1
|
Mei X, Xiang W, Pan W, Lin Q, Jia X, Zhang X, Tang X, Cheng X, Weng Y, Yang K, Lu N. Plasmalogens Reversed Oxidative Stress and Inflammatory Response Exacerbated by Damage to Cell Membrane Properties in Acute Liver Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28280-28293. [PMID: 39576750 DOI: 10.1021/acs.jafc.4c06929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
BACKGROUND In acute liver injury (ALI), cell membrane damage could induce an inflammatory response and oxidative stress. As a membrane glycerophospholipid, plasmalogens (PLS) are crucial in regulating the cell membrane properties and exhibit beneficial effects in various liver diseases. However, the specific regulatory effects of PLS in the ALI remain unknown. METHODS We utilized CCl4 to induce ALI in AML12 hepatocytes and C57BL/6J mice and examined oxidative stress indicators and inflammatory cytokine levels. Our study further validated the effect of PLS on cell membrane integrity by Lactate Dehydrogenase (LDH) release assay and Dil/Calcein assay, and molecular dynamics (MD) simulations were employed to elucidate the molecular mechanisms by which PLS affected cell membranes. RESULTS PLS attenuated hepatocyte damage both in vivo and in vitro. Moreover, PLS increased levels of SOD, GSH, and CAT and inhibited the production of malondialdehyde. PLS succeeded in decreasing proinflammatory cytokines (TNF-α, IL-1β, and IL-6) while increasing anti-inflammatory cytokines (IL-10). Furthermore, PLS effectively maintained the cell membrane integrity. The MD simulations well explained the molecular mechanisms: a high level of PLS modulated the cell membrane properties, enabling them to be more flexible, elastic, and less prone to rupture. CONCLUSIONS Our study illustrated the effect and molecular mechanisms of PLS against ALI, potentially broadening its application in liver diseases.
Collapse
Affiliation(s)
- Xue Mei
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Wen Xiang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province 214125, People's Republic of China
| | - Wenyan Pan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, Jiangsu Province 215006, People's Republic of China
| | - Quan Lin
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Xueyan Jia
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Xuan Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Xue Tang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Xiangrong Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China
| | - Yuyan Weng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, Jiangsu Province 215006, People's Republic of China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou, Jiangsu Province 215006, People's Republic of China
| | - Naiyan Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, People's Republic of China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, Jiangsu Province 210093, People's Republic of China
| |
Collapse
|
2
|
Sfera A, Thomas KA, Anton J. Cytokines and Madness: A Unifying Hypothesis of Schizophrenia Involving Interleukin-22. Int J Mol Sci 2024; 25:12110. [PMID: 39596179 PMCID: PMC11593724 DOI: 10.3390/ijms252212110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/30/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Schizophrenia is a severe neuropsychiatric illness of uncertain etiopathogenesis in which antipsychotic drugs can attenuate the symptoms, but patients rarely return to the premorbid level of functioning. In fact, with each relapse, people living with schizophrenia progress toward disability and cognitive impairment. Moreover, our patients desire to live normal lives, to manage their daily affairs independently, date, get married, and raise and support a family. Those of us who work daily with schizophrenia patients know that these objectives are rarely met despite the novel and allegedly improved dopamine blockers. We hypothesize that poor outcomes in schizophrenia reflect the gray matter volume reduction, which continues despite antipsychotic treatment. We hypothesize further that increased gut barrier permeability, due to dysfunctional aryl hydrocarbon receptor (AhR), downregulates the gut barrier protectors, brain-derived neurotrophic factor (BDNF), and interleukin-22 (IL-22), facilitating microbial translocation into the systemic circulation, eventually reaching the brain. Recombinant human IL-22 could ameliorate the outcome of schizophrenia by limiting bacterial translocation and by initiating tissue repair. This short review examines the signal transducer and transcription-three (STAT3)/AhR axis and downregulation of IL-22 and BDNF with subsequent increase in gut barrier permeability. Based on the hypothesis presented here, we discuss alternative schizophrenia interventions, including AhR antagonists, mitochondrial transplant, membrane lipid replacement, and recombinant human IL-22.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA (J.A.)
| | | | | |
Collapse
|
3
|
Yang X, Liu Y, Wang Z, Jin Y, Gu W. Ferroptosis as a new tool for tumor suppression through lipid peroxidation. Commun Biol 2024; 7:1475. [PMID: 39521912 PMCID: PMC11550846 DOI: 10.1038/s42003-024-07180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
As a newly defined type of programmed cell death, ferroptosis is considered a potent weapon against tumors due to its distinct mechanism from other types of programmed cell death. Ferroptosis is triggered by the uncontrolled accumulation of hydroperoxyl polyunsaturated fatty acid-containing phospholipids, also called lipid peroxidation. The lipid peroxidation, generated through enzymatic and non-enzymatic mechanisms, drives changes in cell morphology and the destruction of membrane integrity. Here, we dissect the mechanisms of ferroptosis induced enzymatically or non-enzymatically, summarize the major metabolism pathways in modulating lipid peroxidation, and provide insights into the relationship between ferroptosis and tumor suppression. In this review, we discuss the recent advances of ferroptosis in tumor microenvironments and the prospect of potential therapeutic application.
Collapse
Affiliation(s)
- Xin Yang
- Suzhou Ninth Hospital Affiliated to Soochow University, The Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhe Wang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ying Jin
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou Ninth People's Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Chaudary AS, Guo Y, Utkin YN, Barancheshmeh M, Dagda RK, Gasanoff ES. Sphingomyelin Inhibits Hydrolytic Activity of Heterodimeric PLA 2 in Model Myelin Membranes: Pharmacological Relevance. J Membr Biol 2024:10.1007/s00232-024-00327-y. [PMID: 39438323 DOI: 10.1007/s00232-024-00327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
In this work, the heterodimeric phospholipase A2, HDP-2, from viper venom was investigated for its hydrolytic activity in model myelin membranes as well as for its effects on intermembrane exchange of phospholipids (studied by phosphorescence quenching) and on phospholipid polymorphism (studied by 1H-NMR spectroscopy) to understand the role of sphingomyelin (SM) in the demyelination of nerve fibers. By using well-validated in vitro approaches, we show that the presence of SM in model myelin membranes leads to a significant inhibition of the hydrolytic activity of HDP-2, decreased intermembrane phospholipid exchange, and reduced phospholipid polymorphism. Using AutoDock software, we show that the NHδ+ group of the sphingosine backbone of SM binds to Tyr22(C=Opbδ-) of HDP-2 via a hydrogen bond which keeps only the polar head of SM inside the HDP-2's active center and positions the sn-2 acyl ester bond away from the active center, thus making it unlikely to hydrolyze the alkyl chains at the sn-2 position. This observation strongly suggests that SM inhibits the catalytic activity of HDP-2 by blocking access to other phospholipids to the active center of the enzyme. Should this observation be verified in further studies, it would offer a tantalizing opportunity for developing effective pharmaceuticals to stop the demyelination of nerve fibers by aberrant PLA2s with overt activity - as observed in brain degenerative diseases - by inhibiting SM hydrolysis and/or facilitating SM synthesis in the myelin sheath membrane.
Collapse
Affiliation(s)
- Anwaar S Chaudary
- Advanced STEM Research Center, Chaoyang Kaiwen Academy, Beijing, 100018, China
| | - Yanglin Guo
- Advanced STEM Research Center, Chaoyang Kaiwen Academy, Beijing, 100018, China
| | - Yuri N Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Maryam Barancheshmeh
- Universal Scientific Education and Research Network (USERN), Reno, NV, 89512, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada Medical School, Reno, NV, 89557, USA
| | - Edward S Gasanoff
- Advanced STEM Research Center, Chaoyang Kaiwen Academy, Beijing, 100018, China.
- Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Anh NK, Lee A, Phat NK, Yen NTH, Thu NQ, Tien NTN, Kim HS, Kim TH, Kim DH, Kim HY, Phuoc Long N. Combining metabolomics and machine learning to discover biomarkers for early-stage breast cancer diagnosis. PLoS One 2024; 19:e0311810. [PMID: 39432469 PMCID: PMC11493280 DOI: 10.1371/journal.pone.0311810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
There is an urgent need for better biomarkers for the detection of early-stage breast cancer. Utilizing untargeted metabolomics and lipidomics in conjunction with advanced data mining approaches for metabolism-centric biomarker discovery and validation may enhance the identification and validation of novel biomarkers for breast cancer screening. In this study, we employed a multimodal omics approach to identify and validate potential biomarkers capable of differentiating between patients with breast cancer and those with benign tumors. Our findings indicated that ether-linked phosphatidylcholine exhibited a significant difference between invasive ductal carcinoma and benign tumors, including cases with inconsistent mammography results. We observed alterations in numerous lipid species, including sphingomyelin, triacylglycerol, and free fatty acids, in the breast cancer group. Furthermore, we identified several dysregulated hydrophilic metabolites in breast cancer, such as glutamate, glycochenodeoxycholate, and dimethyluric acid. Through robust multivariate receiver operating characteristic analysis utilizing machine learning models, either linear support vector machines or random forest models, we successfully distinguished between cancerous and benign cases with promising outcomes. These results emphasize the potential of metabolic biomarkers to complement other criteria in breast cancer screening. Future studies are essential to further validate the metabolic biomarkers identified in our study and to develop assays for clinical applications.
Collapse
Affiliation(s)
- Nguyen Ky Anh
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Anbok Lee
- Department of Surgery, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Nguyen Ky Phat
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Thi Hai Yen
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Quang Thu
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Tran Nam Tien
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Sook Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Tae Hyun Kim
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| | - Hee-Yeon Kim
- Department of Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
6
|
Miyazawa T, Higuchi O, Sogame R, Miyazawa T. Determination of Plasmalogen Molecular Species in Hen Eggs. Molecules 2024; 29:4795. [PMID: 39459164 PMCID: PMC11510340 DOI: 10.3390/molecules29204795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
(1) Background: Plasmalogens are vinyl ether-type glycerophospholipids that are characteristically distributed in neural tissues and are significantly reduced in the brains of individuals with dementia compared to those in healthy subjects, suggesting a link between plasmalogen deficiency and cognitive decline. Hen eggs are expected to be a potential source of dietary plasmalogens, but the details remain unclear. (2) Methods: We evaluated the fresh weight, dry weight, total lipid, neutral lipids, glycolipids, and phospholipids in the egg yolk and egg white of hen egg. Then, the molecular species of plasmalogens were quantified using HPLC-ESI-MS/MS. (3) Results: In egg yolk, the total plasmalogen content was 1292.1 µg/100 g fresh weight and predominantly ethanolamine plasmalogens (PE-Pls), specifically 18:0/22:6-PE-Pls, which made up 75.6 wt% of the total plasmalogen. In egg white, the plasmalogen content was 31.4 µg/100 g fresh weight and predominantly PE-Pls, specifically 18:0/20:4-PE-Pls, which made up 49.6 wt% of the total plasmalogen. (4) Conclusions: Plasmalogens were found to be more enriched in egg yolk than in egg white. It was found that humans are likely to ingest almost 0.3 mg of total plasmalogens from one hen egg. These findings highlight the importance of plasmalogens in the daily diet, and it is recommended to explore the impact of long-term dietary plasmalogen intake to assess its effect on human health. This provides a viewpoint for the development of new food products.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Miyagi, Japan; (O.H.); (R.S.)
| | - Ohki Higuchi
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Miyagi, Japan; (O.H.); (R.S.)
- Biodynamic Plant Institute Co., Ltd., Sapporo Techno Park, Sapporo 004-0015, Hokkaido, Japan
| | - Ryosuke Sogame
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Miyagi, Japan; (O.H.); (R.S.)
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Miyagi, Japan; (O.H.); (R.S.)
| |
Collapse
|
7
|
Roberts JA, Radnoff AS, Bushueva A, Menard JA, Wasslen KV, Harley M, Manthorpe JM, Smith JC. Mobile Phase Contaminants Affect Neutral Lipid Analysis in LC-MS-Based Lipidomics Studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024. [PMID: 39373457 DOI: 10.1021/jasms.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Lipidomics is a well-established field, enabled by modern liquid chromatography mass spectrometry (LC-MS) technology, rapidly generating large amounts of data. Lipid extracts derived from biological samples are complex, and most spectral features in LC-MS lipidomics data sets remain unidentified. In-depth analyses of commercial triacylglycerol, diacylglycerol, and cholesterol ester standards revealed the expected ammoniated and sodiated ions as well as five additional unidentified higher mass peaks with relatively high intensities. The identities and origin of these unknown peaks were investigated by modifying the chromatographic mobile-phase components and LC-MS source parameters. Tandem MS (MS/MS) of each unknown adduct peak yielded no lipid structural information, producing only an intense ion of the adducted species. The unknown adducts were identified as low-mass contaminants originating from methanol and isopropanol in the mobile phase. Each contaminant was determined to be an alkylated amine species using their monoisotopic masses to calculate molecular formulas. Analysis of bovine liver extract identified 33 neutral lipids with an additional 73 alkyl amine adducts. Analysis of LC-MS-grade methanol and isopropanol from different vendors revealed substantial alkylated amine contamination in one out of three different brands that were tested. Substituting solvents for ones with lower levels of alkyl amine contamination increased lipid annotations by 36.5% or 27.4%, depending on the vendor, and resulted in >2.5-fold increases in peak area for neutral lipid species without affecting polar lipid analysis. These findings demonstrate the importance of solvent selection and disclosure for lipidomics protocols and highlight some of the major challenges when comparing data between experiments.
Collapse
Affiliation(s)
- Joshua A Roberts
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Angela S Radnoff
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Aleksandra Bushueva
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jocelyn A Menard
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Karl V Wasslen
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Meaghan Harley
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey M Manthorpe
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
8
|
Han J, Zheng D, Liu PS, Wang S, Xie X. Peroxisomal homeostasis in metabolic diseases and its implication in ferroptosis. Cell Commun Signal 2024; 22:475. [PMID: 39367496 PMCID: PMC11451054 DOI: 10.1186/s12964-024-01862-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024] Open
Abstract
Peroxisomes are dynamic organelles involved in various cellular processes, including lipid metabolism, redox homeostasis, and intracellular metabolite transfer. Accumulating evidence suggests that peroxisomal homeostasis plays a crucial role in human health and disease, particularly in metabolic disorders and ferroptosis. The abundance and function of peroxisomes are regulated by a complex interplay between biogenesis and degradation pathways, involving peroxins, membrane proteins, and pexophagy. Peroxisome-dependent lipid metabolism, especially the synthesis of ether-linked phospholipids, has been implicated in modulating cellular susceptibility to ferroptosis, a newly discovered form of iron-dependent cell death. This review discusses the current understanding of peroxisome homeostasis, its roles in redox regulation and lipid metabolism, and its implications in human diseases. We also summarize the main mechanisms of ferroptosis and highlight recent discoveries on how peroxisome-dependent metabolism and signaling influence ferroptosis sensitivity. A better understanding of the interplay between peroxisomal homeostasis and ferroptosis may provide new insights into disease pathogenesis and reveal novel therapeutic strategies for peroxisome-related metabolic disorders and ferroptosis-associated diseases.
Collapse
Affiliation(s)
- Jiwei Han
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Daheng Zheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China
| | - Pu-Ste Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shanshan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangdong, China
| | - Xin Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing City, Zhejiang, China.
| |
Collapse
|
9
|
Liu YH, Liu TT, Niu JQ, Zhang XS, Xu WS, Song S, Wang Z. Characterization of phospholipidome in milk, yogurt and cream, and phospholipid differences related to various dairy processing methods. Food Chem 2024; 454:139733. [PMID: 38805923 DOI: 10.1016/j.foodchem.2024.139733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/27/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024]
Abstract
Milk phospholipids have multiple health benefits, but the deficiency of detailed phospholipid profiles in dairy products brings obstacles to intake calculation and function evaluation of dairy phospholipids. In present study, 306 phospholipid molecular species were identified and quantified among 207 milk, yogurt and cream products using a HILIC-ESI-Q-TOF MS and a HILIC-ESI-QQQ MS. The phospholipid profiles of five mammals' milk show that camel milk contains the most abundant phosphatidylethanolamine, phosphatidylserine and sphingomyelin; cow, yak and goat milk have similar phospholipidomes, while buffalo milk contains abundant phosphatidylinositol. Fewer plasmalogens but more lyso-glycerolphospholipids were found in ultra-high-temperature (UHT) sterilized milk than in pasteurized milk, and higher proportions of lyso-glycerolphospholipid/total phospholipid were observed in both cream and skimmed/semi-skimmed milk than whole milk, indicating that UHT and skimming processes improve glycerolphospholipid degradation and phospholipid nutrition loss. Meanwhile, more diacyl-glycerolphospholipids and less of their degradation products make yogurt a better phospholipid resource than whole milk.
Collapse
Affiliation(s)
- Yue-Han Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Ting-Ting Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jing-Qi Niu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xue-Song Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Wei-Sheng Xu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shuang Song
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, Beijing 100000, China.
| | - Zhu Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| |
Collapse
|
10
|
Wang C, Li Y, Feng J, Liu H, Wang Y, Wan Y, Zheng M, Li X, Chen T, Xiao X. Plasmalogens and Octanoylcarnitine Serve as Early Warnings for Central Retinal Artery Occlusion. Mol Neurobiol 2024; 61:8026-8037. [PMID: 38459364 DOI: 10.1007/s12035-024-04093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Central retinal artery occlusion (CRAO) is a kind of ophthalmic emergency which may cause loss of functional visual acuity. However, the limited treatment options emphasize the significance of early disease prevention. Metabolomics has the potential to be a powerful tool for early identification of individuals at risk of CRAO. The aim of the study was to identify potential biomarkers for CRAO through a comprehensive analysis. We employed metabolomics analysis to compare venous blood samples from CRAO patients with cataract patients for the venous difference, as well as arterial and venous blood from CRAO patients for the arteriovenous difference. The analysis of metabolites showed that PC(P-18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PC(P-18:0/20:4(5Z,8Z,11Z,14Z)) and octanoylcarnitine were strongly correlated with CRAO. We also used univariate logistic regression, random forest (RF), and support vector machine (SVM) to screen clinical parameters of patients and found that HDL-C and ApoA1 showed significant predictive efficacy in CRAO patients. We compared the predictive performance of the clinical parameter model with combined model. The prediction efficiency of the combined model was significantly better with area under the receiver operating characteristic curve (AUROC) of 0.815. Decision curve analysis (DCA) also exhibited a notably higher net benefit rate. These results underscored the potency of these three substances as robust predictors of CRAO occurrence.
Collapse
Affiliation(s)
- Chuansen Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Jiaqing Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Hang Liu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuedan Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Yuwei Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Mengxue Zheng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Xuejie Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
11
|
Zhang Q, Li Z, Liu T, Li J, Bai C. Synthesis of Plasmalogen Derivatives with Unnatural Fatty Acids as Substrates for Ferroptosis Induction. ACS Chem Biol 2024; 19:1883-1887. [PMID: 39116319 DOI: 10.1021/acschembio.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Lipid peroxidation, the key step in the ferroptosis process, requires the oxidation of the double bonds of phospholipids in cellular membrane structures. Current research on ferroptosis mechanisms and new drug development has focused on naturally occurring phospholipids with internal double bonds. However, whether unnatural terminal double bonds can be involved in ferroptosis remains to be elucidated. In this study, we introduced terminal double bonds at the sn-2 position of phospholipids (Terminal Olefin Fatty Acids, TOFA) and discovered that these artificial phospholipids can kill cells alone, without ferroptosis inducers, and can be inhibited only by some ferroptosis inhibitors, such as ferrostatin-1, liproxstatin-1, alpha-tocopherol, but not deferoxamine mesylate. Our results reveal that phospholipids with terminal double bonds can participate in ferroptosis through an atypical mechanism. Moreover, further mechanistic studies could confirm that controlling the double bond position could be useful to maneuver ferroptosis and develop new drugs.
Collapse
Affiliation(s)
- Qiliang Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ziwen Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tao Liu
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chuan Bai
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
12
|
Zhang W, Li P. The suppression of nuclear factor kappa B/microRNA 222 axis alleviates lipopolysaccharide-induced acute lung injury through increasing the alkylglyceronephosphate synthase expression. J Infect Chemother 2024:S1341-321X(24)00232-0. [PMID: 39209261 DOI: 10.1016/j.jiac.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/01/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Acute lung injury (ALI) is a serious and rapidly progressing pulmonary disorder with a high mortality rate. In this study, we aimed to investigate the relationship between miR-222 and NF-κB (p65) activation in ALI. METHODS ALI was induced in mice using lipopolysaccharide (LPS). Lung tissues and bronchoalveolar lavage fluid were collected for analysis. MH-S cell lines were used as an ALI model. Various techniques including histopathology, molecular analysis, and cell culture assays were employed. RESULTS Increased miR-222 levels were observed in the LPS-induced ALI mouse model. ALI mice exhibited severe lung pathology, inflammatory cell infiltration, edema, elevated W/D ratio, MPO activity, and increased TNFα, IL1, and IL6 levels, which were reversed by miR-222 antagomir, confirming miR-222's exacerbation of LPS-induced ALI. miR-222 directly targeted the 3'-UTR of alkylglyceronephosphate synthase (AGPS) mRNA, reducing its expression. AGPS is crucial for plasmalogen synthesis, which protects against oxidative stress. NF-κB (p-p65) levels were increased in ALI models, and LPS promoted the enrichment of the miR-222 promoter region, suggesting NF-κB (p65) involvement in miR-222 transcriptional regulation. The NF-κB/miR-222/AGPS axis played a significant role in ALI progression. CONCLUSIONS The present study indicates that NF-κB (p65) activates miR-222 transcription by enriching its promoter region, leading to increased miR-222 expression. Elevated miR-222 levels downregulate AGPS, thereby accelerating the progression of ALI. Targeting the NF-κB/miR-222/AGPS axis may hold promise as a therapeutic approach for ALI, although further research is needed to fully understand its significance.
Collapse
Affiliation(s)
- Wei Zhang
- Intensive care unit, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China.
| | - Pibao Li
- Intensive care unit, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, China.
| |
Collapse
|
13
|
Fries BD, Tobias F, Wang Y, Holbrook JH, Hummon AB. Lipidomics Profiling Reveals Differential Alterations after FAS Inhibition in 3D Colon Cancer Cell Culture Models. J Proteome Res 2024; 23:2919-2933. [PMID: 38063332 PMCID: PMC11161555 DOI: 10.1021/acs.jproteome.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Cancerous cells synthesize most of their lipids de novo to keep up with their rapid growth and proliferation. Fatty acid synthase (FAS) is a key enzyme in the lipogenesis pathway that is upregulated in many cancers and has gained popularity as a druggable target of interest for cancer treatment. The first FAS inhibitor discovered, cerulenin, initially showed promise for chemotherapeutic purposes until it was observed that it had adverse side effects in mice. TVB-2640 (Denifanstat) is part of the newer generation of inhibitors. With multiple generations of FAS inhibitors being developed, it is vital to understand their distinct molecular downstream effects to elucidate potential interactions in the clinic. Here, we profile the lipidome of two different colorectal cancer (CRC) spheroids treated with a generation 1 inhibitor (cerulenin) or a generation 2 inhibitor (TVB-2640). We observe that the cerulenin causes drastic changes to the spheroid morphology as well as alterations to the lipid droplets found within CRC spheroids. TVB-2640 causes higher abundances of polyunsaturated fatty acids (PUFAs) whereas cerulenin causes a decreased abundance of PUFAs. The increase in PUFAs in TVB-2640 exposed spheroids indicates it is causing cells to die via a ferroptotic mechanism rather than a conventional apoptotic or necrotic mechanism.
Collapse
Affiliation(s)
- Brian D Fries
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fernando Tobias
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Integrated Molecular Structure Education and Research Center (IMSERC), Northwestern University, Evanston, Illinois 60208, United States
| | - Yijia Wang
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Joseph H Holbrook
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Cerrato A, Cavaliere C, Laganà A, Montone CM, Piovesana S, Sciarra A, Taglioni E, Capriotti AL. First Proof of Concept of a Click Inverse Electron Demand Diels-Alder Reaction for Assigning the Regiochemistry of Carbon-Carbon Double Bonds in Untargeted Lipidomics. Anal Chem 2024; 96:10817-10826. [PMID: 38874982 DOI: 10.1021/acs.analchem.4c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Lipidomics by high-resolution mass spectrometry (HRMS) has become a prominent tool in clinical chemistry due to the proven connections between lipid dysregulation and the insurgence of pathologies. However, it is difficult to achieve structural characterization beyond the fatty acid level by HRMS, especially when it comes to the regiochemistry of carbon-carbon double bonds, which play a major role in determining the properties of cell membranes. Several approaches have been proposed for elucidating the regiochemistry of double bonds, such as derivatization before MS analysis by photochemical reactions, which have shown great potential for their versatility but have the unavoidable drawback of splitting the MS signal. Among other possible approaches for derivatizing electron-rich double bonds, the emerging inverse-electron-demand Diels-Alder (IEDDA) reaction with tetrazines stands out for its unmatchable kinetics and has found several applications in basic biology and protein imaging. In this study, a catalyst-free click IEDDA reaction was employed for the first time to pinpoint carbon-carbon double bonds in free and conjugated fatty acids. Fatty acid and glycerophospholipid regioisomers were analyzed alone and in combination, demonstrating that the IEDDA reaction had click character and allowed the obtention of diagnostic product ions following MS/MS fragmentation as well as the possibility of performing relative quantitation of lipid regioisomers. The IEDDA protocol was later employed in an untargeted lipidomics study on plasma samples of patients suffering from prostate cancer and benign prostatic conditions, confirming the applicability of the proposed reaction to complex matrices of clinical interest.
Collapse
Affiliation(s)
- Andrea Cerrato
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Aldo Laganà
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Carmela Maria Montone
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Susy Piovesana
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Alessandro Sciarra
- Department of Maternal and Child and Urological Sciences, Sapienza University of Rome, Viale del Policlinico 155, Rome 00161, Italy
| | - Enrico Taglioni
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Laura Capriotti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
15
|
Huang X, Yang X, Zhang M, Li T, Zhu K, Dong Y, Lei X, Yu Z, Lv C, Huang J. SELENOI Functions as a Key Modulator of Ferroptosis Pathway in Colitis and Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404073. [PMID: 38757622 PMCID: PMC11267378 DOI: 10.1002/advs.202404073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Ferroptosis plays important roles both in normal physiology and multiple human diseases. It is well known that selenoprotein named glutathione peroxidase 4 (GPX4) is a crucial regulator for ferroptosis. However, it remains unknown whether other selenoproteins responsible for the regulation of ferroptosis, particularly in gut diseases. In this study, it is observed that Selenoprotein I (Selenoi) prevents ferroptosis by maintaining ether lipids homeostasis. Specific deletion of Selenoi in intestinal epithelial cells induced the occurrence of ferroptosis, leading to impaired intestinal regeneration and compromised colonic tumor growth. Mechanistically, Selenoi deficiency causes a remarkable decrease in ether-linked phosphatidylethanolamine (ePE) and a marked increase in ether-linked phosphatidylcholine (ePC). The imbalance of ePE and ePC results in the upregulation of phospholipase A2, group IIA (Pla2g2a) and group V (Pla2g5), as well as arachidonate-15-lipoxygenase (Alox15), which give rise to excessive lipid peroxidation. Knockdown of PLA2G2A, PLA2G5, or ALOX15 can reverse the ferroptosis phenotypes, suggesting that they are downstream effectors of SELENOI. Strikingly, GPX4 overexpression cannot rescue the ferroptosis phenotypes of SELENOI-knockdown cells, while SELENOI overexpression can partially rescue GPX4-knockdown-induced ferroptosis. It suggests that SELENOI prevents ferroptosis independent of GPX4. Taken together, these findings strongly support the notion that SELENOI functions as a novel suppressor of ferroptosis during colitis and colon tumorigenesis.
Collapse
Affiliation(s)
- Xin Huang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Xu Yang
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Mingxin Zhang
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Tong Li
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Yulan Dong
- College of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Xingen Lei
- Department of Animal ScienceCornell UniversityIthacaNY14853USA
| | - Zhengquan Yu
- College of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Cong Lv
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthDepartment of Nutrition and HealthChina Agricultural UniversityBeijing100193China
| |
Collapse
|
16
|
Brorsen LF, McKenzie JS, Pinto FE, Glud M, Hansen HS, Haedersdal M, Takats Z, Janfelt C, Lerche CM. Metabolomic profiling and accurate diagnosis of basal cell carcinoma by MALDI imaging and machine learning. Exp Dermatol 2024; 33:e15141. [PMID: 39036889 DOI: 10.1111/exd.15141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024]
Abstract
Basal cell carcinoma (BCC), the most common keratinocyte cancer, presents a substantial public health challenge due to its high prevalence. Traditional diagnostic methods, which rely on visual examination and histopathological analysis, do not include metabolomic data. This exploratory study aims to molecularly characterize BCC and diagnose tumour tissue by applying matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and machine learning (ML). BCC tumour development was induced in a mouse model and tissue sections containing BCC (n = 12) were analysed. The study design involved three phases: (i) Model training, (ii) Model validation and (iii) Metabolomic analysis. The ML algorithm was trained on MS data extracted and labelled in accordance with histopathology. An overall classification accuracy of 99.0% was reached for the labelled data. Classification of unlabelled tissue areas aligned with the evaluation of a certified Mohs surgeon for 99.9% of the total tissue area, underscoring the model's high sensitivity and specificity in identifying BCC. Tentative metabolite identifications were assigned to 189 signals of importance for the recognition of BCC, each indicating a potential tumour marker of diagnostic value. These findings demonstrate the potential for MALDI-MSI coupled with ML to characterize the metabolomic profile of BCC and to diagnose tumour tissue with high sensitivity and specificity. Further studies are needed to explore the potential of implementing integrated MS and automated analyses in the clinical setting.
Collapse
Affiliation(s)
- Lauritz F Brorsen
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - James S McKenzie
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, UK
| | - Fernanda E Pinto
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Martin Glud
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Harald S Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Merete Haedersdal
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zoltan Takats
- Department of Digestion, Metabolism and Reproduction, Imperial College London, London, UK
| | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Catharina M Lerche
- Department of Dermatology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Costa J, Gabrielli M, Altabe SG, Uttaro AD. The presence of plasmenyl ether lipids in Capsaspora owczarzaki suggests a premetazoan origin of plasmalogen biosynthesis in animals. Heliyon 2024; 10:e32807. [PMID: 38975177 PMCID: PMC11225845 DOI: 10.1016/j.heliyon.2024.e32807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
Plasmalogens are glycerophospholipids with a vinyl ether bond, rather than an ester bond, at sn-1 position. These lipids were described in anaerobic bacteria, myxobacteria, animals and some protists, but not in plants or fungi. Anaerobic and aerobic organisms synthesize plasmalogens differently. The aerobic pathway requires oxygen in the last step, which is catalyzed by PEDS1. CarF and TMEM189 were recently identified as the PEDS1 from myxobacteria and mammals, which could be of valuable use in exploring the distribution of this pathway in eukaryotes. We show the presence of plasmalogens in Capsaspora owczarzaki, one of the closest unicellular relatives of animals. This is the first report of plasmalogens in non-metazoan opisthokontas. Analysis of its genome revealed the presence of enzymes of the aerobic pathway. In a broad BLAST search, we found PEDS1 homologs in Opisthokonta and some genera of Amoebozoa and Excavata, consistent with the restricted distribution of plasmalogens reported in eukaryotes. Within Opisthokonta, PEDS1 is limited to Filasterea (Capsaspora and Pigoraptor), Metazoa and a small group of fungi comprising three genera of ascomycetes. A phylogenetic analysis of PEDS1 traced the acquisition of plasmalogen synthesis in animals to a filasterean ancestor and suggested independent acquisition events for Amoebozoa, Excavata and Ascomycetes.
Collapse
Affiliation(s)
| | | | - Silvia G. Altabe
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina
| | - Antonio D. Uttaro
- Instituto de Biología Molecular y Celular de Rosario, CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2000FHQ, Ocampo y Esmeralda, Rosario, Argentina
| |
Collapse
|
18
|
Chen Q, Lin F, Li W, Gu X, Chen Y, Su H, Zhang L, Zheng W, Zeng X, Lu X, Wang C, Chen W, Zhang B, Zhang H, Gong M. Distinctive Lipid Characteristics of Colorectal Cancer Revealed through Non-targeted Lipidomics Analysis of Tongue Coating. J Proteome Res 2024; 23:2054-2066. [PMID: 38775738 PMCID: PMC11165570 DOI: 10.1021/acs.jproteome.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024]
Abstract
The metabolites and microbiota in tongue coating display distinct characteristics in certain digestive disorders, yet their relationship with colorectal cancer (CRC) remains unexplored. Here, we employed liquid chromatography coupled with tandem mass spectrometry to analyze the lipid composition of tongue coating using a nontargeted approach in 30 individuals with colorectal adenomas (CRA), 32 with CRC, and 30 healthy controls (HC). We identified 21 tongue coating lipids that effectively distinguished CRC from HC (AUC = 0.89), and 9 lipids that differentiated CRC from CRA (AUC = 0.9). Furthermore, we observed significant alterations in the tongue coating lipid composition in the CRC group compared to HC/CRA groups. As the adenoma-cancer sequence progressed, there was an increase in long-chain unsaturated triglycerides (TG) levels and a decrease in phosphatidylethanolamine plasmalogen (PE-P) levels. Furthermore, we noted a positive correlation between N-acyl ornithine (NAOrn), sphingomyelin (SM), and ceramide phosphoethanolamine (PE-Cer), potentially produced by members of the Bacteroidetes phylum. The levels of inflammatory lipid metabolite 12-HETE showed a decreasing trend with colorectal tumor progression, indicating the potential involvement of tongue coating microbiota and tumor immune regulation in early CRC development. Our findings highlight the potential utility of tongue coating lipid analysis as a noninvasive tool for CRC diagnosis.
Collapse
Affiliation(s)
- Qubo Chen
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Fengye Lin
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Wanhua Li
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Xiangyu Gu
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Ying Chen
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Hairong Su
- Second
Clinical Medical College, Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Lu Zhang
- Metabolomics
and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen Zheng
- Metabolomics
and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuan Zeng
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Xinyi Lu
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Chuyang Wang
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Weicheng Chen
- State
Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, China
| | - Beiping Zhang
- Department
of Gastroenterology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Haiyan Zhang
- Department
of Gastroenterology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510120, Guangdong Province, China
| | - Meng Gong
- Metabolomics
and Proteomics Technology Platform, West China Hospital, Sichuan University, Chengdu 610041, China
- Institutes
for Systems Genetics, Frontiers Science Center for Disease-related
Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Zhang M, Wang Y, Di J, Zhang X, Liu Y, Zhang Y, Li B, Qi S, Cao X, Liu L, Liu S, Xu F. High coverage of targeted lipidomics revealed lipid changes in the follicular fluid of patients with insulin-resistant polycystic ovary syndrome and a positive correlation between plasmalogens and oocyte quality. Front Endocrinol (Lausanne) 2024; 15:1414289. [PMID: 38904043 PMCID: PMC11187234 DOI: 10.3389/fendo.2024.1414289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 06/22/2024] Open
Abstract
Background Polycystic ovary syndrome with insulin resistance (PCOS-IR) is the most common endocrine and metabolic disease in women of reproductive age, and low fertility in PCOS patients may be associated with oocyte quality; however, the molecular mechanism through which PCOS-IR affects oocyte quality remains unknown. Methods A total of 22 women with PCOS-IR and 23 women without polycystic ovary syndrome (control) who underwent in vitro fertilization and embryo transfer were recruited, and clinical information pertaining to oocyte quality was analyzed. Lipid components of follicular fluid (FF) were detected using high-coverage targeted lipidomics, which identified 344 lipid species belonging to 19 lipid classes. The exact lipid species associated with oocyte quality were identified. Results The number (rate) of two pronuclear (2PN) zygotes, the number (rate) of 2PN cleaved embryos, and the number of high-quality embryos were significantly lower in the PCOS-IR group. A total of 19 individual lipid classes and 344 lipid species were identified and quantified. The concentrations of the 19 lipid species in the normal follicular fluid (control) ranged between 10-3 mol/L and 10-9 mol/L. In addition, 39 lipid species were significantly reduced in the PCOS-IR group, among which plasmalogens were positively correlated with oocyte quality. Conclusions This study measured the levels of various lipids in follicular fluid, identified a significantly altered lipid profile in the FF of PCOS-IR patients, and established a correlation between poor oocyte quality and plasmalogens in PCOS-IR patients. These findings have contributed to the development of plasmalogen replacement therapy to enhance oocyte quality and have improved culture medium formulations for oocyte in vitro maturation (IVM).
Collapse
Affiliation(s)
- Meizi Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Yuanyuan Wang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Jianyong Di
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Xuanlin Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Ye Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Yixin Zhang
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Bowen Li
- LipidAll Technologies Company Limited, Changzhou, Jiangsu, China
| | - Simeng Qi
- LipidAll Technologies Company Limited, Changzhou, Jiangsu, China
| | - Xiaomin Cao
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Li Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Shouzeng Liu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| | - Fengqin Xu
- Reproductive Medicine Center, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
20
|
Zheng R, Su R, Fan Y, Xing F, Huang K, Yan F, Chen H, Liu B, Fang L, Du Y, Zhou F, Wang D, Feng S. Machine Learning-Based Integrated Multiomics Characterization of Colorectal Cancer Reveals Distinctive Metabolic Signatures. Anal Chem 2024; 96:8772-8781. [PMID: 38743842 DOI: 10.1021/acs.analchem.4c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The metabolic signature identification of colorectal cancer is critical for its early diagnosis and therapeutic approaches that will significantly block cancer progression and improve patient survival. Here, we combined an untargeted metabolic analysis strategy based on internal extractive electrospray ionization mass spectrometry and the machine learning approach to analyze metabolites in 173 pairs of cancer samples and matched normal tissue samples to build robust metabolic signature models for diagnostic purposes. Screening and independent validation of metabolic signatures from colorectal cancers via machine learning methods (Logistic Regression_L1 for feature selection and eXtreme Gradient Boosting for classification) was performed to generate a panel of seven signatures with good diagnostic performance (the accuracy of 87.74%, sensitivity of 85.82%, and specificity of 89.66%). Moreover, seven signatures were evaluated according to their ability to distinguish between cancer and normal tissues, with the metabolic molecule PC (30:0) showing good diagnostic performance. In addition, genes associated with PC (30:0) were identified by multiomics analysis (combining metabolic data with transcriptomic data analysis) and our results showed that PC (30:0) could promote the proliferation of colorectal cancer cell SW480, revealing the correlation between genetic changes and metabolic dysregulation in cancer. Overall, our results reveal potential determinants affecting metabolite dysregulation, paving the way for a mechanistic understanding of altered tissue metabolites in colorectal cancer and design interventions for manipulating the levels of circulating metabolites.
Collapse
Affiliation(s)
- Ran Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Rui Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Yusi Fan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Software, Jilin University, Changchun 130021, China
| | - Fan Xing
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Huanwen Chen
- School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Botong Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Laiping Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| | - Yechao Du
- Department of General Surgery Center, First Hospital of Jilin University, 1 Xinmin Street Changchun, Jilin 130012, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Software, Jilin University, Changchun 130021, China
| | - Daguang Wang
- Department of Gastric Colorectal and Anal Surgery, First Hospital of Jilin University, 1 Xinmin Street Changchun, Jilin 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
21
|
Sitton J, Ali A, Osborne L, Holman AP, Rodriguez A, Kurouski D. Plasmalogens Alter the Aggregation Rate of Transthyretin and Lower Toxicity of Transthyretin Fibrils. J Phys Chem Lett 2024; 15:4761-4766. [PMID: 38661515 PMCID: PMC11071038 DOI: 10.1021/acs.jpclett.4c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Heart tissue can experience a progressive accumulation of transthyretin (TTR), a small four subunit protein that transports holoretinol binding protein and thyroxine. This severe pathology is known as transthyretin amyloid cardiomyopathy. Numerous experimental studies indicated that the aggregation rate and toxicity of TTR fibrils could be altered by the presence of lipids; however, the role of plasmalogens in this process remains unknown. In this study, we investigate the effect of choline plasmalogens (CPs) with different lengths and saturations of fatty acids (FAs) on TTR aggregation. We found that CPs with saturated and unsaturated FAs strongly suppressed TTR aggregation. We also found that CPs with saturated FAs did not change the morphology of TTR fibrils; however, much thicker fibrillar species were formed in the presence of CPs with unsaturated FAs. Finally, we found that CPs with C16:0, C18:0, and C18:1 FAs substantially lowered the cytotoxicity of TTR fibrils that were formed in their presence.
Collapse
Affiliation(s)
- Jadon Sitton
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Abid Ali
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Luke Osborne
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Aidan P. Holman
- Department
of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Axell Rodriguez
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College
Station, Texas 77843, United States
| |
Collapse
|
22
|
Gygi JP, Konstorum A, Pawar S, Aron E, Kleinstein SH, Guan L. A supervised Bayesian factor model for the identification of multi-omics signatures. Bioinformatics 2024; 40:btae202. [PMID: 38603606 PMCID: PMC11078774 DOI: 10.1093/bioinformatics/btae202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/29/2024] [Accepted: 04/10/2024] [Indexed: 04/13/2024] Open
Abstract
MOTIVATION Predictive biological signatures provide utility as biomarkers for disease diagnosis and prognosis, as well as prediction of responses to vaccination or therapy. These signatures are identified from high-throughput profiling assays through a combination of dimensionality reduction and machine learning techniques. The genes, proteins, metabolites, and other biological analytes that compose signatures also generate hypotheses on the underlying mechanisms driving biological responses, thus improving biological understanding. Dimensionality reduction is a critical step in signature discovery to address the large number of analytes in omics datasets, especially for multi-omics profiling studies with tens of thousands of measurements. Latent factor models, which can account for the structural heterogeneity across diverse assays, effectively integrate multi-omics data and reduce dimensionality to a small number of factors that capture correlations and associations among measurements. These factors provide biologically interpretable features for predictive modeling. However, multi-omics integration and predictive modeling are generally performed independently in sequential steps, leading to suboptimal factor construction. Combining these steps can yield better multi-omics signatures that are more predictive while still being biologically meaningful. RESULTS We developed a supervised variational Bayesian factor model that extracts multi-omics signatures from high-throughput profiling datasets that can span multiple data types. Signature-based multiPle-omics intEgration via lAtent factoRs (SPEAR) adaptively determines factor rank, emphasis on factor structure, data relevance and feature sparsity. The method improves the reconstruction of underlying factors in synthetic examples and prediction accuracy of coronavirus disease 2019 severity and breast cancer tumor subtypes. AVAILABILITY AND IMPLEMENTATION SPEAR is a publicly available R-package hosted at https://bitbucket.org/kleinstein/SPEAR.
Collapse
Affiliation(s)
- Jeremy P Gygi
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520, United States
| | - Anna Konstorum
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Shrikant Pawar
- Department of Genetics, Yale Center for Genomic Analysis (YCGA), Yale School of Medicine, New Haven, CT 06520, United States
| | - Edel Aron
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520, United States
| | - Steven H Kleinstein
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520, United States
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Leying Guan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06520, United States
| |
Collapse
|
23
|
Shields SWJ, Canez CR, Rosales CA, Roberts JA, Bourgaize H, Pallister PJ, Manthorpe JM, Smith JC. Optimized 13C-TrEnDi Enhances the Sensitivity of Plasmenyl Ether Glycerophospholipids and Demonstrates Compatibility with Other Derivatization Strategies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:972-981. [PMID: 38551491 DOI: 10.1021/jasms.4c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The identification and quantitation of plasmalogen glycerophospholipids is challenging due to their isobaric overlap with plasmanyl ether-linked glycerophospholipids, susceptibility to acid degradation, and their typically low abundance in biological samples. Trimethylation enhancement using diazomethane (TrEnDi) can be used to significantly enhance the signal of glycerophospholipids through the creation of quaternary ammonium groups producing fixed positive charges using 13C-diazomethane in complex lipid extracts. Although TrEnDi requires a strong acid for complete methylation, we report an optimized protocol using 10 mM HBF4 with the subsequent addition of a buffer solution that prevents acidic hydrolysis of plasmalogen species and enables the benefits of TrEnDi to be realized for this class of lipids. These optimized conditions were applied to aliquots of bovine liver extract (BLE) to achieve permethylation of plasmalogen lipids within a complex mixture. Treating aliquots of unmodified and TrEnDi-derivatized BLE samples with 80% formic acid and comparing their liquid chromatography mass spectrometry (LCMS) results to analogous samples not treated with formic acid, enabled the identification of 29 plasmalogen species. On average, methylated plasmalogen species from BLE demonstrated 2.81-fold and 28.1-fold sensitivity gains over unmodified counterparts for phosphatidylcholine and phosphatidylethanolamine plasmalogen species, respectively. Furthermore, the compatibility of employing 13C-TrEnDi and a previously reported iodoacetalization strategy was demonstrated to effectively identify plasmenyl-ether lipids in complex biological extracts at greater levels of sensitivity. Overall, we detail an optimized 13C-TrEnDi derivatization strategy that enables the analysis of plasmalogen glycerophospholipids with no undesired cleavage of radyl groups, boosting their sensitivity in LCMS and LCMS/MS analyses.
Collapse
Affiliation(s)
- Samuel W J Shields
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Carlos R Canez
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Christian A Rosales
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Joshua A Roberts
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Hillary Bourgaize
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Peter J Pallister
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey M Manthorpe
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Jeffrey C Smith
- Department of Chemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, Ontario K1S 5B6, Canada
- Carleton Mass Spectrometry Centre, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
24
|
Mu R, Momeni S, Krieger M, Xie B, Cao X, Merritt J, Wu H. Plasmalogen, a glycerophospholipid crucial for Streptococcus mutans acid tolerance and colonization. Appl Environ Microbiol 2024; 90:e0150023. [PMID: 38456674 PMCID: PMC11022534 DOI: 10.1128/aem.01500-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
Plasmalogen is a specific glycerophospholipid present in both animal and bacterial organisms. It plays a crucial function in eukaryotic cellular processes and is closely related to several human diseases, including neurological disorders and cancers. Nonetheless, the precise biological role of plasmalogen in bacteria is not well understood. In this study, we identified SMU_438c as the enzyme responsible for plasmalogen production in Streptococcus mutans under anaerobic conditions. The heterologous expression of SMU_438c in a plasmalogen-negative strain, Streptococcus sanguinis, resulted in the production of plasmalogen, indicating that this enzyme is sufficient for plasmalogen production. Additionally, the plasmalogen-deficient S. mutans exhibited significantly lower acid tolerance and diminished its colonization in Drosophila flies compared to the wild-type strain and complemented strain. In summary, our data suggest that plasmalogen plays a vital role in bacterial stress tolerance and in vivo colonization. IMPORTANCE This study sheds light on the biological role of plasmalogen, a specific glycerophospholipid, in bacteria, particularly in Streptococcus mutans. Plasmalogens are known for their significant roles in eukaryotic cells and have been linked to human diseases like neurological disorders and cancers. The enzyme SMU_438c, identified as essential for plasmalogen production under anaerobic conditions, was crucial for acid tolerance and in vivo colonization in Drosophila by S. mutans, underscoring its importance in bacterial stress response and colonization. These findings bridge the knowledge gap in bacterial physiology, highlighting plasmalogen's role in microbial survival and offering potential insights into microbial pathogenesis and host-microbe interactions.
Collapse
Affiliation(s)
- Rong Mu
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Stephanie Momeni
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Baotong Xie
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Xixi Cao
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Hui Wu
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
25
|
Farid I, Ali A, Holman AP, Osborne L, Kurouski D. Length and saturation of choline plasmalogens alter the aggregation rate of α-synuclein but not the toxicity of amyloid fibrils. Int J Biol Macromol 2024; 264:130632. [PMID: 38447831 DOI: 10.1016/j.ijbiomac.2024.130632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/13/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Plasmalogens comprise a large fraction of the total phospholipids in plasma membranes. These molecules modulate membrane fluidity, produce inflammatory mediators mitigating effects of metabolic stresses. A growing body of evidence suggests that an onset of Parkinson's disease (PD), a severe neurodegenerative pathology, can be triggered by metabolic changes in plasma membranes. However, the role of plasmalogens in the aggregation of α-synuclein (α-syn), an expected molecular cause of PD, remains unclear. In this study we examine the effect of choline plasmalogens (CPs), unique phospholipids that have a vinyl ether linkage at the sn-1 position of glycerol, on the aggregation rate of α-syn. We found that the length and saturation of fatty acids (FAs) in CPs change rates of protein aggregation. We also found drastic changes in the morphology of α-syn fibrils formed in the presence of different CPs compared to α-syn fibrils grown in the lipid-free environment. At the same time, we did not observe substantial changes in the secondary structure and toxicity of α-syn fibrils formed in the presence of different CPs. These results indicate that the length and saturation of FAs in CPs present in the plasma membrane can alter α-syn stability and modulate its aggregation properties, which, in turn can accelerate or delay the onset of PD.
Collapse
Affiliation(s)
- Ifrah Farid
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Abid Ali
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Aidan P Holman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Luke Osborne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
26
|
Powell TL, Ferchaud-Roucher V, Madi L, Uhlson C, Zemski-Berry K, Kramer AC, Erickson K, Palmer C, Chassen SS, Castillo-Castrejon M. Synthesis of phospholipids in human placenta. Placenta 2024; 147:12-20. [PMID: 38278000 PMCID: PMC10923060 DOI: 10.1016/j.placenta.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
INTRODUCTION Placental phospholipid synthesis is critical for the expansion of the placental exchange surface area and for production of signaling molecules. Despite their importance, it is not yet established which enzymes involved in the de novo synthesis and remodeling of placental phospholipids are expressed and active in the human placenta. METHODS We identified phospholipid synthesis enzymes by immunoblotting in placental homogenates and immunofluorescence in placenta tissue sections. Primary human trophoblast (PHT) cells from term healthy placentas (n = 10) were cultured and exposed to 13C labeled fatty acids (16:0, 18:1 and 18:2 n-6, 22:6 n-3) for 2 and 24 h. Three phospholipid classes; phosphatidic acid, phosphatidylcholine, and lysophosphatidylcholine containing 13C fatty acids were quantified by Liquid Chromatography with tandem mass spectrometry (LC/MS-MS). RESULTS Acyl transferase and phospholipase enzymes were detected in human placenta homogenate and primarily expressed in the syncytiotrophoblast. Three representative 13C fatty acids (16:0, 18:1 and 18:2 n-6) were incorporated rapidly into phosphatidic acid in trophoblasts, but 13C labeled docosahexaenoic acid (DHA; 22:6 n-3) incorporation was not detected. 13C DHA was incorporated into phosphatidylcholine. Lysophosphatidylcholine containing all four 13C labeled fatty acids were found in high abundance. CONCLUSIONS Phospholipid synthesis and remodeling enzymes are present in the syncytiotrophoblast. 13C labeled fatty acids were rapidly incorporated into cellular phospholipids. 13C DHA was incorporated into phospholipids through the remodeling pathway rather than by de novo synthesis. These understudied pathways are highly active and critical for structure and function of the placenta.
Collapse
Affiliation(s)
- Theresa L Powell
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA; Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Veronique Ferchaud-Roucher
- University of Nantes-INRAE UMR 1280 PhAN, CHU Nantes, CRNH Ouest CHU Hotel Dieu, 1 place Alexis Ricordeau, 1er etage aile nord HNB, 44093, Nantes Cedex 1, France.
| | - Lana Madi
- Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Charis Uhlson
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Karin Zemski-Berry
- Medicine, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Avery C Kramer
- Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Kathryn Erickson
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Claire Palmer
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Stephanie S Chassen
- Departments of Pediatrics, University of Colorado Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA.
| | - Marisol Castillo-Castrejon
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE 10th St., Stanton L Young Biomedical Research Center Room 458, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
27
|
Bacci M, Lorito N, Smiriglia A, Subbiani A, Bonechi F, Comito G, Morriset L, El Botty R, Benelli M, López-Velazco JI, Caffarel MM, Urruticoechea A, Sflomos G, Malorni L, Corsini M, Ippolito L, Giannoni E, Meattini I, Matafora V, Havas K, Bachi A, Chiarugi P, Marangoni E, Morandi A. Acetyl-CoA carboxylase 1 controls a lipid droplet-peroxisome axis and is a vulnerability of endocrine-resistant ER + breast cancer. Sci Transl Med 2024; 16:eadf9874. [PMID: 38416843 DOI: 10.1126/scitranslmed.adf9874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/30/2024] [Indexed: 03/01/2024]
Abstract
Targeting aromatase deprives ER+ breast cancers of estrogens and is an effective therapeutic approach for these tumors. However, drug resistance is an unmet clinical need. Lipidomic analysis of long-term estrogen-deprived (LTED) ER+ breast cancer cells, a model of aromatase inhibitor resistance, revealed enhanced intracellular lipid storage. Functional metabolic analysis showed that lipid droplets together with peroxisomes, which we showed to be enriched and active in the LTED cells, controlled redox homeostasis and conferred metabolic adaptability to the resistant tumors. This reprogramming was controlled by acetyl-CoA-carboxylase-1 (ACC1), whose targeting selectively impaired LTED survival. However, the addition of branched- and very long-chain fatty acids reverted ACC1 inhibition, a process that was mediated by peroxisome function and redox homeostasis. The therapeutic relevance of these findings was validated in aromatase inhibitor-treated patient-derived samples. Last, targeting ACC1 reduced tumor growth of resistant patient-derived xenografts, thus identifying a targetable hub to combat the acquisition of estrogen independence in ER+ breast cancers.
Collapse
Affiliation(s)
- Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Alfredo Smiriglia
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Angela Subbiani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Francesca Bonechi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Ludivine Morriset
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005 Paris, France
| | - Rania El Botty
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005 Paris, France
| | - Matteo Benelli
- Department of Medical Oncology, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, 59100 Prato, Italy
| | - Joanna I López-Velazco
- Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, 20014 San Sebastian, Spain
| | - Maria M Caffarel
- Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, 20014 San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Ander Urruticoechea
- Biodonostia Health Research Institute, Paseo Dr Begiristain s/n, 20014 San Sebastian, Spain
- Gipuzkoa Cancer Unit, OSI Donostialdea-Onkologikoa Foundation, Paseo Dr Begiristain 121, 20014 San Sebastian, Spain
| | - George Sflomos
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Luca Malorni
- Department of Medical Oncology, Azienda USL Toscana Centro, Hospital of Prato, Via Suor Niccolina Infermiera 20, 59100 Prato, Italy
| | - Michela Corsini
- Department of Molecular and Translational Medicine, University of Brescia, Via Branze 39, 25123 Brescia, Italy
| | - Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Vittoria Matafora
- IFOM ETS-AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Kristina Havas
- IFOM ETS-AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Angela Bachi
- IFOM ETS-AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, PSL University, 26 rue d'Ulm, 75005 Paris, France
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| |
Collapse
|
28
|
Peterka O, Maccelli A, Jirásko R, Vaňková Z, Idkowiak J, Hrstka R, Wolrab D, Holčapek M. HILIC/MS quantitation of low-abundant phospholipids and sphingolipids in human plasma and serum: Dysregulation in pancreatic cancer. Anal Chim Acta 2024; 1288:342144. [PMID: 38220279 DOI: 10.1016/j.aca.2023.342144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
A new hydrophilic interaction liquid chromatography - mass spectrometry method is developed for low-abundant phospholipids and sphingolipids in human plasma and serum. The optimized method involves the Cogent Silica type C hydride column, the simple sample preparation by protein precipitation, and the removal of highly abundant lipid classes using the postcolumn valve directed to waste during two elution windows. The method allows a highly confident and sensitive identification of low-abundant lipid classes in human plasma (246 lipid species from 24 lipid subclasses) based on mass accuracy and retention dependencies in both polarity modes. The method is validated for quantitation using two internal standards (if available) for each lipid class and applied to human plasma and serum samples obtained from patients with pancreatic ductal adenocarcinoma (PDAC), healthy controls, and NIST SRM 1950. Multivariate data analysis followed by various statistical projection methods is used to determine the most dysregulated lipids. Significant downregulation is observed for lysophospholipids with fatty acyl composition 16:0, 18:0, 18:1, and 18:2. Distinct trends are observed for phosphatidylethanolamines (PE) in relation to the bonding type of fatty acyls, where most PE with acyl bonds are upregulated, while ether/plasmenyl PE are downregulated. For the sphingolipid category, sphingolipids with very long N-acyl chains are downregulated, while sphingolipids with shorter N-acyl chains were upregulated in PDAC. These changes are consistently observed for various classes of sphingolipids, ranging from ceramides to glycosphingolipids, indicating a possible metabolic disorder in ceramide biosynthesis caused by PDAC.
Collapse
Affiliation(s)
- Ondřej Peterka
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Alessandro Maccelli
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Robert Jirásko
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Zuzana Vaňková
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Jakub Idkowiak
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Denise Wolrab
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic; University of Vienna, Department of Analytical Chemistry, Währinger Strasse 38, 1090, Vienna, Austria
| | - Michal Holčapek
- University of Pardubice, Faculty of Chemical Technology, Department of Analytical Chemistry, Studentská 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
29
|
Landowski M, Gogoi P, Ikeda S, Ikeda A. Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1355379. [PMID: 38576540 PMCID: PMC10993500 DOI: 10.3389/fopht.2024.1355379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Aging is the most significant risk factor for age-related diseases in general, which is true for age-related diseases in the eye including age-related macular degeneration (AMD). Therefore, in order to identify potential therapeutic targets for these diseases, it is crucial to understand the normal aging process and how its mis-regulation could cause age-related diseases at the molecular level. Recently, abnormal lipid metabolism has emerged as one major aspect of age-related symptoms in the retina. Animal models provide excellent means to identify and study factors that regulate lipid metabolism in relation to age-related symptoms. Central to this review is the role of transmembrane protein 135 (TMEM135) in the retina. TMEM135 was identified through the characterization of a mutant mouse strain exhibiting accelerated retinal aging and positional cloning of the responsible mutation within the gene, indicating the crucial role of TMEM135 in regulating the normal aging process in the retina. Over the past decade, the molecular functions of TMEM135 have been explored in various models and tissues, providing insights into the regulation of metabolism, particularly lipid metabolism, through its action in multiple organelles. Studies indicated that TMEM135 is a significant regulator of peroxisomes, mitochondria, and their interaction. Here, we provide an overview of the molecular functions of TMEM135 which is crucial for regulating mitochondria, peroxisomes, and lipids. The review also discusses the age-dependent phenotypes in mice with TMEM135 perturbations, emphasizing the importance of a balanced TMEM135 function for the health of the retina and other tissues including the heart, liver, and adipose tissue. Finally, we explore the potential roles of TMEM135 in human age-related retinal diseases, connecting its functions to the pathobiology of AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Purnima Gogoi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
30
|
Cipryan L, Kosek V, García CJ, Dostal T, Bechynska K, Hajslova J, Hofmann P. A lipidomic and metabolomic signature of a very low-carbohydrate high-fat diet and high-intensity interval training: an additional analysis of a randomized controlled clinical trial. Metabolomics 2023; 20:10. [PMID: 38141101 DOI: 10.1007/s11306-023-02071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Regular physical activity and dietary variety are modifiable and influential factors of health outcomes. However, the cumulative effects of these behaviors are not well understood. Metabolomics may have a promising research potential to extend our knowledge and use it in the attempts to find a long-term and sustainable personalized approach in exercise and diet recommendations. OBJECTIVE The main aim was to investigate the effect of the 12 week very low carbohydrate high fat (VLCHF) diet and high-intensity interval training (HIIT) on lipidomic and metabolomic profiles in individuals with overweight and obesity. METHODS The participants (N = 91) were randomly allocated to HIIT (N = 22), VLCHF (N = 25), VLCHF + HIIT (N = 25) or control (N = 19) groups for 12 weeks. Fasting plasma samples were collected before the intervention and after 4, 8 and 12 weeks. The samples were then subjected to untargeted lipidomic and metabolomic analyses using reversed phase ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry. RESULTS The VLCHF diet affected plasma lipids considerably while the effect of HIIT was unremarkable. Already after 4 weeks of intervention substantial changes of plasma lipids were found in both VLCHF diet groups. The changes persisted throughout the entire 12 weeks of the VLCHF diet. Specifically, acyl carnitines, plasmalogens, fatty acyl esters of hydroxy fatty acid, sphingomyelin, ceramides, cholesterol esters, fatty acids and 4-hydroxybutyric were identified as lipid families that increased in the VLCHF diet groups whereas lipid families of triglycerides and glycerophospholipids decreased. Additionally, metabolomic analysis showed a decrease of theobromine. CONCLUSIONS This study deciphers the specific responses to a VLCHF diet, HIIT and their combination by analysing untargeted lipidomic and metabolomic profile. VLCHF diet caused divergent changes of plasma lipids and other metabolites when compared to the exercise and control group which may contribute to a better understanding of metabolic changes and the appraisal of VLCHF diet benefits and harms. CLINICAL TRIAL REGISTRY NUMBER NCT03934476, registered 1st May 2019 https://clinicaltrials.gov/ct2/show/NCT03934476?term=NCT03934476&draw=2&rank=1 .
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Vit Kosek
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic.
| | - Carlos J García
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Tomas Dostal
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Kamila Bechynska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Peter Hofmann
- Institute of Human Movement Science, Sport and Health, Exercise Physiology, Training and Training Therapy Research Group, University of Graz, Graz, Austria
| |
Collapse
|
31
|
Laudicella VA, Carboni S, Whitfield PD, Doherty MK, Hughes AD. Sexual dimorphism in the gonad lipidome of blue mussels (Mytilus sp.): New insights from a global lipidomics approach. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101150. [PMID: 37913700 DOI: 10.1016/j.cbd.2023.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/08/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Blue mussels (Mytilus sp.) are an economically important species for European aquaculture. Their importance as a food source is expected to increase in the coming net-zero society due to their low environmental footprint; however, their production is affected by anthropogenic stressors and climate change. During reproduction, lipids are key molecules for mussels as they are the main source of energy on which newly hatched embryos depend in the first days of their development. In this work, blue mussels of different origins are analysed, focusing on the differences in lipid composition between the ovary (BMO) and the testis (BMT). The lipidome of blue mussel gonads (BMG) is studied here by combining traditional lipid profiling methods, such as fatty acid and lipid class analysis, with untargeted liquid chromatography-mass spectrometry (LC-MS) lipidomics. The approach used here enabled the identification of 770 lipid molecules from 23 different lipid classes in BMG. BMT, which consists of billions of spermatocytes, had greater amounts of cell membrane and membrane lipid components such as FA18:0, C20 polyunsaturated fatty acids (PUFA), free sterols (ST), ceramide phosphoethanolamines (CerPE), ceramide aminoethylphosphonates (CAEP), cardiolipins (CL), glycerophosphocholines (PC), glycerophosphoethanolamines (PE) and glycerophosphoserines (PS). In BMO, saturated fatty acids (FA14:0 and FA16:0), monounsaturated fatty acids (MUFA) and other storage components such as C18-PUFA accumulated in triradylglycerolipids (TG) and alkyldiacylglycerols (neutral plasmalogens, TG O-), which, together with terpenes, wax esters and cholesterol esters, make up most of oocytes yolk reserves. BMO also had higher levels of ceramides (Cer) and generally alkyl/alkenyl glycerophospholipids (mainly plasmanyl/plasmenyl PC), suggesting a role for these lipids in vitellogenesis. Non-methylene interrupted dienoic fatty acids (NMID FA), typically found in plasmalogens, were the only membrane-forming PUFA predominantly detected in BMO. The results of this study are of great importance for clarifying the lipid composition of BMG and provide an important basis for future studies on the reproductive physiology of these organisms.
Collapse
Affiliation(s)
- Vincenzo Alessandro Laudicella
- Scottish Association for Marine Sciences, Dunstaffnage Marine Laboratory, PA34 1QA Oban, United Kingdom; National Institute for Oceanography and Applied Geophysics - OGS, via Auguste Piccard 54, 34151 Trieste (TS), Italy.
| | - Stefano Carboni
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, FK9 4LA Stirling, United Kingdom; International Marine Center Foundation, Località Sa Mardini 09170, Oristano (Or), Italy
| | - Phillip D Whitfield
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Sciences, IV2 3JH Inverness, United Kingdom; Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Glasgow G61 1QH, United Kingdom
| | - Mary K Doherty
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Sciences, IV2 3JH Inverness, United Kingdom
| | - Adam D Hughes
- Scottish Association for Marine Sciences, Dunstaffnage Marine Laboratory, PA34 1QA Oban, United Kingdom. https://twitter.com/@aquacultureadam
| |
Collapse
|
32
|
Ding Y, Zhang C, Zhou M, Xiang Y, Tong A. Hetero-Diels-Alder Cycloaddition Reaction of Vinyl Ethers Enables Selective Fluorescent Labeling of Plasmalogens in Human Plasma Lipids. J Org Chem 2023; 88:13741-13748. [PMID: 37710996 DOI: 10.1021/acs.joc.3c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Plasmalogens (Pls) are vinyl ether-containing glycerophospholipids of broad biological interest. Their abnormal levels are associated with neurological disorders and cardiovascular diseases. The intricacy of analyzing Pls in lipid samples arises from the wide variety of other coexisting lipid species, which underscores the urgent need for a Pls-specific labeling reaction. To address this challenge, we report an efficient hetero-Diels-Alder cycloaddition reaction between nonterminal vinyl ethers of Pls and o-quinolinone quinone methide probes under mild conditions. On the basis of this mechanism, a selective fluorescent labeling method for Pls is developed. The application of this method permits the exclusive derivatization of Pls over other human plasma lipids. The process also imparts labeled Pls with distinct fluorescence emission and chromatographic retention properties. By integrating this method with high-performance liquid chromatography, we are able to identify individual chromatographic signatures of Pls from 10 different human plasma samples. This Pls signature analytical technique, empowered by the Pls-specific labeling reaction, is cost-effective and simple in terms of instrumentation, suggesting its promising potential for the early screening and diagnosis of diseases linked to Pls abnormalities.
Collapse
Affiliation(s)
- Yiwen Ding
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Chu Zhang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Min Zhou
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Analytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
33
|
Gygi JP, Konstorum A, Pawar S, Aron E, Kleinstein SH, Guan L. A supervised Bayesian factor model for the identification of multi-omics signatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525545. [PMID: 36747790 PMCID: PMC9900835 DOI: 10.1101/2023.01.25.525545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
MOTIVATION Predictive biological signatures provide utility as biomarkers for disease diagnosis and prognosis, as well as prediction of responses to vaccination or therapy. These signatures are iden-tified from high-throughput profiling assays through a combination of dimensionality reduction and machine learning techniques. The genes, proteins, metabolites, and other biological analytes that compose signatures also generate hypotheses on the underlying mechanisms driving biological responses, thus improving biological understanding. Dimensionality reduction is a critical step in signature discovery to address the large number of analytes in omics datasets, especially for multi-omics profiling studies with tens of thousands of measurements. Latent factor models, which can account for the structural heterogeneity across diverse assays, effectively integrate multi-omics data and reduce dimensionality to a small number of factors that capture correlations and associations among measurements. These factors provide biologically interpretable features for predictive model-ing. However, multi-omics integration and predictive modeling are generally performed independent-ly in sequential steps, leading to suboptimal factor construction. Combining these steps can yield better multi-omics signatures that are more predictive while still being biologically meaningful. RESULTS We developed a supervised variational Bayesian factor model that extracts multi-omics signatures from high-throughput profiling datasets that can span multiple data types. Signature-based multiPle-omics intEgration via lAtent factoRs (SPEAR) adaptively determines factor rank, emphasis on factor structure, data relevance and feature sparsity. The method improves the recon-struction of underlying factors in synthetic examples and prediction accuracy of COVID-19 severity and breast cancer tumor subtypes. AVAILABILITY SPEAR is a publicly available R-package hosted at https://bitbucket.org/kleinstein/SPEAR.
Collapse
|
34
|
Fan D, Ma Y, Qi Y, Yang X, Zhao H. TMEM189 as a target gene of MiR-499a-5p regulates breast cancer progression through the ferroptosis pathway. J Clin Biochem Nutr 2023; 73:154-160. [PMID: 37700851 PMCID: PMC10493215 DOI: 10.3164/jcbn.22-130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/08/2023] [Indexed: 09/14/2023] Open
Abstract
MicroRNA (miR)-499a-5p has been reported to regulate the progression of various tumours. However, the role of miR-499a-5p in breast cancer is unclear. The purpose of this study was to investigate the role and mechanism of miR-499a-5p in breast cancer. The growth effect of miR-499a-5p on breast cancer cells was investigated by the CCK-8 assay, wound healing assay and Transwell invasion assay. The luciferase activity assay was used to verify the downstream targets of miR-499a-5p. The levels of GSH, MDA, and ROS were detected by kits. Quantitative real-time PCR and Western blot were used to determine the expression levels of TMEM189, COX-2, GPX4, and other related genes in cells. miR-499a-5p was down-regulated in MDA-MB-231 cells and was shown to reduced the viability, migration and invasion of MDA-MB-231 cells. Further studies revealed that TMEM189 is a target of miR-499a-5p. miR-499a-5p inhibited breast cancer cell growth by downregulating TMEM189. Furthermore, the down-regulation of TMEM189 promotes ferroptosis in breast cancer cells. The low expression of TMEM189 inhibited the development of breast cancer through the ferroptosis pathway. We have demonstrated for the first time that miR-499a-5p inhibits breast cancer progression by targeting the TMEM189-mediated ferroptosis pathway.
Collapse
Affiliation(s)
- Dong Fan
- Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, No. 1, Xinsi Road, Baqiao District, Xi’an, Shaanxi 710038, China
| | - Yue Ma
- Department of Anesthesia operating room, The Second Affiliated Hospital of the Air Force Medical University, No. 1, Xinsi Road, Baqiao District, Xi’an, Shaanxi 710038, China
| | - Yujuan Qi
- Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, No. 1, Xinsi Road, Baqiao District, Xi’an, Shaanxi 710038, China
| | - Xiaozhou Yang
- Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, No. 1, Xinsi Road, Baqiao District, Xi’an, Shaanxi 710038, China
| | - Huadong Zhao
- Department of General Surgery, The Second Affiliated Hospital of the Air Force Medical University, No. 1, Xinsi Road, Baqiao District, Xi’an, Shaanxi 710038, China
| |
Collapse
|
35
|
Cavallazzi Sebold B, Li J, Ni G, Fu Q, Li H, Liu X, Wang T. Going Beyond Host Defence Peptides: Horizons of Chemically Engineered Peptides for Multidrug-Resistant Bacteria. BioDrugs 2023; 37:607-623. [PMID: 37300748 PMCID: PMC10432368 DOI: 10.1007/s40259-023-00608-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Multidrug-resistant (MDR) bacteria are considered a health threat worldwide, and this problem is set to increase over the decades. The ESKAPE, a group of six pathogens including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp. is the major source of concern due to their high death incidence and nosocomial acquired infection. Host defence peptides (HDPs) are a class of ribosomally synthesised peptides that have shown promising results in combating MDR, including the ESKAPE group, in- and outside bacterial biofilms. However, their poor pharmacokinetics in physiological mediums may impede HDPs from becoming viable clinical candidates. To circumvent this problem, chemical engineering of HDPs has been seen as an emergent approach to not only improve their pharmacokinetics but also their efficacy against pathogens. In this review, we explore several chemical modifications of HDPs that have shown promising results, especially against ESKAPE pathogens, and provide an overview of the current findings with respect to each modification.
Collapse
Affiliation(s)
- Bernardo Cavallazzi Sebold
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Junjie Li
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Guoying Ni
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Quanlan Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia
| | - Xiaosong Liu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China.
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
- School of Science, Engineering and Technology, University of the Sunshine Coast, Maroochydore BC, QLD, 4558, Australia.
| |
Collapse
|
36
|
Yamashita S, Miyazawa T, Higuchi O, Kinoshita M, Miyazawa T. Marine Plasmalogens: A Gift from the Sea with Benefits for Age-Associated Diseases. Molecules 2023; 28:6328. [PMID: 37687157 PMCID: PMC10488995 DOI: 10.3390/molecules28176328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Aging increases oxidative and inflammatory stress caused by a reduction in metabolism and clearance, thus leading to the development of age-associated diseases. The quality of our daily diet and exercise is important for the prevention of these diseases. Marine resources contain various valuable nutrients, and unique glycerophospholipid plasmalogens are found abundantly in some marine invertebrates, including ascidians. One of the major classes, the ethanolamine class (PlsEtn), exists in a high ratio to phospholipids in the brain and blood, while decreased levels have been reported in patients with age-associated diseases, including Alzheimer's disease. Animal studies have shown that the administration of marine PlsEtn prepared from marine invertebrates improved PlsEtn levels in the body and alleviated inflammation. Animal and human studies have reported that marine PlsEtn ameliorates cognitive impairment. In this review, we highlight the biological significance, relationships with age-associated diseases, food functions, and healthcare materials of plasmalogens based on recent knowledge and discuss the contribution of marine plasmalogens to health maintenance in aging.
Collapse
Affiliation(s)
- Shinji Yamashita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (S.Y.); (M.K.)
| | - Taiki Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.)
| | - Ohki Higuchi
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.)
| | - Mikio Kinoshita
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (S.Y.); (M.K.)
| | - Teruo Miyazawa
- Food and Biotechnology Platform Promoting Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579, Japan; (T.M.); (O.H.)
| |
Collapse
|
37
|
Sánchez-Vinces S, Duarte GHB, Messias MCF, Gatinoni CFA, Silva AAR, Sanches PHG, Martinez CAR, Porcari AM, Carvalho PDO. Rectal Cancer Tissue Lipidome Differs According to Response to Neoadjuvant Therapy. Int J Mol Sci 2023; 24:11479. [PMID: 37511236 PMCID: PMC10380823 DOI: 10.3390/ijms241411479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Rectal cancer (RC) is a gastrointestinal cancer with a poor prognosis. While some studies have shown metabolic reprogramming to be linked to RC development, it is difficult to define biomolecules, like lipids, that help to understand cancer progression and response to therapy. The present study investigated the relative lipid abundance in tumoral tissue associated with neoadjuvant therapy response using untargeted liquid chromatography-mass spectrometry lipidomics. Locally advanced rectal cancer (LARC) patients (n = 13), clinically staged as T3-4 were biopsied before neoadjuvant chemoradiotherapy (nCRT). Tissue samples collected before nCRT (staging) and afterwards (restaging) were analyzed to discover lipidomic differences in RC cancerous tissue from Responders (n = 7) and Non-responders (n = 6) to nCRT. The limma method was used to test differences between groups and to select relevant feature lipids from tissue samples. Simple glycosphingolipids and differences in some residues of glycerophospholipids were more abundant in the Non-responder group before and after nCRT. Oxidized glycerophospholipids were more abundant in samples of Non-responders, especially those collected after nCRT. This work identified potential lipids in tissue samples that take part in, or may explain, nCRT failure. These results could potentially provide a lipid-based explanation for nCRT response and also help in understanding the molecular basis of RC and nCRT effects on the tissue matrix.
Collapse
Affiliation(s)
- Salvador Sánchez-Vinces
- Health Sciences Postgraduate Program, São Francisco University-USF, Bragança Paulista, São Paulo 12916-900, Brazil
| | | | | | | | - Alex Ap Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University-USF, Bragança Paulista, São Paulo 12916-900, Brazil
| | - Pedro Henrique Godoy Sanches
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University-USF, Bragança Paulista, São Paulo 12916-900, Brazil
| | | | - Andreia M Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University-USF, Bragança Paulista, São Paulo 12916-900, Brazil
| | | |
Collapse
|
38
|
Kimura T, Kimura AK, Epand RM. Systematic crosstalk in plasmalogen and diacyl lipid biosynthesis for their differential yet concerted molecular functions in the cell. Prog Lipid Res 2023; 91:101234. [PMID: 37169310 DOI: 10.1016/j.plipres.2023.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/29/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Plasmalogen is a major phospholipid of mammalian cell membranes. Recently it is becoming evident that the sn-1 vinyl-ether linkage in plasmalogen, contrasting to the ester linkage in the counterpart diacyl glycerophospholipid, yields differential molecular characteristics for these lipids especially related to hydrocarbon-chain order, so as to concertedly regulate biological membrane processes. A role played by NMR in gaining information in this respect, ranging from molecular to tissue levels, draws particular attention. We note here that a broad range of enzymes in de novo synthesis pathway of plasmalogen commonly constitute that of diacyl glycerophospholipid. This fact forms the basis for systematic crosstalk that not only controls a quantitative balance between these lipids, but also senses a defect causing loss of lipid in either pathway for compensation by increase of the counterpart lipid. However, this inherent counterbalancing mechanism paradoxically amplifies imbalance in differential effects of these lipids in a diseased state on membrane processes. While sharing of enzymes has been recognized, it is now possible to overview the crosstalk with growing information for specific enzymes involved. The overview provides a fundamental clue to consider cell and tissue type-dependent schemes in regulating membrane processes by plasmalogen and diacyl glycerophospholipid in health and disease.
Collapse
Affiliation(s)
- Tomohiro Kimura
- Department of Chemistry & Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA.
| | - Atsuko K Kimura
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
39
|
Liu D, Zhang H, Yang Y, Liu T, Guo Z, Fan W, Wang Z, Yang X, Zhang B, Liu H, Tang H, Yu D, Yu S, Gai K, Mou Q, Cao J, Hu J, Tang J, Hou S, Zhou Z. Metabolome-Based Genome-Wide Association Study of Duck Meat Leads to Novel Genetic and Biochemical Insights. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300148. [PMID: 37013465 PMCID: PMC10288243 DOI: 10.1002/advs.202300148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Meat is among the most consumed foods worldwide and has a unique flavor and high nutrient density in the human diet. However, the genetic and biochemical bases of meat nutrition and flavor are poorly understood. Here, 3431 metabolites and 702 volatiles in 423 skeletal muscle samples are profiled from a gradient consanguinity segregating population generated by Pekin duck × Liancheng duck crosses using metabolomic approaches. The authors identified 2862 metabolome-based genome-wide association studies (mGWAS) signals and 48 candidate genes potentially modulating metabolite and volatile levels, 79.2% of which are regulated by cis-regulatory elements. The level of plasmalogen is significantly associated with TMEM189 encoding plasmanylethanolamine desaturase 1. The levels of 2-pyrrolidone and glycerophospholipids are regulated by the gene expression of AOX1 and ACBD5, which further affects the levels of volatiles, 2-pyrrolidone and decanal, respectively. Genetic variations in GADL1 and CARNMT2 determine the levels of 49 metabolites including L-carnosine and anserine. This study provides novel insights into the genetic and biochemical basis of skeletal muscle metabolism and constitutes a valuable resource for the precise improvement of meat nutrition and flavor.
Collapse
Affiliation(s)
- Dapeng Liu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - He Zhang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Youyou Yang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Tong Liu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Zhanbao Guo
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Wenlei Fan
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Zhen Wang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Xinting Yang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Bo Zhang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Hongfei Liu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Hehe Tang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Daxin Yu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Simeng Yu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Kai Gai
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Qiming Mou
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Junting Cao
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Jian Hu
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Jing Tang
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Shuisheng Hou
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Zhengkui Zhou
- Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijing100193P. R. China
| |
Collapse
|
40
|
Pan B, Yuan S, Mayernik L, Yap YT, Moin K, Chung CS, Maddipati K, Krawetz SA, Zhang Z, Hess RA, Chen X. Disrupted intercellular bridges and spermatogenesis in fatty acyl-CoA reductase 1 knockout mice: A new model of ether lipid deficiency. FASEB J 2023; 37:e22908. [PMID: 37039784 PMCID: PMC10150578 DOI: 10.1096/fj.202201848r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Peroxisomal fatty acyl-CoA reductase 1 (FAR1) is a rate-limiting enzyme for ether lipid (EL) synthesis. Gene mutations in FAR1 cause a rare human disease. Furthermore, altered EL homeostasis has also been associated with various prevalent human diseases. Despite their importance in human health, the exact cellular functions of FAR1 and EL are not well-understood. Here, we report the generation and initial characterization of the first Far1 knockout (KO) mouse model. Far1 KO mice were subviable and displayed growth retardation. The adult KO male mice had smaller testes and were infertile. H&E and immunofluorescent staining showed fewer germ cells in seminiferous tubules. Round spermatids were present but no elongated spermatids or spermatozoa were observed, suggesting a spermatogenesis arrest at this stage. Large multi-nucleated giant cells (MGC) were found lining the lumen of seminiferous tubules with many of them undergoing apoptosis. The immunofluorescent signal of TEX14, an essential component of intercellular bridges (ICB) between developing germ cells, was greatly reduced and mislocalized in KO testis, suggesting the disrupted ICBs as an underlying cause of MGC formation. Integrative analysis of our total testis RNA-sequencing results and published single-cell RNA-sequencing data unveiled cell type-specific molecular alterations underlying the spermatogenesis arrest. Many genes essential for late germ cell development showed dramatic downregulation, whereas genes essential for extracellular matrix dynamics and cell-cell interactions were among the most upregulated genes. Together, this work identified the cell type-specific requirement of ELs in spermatogenesis and suggested a critical role of Far1/ELs in the formation/maintenance of ICB during meiosis.
Collapse
Affiliation(s)
- Bo Pan
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Shuo Yuan
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
- Department of Occupational and Environmental Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Linda Mayernik
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Yi Tian Yap
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Kamiar Moin
- Department of Pharmacology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Charles S. Chung
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Krishnarao Maddipati
- Department of Pathology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| | - Stephen A. Krawetz
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Zhibing Zhang
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, Michigan, USA
| | - Rex A. Hess
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Xuequn Chen
- Department of Physiology, Wayne State University, School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
41
|
Ferreri C, Ferocino A, Batani G, Chatgilialoglu C, Randi V, Riontino MV, Vetica F, Sansone A. Plasmalogens: Free Radical Reactivity and Identification of Trans Isomers Relevant to Biological Membranes. Biomolecules 2023; 13:biom13050730. [PMID: 37238600 DOI: 10.3390/biom13050730] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Plasmalogens are membrane phospholipids with two fatty acid hydrocarbon chains linked to L-glycerol, one containing a characteristic cis-vinyl ether function and the other one being a polyunsaturated fatty acid (PUFA) residue linked through an acyl function. All double bonds in these structures display the cis geometrical configuration due to desaturase enzymatic activity and they are known to be involved in the peroxidation process, whereas the reactivity through cis-trans double bond isomerization has not yet been identified. Using 1-(1Z-octadecenyl)-2-arachidonoyl-sn-glycero-3-phosphocholine (C18 plasm-20:4 PC) as a representative molecule, we showed that the cis-trans isomerization can occur at both plasmalogen unsaturated moieties, and the product has characteristic analytical signatures useful for omics applications. Using plasmalogen-containing liposomes and red blood cell (RBC) ghosts under biomimetic Fenton-like conditions, in the presence or absence of thiols, peroxidation, and isomerization processes were found to occur with different reaction outcomes due to the particular liposome compositions. These results allow gaining a full scenario of plasmalogen reactivity under free radical conditions. Moreover, clarification of the plasmalogen reactivity under acidic and alkaline conditions was carried out, identifying the best protocol for RBC membrane fatty acid analysis due to their plasmalogen content of 15-20%. These results are important for lipidomic applications and for achieving a full scenario of radical stress in living organisms.
Collapse
Affiliation(s)
- Carla Ferreri
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Alessandra Ferocino
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Gessica Batani
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
- Center for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Vanda Randi
- Centro Regionale Sangue Regione Emilia Romagna (CRS-RER), Casa dei Donatori di Sangue, Via dell'Ospedale, 20, 40133 Bologna, Italy
| | - Maria Vittoria Riontino
- Centro Regionale Sangue Regione Emilia Romagna (CRS-RER), Casa dei Donatori di Sangue, Via dell'Ospedale, 20, 40133 Bologna, Italy
| | - Fabrizio Vetica
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| | - Anna Sansone
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council (CNR), Via P. Gobetti, 101, 40129 Bologna, Italy
| |
Collapse
|
42
|
Shenault DM, McLuckey SA, Franklin ET. Localization of cyclopropyl groups and alkenes within glycerophospholipids using gas-phase ion/ion chemistry. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4913. [PMID: 36916143 PMCID: PMC10014902 DOI: 10.1002/jms.4913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Shotgun lipid analysis using electrospray ionization tandem mass spectrometry (ESI-MS/MS) is a common approach for the identification and characterization of glycerophohspholipids GPs. ESI-MS/MS, with the aid of collision-induced dissociation (CID), enables the characterization of GP species at the headgroup and fatty acyl sum compositional levels. However, important structural features that are often present, such as carbon-carbon double bond(s) and cyclopropane ring(s), can be difficult to determine. Here, we report the use of gas-phase charge inversion reactions that, in combination with CID, allow for more detailed structural elucidation of GPs. CID of a singly deprotonated GP, [GP - H]- , generates FA anions, [FA - H]- . The fatty acid anions can then react with doubly charged cationic magnesium tris-phenanthroline complex, [Mg(Phen)3 ]2+ , to form charge inverted complex cations of the form [FA - H + MgPhen2 ]+ . CID of the complex generates product ion spectral patterns that allow for the identification of carbon-carbon double bond position(s) as well as the sites of cyclopropyl position(s) in unsaturated lipids. This approach to determining both double bond and cyclopropane positions is demonstrated with GPs for the first time using standards and is applied to lipids extracted from Escherichia coli.
Collapse
Affiliation(s)
- De’Shovon M. Shenault
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, United States, 47907-2084
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, United States, 47907-2084
| | - Elissia T. Franklin
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, United States, 47907-2084
| |
Collapse
|
43
|
A Multiomic Analysis of Chicken Serum Revealed the Modulation of Host Factors Due to Campylobacter jejuni Colonization and In-Water Supplementation of Eugenol Nanoemulsion. Animals (Basel) 2023; 13:ani13040559. [PMID: 36830346 PMCID: PMC9951679 DOI: 10.3390/ani13040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Campylobacter jejuni is a foodborne pathogen that causes campylobacteriosis globally, affecting ~95 million people worldwide. Most C. jejuni infections involve consuming and/or handling improperly cooked poultry meat. To better understand chicken host factors modulated by Campylobacter colonization, we explored a novel LCMS-based multiomic technology using three experimental groups: (1) negative control, (2) positive control, and (3) eugenol nanoemulsion (EGNE) treatment (supplemented with 0.125% EGNE in the water) of broiler chickens (n = 10 birds/group). Birds in groups two and three were challenged with C. jejuni on day 7, and serum samples were collected from all groups on day 14. Using this multiomic analysis, we identified 1216 analytes (275 compounds, seven inorganics, 407 lipids, and 527 proteins). The colonization of C. jejuni significantly upregulated CREG1, creatinine, and 3-[2-(3-Hydroxyphenyl) ethyl]-5-methoxyphenol and downregulated sphingosine, SP d18:1, high mobility group protein B3, phosphatidylcholines (PC) P-20:0_16:0, PC 11:0_26:1, and PC 13:0_26:2. We found that 5-hydroxyindole-3-acetic acid significantly increased with the EGNE treatment when compared to the positive and negative controls. Additionally, the treatment increased several metabolites when compared to the negative controls. In conclusion, this study revealed several potential targets to control Campylobacter in broiler chickens.
Collapse
|
44
|
Oh S, Jo S, Bajzikova M, Kim HS, Dao TTP, Rohlena J, Kim JM, Neuzil J, Park S. Non-bioenergetic roles of mitochondrial GPD2 promote tumor progression. Theranostics 2023; 13:438-457. [PMID: 36632231 PMCID: PMC9830446 DOI: 10.7150/thno.75973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022] Open
Abstract
Rationale: Despite growing evidence for mitochondria's involvement in cancer, the roles of specific metabolic components outside the respiratory complex have been little explored. We conducted metabolomic studies on mitochondrial DNA (mtDNA)-deficient (ρ0) cancer cells with lower proliferation rates to clarify the undefined roles of mitochondria in cancer growth. Methods and results: Despite extensive metabolic downregulation, ρ0 cells exhibited high glycerol-3-phosphate (G3P) level, due to low activity of mitochondrial glycerol-3-phosphate dehydrogenase (GPD2). Knockout (KO) of GPD2 resulted in cell growth suppression as well as inhibition of tumor progression in vivo. Surprisingly, this was unrelated to the conventional bioenergetic function of GPD2. Instead, multi-omics results suggested major changes in ether lipid metabolism, for which GPD2 provides dihydroxyacetone phosphate (DHAP) in ether lipid biosynthesis. GPD2 KO cells exhibited significantly lower ether lipid level, and their slower growth was rescued by supplementation of a DHAP precursor or ether lipids. Mechanistically, ether lipid metabolism was associated with Akt pathway, and the downregulation of Akt/mTORC1 pathway due to GPD2 KO was rescued by DHAP supplementation. Conclusion: Overall, the GPD2-ether lipid-Akt axis is newly described for the control of cancer growth. DHAP supply, a non-bioenergetic process, may constitute an important role of mitochondria in cancer.
Collapse
Affiliation(s)
- Sehyun Oh
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Sihyang Jo
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Martina Bajzikova
- School of Pharmacy and Medical Science, Griffith University, Southport, Qld, Australia
| | - Han Sun Kim
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Thien T. P. Dao
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Jakub Rohlena
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jin-Mo Kim
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea
| | - Jiri Neuzil
- School of Pharmacy and Medical Science, Griffith University, Southport, Qld, Australia.,Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic.,✉ Corresponding authors: Sunghyouk Park, Natural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul 08826, Republic of Korea, Tel: +82-2-880-7831; Fax: +82-2-880-7831; E-mail: ; Jiri Neuzil, School of Pharmacy and Medical Science, Griffith University, 1 Parklands Dr, Southport, Qld 4215, Australia, Tel: +61-(0)7-5552-9109; Fax: +61-(0)7-5552-9109; E-mail: or
| | - Sunghyouk Park
- College of Pharmacy, Natural Product Research Institute, Seoul National University, Seoul 08826, Korea.,✉ Corresponding authors: Sunghyouk Park, Natural Product Research Institute, College of Pharmacy, Seoul National University, Gwanak-Ro 1, Gwanak-gu, Seoul 08826, Republic of Korea, Tel: +82-2-880-7831; Fax: +82-2-880-7831; E-mail: ; Jiri Neuzil, School of Pharmacy and Medical Science, Griffith University, 1 Parklands Dr, Southport, Qld 4215, Australia, Tel: +61-(0)7-5552-9109; Fax: +61-(0)7-5552-9109; E-mail: or
| |
Collapse
|
45
|
Liu Q, Lin J, Zhao W, Lei M, Yang J, Bai W. The dynamic changes of flavors and UPLC-Q-Exactive-Orbitrap-MS based lipidomics in mackerel (Scomberomorus niphonius) during dry-cured processing. Food Res Int 2023; 163:112273. [PMID: 36596184 DOI: 10.1016/j.foodres.2022.112273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Dry-cured mackerel is favored by consumers for its suitable salty flavor. Herein, the dynamic changes of volatile compounds and lipids in the mackerel, and the lipidomics based on UPLC-Orbitrap/MS technique during dry-cured processing were investigated. The results showed that endogenous lipases activities in dry-cured mackerel decreased. The dry-cured processing of mackerel had significant effects on its lipid classes and content. The contents of Arachidonic acid (C20:4n6), docosapentaenoic acid (C22:5n3), linoleic acid (LA, C18:2n6), alpha-linolenic acid (C18:3n3), eicosatrienoic acid (C20:3n3) and docosahexaenoic acid (DHA, C22:6n3) increased during dry-cured processing. A total of 38 kinds of volatile compounds were detected in the dry-cured mackerel, 12 of which were derived from fatty acid oxidation. Among 30 lipid metabolites (FC ≥ 2 and VIP > 2), phosphatidylethanolamine (PE, 19:0/22:6) accounted for the highest content, and its difference between three stages was the most obvious. Glycerophospholipid and sphingolipid metabolisms were the most important metabolic pathways involved in dry-cured processing.
Collapse
Affiliation(s)
- Qiaoyu Liu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Jianjun Lin
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Menglin Lei
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Juan Yang
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China.
| |
Collapse
|
46
|
Sánchez-Sánchez L, Fernández R, Ganfornina MD, Astigarraga E, Barreda-Gómez G. Protective Actions of α-Tocopherol on Cell Membrane Lipids of Paraquat-Stressed Human Astrocytes Using Microarray Technology, MALDI-MS and Lipidomic Analysis. Antioxidants (Basel) 2022; 11:2440. [PMID: 36552648 PMCID: PMC9774397 DOI: 10.3390/antiox11122440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is one of the main contributors to some neurodegenerative disorders. The early detection of senescent cells or their related effects is a key aspect in treating disease progression. In this functional deterioration, oxidative stress and lipid peroxidation play an important role. Endogenous antioxidant compounds, such as α-tocopherol (vitamin E), can mitigate these undesirable effects, particularly lipid peroxidation, by blocking the reaction between free radicals and unsaturated fatty acid. While the antioxidant actions of α-tocopherol have been studied in various systems, monitoring the specific effects on cell membrane lipids at scales compatible with large screenings has not yet been accomplished. Understanding the changes responsible for this protection against one of the consequences of senescence is therefore necessary. Thus, the goal of this study was to determinate the changes in the lipid environment of a Paraquat-treated human astrocytic cell line, as a cellular oxidative stress model, and the specific actions of the antioxidant, α-tocopherol, using cell membrane microarray technology, MALDI-MS and lipidomic analysis. The stress induced by Paraquat exposure significantly decreased cell viability and triggered membrane lipid changes, such as an increase in certain species of ceramides that are lipid mediators of apoptotic pathways. The pre-treatment of cells with α-tocopherol mitigated these effects, enhancing cell viability and modulating the lipid profile in Paraquat-treated astrocytes. These results demonstrate the lipid modulation effects of α-tocopherol against Paraquat-promoted oxidative stress and validate a novel analytical high-throughput method combining cell cultures, microarray technology, MALDI-MS and multivariate analysis to study antioxidant compounds against cellular senescence.
Collapse
Affiliation(s)
- Laura Sánchez-Sánchez
- Research and Development Department, IMG Pharma Biotech S.L, 48160 Derio, Spain
- Instituto de Biología y Genética Molecular (IBGM), Unidad de Excelencia, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Roberto Fernández
- Research and Development Department, IMG Pharma Biotech S.L, 48160 Derio, Spain
| | - Maria Dolores Ganfornina
- Instituto de Biología y Genética Molecular (IBGM), Unidad de Excelencia, Universidad de Valladolid-CSIC, 47003 Valladolid, Spain
| | - Egoitz Astigarraga
- Research and Development Department, IMG Pharma Biotech S.L, 48160 Derio, Spain
| | | |
Collapse
|
47
|
The Multiple Sclerosis Modulatory Potential of Natural Multi-Targeting Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238402. [PMID: 36500494 PMCID: PMC9740750 DOI: 10.3390/molecules27238402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Multiple sclerosis (MS) is a complex neurodegenerative disease. Although its pathogenesis is rather vague in some aspects, it is well known to be an inflammatory process characterized by inflammatory cytokine release and oxidative burden, resulting in demyelination and reduced remyelination and axonal survival together with microglial activation. Antioxidant compounds are gaining interest towards the manipulation of MS, since they offer, in most of the cases, many benefits, due to their pleiotropical activity, that mainly derives from the oxidative stress decrease. This review analyzes research articles, of the last decade, which describe biological in vitro, in vivo and clinical evaluation of various categories of the most therapeutically applied natural antioxidant compounds, and some of their derivatives, with anti-MS activity. It also summarizes some of the main characteristics of MS and the role the reactive oxygen and nitrogen species may have in its progression, as well as their relation with the other mechanistic aspects of the disease, in order for the multi-targeting potential of those antioxidants to be defined and the source of origination of such activity explained. Antioxidant compounds with specific characteristics are expected to affect positively some aspects of the disease, and their potential may render them as effective candidates for neurological impairment reduction in combination with the MS treatment regimen. However, more studies are needed in order such antioxidants to be established as recommended treatment to MS patients.
Collapse
|
48
|
Bennett CF, Latorre-Muro P, Puigserver P. Mechanisms of mitochondrial respiratory adaptation. Nat Rev Mol Cell Biol 2022; 23:817-835. [PMID: 35804199 PMCID: PMC9926497 DOI: 10.1038/s41580-022-00506-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 02/07/2023]
Abstract
Mitochondrial energetic adaptations encompass a plethora of conserved processes that maintain cell and organismal fitness and survival in the changing environment by adjusting the respiratory capacity of mitochondria. These mitochondrial responses are governed by general principles of regulatory biology exemplified by changes in gene expression, protein translation, protein complex formation, transmembrane transport, enzymatic activities and metabolite levels. These changes can promote mitochondrial biogenesis and membrane dynamics that in turn support mitochondrial respiration. The main regulatory components of mitochondrial energetic adaptation include: the transcription coactivator peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC1α) and associated transcription factors; mTOR and endoplasmic reticulum stress signalling; TOM70-dependent mitochondrial protein import; the cristae remodelling factors, including mitochondrial contact site and cristae organizing system (MICOS) and OPA1; lipid remodelling; and the assembly and metabolite-dependent regulation of respiratory complexes. These adaptive molecular and structural mechanisms increase respiration to maintain basic processes specific to cell types and tissues. Failure to execute these regulatory responses causes cell damage and inflammation or senescence, compromising cell survival and the ability to adapt to energetically demanding conditions. Thus, mitochondrial adaptive cellular processes are important for physiological responses, including to nutrient availability, temperature and physical activity, and their failure leads to diseases associated with mitochondrial dysfunction such as metabolic and age-associated diseases and cancer.
Collapse
Affiliation(s)
- Christopher F Bennett
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pedro Latorre-Muro
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Pere Puigserver
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
49
|
Tremblay MÈ, Almsherqi ZA, Deng Y. Plasmalogens and platelet-activating factor roles in chronic inflammatory diseases. Biofactors 2022; 48:1203-1216. [PMID: 36370412 DOI: 10.1002/biof.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Fatty acids and phospholipid molecules are essential for determining the structure and function of cell membranes, and they hence participate in many biological processes. Platelet activating factor (PAF) and its precursor plasmalogen, which represent two subclasses of ether phospholipids, have attracted increasing research attention recently due to their association with multiple chronic inflammatory, neurodegenerative, and metabolic disorders. These pathophysiological conditions commonly involve inflammatory processes linked to an excess presence of PAF and/or decreased levels of plasmalogens. However, the molecular mechanisms underlying the roles of plasmalogens in inflammation have remained largely elusive. While anti-inflammatory responses most likely involve the plasmalogen signal pathway; pro-inflammatory responses recruit arachidonic acid, a precursor of pro-inflammatory lipid mediators which is released from membrane phospholipids, notably derived from the hydrolysis of plasmalogens. Plasmalogens per se are vital membrane phospholipids in humans. Changes in their homeostatic levels may alter cell membrane properties, thus affecting key signaling pathways that mediate inflammatory cascades and immune responses. The plasmalogen analogs of PAF are also potentially important, considering that anti-PAF activity has strong anti-inflammatory effects. Plasmalogen replacement therapy was further identified as a promising anti-inflammatory strategy allowing for the relief of pathological hallmarks in patients affected by chronic diseases with an inflammatory component. The aim of this Short Review is to highlight the emerging roles and implications of plasmalogens in chronic inflammatory disorders, along with the promising outcomes of plasmalogen replacement therapy for the treatment of various PAF-related chronic inflammatory pathologies.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Axe Neurosciences, Centre de recherche du CHU de Québec-Université Laval, Québec City, Canada
- Department of Molecular Medicine, Université de Laval, Québec City, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
| | - Zakaria A Almsherqi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
50
|
Hammel G, Zivkovic S, Ayazi M, Ren Y. Consequences and mechanisms of myelin debris uptake and processing by cells in the central nervous system. Cell Immunol 2022; 380:104591. [PMID: 36030093 DOI: 10.1016/j.cellimm.2022.104591] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Central nervous system (CNS) disorders and trauma involving changes to the neuronal myelin sheath have long been a topic of great interest. One common pathological change in these diseases is the generation of myelin debris resulting from the breakdown of the myelin sheath. Myelin debris contains many inflammatory and neurotoxic factors that inhibit remyelination and make its clearance a prerequisite for healing in CNS disorders. Many professional and semiprofessional phagocytes participate in the clearance of myelin debris in the CNS. These cells use various mechanisms for the uptake of myelin debris, and each cell type produces its own unique set of pathologic consequences resulting from the debris uptake. Examining these cells' phagocytosis of myelin debris will contribute to a more complete understanding of CNS disease pathogenesis and help us conceptualize how the necessary clearance of myelin debris must be balanced with the detrimental consequences brought about by its clearance.
Collapse
Affiliation(s)
- Grace Hammel
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Sandra Zivkovic
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Maryam Ayazi
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, United States.
| |
Collapse
|