been found to be associated with adverse health outcomes such as metabolic and cardiovascular diseases and hormone-dependent cancers. The decrease in age at menarche observed during the past decades has been linked to an increased exposure to endocrine-disrupting compounds (EDCs). Evidence for the association between PFAS and phthalate exposure and menarche onset, however, is inconsistent. We studied the association between PFAS and phthalate/DINCH exposure and age at menarche using data of 514 teenagers (12 to 18 years) from four aligned studies of the Human Biomonitoring for Europe initiative (HBM4EU): Riksmaten Adolescents 2016-2017 (Sweden), PCB cohort (follow-up; Slovakia), GerES V-sub (Germany), and FLEHS IV (Belgium). PFAS concentrations were measured in blood, and phthalate/DINCH concentrations in urine. We assessed the role of each individual pollutant within the context of the others, by using different multi-pollutant approaches, adjusting for age, age- and sex-standardized body mass index z-score and household educational level. Exposure to di(2-ethylhexyl) phthalate (DEHP), especially mono(2-ethyl-5-hydroxyhexyl) phthalate (5OH-MEHP), was associated with an earlier age at menarche, with estimates per interquartile fold change in 5OH-MEHP ranging from -0.34 to -0.12 years in the different models. Findings from this study indicated associations between age at menarche and some specific EDCs at concentrations detected in the general European population, but due to the study design (menarche onset preceded the chemical measurements), caution is needed in the interpretation of causality.
Collapse
Affiliation(s)
- Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Natasha Wauters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Andrea Rodríguez-Carrillo
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
- Toxicological Centre, University of Antwerp, Universiteitsplein, 1, 2610 Wilrijk, Belgium
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 Utrecht, The Netherlands;
| | - Antje Gerofke
- German Environment Agency, Umweltbundesamt (UBA), 14195 Berlin, Germany; (A.G.); (M.K.-G.)
| | - Marike Kolossa-Gehring
- German Environment Agency, Umweltbundesamt (UBA), 14195 Berlin, Germany; (A.G.); (M.K.-G.)
| | - Sanna Lignell
- Swedish Food Agency, 751 26 Uppsala, Sweden; (S.L.); (A.K.L.)
| | | | - Lucia Fabelova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 01 Bratislava, Slovakia; (L.F.); (L.P.M.)
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, 831 01 Bratislava, Slovakia; (L.F.); (L.P.M.)
| | - Anteneh Desalegn
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.D.); (N.I.)
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, 0456 Oslo, Norway; (A.D.); (N.I.)
| | - Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (T.S.); (A.Å.)
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden; (T.S.); (A.Å.)
| | - Ann Colles
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Elly Den Hond
- Provincial Institute of Hygiene, Provincial Research Centre for Environment and Health, 2023 Antwerp, Belgium;
| | - Gudrun Koppen
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Nicolas Van Larebeke
- Analytical, Environmental and Geo-Chemistry, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium; (N.W.); (A.R.-C.); (A.C.); (G.K.); (G.S.); (E.G.); (S.R.)
| |
Collapse
|
18
|
Anastasiadis X, Matsas A, Panoskaltsis T, Bakas P, Papadimitriou DT, Christopoulos P. Impact of Chemicals on the Age of Menarche: A Literature Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1234. [PMID: 37508731 PMCID: PMC10378553 DOI: 10.3390/children10071234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
A growing body of evidence suggests that chemicals interfere with the age of onset of menarche. We conducted a review in order to demonstrate the relationship between several categories of chemicals and menarche. We searched for English language papers using the Medline/PubMed database until April 2023. The chemical factors found to affect menarche were prenatal and antenatal smoke, phthalates, phenols, organochlorines, perfluoroalkyls and polyfluoroalkyls, metals, air pollutants and polybrominated diphenyl ethers. Low or high exposure to each chemical compound could affect the age of menarche, leading to early or delayed menarche. Furthermore, the results show that intrauterine exposure may have a different impact from antenatal exposure. There is evidence that endocrine-disrupting chemicals affect the age of menarche, but more research needs to be conducted.
Collapse
Affiliation(s)
- Xristos Anastasiadis
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Alkis Matsas
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Theodoros Panoskaltsis
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Panagiotis Bakas
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Dimitrios T Papadimitriou
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Panagiotis Christopoulos
- Second Department of Obstetrics and Gynecology, "Aretaieion" Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
19
|
Su PH, Huang JY, Wang SLJ, Chang HP. Phthalates exposure and pubertal development in a 15-year follow-up birth cohort study in Taiwan. Front Endocrinol (Lausanne) 2023; 14:1065918. [PMID: 37288299 PMCID: PMC10242106 DOI: 10.3389/fendo.2023.1065918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Purpose Phthalates are ubiquitous endocrine disruptors that can affect pubertal development in children. The association of fetal and childhood levels of phthalates with pubertal development were explored. Methods We conduct a population-based birth cohort study to investigate the association between prenatal and childhood exposure to phthalates and pubertal development. Initially, a total of 445 children were recruited from 2000 to 2001, of which 90 children were followed for 15 years which measurements of urine and development assessed at 2, 5, 8, 11, and 14 years. We defined higher Tanner stage as the 14-year-old Tanner stage ≥ 4 and 5 for boys and girls, respectively. A logistic regression analysis was conducted to estimate the crude and adjusted odds ratio of a higher Tanner stage at 14 years old. The Pearson correlation coefficient and multiple linear regression were used to estimate the association of testicular volume, uterine volume, ovarian volume, and blood hormones at 14 years of age with the log-transformed concentration of phthalates at 2, 5, 8, 11, and 14 years. Results In boys, a significantly different geometric mean of mono-benzyl phthalate (MBzP) was observed in 11-year-olds; 6.82 and 2.96 in the lower Tanner stage group and higher Tanner stage group. In girls, a significant difference in the geometric mean of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) in 11-year-olds and mono-ethyl phthalate (MEP) in 2-year-olds was observed; MEHHP was 32.97 and 18.13 in the lower Tanner stage group and higher Tanner stage group, and MEP was 26.54 and 65.74 in the lower Tanner stage group and higher Tanner stage group, respectively. Uterine volume at 14 years old was negatively associated with several phthalate metabolites (MEHP at 8 years old, MnBP at 8 years old, MBzP at 14 years old, MMP prenatally, MMP at 8 years old, and MEP at 8 years old) after adjusting for covariates. However, no significant correlations were found between phthalate metabolites and ovarian or testicular volume. Conclusion Phthalate exposure at certain time points may influence the reproductive development of children during puberty; however, further studies should be conducted to determine the causal nature of this association.
Collapse
Affiliation(s)
- Pen-Hua Su
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jing-Yang Huang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Li Julie Wang
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
- Department of Public Health, National Defense Medical Center, Taipei, Taiwan
| | - Hua-Pin Chang
- Department of Nursing, Asia University, Taichung, Taiwan
| |
Collapse
|
20
|
Hiatt RA, Worden L, Rehkopf D, Engmann N, Troester M, Witte JS, Balke K, Jackson C, Barlow J, Fenton SE, Gehlert S, Hammond RA, Kaplan G, Kornak J, Nishioka K, McKone T, Smith MT, Trasande L, Porco TC. A complex systems model of breast cancer etiology: The Paradigm II Model. PLoS One 2023; 18:e0282878. [PMID: 37205649 PMCID: PMC10198497 DOI: 10.1371/journal.pone.0282878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/24/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Complex systems models of breast cancer have previously focused on prediction of prognosis and clinical events for individual women. There is a need for understanding breast cancer at the population level for public health decision-making, for identifying gaps in epidemiologic knowledge and for the education of the public as to the complexity of this most common of cancers. METHODS AND FINDINGS We developed an agent-based model of breast cancer for the women of the state of California using data from the U.S. Census, the California Health Interview Survey, the California Cancer Registry, the National Health and Nutrition Examination Survey and the literature. The model was implemented in the Julia programming language and R computing environment. The Paradigm II model development followed a transdisciplinary process with expertise from multiple relevant disciplinary experts from genetics to epidemiology and sociology with the goal of exploring both upstream determinants at the population level and pathophysiologic etiologic factors at the biologic level. The resulting model reproduces in a reasonable manner the overall age-specific incidence curve for the years 2008-2012 and incidence and relative risks due to specific risk factors such as BRCA1, polygenic risk, alcohol consumption, hormone therapy, breastfeeding, oral contraceptive use and scenarios for environmental toxin exposures. CONCLUSIONS The Paradigm II model illustrates the role of multiple etiologic factors in breast cancer from domains of biology, behavior and the environment. The value of the model is in providing a virtual laboratory to evaluate a wide range of potential interventions into the social, environmental and behavioral determinants of breast cancer at the population level.
Collapse
Affiliation(s)
- Robert A. Hiatt
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Lee Worden
- Francis I. Proctor Foundation for Research in Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| | - David Rehkopf
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, United States of America
| | - Natalie Engmann
- Genentech, Inc. South San Francisco, San Francisco, California, United States of America
| | - Melissa Troester
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - John S. Witte
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kaya Balke
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, United States of America
| | - Christian Jackson
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, United States of America
| | - Janice Barlow
- Zero Breast Cancer (retired), San Rafael, California, United States of America
| | - Suzanne E. Fenton
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina, United States of America
| | - Sarah Gehlert
- Suzanne Dworak-Peck School, University of Southern California, Los Angeles, United States of America
| | - Ross A. Hammond
- Brown School, Washington University, St Louis, Missouri, United States of America
| | - George Kaplan
- University of Michigan (retired), Ann Arbor, Michigan, United States of America
| | - John Kornak
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Krisida Nishioka
- School of Law, University of California, Berkeley, Berkeley, California, United States of America
| | - Thomas McKone
- School of Public Health, University of California, Berkeley, (Emeritus), Berkeley, California, United States of America
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York City, New York, United States of America
| | - Travis C. Porco
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Francis I. Proctor Foundation for Research in Ophthalmology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
21
|
Kuiper JR, Pan S, Lanphear BP, Calafat AM, Chen A, Cecil KM, Xu Y, Yolton K, Kalkwarf HJ, Braun JM, Buckley JP. Associations of maternal gestational urinary environmental phenols concentrations with bone mineral density among 12-year-old children in the HOME Study. Int J Hyg Environ Health 2023; 248:114104. [PMID: 36525700 PMCID: PMC9898141 DOI: 10.1016/j.ijheh.2022.114104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Early life environmental exposures may affect bone mass accrual in childhood, but only one study has assessed the role of environmental phenols on child bone health. METHODS We used data from 223 mother-child dyads enrolled in the Health Outcomes and Measures of the Environment (HOME) Study (Cincinnati, OH; 2003-2006). We quantified benzophenone-3, bisphenol A (BPA), 2,5-dichlorophenol, and triclosan in maternal urine collected at 16- and 26-weeks gestation and calculated the average of creatinine-adjusted concentrations. We performed dual x-ray absorptiometry at age 12 years and calculated Z-scores for whole body (less head), total hip, femoral neck, and 1/3rd distal radius bone mineral content (BMC) and areal bone mineral density (aBMD) as well as ultra-distal radius aBMD and spine BMC and bone mineral apparent density (BMAD). We estimated covariate-adjusted associations per doubling of maternal urinary environmental phenol concentrations in linear regression models. We also examined effect measure modification by child's sex and estimated associations of the environmental phenol mixture with BMC and aBMD using quantile g-computation. RESULTS We observed generally null associations for all analytes and bone measures. Yet, in adjusted models, higher urinary 2,5-dichlorophenol concentrations were associated with higher 1/3rd distal radius BMC (β: 0.09; 95% CI: 0.02, 0.17) and aBMD (β: 0.09; 95% CI: 0.02, 0.17) Z-scores in the overall sample. In sex-stratified analyses, the magnitude of the BMC association was positive for females (β: 0.16; 95% CI: 0.06, 0.26) and null for males (β: 0.02; 95% CI: 0.08, 0.13). The environmental phenol mixture was associated with greater 1/3rd distal radius BMC and aBMD Z-scores in both sexes, which was mostly driven by benzophenone-3 in males and 2,5-dichlorophenol in females. CONCLUSION In this prospective cohort study, we observed generally null associations for environmental phenols with BMC and aBMD at age 12 years. While there was a positive association of 2,5-dichlorophenol concentrations during fetal development with distal radius BMC and aBMD at age 12 years, future studies utilizing methods capable of differentiating cortical and trabecular bone are needed to elucidate potential mechanisms and implications for bone strength and microarchitecture.
Collapse
Affiliation(s)
- Jordan R Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Shudi Pan
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada.
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Yingying Xu
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Kimberly Yolton
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Heidi J Kalkwarf
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA.
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
22
|
Juber NF, Waits A, Dlamini LP, Nguyen T, Masango BZ. Associations between pediatric asthma and age at menarche: evidence from the Indonesian Family Life Survey. J Asthma 2023; 60:105-114. [PMID: 35034545 DOI: 10.1080/02770903.2022.2030750] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To examine the association between pediatric asthma and age at menarche, and to assess whether early life factors modify the association. METHODS This is a retrospective cross-sectional study using the Indonesian Family Life Survey Fifth Wave which had a total of 11 822 females aged 15-57 years to evaluate whether those with pediatric asthma were associated with earlier menarche, compared to females without asthma. We performed a weighted linear regression model adjusting for age, urbanicity, parental smoking, infectious disease history during childhood, childhood socioeconomic status, and health status during childhood. We also performed analyses by age at asthma diagnosis, interval length between asthma diagnosis and menarche, urbanicity, parental smoking, and infectious disease history during childhood. RESULTS In the adjusted model, females with pediatric asthma had an earlier average age at menarche by 5.2 months and those diagnosed with asthma at 5-8 years of age had the fastest acceleration by 14.9 months. The significant association persisted among those with 0-5 years interval between asthma diagnosis and menarche, who resided in urban areas, and those without infectious disease history during childhood. CONCLUSIONS Our findings showed that females with pediatric asthma were associated with an earlier age at menarche, and some early life factors modified the association. Better asthma management with more targeted strategies at those at risk of earlier menarche may improve the reproductive and future health of children with asthma. Future studies to elucidate the mechanisms between pediatric asthma and age at menarche are warranted.
Collapse
Affiliation(s)
- Nirmin F Juber
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Alexander Waits
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Tao Yuan General Hospital, Ministry of Health and Welfare, Taoyuan, Taiwan
| | | | - Tan Nguyen
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Bongani Zakhele Masango
- Institute of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
23
|
Rivera-Núñez Z, Kinkade CW, Zhang Y, Rockson A, Bandera EV, Llanos AAM, Barrett ES. Phenols, Parabens, Phthalates and Puberty: a Systematic Review of Synthetic Chemicals Commonly Found in Personal Care Products and Girls' Pubertal Development. Curr Environ Health Rep 2022; 9:517-534. [PMID: 35867279 PMCID: PMC9742306 DOI: 10.1007/s40572-022-00366-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Exposure to endocrine disrupting chemicals through personal care products (PCPs) is widespread and may disrupt hormone-sensitive endpoints, such as timing of puberty. Given the well-documented (and ongoing) decline in age at menarche in many populations, we conducted a systematic review of the epidemiological literature on exposure to chemicals commonly found in PCPs (including certain phthalates, phenols, and parabens) in relation to girls' pubertal development. RECENT FINDINGS The preponderance of research on this topic has examined phthalate exposures with the strongest evidence indicating that prenatal monoethyl phthalate (MEP) concentrations may be associated with slightly earlier timing of puberty, including age at menarche. Findings examining peri-pubertal phthalate exposures and pubertal outcomes were less consistent as were studies of prenatal and peri-pubertal phenol exposures. Very few studies had examined parabens in relation to girls' pubertal development. Common study limitations included potential exposure misclassification related to use of spot samples and/or mistimed biomarker assessment with respect to the outcomes. The role of body size as a mediator in these relationships remains unresolved. Overall, evidence of associations between chemical exposures in PCPs and girls' pubertal development was conflicting. When associations were observed, effect sizes were small. Nevertheless, given the many environmental, social, and behavioral factors in the modern environment that may act synergistically to accelerate timing of puberty, even marginal changes may be cause for concern, with implications for cancer risk, mental health, and cardiometabolic disease in later life.
Collapse
Affiliation(s)
- Zorimar Rivera-Núñez
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA. .,Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.
| | - Carolyn W Kinkade
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Yingting Zhang
- Robert Wood Johnson Library of the Health Sciences, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Amber Rockson
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.,Cancer Epidemiology and Health Outcomes, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA
| | - Adana A M Llanos
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA.,Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Emily S Barrett
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.,Department of Biostatistics and Epidemiology, Rutgers School of Public Health, 683 Hoes Lane West, Piscataway, NJ, 08854, USA
| |
Collapse
|
24
|
Bigambo FM, Zhang M, Zhang J, Yang X, Yu Q, Wu D, Wang X, Xia Y. Exposure to a mixture of personal care product and plasticizing chemicals in relation to reproductive hormones and menarche timing among 12–19 years old girls in NHANES 2013–2016. Food Chem Toxicol 2022; 170:113463. [PMID: 36220617 DOI: 10.1016/j.fct.2022.113463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/15/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
|
25
|
Early menarche and premature menopause distributions based on diabetes status among postmenopausal women: a descriptive analysis from the IFLS study. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01149-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
26
|
Freire C, Castiello F, Lopez-Espinosa MJ, Beneito A, Lertxundi A, Jimeno-Romero A, Vrijheid M, Casas M. Association of prenatal phthalate exposure with pubertal development in Spanish boys and girls. ENVIRONMENTAL RESEARCH 2022; 213:113606. [PMID: 35716812 DOI: 10.1016/j.envres.2022.113606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phthalates are widespread, anti-androgenic chemicals known to alter early development, with possible impact on puberty timing. AIM To investigate the association of prenatal phthalate exposure with pubertal development in boys and girls. METHODS Urinary metabolites of six different phthalate diesters (DEP, DiBP, DnBP, BBzP, DEHP, and DiNP) and non-phthalate plasticizer DINCH® were quantified in two urine samples collected during pregnancy from mothers participating in the INMA Spanish cohort study. Pubertal assessment of their children at age 7-10 years (409 boys, 379 girls) was conducted using the parent-reported Pubertal Development Scale. Modified Poisson and Weighted Quantile Sum (WQS) regression was employed to examine associations between prenatal phthalates and risk of puberty onset, adrenarche, and gonadarche. Effect modification by child weight status was explored by stratified analysis. RESULTS Prenatal exposure to DEHP was associated with higher risk of puberty onset (relative risk [RR] = 1.32, 95% CI = 1.09-1.59 per each log-unit increase in concentrations) and gonadarche (RR = 1.23, 95% CI = 1.00-1.50) in boys and higher risk of adrenarche (RR = 1.25, 95% CI = 1.03-1.51) in girls at age 7-10 years. In boys, prenatal exposure to DEP, DnBP, and DEHP was also associated with higher risk of adrenarche or gonadarche (RRs = 1.49-1.80) in those with normal weight, and BBzP and DINCH® exposure with lower risk of adrenarche (RR = 0.49, 95% CI = 0.27-0.89 and RR = 0.47, 95% CI = 0.24-0.90, respectively) in those with overweight/obesity. In girls, DiBP, DnBP, and DINCH® were associated with slightly higher risk of gonadarche (RRs = 1.14-1.19) in those with overweight/obesity. In the WQS model, the phthalate mixture was not associated with puberty in boys or girls. CONCLUSION Prenatal exposure to certain phthalates was associated with pubertal development at age 7-10 years, especially earlier puberty in boys with normal weight and girls with overweight/obesity. However, there was no evidence of effect of the phthalate mixture on advancing or delaying puberty in boys or girls.
Collapse
Affiliation(s)
- Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Biomedical Research Centre, University of Granada, 18016, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| | - Francesca Castiello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012, Granada, Spain; Pediatrics Unit, San Cecilio University Hospital, 18016, Granada, Spain.
| | - Maria-Jose Lopez-Espinosa
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain; Department of Nursing, Faculty of Nursing and Chiropody, University of Valencia, 46010, Valencia, Spain.
| | - Andrea Beneito
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Jaume I University-University of Valencia, 46020, Valencia, Spain.
| | - Aitana Lertxundi
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain.
| | - Alba Jimeno-Romero
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain; BIODONOSTIA Health Research Institute, 20014, San Sebastián, Spain.
| | - Martine Vrijheid
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| | - Maribel Casas
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; ISGlobal, 08036, Barcelona, Spain; Universitat Pompeu Fabra, 08005, Barcelona, Spain.
| |
Collapse
|
27
|
Sinicropi MS, Iacopetta D, Ceramella J, Catalano A, Mariconda A, Pellegrino M, Saturnino C, Longo P, Aquaro S. Triclosan: A Small Molecule with Controversial Roles. Antibiotics (Basel) 2022; 11:735. [PMID: 35740142 PMCID: PMC9220381 DOI: 10.3390/antibiotics11060735] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, has been widely used in personal care products, medical products, plastic cutting boards, and food storage containers. Colgate Total® toothpaste, containing 10 mM TCS, is effective in controlling biofilm formation and maintaining gingival health. Given its broad usage, TCS is present ubiquitously in the environment. Given its strong lipophilicity and accumulation ability in organisms, it is potentially harmful to biohealth. Several reports suggest the toxicity of this compound, which is inserted in the class of endocrine disrupting chemicals (EDCs). In September 2016, TCS was banned by the U.S. Food and Drug Administration (FDA) and the European Union in soap products. Despite these problems, its application in personal care products within certain limits is still allowed. Today, it is still unclear whether TCS is truly toxic to mammals and the adverse effects of continuous, long-term, and low concentration exposure remain unknown. Indeed, some recent reports suggest the use of TCS as a repositioned drug for cancer treatment and cutaneous leishmaniasis. In this scenario it is necessary to investigate the advantages and disadvantages of TCS, to understand whether its use is advisable or not. This review intends to highlight the pros and cons that are associated with the use of TCS in humans.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| |
Collapse
|
28
|
Predieri B, Alves CAD, Iughetti L. New insights on the effects of endocrine-disrupting chemicals on children. J Pediatr (Rio J) 2022; 98 Suppl 1:S73-S85. [PMID: 34921754 PMCID: PMC9510934 DOI: 10.1016/j.jped.2021.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Endocrine disrupting chemicals (EDCs) are present in many areas and materials of the common life, and exposure to these chemicals can occur from products to personal care, from air and food. This review aims to summarize the more recent epidemiological findings for the impact of EDCs on endocrine system health in children, including effects in growth, metabolism, sexual development, and reproduction. SOURCES The MEDLINE database (PubMed) was searched on August 24th, 2021, filtering for EDCs, endocrine disruptors, children, and humans. SUMMARY OF THE FINDINGS Intrauterine exposure of EDCs can have transgenerational effects, thus laying the foundation for disease in later life. The dose-response relationship may not always be predictable as even low-level exposures that may occur in everyday life can have significant effects on a susceptible individual. Although individual compounds have been studied in detail, the effects of a combination of these chemicals are yet to be studied to understand the real-life situation where human beings are exposed to a "cocktail effect" of these EDCs. Epidemiological studies in humans suggest EDCs' effects on prenatal growth, thyroid function, glucose metabolism, obesity, puberty, and fertility mainly through epigenetic mechanisms. CONCLUSIONS EDCs cause adverse effects in animals, and their effects on human health are now known and irrefutable. Because people are typically exposed to multiple endocrine disruptors, assessing public health effects is difficult. Legislation to ban EDCs and protect especially pregnant women and young children is required and needs to be revised and adjusted to new developments on a regular basis.
Collapse
Affiliation(s)
- Barbara Predieri
- University of Modena and Reggio Emilia, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Pediatric Unit, Modena, Italy
| | - Crésio A D Alves
- Universidade Federal da Bahia (UFBA), Faculdade de Medicina, Hospital Universitário Prof. Edgard Santos, Unidade de Endocrinologia Pediátrica, Salvador, BA, Brazil
| | - Lorenzo Iughetti
- University of Modena and Reggio Emilia, Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Pediatric Unit, Modena, Italy.
| |
Collapse
|
29
|
Wnuk W, Michalska K, Krupa A, Pawlak K. Benzophenone-3, a chemical UV-filter in cosmetics: is it really safe for children and pregnant women? Postepy Dermatol Alergol 2022; 39:26-33. [PMID: 35369611 PMCID: PMC8953895 DOI: 10.5114/ada.2022.113617] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/16/2020] [Indexed: 11/24/2022] Open
Abstract
Children and adolescents are particularly vulnerable to skin damage caused by ultraviolet radiation and require intensified photoprotection. Benzophenone-3 (BP-3) belongs to the organic sunscreens, which are widely used in personal care and cosmetic products. However, the impact of BP-3 on human health requires a careful assessment. This review focuses on potentially harmful effect of this compound in relation to the developing organism. Studies show that BP-3, after topical application, can penetrate into bloodstream, blood-brain barrier and blood-placental barrier and may induce the reproductive toxicity and abnormal development of the foetus, endocrine system disruption and neurotoxicity in experimental animal models. So far, human studies have been scarce and controversial, therefore the cosmetics containing BP-3 should be carefully used by the pregnant women, children and adolescents.
Collapse
Affiliation(s)
- Weronika Wnuk
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Klaudia Michalska
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Anna Krupa
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
30
|
Wang P, Huang Y, Zhao Y, Zhou Y, Wang H, Zhang L, Shi H, Sze-Yin Leung K, Zhang Y. Organic UV filters mixture exposure and childhood adiposity: A prospective follow-up study in China. ENVIRONMENT INTERNATIONAL 2022; 158:106912. [PMID: 34619533 DOI: 10.1016/j.envint.2021.106912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND UV filters are emerging contaminants with endocrine disrupting effects, but little is known about their health effects, especially for children. OBJECTIVE To assess the association between multiple organic UV filters exposure and adiposity measures and by gender in peripubertal children. METHODS This prospective follow-up study included 327 children aged 7-15 years old. Urinary organic UV filters including benzophenone derivatives (BP-2, BP-3), octyl dimethyl para-aminobenzoic acid (OD-PABA), ethylhexyl methoxycinnamate (EHMC) and its metabolite (4-MCA and 4'-MAP) were quantified. Six adiposity biometrics including height, weight, waist and hip circumferences, and triceps and subscapular skinfold thickness were measured with 1.5-year duration. The Bayesian kernel machine regression method was used to estimate the associations of UV filters mixture with adiposity measurements, and longitudinal analyses were then considered to further evaluate the associations between individual UV filters and trajectories of growth development using linear mixed models or generalized linear mixed models. RESULTS Exposure to mixture of UV filters was negatively associated with most adiposity measurements, with a reduction of 1.399 kg/m2 (95% CI: -2.246 to -0.551 kg/m2) in BMI, 0.674 (95% CI: -1.045 to -0.304) in BMI z-score, 0.033 BF% (95% CI: -0.053 to -0.013), and 2.301 mm (95% CI: -3.823 to -0.78) in subscapular skinfold thickness at baseline, comparing the 75th percentile to the 25th level of UV filters mixture exposure. Consistent associations were found at follow-up. Both baseline and follow-up results suggested that EHMC was identified as the most important contributor to lower adiposity measurements, which was also confirmed by linear mixed models in longitudinal analyses. No significant effects were found in girls. CONCLUSION This study found that childhood organic UV filters exposure was negatively associated with adiposity measures in peripubertal boys, but not girls.
Collapse
Affiliation(s)
- Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yanran Huang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Yingya Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuhan Zhou
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China (Fudan University), China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
31
|
Association of phthalates and early menarche in Korean adolescent girls from Korean National Environmental Health Survey (KoNEHS) 2015-2017. Ann Occup Environ Med 2021; 33:e4. [PMID: 34754465 PMCID: PMC7952777 DOI: 10.35371/aoem.2021.33.e4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Background Phthalates are one of renowned endocrine-disrupting chemicals, although inconsistent results are present around their effect on onset of menarche. Our hypothesis is that pre-pubertal exposure to phthalates is associated with acceleration of menarche. Methods We analyzed a total of 236 middle school (7th to 9th grade) girls from Korean National Environmental Health Survey 2015-2017. We used multiple linear regression to investigate impact of eight phthalate metabolites on age of menarche. We also conducted logistic regression to evaluate association between phthalate metabolite concentrations and early onset of menarche, adjusting for grade, maternal age of menarche and body mass index (BMI). Results In linear regression analysis, no significant association was found for any phthalate metabolites. In logistic regression analysis, however, odds ratios (ORs) of early menarche were significantly increased for mono-n-butyl phthalate (MnBP) and for sum of all phthalates. When compared to group with the lowest level, high concentration group for MnBP presented significantly increased odds of early menarche (OR: 2.09; 95% confidence interval [CI]: 1.03, 4.23) after adjusting for grade, maternal age of menarche and BMI. Furthermore, high concentrations of sum of all phthalates were associated with significant increase of OR of early menarche (OR: 2.22; 95% CI: 1.10, 4.49) after adjustment, compared to the lowest concentration group. Conclusions Results of our study suggest that exposure to phthalates around puberty may be associated with increased risk of early menarche.
Collapse
|
32
|
Baldo F, Barbi E, Tornese G. Delayed pubarche. Ital J Pediatr 2021; 47:180. [PMID: 34488834 PMCID: PMC8422600 DOI: 10.1186/s13052-021-01134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/20/2021] [Indexed: 11/25/2022] Open
Abstract
In healthy adolescents, delayed pubarche is generally a benign condition that is caused by a physiological discrepancy between gonadarche and adrenarche. In presence of other clinical signs and symptoms, delayed pubarche can be caused by single or multiple hormones deficiency (such as adrenal insufficiency, panhypopituitarism and hypothyroidism) and/or genetic conditions (Turner syndrome, androgen insensitivity syndrome). Exposition to endocrine disruptors has also been described as a possible cause of delay of pubic hair development. Basic blood tests, karyotype and first level imaging studies are helpful in the differential diagnosis.
Collapse
Affiliation(s)
- Francesco Baldo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy.
| | - Egidio Barbi
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy.,Department of Pediatrics, Institute for Maternal and Child Health IRCCS "Burlo Garofolo", via dell'Istria 65/1, Trieste, Italy
| | - Gianluca Tornese
- Department of Pediatrics, Institute for Maternal and Child Health IRCCS "Burlo Garofolo", via dell'Istria 65/1, Trieste, Italy
| |
Collapse
|
33
|
Yoshida T, Mimura M, Sakon N. Estimating household exposure to moth repellents p-dichlorobenzene and naphthalene and the relative contribution of inhalation pathway in a sample of Japanese children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146988. [PMID: 34088142 DOI: 10.1016/j.scitotenv.2021.146988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
p-Dichlorobenzene (DCB) and naphthalene (NP) used as moth repellents in indoor environments are suspected to be carcinogenic. To evaluate their adverse effects on health with chronic exposure in the general population, especially children, we need to know their amounts absorbed by the body and the relationships between their amounts and air quality in residences. At present, little is known worldwide about them. This study examined the daily intakes of DCB and NP by Japanese children via all exposure pathways and the contribution of indoor air quality to the intakes. First-morning void urine samples from the subjects aged 6 to 15 years and air samples in their bedrooms were collected. Airborne NP and DCB and their urinary metabolites were measured. Significant correlations were detected between their airborne concentrations and the urinary excretion amounts of their corresponding metabolites. The absorption amounts of DCB and NP by inhalation of the children while at home were calculated to be 26 and 2.0 ng/kg b.w./h, respectively, as median values. The daily intake was estimated to be 2.4 and 0.90 μg/kg b.w./d (median), respectively. The fractions (median) of inhalation absorption amounts to overall absorption amounts for DCB and NP were 30% and 5%, respectively. In children living in residences where the indoor air concentrations of these compounds were more than half the level of each guideline value for indoor air quality, the main exposure route for their absorption was considered to be inhalation while at home. The indoor concentrations of DCB exceeded the lifetime excess cancer risk level of 10-4 in 22% of the residences and 10-3 in 9% of them. Our findings indicate the need to further reduce airborne concentrations of DCB in Japanese residences to prevent its adverse effects on the health of Japanese children.
Collapse
Affiliation(s)
- Toshiaki Yoshida
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan.
| | - Mayumi Mimura
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Naomi Sakon
- Osaka Institute of Public Health, 1-3-69, Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| |
Collapse
|
34
|
Pereira A, Busch AS, Solares F, Baier I, Corvalan C, Mericq V. Total and Central Adiposity Are Associated With Age at Gonadarche and Incidence of Precocious Gonadarche in Boys. J Clin Endocrinol Metab 2021; 106:1352-1361. [PMID: 33539513 DOI: 10.1210/clinem/dgab064] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT A close link between body mass index (BMI) and female pubertal onset is well established. However, observations in boys remain inconclusive. OBJECTIVE We aim to determine whether BMI as well as total and central adiposity in prepubertal Chilean boys is associated with pubertal timing. METHODS We performed a longitudinal study in which 494 boys from the Growth and Obesity Chilean Cohort Study were followed starting from birth and throughout puberty, including 5 prepubertal visits. The main outcome measures included anthropometric data and semi-annual clinical pubertal staging. The association between BMI, obesity (BMI standard deviation score [SDS] ≥ 2) and central adiposity (waist circumference ≥ 90th centile) with precocious puberty and age at gonadarche was analyzed using survival- and logistic regression models. RESULTS BMI, prevalence of total obesity, and central obesity increased throughout childhood. Among the study population, 45 boys entered puberty before the age of 9 years (9.1%). Obesity at 4 to 7 years and childhood mean BMI SDS were significantly associated with precocious gonadarche. Mean age at testicular enlargement (≥4 mL), was 11.0 years (95% CI, 10.9-11.1) and was inversely associated with BMI SDS, waist circumference, and percentage fat mass in almost all prepubertal visits. Age at testicular enlargement in normal weight, overweight, and obese boys was 11.2 (11.0-11.3), 10.9 (10.6-11.1) and 10.7 (10.4-11.1) years, respectively. CONCLUSION Our observation supports the association of BMI SDS and obesity with pubertal timing and precocious gonadarche in boys, respectively. Early intervention controlling the obesity epidemic could be useful in decreasing detrimental impact on later health.
Collapse
Affiliation(s)
- Ana Pereira
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Alexander S Busch
- Department of Growth and Reproduction & International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Fernanda Solares
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Ingrid Baier
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| | - Camila Corvalan
- Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Veronica Mericq
- Institute of Maternal and Child Research, University of Chile, Santiago, Chile
| |
Collapse
|
35
|
Oskar S, Wolff MS, Teitelbaum SL, Stingone JA. Identifying environmental exposure profiles associated with timing of menarche: A two-step machine learning approach to examine multiple environmental exposures. ENVIRONMENTAL RESEARCH 2021; 195:110524. [PMID: 33249040 PMCID: PMC8673778 DOI: 10.1016/j.envres.2020.110524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Variation in the timing of menarche has been linked with adverse health outcomes in later life. There is evidence that exposure to hormonally active agents (or endocrine disrupting chemicals; EDCs) during childhood may play a role in accelerating or delaying menarche. The goal of this study was to generate hypotheses on the relationship between exposure to multiple EDCs and timing of menarche by applying a two-stage machine learning approach. METHODS We used data from the National Health and Nutrition Examination Survey (NHANES) for years 2005-2008. Data were analyzed for 229 female participants 12-16 years of age who had blood and urine biomarker measures of 41 environmental exposures, all with >70% above limit of detection, in seven classes of chemicals. We modeled risk for earlier menarche (<12 years of age vs older) with exposure biomarkers. We applied a two-stage approach consisting of a random forest (RF) to identify important exposure combinations associated with timing of menarche followed by multivariable modified Poisson regression to quantify associations between exposure profiles ("combinations") and timing of menarche. RESULTS RF identified urinary concentrations of monoethylhexyl phthalate (MEHP) as the most important feature in partitioning girls into homogenous subgroups followed by bisphenol A (BPA) and 2,4-dichlorophenol (2,4-DCP). In this first stage, we identified 11 distinct exposure biomarker profiles, containing five different classes of EDCs associated with earlier menarche. MEHP appeared in all 11 exposure biomarker profiles and phenols appeared in five. Using these profiles in the second-stage of analysis, we found a relationship between lower MEHP and earlier menarche (MEHP ≤ 2.36 ng/mL vs >2.36 ng/mL: adjusted PR = 1.36, 95% CI: 1.02, 1.80). Combinations of lower MEHP with benzophenone-3, 2,4-DCP, and BPA had similar associations with earlier menarche, though slightly weaker in those smaller subgroups. For girls not having lower MEHP, exposure profiles included other biomarkers (BPA, enterodiol, monobenzyl phthalate, triclosan, and 1-hydroxypyrene); these showed largely null associations in the second-stage analysis. Adjustment for covariates did not materially change the estimates or CIs of these models. We observed weak or null effect estimates for some exposure biomarker profiles and relevant profiles consisted of no more than two EDCs, possibly due to small sample sizes in subgroups. CONCLUSION A two-stage approach incorporating machine learning was able to identify interpretable combinations of biomarkers in relation to timing of menarche; these should be further explored in prospective studies. Machine learning methods can serve as a valuable tool to identify patterns within data and generate hypotheses that can be investigated within future, targeted analyses.
Collapse
Affiliation(s)
- Sabine Oskar
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Mary S Wolff
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susan L Teitelbaum
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeanette A Stingone
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
36
|
Henderson AL, Colaiácovo MP. Exposure to phthalates: germline dysfunction and aneuploidy. Prenat Diagn 2021; 41:610-619. [PMID: 33583068 DOI: 10.1002/pd.5921] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 01/07/2023]
Abstract
Epidemiological studies continue to reveal the enduring impact of exposures to environmental chemicals on human physiology, including our reproductive health. Phthalates, a well characterized class of endocrine disrupting chemicals and commonly utilized plasticizers, are among one of the many toxicants ubiquitously present in our environment. Phthalate exposure has been linked to increases in the rate of human aneuploidy, a phenomenon that is detected in 0.3% of livebirths resulting in genetic disorders including trisomy 21, approximately 4% of stillbirths, and over 35% of miscarriages. Here we review recent epidemiological and experimental studies that have examined the role that phthalates play in germline dysfunction, including increases in apoptosis, oxidative stress, DNA damage, and impaired genomic integrity, resulting in aneuploidy. We will further discuss subject variability, as it relates to diet and polymorphisms, and the sexual dimorphic effects of phthalate exposure, as it relates to sex-specific targets. Lastly, we discuss some of the conserved effects of phthalate exposure across humans, mammalian models and nonmammalian model organisms, highlighting the importance of using model organisms to our advantage for chemical risk assessment and unveiling potential mechanisms that underlie phthalate-induced reproductive health issues across species.
Collapse
Affiliation(s)
- Ayana L Henderson
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
37
|
Meng H, Zhou Y, Jiang Y. Association of bisphenol A with puberty timing: a meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2020; aheadofprint:459-466. [PMID: 34651495 DOI: 10.1515/reveh-2020-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVES The results of existing studies on bisphenol A (BPA) and puberty timing did not reach a consensus. Thereby we performed this meta-analytic study to explore the association between BPA exposure in urine and puberty timing. METHODS Meta-analysis of the pooled odds ratios (OR), prevalence ratios (PR) or hazards ratios (HR) with 95% confidence intervals (CI) were calculated and estimated using fixed-effects or random-effects models based on between-study heterogeneity. RESULTS A total of 10 studies involving 5621 subjects were finally included. The meta-analysis showed that BPA exposure was weakly associated with thelarche (PR: 0.96, 95% CI: 0.93-0.99), while no association was found between BPA exposure and menarche (HR: 0.99, 95% CI: 0.89-1.12; OR: 1.02, 95% CI: 0.73-1.43), and pubarche (OR: 1.00, 95% CI: 0.79-1.26; PR: 1.00, 95% CI: 0.95-1.05). CONCLUSIONS There was no strong correlation between BPA exposure and puberty timing. Further studies with large sample sizes are needed to verify the relationship between BPA and puberty timing.
Collapse
Affiliation(s)
- Hui Meng
- School of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Yunping Zhou
- School of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Yunxia Jiang
- School of Nursing, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
38
|
Bigambo FM, Sun H, Yan W, Wu D, Xia Y, Wang X, Wang X. Association between phenols exposure and earlier puberty in children: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2020; 190:110056. [PMID: 32805251 DOI: 10.1016/j.envres.2020.110056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/21/2020] [Accepted: 08/01/2020] [Indexed: 05/19/2023]
Abstract
OBJECTIVE To identify the association between phenolic chemicals and the risk of earlier puberty based on the available evidence by systematic review and meta-analysis. METHODS Databases PubMed, Web of Science, and Cochrane Library were searched and retrieved appropriate journal articles on the association between phenols exposure and earlier puberty in children published before February 14, 2020. Stata software version 12.0 and Excel were used for statistical analysis. RESULTS Nine studies were included in the meta-analysis with total subjects of 4737. All the subjects included in our studies were girls. The pooled estimate has shown the association between 2, 5- dichrolophenol exposure, and earlier puberty in children with effect size (ES) 1.13 (95% CI: 1.06, 1.20). Exposed to other types of phenolic chemicals such as bisphenol A, Triclosan, Benzophenone-3 were not statistically significant associated with the risk of earlier puberty in children with the overall pooled estimates of ES of 1.09 (95%CI: 0.88, 1.35), ES 1.05(95% CI: 0.96, 1.15), and ES 0.98 (95% CI: 0.88, 1.10) respectively. CONCLUSION Our results portray that phenols particularly 2, 5- dichlorophenol exposure might be associated with the risk of earlier puberty in children. Also, caution should be taken to other type of phenolic chemicals since in subgroup analysis some individual studies have shown a positive relationship between bisphenol A, Triclosan and Benzophenone-3 exposures, and the risk of earlier puberty in children. Future cohort studies should be conducted with more sample sizes to determine the relationship between 2, 5- dichlorophenol, and the risk of earlier puberty in children of all gender.
Collapse
Affiliation(s)
- Francis Manyori Bigambo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hanqing Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wu Yan
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xu Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Nanjing Children's Hospital Affiliated to Nanjing Medical University, 210008, Nanjing, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
39
|
Guth M, Pollock T, Fisher M, Arbuckle TE, Bouchard MF. Concentrations of urinary parabens and reproductive hormones in girls 6-17 years living in Canada. Int J Hyg Environ Health 2020; 231:113633. [PMID: 33045491 DOI: 10.1016/j.ijheh.2020.113633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Parabens are chemical substances used as preservatives for their antibacterial and antifungal properties in many personal care products, and sometimes in pharmaceutical and food products. Concerns for adverse human health effects arise from animal studies showing endocrine disrupting effects, such as changes in the timing of puberty and alterations in reproductive hormone activity. Our objective was to examine the association between urinary concentrations of parabens and serum concentrations of estradiol, progesterone, follicle stimulating hormone [FSH], and luteinizing hormone [LH]) in girls from the general population. METHODS We conducted a cross-sectional study in girls ages 6-17 years, using data from the Canadian Health Measures Survey (2014-2015). The association between concentrations of creatinine-standardized urinary parabens and serum hormone concentrations was analyzed with multivariable linear regressions, adjusting for potential confounders (i.e., age, body mass index, ethnicity, household income, sampling season; prenatal exposure to cigarette smoke for girls 6-11 years). RESULTS The 382 girls and teens included in the study had a mean age of 11.0 years; 76% were white and 73% had a body mass index in the range normal/underweight. Most participants (92%) had least one paraben detected in their urine. Girls with higher urinary paraben concentrations had significantly lower serum concentrations of estradiol, LH, and FSH, but not of progesterone. A doubling in the sum of urinary parabens was associated with 5.8% lower estradiol (95% CI -9.3, -2.1), 4.2% lower FSH (95% CI -7.9, -0.3), and 10.8% lower LH (95% CI -17.4, -3.7). The analysis of individual compounds showed that all four parabens were similarly associated with lower concentrations of estradiol, FSH, and LH. We further analyzed younger girls (6-11 years) and found that urinary parabens were similarly associated with lower estradiol and LH (doubling in the sum of parabens associated with 5.9% lower estradiol [95% CI -10.5, -1.0] and 10.9% lower LH [95% CI -20.2, -0.6]). In this younger subgroup, the association estimate for FSH, however, was attenuated and no longer statistically significant. DISCUSSION We observed that exposure to parabens was associated with reduced concentrations of circulating reproductive hormones, suggesting that these chemicals could alter the development and function of the endocrine system in girls. Further prospective research using long-term assessment of parabens exposure and of reproductive development may better determine endocrine disrupting effects of parabens.
Collapse
Affiliation(s)
- Margot Guth
- Department of Environmental and Occupational Health, School of Public Health, Universite de Montreal, Montreal, Quebec, Canada
| | - Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Mandy Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Maryse F Bouchard
- Department of Environmental and Occupational Health, School of Public Health, Universite de Montreal, Montreal, Quebec, Canada; CHU Sainte-Justine Research Centre Mother and Child University Hospital Center, Canada.
| |
Collapse
|
40
|
Hlisníková H, Petrovičová I, Kolena B, Šidlovská M, Sirotkin A. Effects and Mechanisms of Phthalates' Action on Reproductive Processes and Reproductive Health: A Literature Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E6811. [PMID: 32961939 PMCID: PMC7559247 DOI: 10.3390/ijerph17186811] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022]
Abstract
The production of plastic products, which requires phthalate plasticizers, has resulted in the problems for human health, especially that of reproductive health. Phthalate exposure can induce reproductive disorders at various regulatory levels. The aim of this review was to compile the evidence concerning the association between phthalates and reproductive diseases, phthalates-induced reproductive disorders, and their possible endocrine and intracellular mechanisms. Phthalates may induce alterations in puberty, the development of testicular dysgenesis syndrome, cancer, and fertility disorders in both males and females. At the hormonal level, phthalates can modify the release of hypothalamic, pituitary, and peripheral hormones. At the intracellular level, phthalates can interfere with nuclear receptors, membrane receptors, intracellular signaling pathways, and modulate gene expression associated with reproduction. To understand and to treat the adverse effects of phthalates on human health, it is essential to expand the current knowledge concerning their mechanism of action in the organism.
Collapse
Affiliation(s)
- Henrieta Hlisníková
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (I.P.); (B.K.); (M.Š.); (A.S.)
| | | | | | | | | |
Collapse
|
41
|
Estimating Outcome-Exposure Associations when Exposure Biomarker Detection Limits vary Across Batches. Epidemiology 2020; 30:746-755. [PMID: 31299670 DOI: 10.1097/ede.0000000000001052] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Limit of detection (LOD) issues are ubiquitous in exposure assessment. Although there is an extensive literature on modeling exposure data under such imperfect measurement processes, including likelihood-based methods and multiple imputation, the standard practice continues to be naïve single imputation by a constant (e.g., (Equation is included in full-text article.)). In this article, we consider the situation where, due to the practical logistics of data accrual, sampling, and resource constraints, exposure data are analyzed in multiple batches where the LOD and the proportion of censored observations differ across batches. Compounding this problem is the potential for nonrandom assignment of samples to each batch, often driven by enrollment patterns and biosample storage. This issue is particularly important for binary outcome data where batches may have different levels of outcome enrichment. We first consider variants of existing methods to address varying LODs across multiple batches. We then propose a likelihood-based multiple imputation strategy to impute observations that are below the LOD while simultaneously accounting for differential batch assignment. Our simulation study shows that our proposed method has superior estimation properties (i.e., bias, coverage, statistical efficiency) compared to standard alternatives, provided that distributional assumptions are satisfied. Additionally, in most batch assignment configurations, complete-case analysis can be made unbiased by including batch indicator terms in the analysis model, although this strategy is less efficient relative to the proposed method. We illustrate our method by analyzing data from a cohort study in Puerto Rico that is investigating the relation between endocrine disruptor exposures and preterm birth.
Collapse
|
42
|
Soto J, Pereira A, Busch AS, Almstrup K, Corvalan C, Iñiguez G, Juul A, Mericq V. Reproductive hormones during pubertal transition in girls with transient Thelarche. Clin Endocrinol (Oxf) 2020; 93:296-304. [PMID: 32419140 DOI: 10.1111/cen.14248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 01/26/2023]
Abstract
CONTEXT Transient thelarche (TT), that is, the appearance, regression and subsequent reappearance of breast buds, is a frequent phenomenon, but little is known about pubertal transition in these girls. OBJECTIVE To describe pubertal progression, growth, genotypes, reproductive hormones and growth factors in girls with TT compared to those who do not present TT (non-TT). DESIGN Retrospective analysis of a longitudinal population-based study. PATIENTS OR OTHER PARTICIPANTS Girls (n = 508) of the Chilean Growth and Obesity cohort. MEASUREMENTS Pubertal progression, reproductive hormones, follicle stimulating hormone (FSH) beta subunit/FSH receptor gene single nucleotide polymorphisms and growth. RESULTS Thirty-seven girls (7.3%) were presented TT. These girls entered puberty by pubarche more frequently (51%) than girls with normal progression (non-TT; n = 471; 23%, P = .005). Girls with TT who were under 8 years old had lower androgens, anti-Müllerian hormone (AMH), luteinizing hormone (LH) and oestradiol (all P < .05) than older girls with TT. At the time of Tanner breast stage 2 (B2), girls with TT had higher androgens, LH, FSH, IGF1, LH, insulin and oestradiol (P < .01) than at the time of TT. TT girls were older at B2 (10.3 ± 1.1 vs. 9.2 ± 1.2 years, P < .001) and menarche (12.3 ± 0.8 vs. 12.0 ± 1.0 years, P = .040) than their counterparts (non-TT). No differences in anthropometric variables or FSHB/FSHR genotypes were detected. CONCLUSION Transient thelarche is a frequent phenomenon that does not appear to be mediated by hypothalamic-pituitary-gonadal axis activation or by adiposity. Hormonal differences between earlier TT and later TT suggest that their mechanisms are different.
Collapse
Affiliation(s)
- Julio Soto
- Faculty of Medicine, Institute of Maternal and Child Research (IDIMI), University of Chile, Santiago, Chile
| | - Ana Pereira
- Faculty of Medicine, Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Alexander Siegfried Busch
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | - German Iñiguez
- Faculty of Medicine, Institute of Maternal and Child Research (IDIMI), University of Chile, Santiago, Chile
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Veronica Mericq
- Faculty of Medicine, Institute of Maternal and Child Research (IDIMI), University of Chile, Santiago, Chile
| |
Collapse
|
43
|
Suh S, Pham C, Smith J, Mesinkovska NA. The banned sunscreen ingredients and their impact on human health: a systematic review. Int J Dermatol 2020; 59:1033-1042. [PMID: 32108942 PMCID: PMC7648445 DOI: 10.1111/ijd.14824] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 01/18/2023]
Abstract
Recent evidence of high systemic absorption of sunscreen ingredients has raised concerns regarding the safety of sunscreen products. Oxybenzone (BP-3) and octinoxate (OMC), two common sunscreen ingredients, were recently banned in Key West and Hawaii owing to their toxic effects on marine ecosystems. Their impact on human health requires a careful assessment. To summarize the current evidence on the association between the systemic level of BP-3 or OMC and its health impact, a primary literature search was conducted using PubMed database in February 2019. There are 29 studies that address the impact of these ingredients on human health. Studies show that elevated systemic level of BP-3 has no adverse effect on male and female fertility, female reproductive hormone level, adiposity, fetal growth, child's neurodevelopment, and sexual maturation. However, the association of BP-3 level on thyroid hormone, testosterone level, kidney function, and pubertal timing has been reported and prompts further investigations to validate a true association. The systemic absorption of OMC has no reported effect on thyroid and reproductive hormone levels. In conclusion, current evidence is not sufficient to support the causal relationship between the elevated systemic level of BP-3 or OMC and adverse health outcomes. There are either contradictory findings among different studies or an insufficient number of studies to corroborate the observed association. To accurately evaluate the long-term risk of exposure to BP-3 and OMC from sunscreen, a well-designed longitudinal randomized controlled trial needs to be conducted.
Collapse
Affiliation(s)
- Susie Suh
- University of California, Irvine, Department of Dermatology, Irvine, CA
- Case Western Reserve University, Department of Pharmacology, Cleveland, OH
- University of California, Irvine, Department of Ophthalmology, Gavin Herbert Eye Institute, Irvine, CA
| | - Christine Pham
- University of California, Irvine, Department of Dermatology, Irvine, CA
| | - Janellen Smith
- University of California, Irvine, Department of Dermatology, Irvine, CA
| | | |
Collapse
|
44
|
Almstrup K, Frederiksen H, Andersson AM, Juul A. Levels of endocrine-disrupting chemicals are associated with changes in the peri-pubertal epigenome. Endocr Connect 2020; 9:845-857. [PMID: 32755991 PMCID: PMC7487188 DOI: 10.1530/ec-20-0286] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022]
Abstract
Puberty marks a transition period, which leads to the attainment of adult sexual maturity. Timing of puberty is a strongly heritable trait. However, large genetic association studies can only explain a fraction of the observed variability and striking secular trends suggest that lifestyle and/or environmental factors are important. Using liquid-chromatography tandem-mass-spectrometry, we measured endocrine-disrupting chemicals (EDCs; triclosan, bisphenol A, benzophenone-3, 2,4-dichlorophenol, 11 metabolites from 5 phthalates) in longitudinal urine samples obtained biannually from peri-pubertal children included in the COPENHAGEN puberty cohort. EDC levels were associated with blood DNA methylation profiles from 31 boys and 20 girls measured both pre- and post-pubertally. We found little evidence of single methylation sites that on their own showed association with urinary excretion levels of EDCs obtained either the same-day or measured as the yearly mean of dichotomized EDC levels. In contrast, methylation of several promoter regions was found to be associated with two or more EDCs, overlap with known gene-chemical interactions, and form a core network with genes known to be important for puberty. Furthermore, children with the highest yearly mean of dichotomized urinary phthalate metabolite levels were associated with higher promoter methylation of the thyroid hormone receptor interactor 6 gene (TRIP6), which again was mirrored by lower circulating TRIP6 protein levels. In general, the mean TRIP6 promoter methylation was mirrored by circulating TRIP6 protein levels. Our results provide a potential molecular mode of action of how exposure to environmental chemicals may modify pubertal development.
Collapse
Affiliation(s)
- Kristian Almstrup
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Correspondence should be addressed to K Almstrup:
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Golestanzadeh M, Riahi R, Kelishadi R. Association of phthalate exposure with precocious and delayed pubertal timing in girls and boys: a systematic review and meta-analysis. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:873-894. [PMID: 32091510 DOI: 10.1039/c9em00512a] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exposure to phthalate derivatives has adverse effects on the health and development of humans, especially for children. A growing body of evidence supports the idea that exposure to phthalates can change an individual's physiological set point and the time of puberty in both genders. In this systematic review and meta-analysis, recent studies were evaluated to obtain systematic and regulation results in relation to puberty status and phthalate exposure in girls and boys. We searched English-language papers using Scopus, ISI, and PubMed databases as search engines, with no restriction of time, until the end of July 2019. A comprehensive literature search for an association between phthalate exposure and signs of puberty as well as levels of different types of hormones was carefully performed. Of the 67 studies retained for full-text screening, 39 studies were eligible for data management and extraction. For conducting a meta-analysis, four studies had appropriate effect size and metrics for pooling in the meta-analysis. Our findings revealed that low and high exposure to phthalates could alter pubertal development in both genders; the effects were either early or delayed puberty such as changes in the pubarche, thelarche, and menarche time, as well as in testicular volume. We statistically analyzed the association of pubic-hair development, breast development, and menarche time with exposure to phthalates in girls. For example, the pooled odds ratios of mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) in relation to breast development were (OR: 1.48, 95% CI: 1.11-1.85) and (OR: 1.52, 95% CI: 1.15-1.58) (P-value < 0.001), respectively. In addition, we analyzed the correlation between pubic-hair development and testicular volume with exposure to phthalates in boys. To the best of our knowledge, this is the first systematic review and meta-analysis of its kind for girls and boys. In conclusion, we found that a positive association exists between phthalate exposure and pubertal timing in the pediatric age group. Therefore, prevention of exposure to phthalates and reduction of their use should be underscored in the strategies for primordial prevention of pubertal timing and related consequences.
Collapse
Affiliation(s)
- Mohsen Golestanzadeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | |
Collapse
|
46
|
Li Y, Zhu J, Fan J, Cai S, Fan C, Zhong Y, Sun L. Associations of urinary levels of phenols and parabens with osteoarthritis among US adults in NHANES 2005-2014. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110293. [PMID: 32045785 DOI: 10.1016/j.ecoenv.2020.110293] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Phenols and parabens are two major classes of endocrine-disrupting compounds (EDCs) that may be related to multiple human diseases. However, there has been no studies examining the association between phenols as well as parabens and osteoarthritis (OA). We assessed the link between urinary concentrations of triclosan (TCS), benzophenone-3 (BP-3), bisphenol A (BPA), and parabens with OA based on the data collected from National Health and Nutrition Examination Survey in multivariable logistic regression models. Among all the 7114 participants included, the weighted percentage of OA was 12.11% (n = 807). Compared with participants at tertile 1, those at tertile 2 of urinary BP-3, and tertile 3 of urinary BP-3 were more likely to show increased OA prevalence in a fully adjusted model, with odd ratio (OR) as 1.34 [95% confidence interval (CI): 1.01-1.78], 1.55 (95 CI%: 1.17-2.06), and 1.66 (95 CI%: 1.23-2.24), respectively. In subgroup analyses stratified by potential confounders, various subgroups remained to show statistically significant positive association between urinary BP-3 and OA prevalence. Otherwise, we observed no statistically significant associations between urinary TCS, BPA or parabens with OA. In conclusion, this serves as the first study in which we found that the urinary concentration of BP-3 was positively correlated to prevalence of OA among the US population.
Collapse
Affiliation(s)
- Yingjun Li
- School of Public Health, Hangzhou Medical College, Hangzhou, China.
| | - Jiahao Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Jiayao Fan
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Shaofang Cai
- Department of Science and Education, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| | - Chunhong Fan
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Yaohong Zhong
- School of Public Health, Hangzhou Medical College, Hangzhou, China
| | - Lingling Sun
- Department of Orthopaedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
47
|
Canelón SP, Boland MR. A Systematic Literature Review of Factors Affecting the Timing of Menarche: The Potential for Climate Change to Impact Women's Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17051703. [PMID: 32150950 PMCID: PMC7084472 DOI: 10.3390/ijerph17051703] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/17/2023]
Abstract
Menarche is the first occurrence of a woman’s menstruation, an event that symbolizes reproductive capacity and the transition from childhood into womanhood. The global average age for menarche is 12 years and this has been declining in recent years. Many factors that affect the timing menarche in girls could be affected by climate change. A systematic literature review was performed regarding the timing of menarche and four publication databases were interrogated: EMBASE, SCOPUS, PubMed, and Cochrane Reviews. Themes were identified from 112 articles and related to environmental causes of perturbations in menarche (either early or late), disease causes and consequences of perturbations, and social causes and consequences. Research from climatology was incorporated to describe how climate change events, including increased hurricanes, avalanches/mudslides/landslides, and extreme weather events could alter the age of menarche by disrupting food availability or via increased toxin/pollutant release. Overall, our review revealed that these perturbations in the timing of menarche are likely to increase the disease burden for women in four key areas: mental health, fertility-related conditions, cardiovascular disease, and bone health. In summary, the climate does have the potential to impact women’s health through perturbation in the timing of menarche and this, in turn, will affect women’s risk of disease in future.
Collapse
Affiliation(s)
- Silvia P. Canelón
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA ;
| | - Mary Regina Boland
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA ;
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Excellence in Environmental Toxicology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
48
|
Cathey A, Watkins DJ, Sánchez BN, Tamayo-Ortiz M, Solano-Gonzalez M, Torres-Olascoaga L, Téllez-Rojo MM, Peterson KE, Meeker JD. Onset and tempo of sexual maturation is differentially associated with gestational phthalate exposure between boys and girls in a Mexico City birth cohort. ENVIRONMENT INTERNATIONAL 2020; 136:105469. [PMID: 31931345 PMCID: PMC7024044 DOI: 10.1016/j.envint.2020.105469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 01/05/2020] [Indexed: 05/03/2023]
Abstract
Phthalates are endocrine disrupting compounds commonly found in consumer products, exposure to which may influence reproductive maturation. Effects from exposure in utero on the onset and progression of sexual development are understudied. We examined longitudinal associations between gestational phthalate exposure and sexual maturation at two points in adolescence (8-14, 9-18 years). Gestational exposure was quantified using the geometric mean of 3 trimester-specific urinary phthalate metabolite measurements. Sexual maturation was assessed using Tanner stages and menarche onset for girls and Tanner stages and testicular volume for boys. Generalized estimating equations for correlated ordinal multinomial responses were used to model relationships between phthalates and odds of transitioning to the next Tanner stage, while generalized additive (GA) mixed models were used to assess the odds of menarche. All models were adjusted for child age (centered around the mean), BMI z-score, change in BMI between visits, time (years) between visits (ΔT), and interactions between ΔT and mean-centered child age and the natural log of exposure metabolite concentration. Among girls, a doubling of gestational MBzP concentrations was associated with increased odds of being at a higher Tanner stage for breast development at 8-14 years (OR = 4.62; 95% CI: 1.38, 15.5), but with slower progression of breast development over the follow-up period (OR = 0.65 per year; 95% CI: 0.46, 0.92) after adjustment for child age and BMI z-score. Similar results were found for ∑DEHP levels and breast development. In boys, a doubling of gestational MBP concentrations was associated with lower odds of being at a higher Tanner stage for pubic hair growth at 8-14 years (OR = 0.37; 95% CI: 0.14, 0.95) but with faster progression (OR: 1.28; 95% CI: 0.97, 1.69). These results indicate that gestational phthalate exposures may impact the onset and progression of sexual development, and that these relationships differ between boys and girls.
Collapse
Affiliation(s)
- Amber Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Brisa N Sánchez
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Marcela Tamayo-Ortiz
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico; Mexican Council of Science and Technology, Mexico City, Mexico
| | - Maritsa Solano-Gonzalez
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | - Libni Torres-Olascoaga
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, Instituto Nacional de Salud Pública, Cuernavaca, MOR, Mexico
| | - Karen E Peterson
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
49
|
Bethea TN, Wesselink AK, Weuve J, McClean MD, Hauser R, Williams PL, Ye X, Calafat AM, Baird DD, Wise LA. Correlates of exposure to phenols, parabens, and triclocarban in the Study of Environment, Lifestyle and Fibroids. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2020; 30:117-136. [PMID: 30692588 PMCID: PMC6661224 DOI: 10.1038/s41370-019-0114-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 05/22/2023]
Abstract
We performed a cross-sectional analysis to identify correlates of urinary concentrations of seven phenols (bisphenols A, F, and S; 2,4-dichlorophenol; 2,5-dichlorophenol; benzophenone-3; triclosan), triclocarban, and four parabens (butyl, ethyl, methyl, and propyl). We analyzed baseline data from 766 participants in the Study of Environment, Lifestyle, and Fibroids, a prospective cohort study of 1693 Black women aged 23-34 years residing in Detroit, Michigan (2010-2012). We collected data on demographic, behavioral, and anthropometric factors via telephone interviews, clinic visits, and self-administered questionnaires. For each biomarker, we used linear regression models to estimate mean differences in log-transformed, creatinine-corrected concentrations across factors of interest. Each biomarker was detected in >50% of participants. Median creatinine-corrected concentrations were the highest for methyl paraben (116.8 μg/g creatinine), propyl paraben (16.8 μg/g creatinine), and benzophenone-3 (13.4 μg/g creatinine). Variables most strongly associated with biomarker concentrations included season of urine collection, education, and body mass index (BMI). BMI was positively associated with bisphenol A and S and triclocarban concentrations and inversely associated with butyl and methyl paraben concentrations. In this cohort of Black women, exposure to phenols, parabens, and triclocarban was prevalent and several factors were associated with biomarker concentrations.
Collapse
Affiliation(s)
- Traci N Bethea
- Slone Epidemiology Center at Boston University, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| | - Amelia K Wesselink
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Michael D McClean
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiaoyun Ye
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Donna D Baird
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
50
|
Age at Pubertal Development in a Hispanic-Latina Female Population: Should the Definitions Be Revisited? J Pediatr Adolesc Gynecol 2019; 32:579-583. [PMID: 31445142 DOI: 10.1016/j.jpag.2019.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 12/27/2022]
Abstract
STUDY OBJECTIVE To assess pubertal events in a Hispanic female population and to create normograms of puberty. DESIGN Longitudinal. SETTING University facility. PARTICIPANTS Five hundred forty-nine girls from the Growth and Obesity Chilean Cohort study. INTERVENTIONS Follow-up twice a year beginning at age 6 years. MAIN OUTCOME MEASURES Breast development, pubic hair development, and age. Breast development (B2, B3, and B4) and pubarche (P2) were determined. Age at menarche was obtained from the adolescents and their mothers. Age and growth velocity at peak height velocity were calculated. RESULTS In girls, B2, B3, and B4 occur at median ages of 9.2, 10.2, and 10.9 years, respectively. The median age at P2 was 9.7 years. The mean age at peak height velocity and the growth velocity were 10.6 years (SD = 1.1) and 8 cm/y, respectively. The mean age at menarche was 11.9 years (SD = 1.1); only 2.8% (15 /530) of girls experienced menarche after 14 years and 1.9% before 10 years. The mean interval time between B2 and menarche was 2.5 ± 1.0 years. Transient thelarche occurred in 8.6% of girls. CONCLUSION This longitudinal cohort shows that thelarche occurred 1.2 months later than previously reported in cross-sectional studies. Conversely, we found that pubic hair appeared 12 months earlier and menarche occurred 9 months earlier than previously reported. These findings are important in setting normalcy data and avoiding unnecessary clinical consultations.
Collapse
|