1
|
Akhigbe R, Oyedokun P, Akhigbe T, Hamed M, Fidelis F, Omole A, Adeogun A, Akangbe M, Oladipo A. The consequences of climate change and male reproductive health: A review of the possible impact and mechanisms. Biochem Biophys Rep 2025; 41:101889. [PMID: 39717849 PMCID: PMC11664087 DOI: 10.1016/j.bbrep.2024.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
A global decline in male fertility has been reported, and climate change is considered a major cause of this. Climate change refers to long-term shifts in temperatures and weather patterns, and results from greenhouse gas emissions like carbon dioxide and methane that act as a blanket wrapped around the earth, trapping heat and elevating temperatures. Sad to say, the consequences of climatic variation are beyond the dramatic elevated temperature, they include cold stress, increased malnutrition, air pollution, cardiovascular diseases respiratory tract infections, cancer, sexually transmitted infections, mental stress, and heat waves. These negative effects of climate change impair male reproductive function through multiple pathways, like ROS-sensitive signaling, suppression of steroidogenic markers, and direct damage to testicular cells. The present study aimed to describe the impact of the consequences of climate change on male reproductive health with details of the various mechanisms involved. This will provide an in-depth understanding of the pathophysiological and molecular basis of the possible climatic variation-induced decline in male fertility, which will aid in the development of preventive measures to abate the negative effects of climate change on male reproductive function.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - P.A. Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Agronomy, Osun State Univeristy (Ejigbo Campus), Osogbo, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - F.B. Fidelis
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - A.I. Omole
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Health and Human Physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa, USA
| | - A.E. Adeogun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M.D. Akangbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Nursing, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - A.A. Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
2
|
Wang Y, Chen D, Pu Y, Shi J, Yi C, Chen J, Yang G, Cui Y, Nie Y, Zhang L, Wei X, Yu Q. Downregulated DKK2 may serve as a molecular mechanism of high-fat diet-induced myocardial injury via Wnt/β-catenin pathway. Life Sci 2024; 361:123306. [PMID: 39667489 DOI: 10.1016/j.lfs.2024.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
OBJECTIVE High-fat diet could induce structural and functional disorders of the heart, but the underlying mechanism remains elusive. This study aimed to explore related mechanism of obesity cardiomyopathy. METHODS Obesity model was established by feeding rats with a high-fat diet, and H9c2 cells were stimulated with palmitic acid to mimic high-fat stimulation. Whole transcriptome analysis results showed that the expression of Dickkopf-2 (DKK2) in obesity cardiomyopathy group was significantly lower than that in control group and simple obesity group. Overexpression and knockdown of DKK2 was achieved by infection with lentivirus. Weight, blood glucose, lipids, blood pressure, and insulin, HE staining, Sirius red staining and echocardiography results were analyzed in rats at 8 and 16 weeks after various interventions. qRT-PCR and western blots were used to detect the expression of RNAs and proteins. RESULTS High-fat diet-induced obese rats presented with changes in serum lipid, insulin, and increases in myocardial inflammation and fibrosis. Protein and mRNA expression levels of DKK2 were significantly decreased in the obesity cardiomyopathy group compared with the obesity and control group. In vitro, knockdown of DKK2 activated β-catenin/Wnt3a pathway, while overexpress of DKK2 inhibited β-catenin/Wnt3a expression. CONCLUSION Activating DKK2 may serve as a novel therapeutic intervention option for obesity cardiomyopathy and obesity-related metabolic disorders, and future studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian University, Dalian 116622, China
| | - Di Chen
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian University, Dalian 116622, China
| | - Ye Pu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian University, Dalian 116622, China
| | - Jiahao Shi
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian University, Dalian 116622, China
| | - Congxiang Yi
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian University, Dalian 116622, China
| | - Jie Chen
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian Medical University, Dalian 116044, China
| | - Guangxiang Yang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Yang Cui
- Dalian Medical University, Dalian 116044, China; Department of Cardiology, Affiliated Xinhua Hospital of Dalian University, Dalian 116023, China
| | - Yu Nie
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian Medical University, Dalian 116044, China
| | - Liyuan Zhang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China; Dalian Medical University, Dalian 116044, China
| | - Xiaowei Wei
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Qin Yu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.
| |
Collapse
|
3
|
Akorede BA, Hassan SA, Akhigbe RE. Penile erection and cardiovascular function: effects and pathophysiology. Aging Male 2024; 27:2336627. [PMID: 38567396 DOI: 10.1080/13685538.2024.2336627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Penile erection (PE) is a hemodynamic event that results from a neuroendocrine process, and it is influenced by the cardiovascular status of the patient. However, it may also modulate an individual's cardiovascular events. The present study provides the mechanisms involved in the association of PE and cardiovascular function. Erection upsurges the cardiac rate, blood pressure, and oxygen uptake. Sex-enhancing strategies, such as phosphodiesterase inhibitors, alprostadil, and testosterone also promote vasodilatation and cardiac performance, thus preventing myocardial infarction. More so, drugs that are used in the treatment of hypertensive heart diseases (such as angiotensin system inhibitors and β-blockers) facilitate vasodilatation and PE. These associations have been linked with nitric oxide- and testosterone-dependent enhancing effects on the vascular endothelium. In addition, impaired cardiovascular function may negatively impact PE; therefore, impaired PE may be a pointer to cardiovascular pathology. Hence, evaluation of the cardiovascular status of an individual with erectile dysfunction (ED) is essential. Also, employing strategies that are used in maintaining optimal cardiac function may be useful in the management of ED.
Collapse
Affiliation(s)
- B A Akorede
- Department of Biomedical Sciences, University of Wyoming, Laramie, WY, USA
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - S A Hassan
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University, Ogbomoso, Nigeria
| |
Collapse
|
4
|
Hunt M, Torres M, Bachar-Wikstrom E, Wikstrom JD. Cellular and molecular roles of reactive oxygen species in wound healing. Commun Biol 2024; 7:1534. [PMID: 39562800 DOI: 10.1038/s42003-024-07219-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Wound healing is a highly coordinated spatiotemporal sequence of events involving several cell types and tissues. The process of wound healing requires strict regulation, and its disruption can lead to the formation of chronic wounds, which can have a significant impact on an individual's health as well as on worldwide healthcare expenditure. One essential aspect within the cellular and molecular regulation of wound healing pathogenesis is that of reactive oxygen species (ROS) and oxidative stress. Wounding significantly elevates levels of ROS, and an array of various reactive species are involved in modulating the wound healing process, such as through antimicrobial activities and signal transduction. However, as in many pathologies, ROS play an antagonistic pleiotropic role in wound healing, and can be a pathogenic factor in the formation of chronic wounds. Whilst advances in targeting ROS and oxidative stress have led to the development of novel pre-clinical therapeutic methods, due to the complex nature of ROS in wound healing, gaps in knowledge remain concerning the specific cellular and molecular functions of ROS in wound healing. In this review, we highlight current knowledge of these functions, and discuss the potential future direction of new studies, and how these pathways may be targeted in future pre-clinical studies.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Li S, Liu W, Chen X, Chen Z, Shi J, Hua J. From Hypoxia to Oxidative Stress: Antioxidants' Role to Reduce Male Reproductive Damage. Reprod Sci 2024:10.1007/s43032-024-01746-x. [PMID: 39557807 DOI: 10.1007/s43032-024-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia is one of the main reasons causing male reproductive damage for people living in high altitude. Pathological evidences have been presented both in humans and animal models. Spermatogenesis disruption, worse sperm parameters, hormone disorder and erectile dysfunction are emblematic of male reproductive impairments brought by hypoxia. Among many mechanisms impairing male reproductive systems, oxidative stress is always a field of interest to explore. Although previous reviews have discussed about hypoxia or oxidative stress and antioxidants on male fertility respectively, no one has elucidated the concrete role of oxidative stress in hypoxia and correlating antioxidants that can ameliorate the negative effects. In this review, we firstly introduce hypoxia etiology and describe specific damage of hypoxia on male reproductive functions. Then, we emphasized interplays between hypoxia and oxidative stress as well as negative influences brought by oxidative stress. Finally, we listed antioxidants for oxidative stress and hypoxia-induced reproductive damage and discussed their controversial experimental effects for male infertility.
Collapse
Affiliation(s)
- Siyao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhaoyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingtian Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
6
|
Saka WA, Oyekunle OS, Akhigbe TM, Oladipo OO, Ajayi MB, Adekola AT, Omole AI, Akhigbe RE. Andrographis paniculata improves glucose regulation by enhancing insulin sensitivity and upregulating GLUT 4 expression in Wistar rats. Front Nutr 2024; 11:1416641. [PMID: 39545041 PMCID: PMC11562748 DOI: 10.3389/fnut.2024.1416641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024] Open
Abstract
Context Although the hypoglycaemic effect of Andrographis paniculata (Burm.f.) Nees [Acanthaceae] has been documented, reports on its effect in an apparently healthy state are limited. Objective This study investigated whether or not A. paniculata exerts hypoglycaemic effect in a non-diabetic state. It also explored the impact of A. paniculata on glycolytic enzymes and GLUT 4 protein expression, as a possible mode of action. Methods Twenty male Wistar rats were randomly assigned into two groups (n = 10 rats/group). The control rats were vehicle-treated (0.5 ml of distilled water), while the A. paniculata-treated rats had 500 mg/kg of A. paniculata per os once daily for 35 days. Results A. paniculata treatment led to improved insulin sensitivity evidenced by increased HOMA-β (88.08 ± 2.13 vs. 120.80 ± 1.52, p < 0.0001), HOMA-S (283.60 ± 8.82 vs. 300.50 ± 9.30, p = 0.0189), and reduced TyG index (4.22 ± 0.04 vs. 3.95 ± 0.07, p < 0.0002) and HOMA-IR (0.32 ± 0.01 vs. 0.25 ± 0.01, p < 0.0001) when compared with the control. It also improved glucose regulation as depicted by reduced fasting blood glucose (3.77 ± 0.10 vs. 3.24 ± 0.11, p < 0.0001) and glycated hemoglobin (HbA1c; 7.69 ± 1.15 vs. 5.95 ± 0.82, p = 0.0245), and atherogenic dyslipidaemia, including AIP (-0.12 ± 0.03 vs. -0.26 ± 0.03, p < 0.0001) and CRI-I (2.70 ± 0.29 vs. 1.84 ± 0.27, p < 0.0001). These findings were accompanied by enhanced hepatic and muscular redox state, increased activities of glycolytic enzymes, upregulated GLUT 4 (0.80 ± 0.27 vs. 6.20 ± 0.84, p < 0.0001), and increased circulating nitric oxide (5.45 ± 0.24 vs. 6.79 ± 0.33, p = 0.0002). Conclusion A. paniculata exerts positive effect on glucose metabolism and utilization by improving insulin sensitivity and upregulating the activities of glycolytic enzymes and GLUT 4 protein expression. This implies that A. paniculata may be beneficial in preventing insulin resistance and incident diabetes. Nonetheless, it should be used with caution to prevent hypoglycaemia in a non-diabetic state.
Collapse
Affiliation(s)
- W. A. Saka
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - O. S. Oyekunle
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - T. M. Akhigbe
- Department of Agronomy, College of Agricultural Sciences, Osun State University, Oshogbo, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - O. O. Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - M. B. Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - A. T. Adekola
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - A. I. Omole
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - R. E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| |
Collapse
|
7
|
Arora R. Glucosinolate Hydrolytic Products-A Multi-Arm Warrior. J AOAC Int 2024; 107:876-883. [PMID: 38964347 DOI: 10.1093/jaoacint/qsae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/08/2023] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Glucosinolates (GSLs) are the most controversial yet ignored class of phytochemicals. These are the middleman phytochemicals that have low bioactivity. But once there is any injury in the plant-manmade, insect caused, or natural-magic happens. The compound is broken down into smaller phytochemicals referred to as glucosinolate hydrolytic products (GHPs; nitriles, isothiocyanates [ITCs], and thiocyanates). These hydrolytic products are like a showstopper of the fashion industry. These compounds have some of the highest bioactivity in nature. They have been associated with a varied range of bioactivities (anticancer, antioxidant, insecticidal, weedicide, etc.) by researchers across the globe. OBJECTIVE The objective of the current article is to provide a critical review to highlight some of the important bioactivities of these ignored compounds and for promoting researchers to at least give these compounds a chance-to glow in the dark. METHODS This review has been written from analysis of accessible literature, mostly from the last 5 years (2018-2023), with some critically essential exceptions. RESULTS The review highlighted a brief background of GSLs and its hydrolysis. Efforts were made to include most of the biological properties of the compound. Special emphasis has been given to the anticancer activities of the compound with details of the involved mechanism. CONCLUSIONS Considering the wide array of bioactivities of GHPs, it is essential to consider it as a prospective medicinal compound. More GHPs-in a similar manner as sulforaphane-can be proceeded to phase trials. HIGHLIGHTS The mechanistic pathway for production of GHPs and related biological activities have been discussed in detail. The bioactivities have been further explained using the involved mechanism.
Collapse
Affiliation(s)
- Rohit Arora
- Department of Women and Baby, Sunnybrook Research Institute, 2075 Bayview Ave, North York, Ontario, M4N 3M5, Canada
| |
Collapse
|
8
|
Ma C, Ma L, Wang P. Causal associations between COVID-19 and erectile dysfunction: a Mendelian randomization study. J Int Med Res 2024; 52:3000605241274236. [PMID: 39246066 PMCID: PMC11382218 DOI: 10.1177/03000605241274236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVE In this study, we aimed to explore the potential association between COVID-19 infection, hospitalization, severe COVID-19, and erection dysfunction (ED) using the two-sample Mendelian randomization (MR) method. METHODS Data pertaining to COVID-19 were extracted from the latest version of the COVID-19 Host Genetics Initiative genome-wide association study (GWAS) meta-analyses (Round 7, April 2022), and outcome data were obtained from the Open GWAS database. We applied various MR analysis methods, including the inverse variance weighted method, weighted median method, and MR-Egger regression. RESULTS Our investigation revealed a negative causal association between COVID-19 hospitalization and ED (total testosterone levels: beta = -0.026; 95% confidence interval: -0.049 to -0.001). However, no evidence supported causal relationships between COVID-19 infection, hospitalization for COVID-19, or severe COVID-19 and other ED risk factors. CONCLUSION The results of this comprehensive MR analysis suggest a negative causal link between COVID-19 hospitalization and total testosterone levels. Nonetheless, COVID-19 (comprising infection, hospitalization, and severe illness) may not directly correlate with an increased risk of ED. These findings imply that COVID-19 may exert a distinct impact on ED through indirect pathways.
Collapse
Affiliation(s)
- Chao Ma
- Department of Urology, Heze Municipal Hospital, Shandong, China
| | - Li Ma
- Department of General Practice, Heze Municipal Hospital, Shandong, China
| | - Pu Wang
- Department of Urology, Heze Municipal Hospital, Shandong, China
| |
Collapse
|
9
|
Adeyemi D, Arokoyo D, Hamed M, Dare A, Oyedokun P, Akhigbe R. Cardiometabolic Disorder and Erectile Dysfunction. Cell Biochem Biophys 2024; 82:1751-1762. [PMID: 38907942 DOI: 10.1007/s12013-024-01361-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024]
Abstract
Erectile dysfunction (ED), which is defined as the inability to attain and maintain a satisfactory penile erection to sufficiently permit sexual intercourse, is a consequence and also a cause of cardiometabolic disorders like diabetes mellitus, systemic hypertension, central obesity, and dyslipidemia. Although there are mounting and convincing pieces of evidence in the literature linking ED and cardiometabolic disorders, impairment of nitric oxide-dependent vasodilatation seems to be the primary signaling pathway. Studies have also implicated the suppression of circulating testosterone, increased endothelin-1, and hyperactivation of Ang II/ATIr in the pathogenesis of ED and cardiometabolic disorders. This study provides comprehensive details of the association between cardiometabolic disorders and ED and highlights the mechanisms involved. This would open areas to be explored as therapeutic targets in the management of ED and cardiometabolic disorders. It also provides sufficient evidence establishing the need for the management of cardiometabolic disorders as an adjunct therapy in the management of ED.
Collapse
Affiliation(s)
- Damilare Adeyemi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - Dennis Arokoyo
- Department of Physiology, Federal University of Technology, Akure, Ondo State, Nigeria
| | - Moses Hamed
- Department of Medical Laboratory Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratories, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Ayobami Dare
- School of Medicine, University of Missouri, Columbia, MO, 65201, USA
| | - Precious Oyedokun
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Roland Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
10
|
Akhigbe RE, Akhigbe TM, Oyedokun PA, Famurewa AC. Molecular mechanisms underpinning the protection against antiretroviral drug-induced sperm-endocrine aberrations and testicular toxicity: A review. Reprod Toxicol 2024; 128:108629. [PMID: 38825169 DOI: 10.1016/j.reprotox.2024.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
The introduction of highly active antiretroviral therapy (HAART) has revolutionized the treatment of HIV/AIDS worldwide. The HAART approach is the combination of two or more antiretroviral drugs of different classes and are responsible for patient's survival and declining death rates from HIV/AIDS and AIDS-related events. However, the severe and persistent reproductive side effect toxicity of HAART regimens is of great concern to patients within the reproductive age. Till date, the underlying pathophysiology of the HAART-induced reproductive toxicity remains unraveled. Nevertheless, preclinical studies show that oxidative stress and inflammation may be involved in HAART-induced sperm-endocrine deficit and reproductive aberrations. Studies are emerging demonstrating the efficacy of plant-based and non-plant products against the molecular alterations and testicular toxicity of HAART. The testicular mechanisms of mitigation by these products are associated with enhancement of testicular steroidogenesis, spermatogenesis, inhibition of oxidative stress and inflammation. This review presents the toxic effects of HAART on spermatogenesis, reproductive hormones and testis integrity. It also provides insights on the molecular mechanisms underlying the mitigation of HAART testicular toxicity by plant-based and non-plant agents. However, effect of repurposing clinical drugs to combat HAART toxicity is unknown, and more mechanistic studies are evidently needed. Altogether, plant-based and non-plant products are potential agents for prevention of rampant endocrine dysfunction and testicular toxicity of HAART.
Collapse
Affiliation(s)
- Roland E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Tunmise M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Breeding and Genetics Unit, Department of Agronomy, Osun State University, Ejigbo Campus, Osun State, Nigeria
| | - Precious A Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, Ebonyi State, Nigeria.
| |
Collapse
|
11
|
Saka WA, Adeogun AE, Adisa VI, Olayioye A, Igbayilola YD, Akhigbe RE. L-arginine attenuates dichlorvos-induced testicular toxicity in male Wistar rats by suppressing oxidative stress-dependent activation of caspase 3-mediated apoptosis. Biomed Pharmacother 2024; 178:117136. [PMID: 39067166 DOI: 10.1016/j.biopha.2024.117136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND The continuous use of pesticides, such as dichlorvos, is a common agricultural and domestic practice. However, it is associated with shortfalls like testicular toxicity through the induction of oxidative stress-mediated signaling. On the other hand, L-arginine, a precursor of nitric oxide, has been reported to exert antioxidant activities and thus may attenuate dichlorvos-induced testicular toxicity. AIM Hence, this study was designed to evaluate the effect of L-arginine treatment on dichlorvos-induced testicular toxicity. MATERIALS AND METHODS Forty male Wistar rats were randomly assigned into four equal groups. The control rats were administered 0.5 mL of distilled water, dichlorvos- (DDVP-) treated rats were exposed to DDVP via inhalation for 15 min, DDVP + L-arginine-treated rats were exposed to DDVP and also received 100 mg/kg b.w/day, while L-arginine-treated rats received 100 mg/kg b.w/day. RESULTS DDVP exposure significantly reduced testicular nitric oxide, relative testicular weight, lowered sperm count, viability, and motility, and suppressed serum FSH, LH, and testosterone levels. These findings were associated with a rise in testicular malondialdehyde, TNF-α, IL-6, and 8OHdG levels and caspase 3 activities, and a reduction in GSH and superoxide dismutase. Additionally, on histopathological examination, DDVP was observed to reduce mature sperm cells in the seminiferous tubular lumen and induce focal vascular congestion in the interstitial space. Nonetheless, L-arginine treatment significantly attenuated DDVP-induced biochemical and histological alterations. CONCLUSION This study showed that L-arginine attenuated testicular toxicity by improving epididymal sperm variables and male sex hormones by suppressing oxidative stress, inflammation, and apoptosis in DDVP-exposed rats.
Collapse
Affiliation(s)
- W A Saka
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - A E Adeogun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - V I Adisa
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - A Olayioye
- Department of Crop and Environmental Protection, Faculty of Agricultural Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Y D Igbayilola
- Department of Human Physiology, College of Medicine and Health Sciences, Baze University, Abuja, Nigeria
| | - R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
12
|
Elias-Llumbet A, Sharmin R, Berg-Sorensen K, Schirhagl R, Mzyk A. The Interplay between Mechanoregulation and ROS in Heart Physiology, Disease, and Regeneration. Adv Healthc Mater 2024; 13:e2400952. [PMID: 38962858 DOI: 10.1002/adhm.202400952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Cardiovascular diseases are currently the most common cause of death in developed countries. Due to lifestyle and environmental factors, this problem is only expected to increase in the future. Reactive oxygen species (ROS) are a key player in the onset of cardiovascular diseases but also have important functions in healthy cardiac tissue. Here, the interplay between ROS generation and cardiac mechanical forces is shown, and the state of the art and a perspective on future directions are discussed. To this end, an overview of what is currently known regarding ROS and mechanosignaling at a subcellular level is first given. There the role of ROS in mechanosignaling as well as the interplay between both factors in specific organelles is emphasized. The consequences at a larger scale across the population of heart cells are then discussed. Subsequently, the roles of ROS in embryogenesis, pathogenesis, and aging are further discussed, exemplifying some aspects of mechanoregulation. Finally, different models that are currently in use are discussed to study the topics above.
Collapse
Affiliation(s)
- Arturo Elias-Llumbet
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia, Santiago, 1027, Chile
| | - Rokshana Sharmin
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | | | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Aldona Mzyk
- DTU Health Tech, Ørsteds Plads Bldg 345C, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
13
|
Silvestrini A, Mancini A. The Double-Edged Sword of Total Antioxidant Capacity: Clinical Significance and Personal Experience. Antioxidants (Basel) 2024; 13:933. [PMID: 39199179 PMCID: PMC11351343 DOI: 10.3390/antiox13080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress (OS) could be a condition underlying several human diseases, despite the physiological role of reactive oxygen species (oxidative eustress). Therefore, antioxidant compounds could represent a modulatory mechanism for maintaining a proper redox balance and redox signaling. When antioxidants are insufficient or overwhelmed, OS ensues, causing multiple damages at molecular, tissue, and cellular levels. This study focuses on the role of total antioxidant capacity (TAC) as a biomarker to be interpreted according to several clinical scenarios. After a brief description of various assay methods to elucidate terminology and physiopathological roles, we focus on the hormonal influence on TAC in blood plasma and other biological fluids, as different endocrine systems can modulate the antioxidant response. Furthermore, OS characterizes several endocrinopathies through different mechanisms: an inadequate antioxidant response to an increase in reducing equivalents (reductive distress) or a marked consumption of antioxidants (oxidative distress), which leads to low TAC values. An increased TAC could instead represent an adaptive mechanism, suggesting a situation of OS. Hence, the clinical context is fundamental for a correct interpretation of TAC. This review aims to provide the reader with a general overview of oxidative stress in several clinical examples of endocrine relevance, such as metabolic syndrome, non-thyroid illness syndrome, hypopituitarism, and infertility. Finally, the impact of dietary and surgical interventions on TAC in the model of metabolic syndrome is highlighted, along with personal experience.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| |
Collapse
|
14
|
Antar SA, Abdo W, Helal AI, Abduh MS, Hakami ZH, Germoush MO, Alsulimani A, Al-Noshokaty TM, El-Dessouki AM, ElMahdy MK, Elgebaly HA, Al-Karmalawy AA, Mahmoud AM. Coenzyme Q10 mitigates cadmium cardiotoxicity by downregulating NF-κB/NLRP3 inflammasome axis and attenuating oxidative stress in mice. Life Sci 2024; 348:122688. [PMID: 38710284 DOI: 10.1016/j.lfs.2024.122688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Coenzyme Q10 (CoQ10) occurs naturally in the body and possesses antioxidant and cardioprotective effects. Cardiotoxicity has emerged as a serious effect of the exposure to cadmium (Cd). This study investigated the curative potential of CoQ10 on Cd cardiotoxicity in mice, emphasizing the involvement of oxidative stress (OS) and NF-κB/NLRP3 inflammasome axis. Mice received a single intraperitoneal dose of CdCl2 (6.5 mg/kg) and a week after, CoQ10 (100 mg/kg) was supplemented daily for 14 days. Mice that received Cd exhibited cardiac injury manifested by the elevated circulating cardiac troponin T (cTnT), CK-MB, LDH and AST. The histopathological and ultrastructural investigations supported the biochemical findings of cardiotoxicity in Cd-exposed mice. Cd administration increased cardiac MDA, NO and 8-oxodG while suppressed GSH and antioxidant enzymes. CoQ10 decreased serum CK-MB, LDH, AST and cTnT, ameliorated histopathological and ultrastructural changes in the heart of mice, decreased cardiac MDA, NO, and 8-OHdG and improved antioxidants. CoQ10 downregulated NF-κB p65, NLRP3 inflammasome, IL-1β, MCP-1, JNK1, and TGF-β in the heart of Cd-administered mice. Moreover, in silico molecular docking revealed the binding potential between CoQ10 and NF-κB, ASC1 PYD domain, NLRP3 PYD domain, MCP-1, and JNK. In conclusion, CoQ10 ameliorated Cd cardiotoxicity by preventing OS and inflammation and modulating NF-κB/NLRP3 inflammasome axis in mice. Therefore, CoQ10 exhibits potent therapeutic benefits in safeguarding cardiac tissue from the harmful consequences of exposure to Cd.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA; Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Azza I Helal
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33511, Egypt
| | - Maisa Siddiq Abduh
- Immune Responses in Different Diseases Research Group, Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zaki H Hakami
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Mousa O Germoush
- Biology Department, College of Science, Jouf University, Sakakah 72388, Saudi Arabia
| | - Ahmad Alsulimani
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan 82817, Saudi Arabia
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed M El-Dessouki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, 6th of October, Giza 12566, Egypt
| | - Mohamed Kh ElMahdy
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Hassan A Elgebaly
- Biology Department, College of Science, Jouf University, Sakakah 72388, Saudi Arabia
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October, Giza 12566, Egypt
| | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
15
|
Mukherjee A, Ghosh KK, Chakrabortty S, Gulyás B, Padmanabhan P, Ball WB. Mitochondrial Reactive Oxygen Species in Infection and Immunity. Biomolecules 2024; 14:670. [PMID: 38927073 PMCID: PMC11202257 DOI: 10.3390/biom14060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROS) contain at least one oxygen atom and one or more unpaired electrons and include singlet oxygen, superoxide anion radical, hydroxyl radical, hydroperoxyl radical, and free nitrogen radicals. Intracellular ROS can be formed as a consequence of several factors, including ultra-violet (UV) radiation, electron leakage during aerobic respiration, inflammatory responses mediated by macrophages, and other external stimuli or stress. The enhanced production of ROS is termed oxidative stress and this leads to cellular damage, such as protein carbonylation, lipid peroxidation, deoxyribonucleic acid (DNA) damage, and base modifications. This damage may manifest in various pathological states, including ageing, cancer, neurological diseases, and metabolic disorders like diabetes. On the other hand, the optimum levels of ROS have been implicated in the regulation of many important physiological processes. For example, the ROS generated in the mitochondria (mitochondrial ROS or mt-ROS), as a byproduct of the electron transport chain (ETC), participate in a plethora of physiological functions, which include ageing, cell growth, cell proliferation, and immune response and regulation. In this current review, we will focus on the mechanisms by which mt-ROS regulate different pathways of host immune responses in the context of infection by bacteria, protozoan parasites, viruses, and fungi. We will also discuss how these pathogens, in turn, modulate mt-ROS to evade host immunity. We will conclude by briefly giving an overview of the potential therapeutic approaches involving mt-ROS in infectious diseases.
Collapse
Affiliation(s)
- Arunima Mukherjee
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore 636921, Singapore; (K.K.G.); (B.G.)
- Cognitive Neuroimaging Centre, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur 522502, Andhra Pradesh, India;
| |
Collapse
|
16
|
Akhigbe R, Odetayo A, Akhigbe T, Hamed M, Ashonibare P. Pathophysiology and management of testicular ischemia/reperfusion injury: Lessons from animal models. Heliyon 2024; 10:e27760. [PMID: 38694115 PMCID: PMC11058307 DOI: 10.1016/j.heliyon.2024.e27760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
Testicular torsion is a urological emergency that involves the twisting of the spermatic cord along its course. Compelling pieces of evidence have implicated oxidative stress-sensitive signaling in pathogenesis of testicular I/R injury. Although, surgical detorsion is the mainstay management; blockade of the pathways involved in the pathogenesis may improve the surgical outcome. Experimental studies using various testicular I/R models have been reported in a bid to explore the mechanisms associated with testicular I/R and evaluate the benefits of potential therapeutic measures; however, most are limited by their shortcomings. Thus, this review was intended to describe the details of the available testicular I/R models as well as their merits and drawbacks, the pathophysiological basis and consequences of testicular I/R, and the pharmacological agents that have being proposed to confer testicular benefits against testicular I/R. This provides an understanding of the pathophysiological events and available models used in studying testicular I/R. In addition, this research provides evidence-based molecules with therapeutic potentials as well as their mechanisms of action in testicular I/R.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - A.F. Odetayo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osun State, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - P.J. Ashonibare
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
17
|
Munno M, Mallia A, Greco A, Modafferi G, Banfi C, Eligini S. Radical Oxygen Species, Oxidized Low-Density Lipoproteins, and Lectin-like Oxidized Low-Density Lipoprotein Receptor 1: A Vicious Circle in Atherosclerotic Process. Antioxidants (Basel) 2024; 13:583. [PMID: 38790688 PMCID: PMC11118168 DOI: 10.3390/antiox13050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Atherosclerosis is a complex condition that involves the accumulation of lipids and subsequent plaque formation in the arterial intima. There are various stimuli, cellular receptors, and pathways involved in this process, but oxidative modifications of low-density lipoprotein (ox-LDL) are particularly important in the onset and progression of atherosclerosis. Ox-LDLs promote foam-cell formation, activate proinflammatory pathways, and induce smooth-muscle-cell migration, apoptosis, and cell death. One of the major receptors for ox-LDL is LOX-1, which is upregulated in several cardiovascular diseases, including atherosclerosis. LOX-1 activation in endothelial cells promotes endothelial dysfunction and induces pro-atherogenic signaling, leading to plaque formation. The binding of ox-LDLs to LOX-1 increases the generation of reactive oxygen species (ROS), which can induce LOX-1 expression and oxidize LDLs, contributing to ox-LDL generation and further upregulating LOX-1 expression. This creates a vicious circle that is amplified in pathological conditions characterized by high plasma levels of LDLs. Although LOX-1 has harmful effects, the clinical significance of inhibiting this protein remains unclear. Further studies both in vitro and in vivo are needed to determine whether LOX-1 inhibition could be a potential therapeutic target to counteract the atherosclerotic process.
Collapse
Affiliation(s)
- Marco Munno
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Alice Mallia
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
- Dipartimento di Biologia e Biotecnologie “Lazzaro Spallanzani”, Università di Pavia, 27100 Pavia, Italy
| | - Arianna Greco
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Gloria Modafferi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Cristina Banfi
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| | - Sonia Eligini
- Unit of Functional Proteomics, Metabolomics and Network Analysis, Centro Cardiologico Monzino, 20138 Milan, Italy; (M.M.); (A.M.); (A.G.); (G.M.); (S.E.)
| |
Collapse
|
18
|
Acito M, Varfaj I, Brighenti V, Cengiz EC, Rondini T, Fatigoni C, Russo C, Pietrella D, Pellati F, Bartolini D, Sardella R, Moretti M, Villarini M. A novel black poplar propolis extract with promising health-promoting properties: focus on its chemical composition, antioxidant, anti-inflammatory, and anti-genotoxic activities. Food Funct 2024; 15:4983-4999. [PMID: 38606532 DOI: 10.1039/d3fo05059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Propolis is a resinous mixture produced by honeybees which has been used since ancient times for its useful properties. However, its chemical composition and bioactivity may vary, depending on the geographical area of origin and the type of tree bees use for collecting pollen. In this context, this research aimed to investigate the total phenolic content (using the Folin-Ciocalteu assay) and the total antioxidant capacity (using the FRAP, DPPH, and ABTS assays) of three black poplar (Populus nigra L.) propolis (BPP) solutions (S1, S2, and S3), as well as the chemical composition (HPLC-ESI-MSn) and biological activities (effect on cell viability, genotoxic/antigenotoxic properties, and anti-inflammatory activity, and effect on ROS production) of the one which showed the highest antioxidant activity (S1). The hydroalcoholic BPP solution S1 was a prototype of an innovative, research-type product by an Italian nutraceutical manufacturer. In contrast, hydroalcoholic BPP solutions S2 and S3 were conventional products purchased from local pharmacy stores. For the three extracts, 50 phenolic compounds, encompassing phenolic acids and flavonoids, were identified. In summary, the results showed an interesting chemical profile and the remarkable antioxidant, antigenotoxic, anti-inflammatory and ROS-modulating activities of the innovative BPP extract S1, paving the way for future research. In vivo investigations will be a possible line to take, which may help corroborate the hypothesis of the potential health benefits of this product, and even stimulate further ameliorations of the new prototype.
Collapse
Affiliation(s)
- Mattia Acito
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Ina Varfaj
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Emine Ceren Cengiz
- Department of Toxicology, Faculty of Pharmacy, Gazi University, 06560 Ankara, Turkey
| | - Tommaso Rondini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Carla Russo
- Department of Medicine and Surgery, University of Perugia, Piazzale S. Gambuli 1, 06132 Perugia, Italy
| | - Donatella Pietrella
- Department of Medicine and Surgery, University of Perugia, Piazzale S. Gambuli 1, 06132 Perugia, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | - Milena Villarini
- Department of Pharmaceutical Sciences, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| |
Collapse
|
19
|
Bibha K, Akhigbe TM, Hamed MA, Akhigbe RE. Metabolic Derangement by Arsenic: a Review of the Mechanisms. Biol Trace Elem Res 2024; 202:1972-1982. [PMID: 37670201 DOI: 10.1007/s12011-023-03828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 09/07/2023]
Abstract
Studies have implicated arsenic exposure in various pathological conditions, including metabolic disorders, which have become a global phenomenon, affecting developed, developing, and under-developed nations. Despite the huge risks associated with arsenic exposure, humans remain constantly exposed to it, especially through the consumption of contaminated water and food. This present study provides an in-depth insight into the mechanistic pathways involved in the metabolic derangement by arsenic. Compelling pieces of evidence demonstrate that arsenic induces metabolic disorders via multiple pathways. Apart from the initiation of oxidative stress and inflammation, arsenic prevents the phosphorylation of Akt at Ser473 and Thr308, leading to the inhibition of PDK-1/Akt insulin signaling, thereby reducing GLUT4 translocation through the activation of Nrf2. Also, arsenic downregulates mitochondrial deacetylase Sirt3, decreasing the ability of its associated transcription factor, FOXO3a, to bind to the agents that support the genes for manganese superoxide dismutase and PPARg co-activator (PGC)-1a. In addition, arsenic activates MAPKs, modulates p53/ Bcl-2 signaling, suppresses Mdm-2 and PARP, activates NLRP3 inflammasome and caspase-mediated apoptosis, and induces ER stress, and ox-mtDNA-dependent mitophagy and autophagy. More so, arsenic alters lipid metabolism by decreasing the presence of 3-hydroxy-e-methylglutaryl-CoA synthase 1 and carnitine O-octanoyl transferase (Crot) and increasing the presence of fatty acid-binding protein-3 mRNA. Furthermore, arsenic promotes atherosclerosis by inducing endothelial damage. This cascade of pathophysiological events promotes metabolic derangement. Although the pieces of evidence provided by this study are convincing, future studies evaluating the involvement of other likely mechanisms are important. Also, epidemiological studies might be necessary for the translation of most of the findings in animal models to humans.
Collapse
Affiliation(s)
- K Bibha
- Department of Zoology, Magadh Mahila College, Patna University, Patna, India
| | - T M Akhigbe
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.
| |
Collapse
|
20
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
21
|
Akhigbe RE, Adedamola Aminat BO, Akhigbe TM, Hamed MA. Glutamine Alleviates I/R-Induced Intestinal Injury and Dysmotility Via the Downregulation of Xanthine Oxidase/Uric Acid Signaling and Lactate Generation in Wistar Rats. J Surg Res 2024; 295:431-441. [PMID: 38070257 DOI: 10.1016/j.jss.2023.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Disruption of intestinal histoarchitecture and intestinal dysmotility is critical to intestinal ischemia/reperfusion (IR) injury and xanthine oxidase (XO)/uric acid (UA) signaling and increased lactate generation have been reported to play a role. More so, glutamine treatment has been demonstrated to inhibit XO/UA signaling. However, the role of glutamine in intestinal IR injury-induced intestinal dysmotility and the associated mechanisms of action are unclear. Therefore, this study was to investigate the mechanisms underlying the role of glutamine in intestinal IR injury. METHODS Forty male Wistar rats were acclimatized for two weeks and then randomized into four groups. The sham-operated, glutamine-treated, intestinal IR, and IR + glutamine groups. RESULTS Glutamine therapy attenuated the IR-induced increase in intestinal weight, disruption of intestinal histoarchitecture, and intestinal dysmotility. In addition, glutamine ameliorated IR-induced intestinal oxidative stress (increased malondialdehyde, reduced glutathione and superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, and glucose-6-phosphate dehydrogenase activities), inflammation (increased TNF-α and IL-1β), and apoptosis (increased caspase three activity). These events were accompanied by glutamine alleviation of IR-induced upregulation of intestinal nuclear factor kappa B, XO/UA, and lactate generation. CONCLUSIONS In conclusion, XO/UA signaling and lactate levels are key factors in IR-induced intestinal injury and dysmotility, and glutamine-mediated XO/UA/lactate modulation may attenuate IR-induced intestinal injury and dysmotility.
Collapse
Affiliation(s)
- Roland Eghoghosoa Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | | | - Tunmise Maryanne Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osun State
| | - Moses Agbomhere Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Medical Laboratory Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria; Department of Research and Bioinformatics, The Brainwill Laboratory, Osogbo, Osun State, Nigeria.
| |
Collapse
|
22
|
Ashonibare VJ, Akorede BA, Ashonibare PJ, Akhigbe TM, Akhigbe RE. Gut microbiota-gonadal axis: the impact of gut microbiota on reproductive functions. Front Immunol 2024; 15:1346035. [PMID: 38482009 PMCID: PMC10933031 DOI: 10.3389/fimmu.2024.1346035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/30/2024] [Indexed: 04/12/2024] Open
Abstract
The influence of gut microbiota on physiological processes is rapidly gaining attention globally. Despite being under-studied, there are available data demonstrating a gut microbiota-gonadal cross-talk, and the importance of this axis in reproduction. This study reviews the impacts of gut microbiota on reproduction. In addition, the possible mechanisms by which gut microbiota modulates male and female reproduction are presented. Databases, including Embase, Google scholar, Pubmed/Medline, Scopus, and Web of Science, were explored using relevant key words. Findings showed that gut microbiota promotes gonadal functions by modulating the circulating levels of steroid sex hormones, insulin sensitivity, immune system, and gonadal microbiota. Gut microbiota also alters ROS generation and the activation of cytokine accumulation. In conclusion, available data demonstrate the existence of a gut microbiota-gonadal axis, and role of this axis on gonadal functions. However, majority of the data were compelling evidences from animal studies with a great dearth of human data. Therefore, human studies validating the reports of experimental studies using animal models are important.
Collapse
Affiliation(s)
- Victory J. Ashonibare
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Bolaji A. Akorede
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Biomedical Sciences, University of Wyoming, Laramie, WY, United States
| | - Precious J. Ashonibare
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tunmise M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Breeding and Genetic Unit, Department of Agronomy, Osun State University, Ejigbo, Osun State, Nigeria
| | - Roland Eghoghosoa Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
23
|
Besong EE, Ashonibare PJ, Akhigbe TM, Obimma JN, Akhigbe RE. Sodium acetate abates lead-induced sexual dysfunction by upregulating testosterone-dependent eNOS/NO/cGMP signaling and activating Nrf2/HO-1 in male Wistar rat. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1233-1243. [PMID: 37658211 DOI: 10.1007/s00210-023-02696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Oxidative stress has been linked with lead toxicity, including lead-induced sexual dysfunction. On the contrary, sodium acetate has been proven to exert antioxidant activity. However, the effect of sodium acetate on lead-induced sexual dysfunction has not been fully explored. This study investigated the effect of sodium acetate on lead-induced sexual dysfunction, exploring the involvement of testosterone, eNOS/NO/cGMP, and Nrf2/HO-1 signaling. Twenty male Wistar rats with similar weights were randomly assigned into four groups (n = 5 rats/group) after two weeks of acclimatization. Animals were vehicle-treated (0.5 ml/day of distilled water, per os), acetate-treated (200 mg/kg/day, per os), lead-treated (20 mg/kg/day, per os), or lead + acetate-treated. The results revealed that sodium acetate treatment attenuated lead-induced rise in penile lead, malondialdehyde and oxidized glutathione concentrations, and acetylcholinesterase activity. In addition, lead exposure prolonged mount, intromission, and ejaculation latency and reduced mount, intromission, and ejaculation frequency, as well as the motivation to mate and penile reflex, which were improved by acetate treatment. More so, acetate treatment ameliorated lead-induced reductions in absolute and relative penile weight, eNOS, NO, cGMP, luteinizing hormone, follicle-stimulating hormone, testosterone, dopamine, Nrf2, HO-1, and reduced glutathione concentrations, as well as glutathione reductase, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, and catalase activities. In conclusion, this study demonstrates that sodium acetate attenuated lead-induced sexual dysfunction by upregulating testosterone-dependent eNOS/NO/cGMP and Nrf2/HO-1 signaling. Despite the compelling data presented in this study, other possible associated mechanisms in the protective role of acetate should be explored.
Collapse
Affiliation(s)
- E E Besong
- Department of Physiology, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - P J Ashonibare
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - T M Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
| | - J N Obimma
- Department of Physiology, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
| |
Collapse
|
24
|
Adeyemi DH, Hamed MA, Oluwole DT, Omole AI, Akhigbe RE. Acetate attenuates cyclophosphamide-induced cardiac injury via inhibition of NF-kB signaling and suppression of caspase 3-dependent apoptosis in Wistar rats. Biomed Pharmacother 2024; 170:116019. [PMID: 38128178 DOI: 10.1016/j.biopha.2023.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
AIM The goal of the current study was to examine the potential therapeutic effects of sodium acetate on cardiac toxicities caused by cyclophosphamide in Wistar rats. The possible involvement of NF-kB/caspase 3 signaling was also explored. MAIN METHODS Thirty-two male Wistar rats were divided into four groups at random. (n = 8). The control animals received 0.5 mL of distilled water orally for 14 days, the acetate-treated group received 200 mg/kg/day of sodium acetate orally for 14 consecutive days, and cyclophosphamide-treated rats received 150 mg/kg /day of cyclophosphamide i.p. on day 8, while cyclophosphamide + acetate group received sodium acetate and cyclophosphamide as earlier stated. KEY FINDINGS Results showed that cyclophosphamide-induced cardiotoxicity, which manifested as a marked drop in body and cardiac weights as well as cardiac weight/tibial length, increased levels of troponin, C-reactive protein, lactate, and creatinine kinase, and lactate dehydrogenase activities in the plasma and cardiac tissue. Histopathological examination also revealed toxic cardiac histopathological changes. These alterations were associated with a significant increase in xanthine oxidase and myeloperoxidase activities, uric acid, malondialdehyde, TNF-α, IL-1β, NFkB, DNA fragmentation, and caspase 3 and caspase 9 activities in addition to a marked decline in Nrf2 and GSH levels, and SOD and catalase activities in the cardiac tissue. Acetate co-administration significantly attenuated cyclophosphamide cardiotoxicity by its antioxidant effect, preventing NFkB activation and caspase 9/caspase 3 signalings. SIGNIFICANCE This study shows that acetate co-administration may have cardio-protective effects against cyclophosphamide-induced cardiotoxicity by inhibiting NF-kB signaling and suppressing caspase-3-dependent apoptosis.
Collapse
Affiliation(s)
- D H Adeyemi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osun State, Nigeria
| | - M A Hamed
- Department of Medical Laboratory Sciences, Afe Babalola University, Ado Ekiti, Ekiti State, Nigeria; The Brainwill Laboratories, Osogbo, Osun State, Nigeria; Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - D T Oluwole
- Department of Physiology, Crescent University, Abeokuta, Ogun State, Nigeria
| | - A I Omole
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
25
|
Xu X, Wen Z. The mediating role of inflammaging between mitochondrial dysfunction and sarcopenia in aging: a review. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2023; 12:109-126. [PMID: 38187366 PMCID: PMC10767199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/26/2023] [Indexed: 01/09/2024]
Abstract
Sarcopenia, characterized by the insidious reduction of skeletal muscle mass and strength, detrimentally affects the quality of life in elderly cohorts. Present therapeutic strategies are confined to physiotherapeutic interventions, signaling a critical need for elucidation of the etiological underpinnings to facilitate the development of innovative pharmacotherapies. Recent scientific inquiries have associated mitochondrial dysfunction and inflammation with the etiology of sarcopenia. Mitochondria are integral to numerous fundamental cellular processes within muscle tissue, including but not limited to apoptosis, autophagy, signaling via reactive oxygen species, and the maintenance of protein equilibrium. Deviations in mitochondrial dynamics, coupled with compromised oxidative capabilities, autophagic processes, and protein equilibrium, result in disturbances to muscular architecture and functionality. Mitochondrial dysfunction is particularly detrimental as it diminishes oxidative phosphorylation, escalates apoptotic activity, and hinders calcium homeostasis within muscle cells. Additionally, deleterious feedback loops of deteriorated respiration, exacerbated oxidative injury, and diminished quality control mechanisms precipitate the acceleration of muscular senescence. Notably, mitochondria exhibiting deficient energetic metabolism are pivotal in precipitating the shift from normative muscle aging to a pathogenic state. This analytical review meticulously examines the complex interplay between mitochondrial dysfunction, persistent inflammation, and the pathogenesis of sarcopenia. It underscores the imperative to alleviate inflammation and amend mitochondrial anomalies within geriatric populations as a strategy to forestall and manage sarcopenia. An initial overview provides a succinct exposition of sarcopenia and its clinical repercussions. The discourse then progresses to an examination of the direct correlation between mitochondrial dysfunction and the genesis of sarcopenia. Concomitantly, it accentuates potential synergistic effects between inflammatory responses and mitochondrial insufficiencies during the aging of skeletal muscle, thereby casting light upon emergent therapeutic objectives. In culmination, this review distills the prevailing comprehension of the mitochondrial and inflammatory pathways implicated in sarcopenia and delineates extant lacunae in knowledge to orient subsequent scientific inquiry.
Collapse
Affiliation(s)
- Xin Xu
- Department of Rehabilitation Therapy, School of Health, Shanghai Normal University Tianhua CollegeShanghai, China
| | - Zixing Wen
- Department of Rehabilitation, School of International Medical Technology, Shanghai Sanda UniversityShanghai, China
| |
Collapse
|
26
|
Lukova P, Apostolova E, Baldzhieva A, Murdjeva M, Kokova V. Fucoidan from Ericaria crinita Alleviates Inflammation in Rat Paw Edema, Downregulates Pro-Inflammatory Cytokine Levels, and Shows Antioxidant Activity. Biomedicines 2023; 11:2511. [PMID: 37760952 PMCID: PMC10526391 DOI: 10.3390/biomedicines11092511] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Fucoidans are sulfated polysaccharides detected mainly in the cell walls of brown seaweeds. Here, we examined the effects of single doses of fucoidan derived from Ericaria crinita (formerly Cystoseira crinita) on carrageenan-induced paw inflammation in rats. The serum levels of TNF-α, IL-1β, IL-6, and IL-10 of rats with LPS-induced systemic inflammation after 14 days of treatment were also evaluated. Subchronic treatment with fucoidan from E. crinita attenuated the inflammation during the late phase of the degraded carrageenan-induced paw edema (3rd to 5th hour after carrageenan injection) with peak activity at the 3rd hour after the application. Both doses of fucoidan from E. crinita (25 and 50 mg/kg bw) significantly decreased the levels of all tested pro-inflammatory cytokines (IL-1β, TNF-α, and IL-6) in the serum of rats with a model of system inflammation but had no effect on the anti-inflammatory cytokine IL-10. The results showed that the repeated application of fucoidan has a more prominent effect on the levels of some pro-inflammatory cytokines in serum in comparison to a single dose of the sulfated polysaccharide. This reveals the potential of E. crinita fucoidan as an anti-inflammatory agent. Furthermore, E. crinita fucoidan exhibited in vitro antioxidant capacity, determined by 2,2-diphenyl-1-picryl-hydrazyl radical scavenging and ferric reducing antioxidant power assays as follows: IC50 = 412 µg/mL and 118.72 μM Trolox equivalent/g, respectively.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University-Plovdiv, 4002 Plovdiv, Bulgaria
| | - Elisaveta Apostolova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Alexandra Baldzhieva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Marianna Murdjeva
- Department of Medical Microbiology and Immunology “Prof. Dr. Elissay Yanev”, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| | - Vesela Kokova
- Department of Pharmacology, Toxicology, and Pharmacotherapy, Faculty of Pharmacy, Medical University-Plovdiv, Vasil Aprilov Str. 15A, 4002 Plovdiv, Bulgaria
| |
Collapse
|
27
|
Bērziņa L, Mieriņa I. Antiradical and Antioxidant Activity of Compounds Containing 1,3-Dicarbonyl Moiety: An Overview. Molecules 2023; 28:6203. [PMID: 37687032 PMCID: PMC10488980 DOI: 10.3390/molecules28176203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Free radicals and oxidants may cause various damages both to the lifeworld and different products. A typical solution for the prophylaxis of oxidation-caused conditions is the usage of various antioxidants. Among them, various classes are found-polyphenols, conjugated polyalkenes, and some sulfur and nitrogen derivatives. Regarding the active site in the molecules, a widely discussed group of compounds are 1,3-dicarbonyl compounds. Among them are natural (e.g., curcumin and pulvinic acids) and synthetic (e.g., 4-hydroxy coumarins, substituted Meldrum's acids) compounds. Herein, information about various compounds containing the 1,3-dicarbonyl moiety is covered, and their antiradical and antioxidant activity, depending on the structure, is discussed.
Collapse
Affiliation(s)
| | - Inese Mieriņa
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia;
| |
Collapse
|
28
|
Leveque C, Mrakic Sposta S, Theunissen S, Germonpré P, Lambrechts K, Vezzoli A, Bosco G, Lévénez M, Lafère P, Guerrero F, Balestra C. Oxidative Stress Response Kinetics after 60 Minutes at Different (1.4 ATA and 2.5 ATA) Hyperbaric Hyperoxia Exposures. Int J Mol Sci 2023; 24:12361. [PMID: 37569737 PMCID: PMC10418619 DOI: 10.3390/ijms241512361] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is a therapeutical approach based on exposure to pure oxygen in an augmented atmospheric pressure. Although it has been used for years, the exact kinetics of the reactive oxygen species (ROS) between different pressures of hyperbaric oxygen exposure are still not clearly evidenced. In this study, the metabolic responses of hyperbaric hyperoxia exposures for 1 h at 1.4 and 2.5 ATA were investigated. Fourteen healthy non-smoking subjects (2 females and 12 males, age: 37.3 ± 12.7 years old (mean ± SD), height: 176.3 ± 9.9 cm, and weight: 75.8 ± 17.7 kg) volunteered for this study. Blood samples were taken before and at 30 min, 2 h, 24 h, and 48 h after a 1 h hyperbaric hyperoxic exposure. The level of oxidation was evaluated by the rate of ROS production, nitric oxide metabolites (NOx), and the levels of isoprostane. Antioxidant reactions were assessed through measuring superoxide dismutase (SOD), catalase (CAT), cysteinylglycine, and glutathione (GSH). The inflammatory response was measured using interleukine-6, neopterin, and creatinine. A short (60 min) period of mild (1.4 ATA) and high (2.5 ATA) hyperbaric hyperoxia leads to a similar significant increase in the production of ROS and antioxidant reactions. Immunomodulation and inflammatory responses, on the contrary, respond proportionally to the hyperbaric oxygen dose. Further research is warranted on the dose and the inter-dose recovery time to optimize the potential therapeutic benefits of this promising intervention.
Collapse
Affiliation(s)
- Clément Leveque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Laboratoire ORPHY, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6 Avenue Le Gorgeu, 93837 Brest, France
| | - Simona Mrakic Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Sigrid Theunissen
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Peter Germonpré
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Hyperbaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Gerardo Bosco
- Environmental Physiology & Medicine Lab, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Morgan Lévénez
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
| | - François Guerrero
- Laboratoire ORPHY, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6 Avenue Le Gorgeu, 93837 Brest, France
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- Physical Activity Teaching Unit, Motor Sciences Department, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
29
|
Salami SA, Osukoya OA, Adewale OB, Odekanyin O, Obafemi TO, Kuku A. Bioactivities of Garcinia kola enzymatic hydrolysates at different enzyme-substrate ratios. AMB Express 2023; 13:78. [PMID: 37495834 PMCID: PMC10371964 DOI: 10.1186/s13568-023-01583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Natural products, such as enzymatic hydrolysates and bioactive peptides from dietary sources, are safe alternatives to synthetic compounds linked to various deleterious effects. The purpose of this study is to determine the in vitro bioactivities (antioxidant and anti-inflammatory activities) of Garcinia kola seeds enzymatic hydrolysates (GKPHs) at different enzyme (pepsin)-substrate ratios. G. kola protein, isolated by alkaline solubilization and acid precipitation, was hydrolyzed with pepsin at varying enzyme-substrate (E:S) ratios. The antioxidant parameters investigated include 1,1-diphenyl-2-picrylhydrazyl (DPPH)-radical scavenging, hydrogen peroxide scavenging and ferrous ion (Fe2+) chelating activities. For anti-inflammatory properties, membrane stabilization and protein denaturation activities tests were used. GKPH produced at 1:32 had the highest degree of hydrolysis (66.27 ± 4.21%). All GKPHs had excellent in vitro anti-inflammatory properties. However, only enzymatic hydrolysates produced at 1:16 (E:S) ratio chelated iron (II) and as well had the highest percentage hemolysis inhibition of 84.45 ± 0.007%, percentage protein denaturation inhibition of 53.36 ± 0.01% at maximum concentration and exhibited highest DPPH scavenging activity (87.24 ± 0.10%). The enzymatic hydrolysates had excellent solubility, emulsifying and foaming properties. It could be deduced from this study that pepsin at a ratio of 1:16 of G. kola protein produced the most effective enzymatic hydrolysates in terms of their antioxidant and anti-inflammatory activities. G. kola pepsin enzymatic hydrolysates, thus, have potential in development as functional foods and as therapeutics pharmaceutical industries in the management of diseases associated with oxidative stress and inflammation owing to their excellent functional, antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Salmat Adenike Salami
- Biochemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Olukemi Adetutu Osukoya
- Biochemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria.
| | - Olusola Bolaji Adewale
- Biochemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Oludele Odekanyin
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Tajudeen Olabisi Obafemi
- Biochemistry Programme, Department of Chemical Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Adenike Kuku
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
30
|
Silvestrini A, Meucci E, Ricerca BM, Mancini A. Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. Int J Mol Sci 2023; 24:10978. [PMID: 37446156 DOI: 10.3390/ijms241310978] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Despite the physiological role of oxidant molecules, oxidative stress (OS) could underlie several human diseases. When the levels of antioxidants are too low or too high, OS occurs, leading to damage at the molecular, tissue and cellular levels. Therefore, antioxidant compounds could represent a way to modulate OS and/or to maintain proper redox balance. This review provides an overview of the methods available to assess total antioxidant capacity (TAC) in biological systems to elucidate the correct terminology and the pathophysiological roles. The clinical context is fundamental to obtain a correct interpretation of TAC. Hence, we discuss metabolic syndrome and infertility, two clinical conditions that involve OS, including the potential prognostic role of TAC evaluation in monitoring antioxidant supplementation. This approach would provide more personalised and precise therapy.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
| | - Elisabetta Meucci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
| | - Bianca Maria Ricerca
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Mancini
- Fondazione Policlinico Universitario Agostino Gemelli (IRCCS), 00168 Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
31
|
An G, Kim M, Park J, Park H, Hong T, Lim W, Song G. Embryonic exposure to chloroxylenol induces developmental defects and cardiovascular toxicity via oxidative stress, inflammation, and apoptosis in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 268:109617. [PMID: 36965842 DOI: 10.1016/j.cbpc.2023.109617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Chloroxylenol is an extensively consumed anti-microbial compound. Since its usage is on the rise due to the coronavirus pandemic and ban on other antimicrobial ingredients, recent studies have suggested the necessity of estimating its potential for ecotoxicity. The detrimental effect of chloroxylenol on zebrafish (Danio rerio) viability has been reported; however, research on the mechanisms underlying its toxicity is quite limited. Therefore, we applied the zebrafish model for elucidating responses against chloroxylenol to predict its toxicity toward human health and ecology. Zebrafish exposed to chloroxylenol (0, 0.5, 1, 2.5, 5, and 10 mg/L) at the embryonic stage (from 6 h post-fertilization (hpf) to 96 hpf) showed impaired viability and hatchability, and pathological phenotypes. To address these abnormalities, cellular responses such as oxidative stress, inflammation, and apoptosis were confirmed via in vivo imaging of a fluorescent dye or measurement of the transcriptional changes related to each response. In particular, developmental defects in the cardiovascular system of zebrafish exposed to 0, 0.5, 1, and 2.5 mg/L of chloroxylenol from 6 to 96 hpf were identified by structural analyses of the system in the flk1:eGFP transgenic line. Additional experiments were conducted using human umbilical vein endothelial cells (HUVECs) to predict the adverse impacts of chloroxylenol on the human vascular system. Chloroxylenol impairs the viability and tube formation ability of HUVECs by modulating ERK signaling. The findings obtained using the zebrafish model provide evidence of the possible risks of chloroxylenol exposure and suggest the importance of more in-depth ecotoxicological studies.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Miji Kim
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
32
|
Helm MM, Alaba T, Klimis-Zacas D, Izuora K, Basu A. Effect of Dietary Berry Supplementation on Antioxidant Biomarkers in Adults with Cardiometabolic Risks: A Systematic Review of Clinical Trials. Antioxidants (Basel) 2023; 12:1182. [PMID: 37371912 DOI: 10.3390/antiox12061182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiometabolic conditions are closely associated with inflammation and oxidative stress. Dietary berries may serve as a beneficial nutrition intervention to address the features of cardiometabolic dysfunction and associated oxidative stress. The high antioxidant status of dietary berries may increase antioxidant capacity and reduce biomarkers of oxidative stress. This systematic review was conducted to investigate these effects of dietary berries. The search was conducted using PubMed, Cochrane Library, Web of Science, and citation searching. Through this search we identified 6309 articles and 54 were included in the review. Each study's risk of bias was assessed using the 2019 Cochrane Methods' Risk of Bias 2 tool. Antioxidant and oxidative stress outcomes were evaluated, and the magnitude of effect was calculated using Cohen's d. A range of effectiveness was reported in the included studies and the quality of the studies differed between the parallel and crossover trials. Considering the inconsistency in reported effectiveness, future investigations are warranted to determine the acute and sustained reductions of oxidative stress biomarkers from dietary berry intake (PROSPERO registration# CRD42022374654).
Collapse
Affiliation(s)
- Macy M Helm
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
| | - Tolu Alaba
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Dorothy Klimis-Zacas
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Kenneth Izuora
- Section of Endocrinology, Department of Internal Medicine, University of Nevada, Las Vegas, NV 89102, USA
| | - Arpita Basu
- Department of Kinesiology and Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
33
|
Minjares M, Wu W, Wang JM. Oxidative Stress and MicroRNAs in Endothelial Cells under Metabolic Disorders. Cells 2023; 12:1341. [PMID: 37174741 PMCID: PMC10177439 DOI: 10.3390/cells12091341] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Reactive oxygen species (ROS) are radical oxygen intermediates that serve as important second messengers in signal transduction. However, when the accumulation of these molecules exceeds the buffering capacity of antioxidant enzymes, oxidative stress and endothelial cell (EC) dysfunction occur. EC dysfunction shifts the vascular system into a pro-coagulative, proinflammatory state, thereby increasing the risk of developing cardiovascular (CV) diseases and metabolic disorders. Studies have turned to the investigation of microRNA treatment for CV risk factors, as these post-transcription regulators are known to co-regulate ROS. In this review, we will discuss ROS pathways and generation, normal endothelial cell physiology and ROS-induced dysfunction, and the current knowledge of common metabolic disorders and their connection to oxidative stress. Therapeutic strategies based on microRNAs in response to oxidative stress and microRNA's regulatory roles in controlling ROS will also be explored. It is important to gain an in-depth comprehension of the mechanisms generating ROS and how manipulating these enzymatic byproducts can protect endothelial cell function from oxidative stress and prevent the development of vascular disorders.
Collapse
Affiliation(s)
- Morgan Minjares
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
| | - Wendy Wu
- Vera P Shiffman Medical Library, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA;
| | - Jie-Mei Wang
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA;
- Center for Molecular Medicine and Genetics, Wayne State University, 320 E Canfield St., Detroit, MI 48201, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R St., Detroit, MI 48201, USA
| |
Collapse
|
34
|
Seksaria S, Mehan S, Dutta BJ, Gupta GD, Ganti SS, Singh A. Oxymatrine and insulin resistance: Focusing on mechanistic intricacies involve in diabetes associated cardiomyopathy via SIRT1/AMPK and TGF-β signaling pathway. J Biochem Mol Toxicol 2023; 37:e23330. [PMID: 36890713 DOI: 10.1002/jbt.23330] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cardiomyopathy (CDM) and related morbidity and mortality are increasing at an alarming rate, in large part because of the increase in the number of diabetes mellitus cases. The clinical consequence associated with CDM is heart failure (HF) and is considerably worse for patients with diabetes mellitus, as compared to nondiabetics. Diabetic cardiomyopathy (DCM) is characterized by structural and functional malfunctioning of the heart, which includes diastolic dysfunction followed by systolic dysfunction, myocyte hypertrophy, cardiac dysfunctional remodeling, and myocardial fibrosis. Indeed, many reports in the literature indicate that various signaling pathways, such as the AMP-activated protein kinase (AMPK), silent information regulator 1 (SIRT1), PI3K/Akt, and TGF-β/smad pathways, are involved in diabetes-related cardiomyopathy, which increases the risk of functional and structural abnormalities of the heart. Therefore, targeting these pathways augments the prevention as well as treatment of patients with DCM. Alternative pharmacotherapy, such as that using natural compounds, has been shown to have promising therapeutic effects. Thus, this article reviews the potential role of the quinazoline alkaloid, oxymatrine obtained from the Sophora flavescensin CDM associated with diabetes mellitus. Numerous studies have given a therapeutic glimpse of the role of oxymatrine in the multiple secondary complications related to diabetes, such as retinopathy, nephropathy, stroke, and cardiovascular complications via reductions in oxidative stress, inflammation, and metabolic dysregulation, which might be due to targeting signaling pathways, such as AMPK, SIRT1, PI3K/Akt, and TGF-β pathways. Thus, these pathways are considered central regulators of diabetes and its secondary complications, and targeting these pathways with oxymatrine might provide a therapeutic tool for the diagnosis and treatment of diabetes-associated cardiomyopathy.
Collapse
Affiliation(s)
- Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Bhaskar J Dutta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Ghanshyam D Gupta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| |
Collapse
|
35
|
Nurkolis F, Taslim NA, Subali D, Kurniawan R, Hardinsyah H, Gunawan WB, Kusuma RJ, Yusuf VM, Pramono A, Kang S, Mayulu N, Syauki AY, Tallei TE, Tsopmo A, Kim B. Dietary Supplementation of Caulerpa racemosa Ameliorates Cardiometabolic Syndrome via Regulation of PRMT-1/DDAH/ADMA Pathway and Gut Microbiome in Mice. Nutrients 2023; 15:nu15040909. [PMID: 36839268 PMCID: PMC9959712 DOI: 10.3390/nu15040909] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
This study evaluated the effects of an aqueous extract of Caulerpa racemosa (AEC) on cardiometabolic syndrome markers, and the modulation of the gut microbiome in mice administered a cholesterol- and fat-enriched diet (CFED). Four groups of mice received different treatments: normal diet, CFED, and CFED added with AEC extract at 65 and 130 mg/kg body weight (BW). The effective concentration (EC50) values of AEC for 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and lipase inhibition were lower than those of the controls in vitro. In the mice model, the administration of high-dose AEC showed improved lipid and blood glucose profiles and a reduction in endothelial dysfunction markers (PRMT-1 and ADMA). Furthermore, a correlation between specific gut microbiomes and biomarkers associated with cardiometabolic diseases was also observed. In vitro studies highlighted the antioxidant properties of AEC, while in vivo data demonstrated that AEC plays a role in the management of cardiometabolic syndrome via regulation of oxidative stress, inflammation, endothelial function (PRMT-1/DDAH/ADMA pathway), and gut microbiota.
Collapse
Affiliation(s)
- Fahrul Nurkolis
- Department of Biological Sciences, Faculty of Sciences and Technology, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
- Correspondence:
| | - Dionysius Subali
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia
| | - Rudy Kurniawan
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia—Cipto Mangunkusumo Hospital, Jakarta 10430, Indonesia
| | - Hardinsyah Hardinsyah
- Division of Applied Nutrition, Department of Community Nutrition, Faculty of Human Ecology, IPB University, Bogor 16680, Indonesia
| | - William Ben Gunawan
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Rio Jati Kusuma
- Department of Nutrition and Health, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta 55223, Indonesia
- Center for Herbal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Yogyakarta 55223, Indonesia
| | - Vincentius Mario Yusuf
- Medical Study Programme, Faculty of Medicine, Brawijaya University, Malang 65145, Indonesia
| | - Adriyan Pramono
- Department of Nutrition Science, Faculty of Medicine, Diponegoro University, Semarang 50275, Indonesia
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul 05254, Republic of Korea
| | - Nelly Mayulu
- Department of Nutrition, Faculty of Medicine, Sam Ratulangi University, Manado 95115, Indonesia
| | - Andi Yasmin Syauki
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar 90245, Indonesia
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado 95115, Indonesia
| | - Apollinaire Tsopmo
- Food Science and Nutrition Program, Department of Chemistry, Carleton University, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul 05254, Republic of Korea
| |
Collapse
|
36
|
López-Acosta O, Ruiz-Ramírez A, Barrios-Maya MÁ, Alarcon-Aguilar J, Alarcon-Enos J, Céspedes Acuña CL, El-Hafidi M. Lipotoxicity, glucotoxicity and some strategies to protect vascular smooth muscle cell against proliferative phenotype in metabolic syndrome. Food Chem Toxicol 2023; 172:113546. [PMID: 36513245 DOI: 10.1016/j.fct.2022.113546] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a risk factor for the development of cardiovascular disease (CVD) and atherosclerosis through a mechanism that involves vascular smooth muscle cell (VSMC) proliferation, lipotoxicity and glucotoxicity. Several molecules found to be increased in MetS, including free fatty acids, fatty acid binding protein 4, leptin, resistin, oxidized lipoprotein particles, and advanced glycation end products, influence VSMC proliferation. Most of these molecules act through their receptors on VSMCs by activating several signaling pathways associated with ROS generation in various cellular compartments. ROS from NADPH-oxidase and mitochondria have been found to promote VSMC proliferation and cell cycle progression. In addition, most of the natural or synthetic substances described in this review, including pharmaceuticals with hypoglycemic and hypolipidemic properties, attenuate VSMC proliferation by their simultaneous modulation of cell signaling and their scavenging property due to the presence of a phenolic ring in their structure. This review discusses recent data in the literature on the role that several MetS-related molecules and ROS play in the change from contractile to proliferative phenotype of VSMCs. Hence the importance of proposing an appropriate strategy to prevent uncontrolled VSMC proliferation using antioxidants, hypoglycemic and hypolipidemic agents.
Collapse
Affiliation(s)
- Ocarol López-Acosta
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Angélica Ruiz-Ramírez
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Miguel-Ángel Barrios-Maya
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico
| | - Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Depto. de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Iztapalapa, Mexico
| | - Julio Alarcon-Enos
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile
| | - Carlos L Céspedes Acuña
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio Bio, Av. Andres Bello 720, Chillan, Chile.
| | - Mohammed El-Hafidi
- Depto de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano No 1, Colonia Sección XVI, Tlalpan, 14080, México D.F., Mexico.
| |
Collapse
|
37
|
Yuksel TN, Halici Z, Cadirci E, Toktay E, Ozdemir B, Bozkurt A. Effect of trimetazidine against ovarian ischemia/reperfusion injury in rat model: A new pathway: JAK2/STAT3. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1370-1379. [PMID: 37886007 PMCID: PMC10598820 DOI: 10.22038/ijbms.2023.72544.15776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/18/2023] [Indexed: 10/28/2023]
Abstract
Objectives Ovarian ischemia/reperfusion (I/R) is an extremely complex pathological problem that begins with oxygen deprivation, progresses to excessive free radical production, and intensifies inflammation. The JAK2/STAT3 signaling pathway is a multipurpose signaling transcript channel that plays a role in several biological functions. Trimetazidine (TMZ) is a cellular anti-ischemic agent. This study aims to investigate the effects of TMZ on ovarian I/R injury in rats. Materials and Methods sixty four rats were divided into 8 groups at random: healthy(group1); healthy+TMZ20(group2); ischemia (I) (group 3); I+TMZ10(group4); I+ TMZ20(group5); I/R(group6); I/R+TMZ10(group7); I/R+TMZ20(group8). Vascular clamps were placed just beneath the ovaries and over the uterine horns for 3 hr to induce ischemia. The clamps were removed for the reperfusion groups, and the rats were reperfused with care to ensure that the blood flowed into the ovaries, subjecting them to reperfusion for 3 hr. TMZ was administered orally by gavage 6 and 1 hr before operations. At the end of the experiment, ovarian tissues were removed for biochemical, molecular, and histopathological investigation. Results TMZ administration ameliorated ischemia/reperfusion-induced disturbances in GSH and MDA levels. TMZ treatment inhibited I/R-induced JAK2/STAT3 signaling pathway activation in ovarian tissues. TMZ administration also improved the increase in the mRNA expressions of IL-1β, TNF-α, and NF-κB caused by ischemia/reperfusion injury. Moreover, TMZ treatment improved histopathologic injury in ovarian tissues caused by ischemia/reperfusion. Conclusion TMZ treatment protected rats against ovarian ischemia/reperfusion injury by alleviating oxidative stress and inflammatory cascades. These findings may provide a mechanistic basis for using TMZ to treat ovarian ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tugba Nurcan Yuksel
- Department of Pharmacology, Faculty of Medicine, Tekirdag Namık Kemal University, Tekirdag, Türki̇ye
| | - Zekai Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Türki̇ye
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Türki̇ye
| | - Elif Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Türki̇ye
- Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Türki̇ye
| | - Erdem Toktay
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Türki̇ye
| | - Bengül Ozdemir
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Türki̇ye
| | - Ayşe Bozkurt
- Department of Pharmacology, Faculty of Pharmacy, Van Yuzuncu Yıl University, Van, Türki̇ye
| |
Collapse
|
38
|
Oxidative Stress Response's Kinetics after 60 Minutes at Different (30% or 100%) Normobaric Hyperoxia Exposures. Int J Mol Sci 2022; 24:ijms24010664. [PMID: 36614106 PMCID: PMC9821105 DOI: 10.3390/ijms24010664] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Oxygen is a powerful trigger for cellular reactions and is used in many pathologies, including oxidative stress. However, the effects of oxygen over time and at different partial pressures remain poorly understood. In this study, the metabolic responses of normobaric oxygen intake for 1 h to mild (30%) and high (100%) inspired fractions were investigated. Fourteen healthy non-smoking subjects (7 males and 7 females; age: 29.9 ± 11.1 years, height: 168.2 ± 9.37 cm; weight: 64.4 ± 12.3 kg; BMI: 22.7 ± 4.1) were randomly assigned in the two groups. Blood samples were taken before the intake at 30 min, 2 h, 8 h, 24 h, and 48 h after the single oxygen exposure. The level of oxidation was evaluated by the rate of reactive oxygen species (ROS) and the levels of isoprostane. Antioxidant reactions were observed by total antioxidant capacity (TAC), superoxide dismutase (SOD), and catalase (CAT). The inflammatory response was measured using interleukin-6 (IL-6), neopterin, creatinine, and urates. Oxidation markers increased from 30 min on to reach a peak at 8 h. From 8 h post intake, the markers of inflammation took over, and more significantly with 100% than with 30%. This study suggests a biphasic response over time characterized by an initial "permissive oxidation" followed by increased inflammation. The antioxidant protection system seems not to be the leading actor in the first place. The kinetics of enzymatic reactions need to be better studied to establish therapeutic, training, or rehabilitation protocols aiming at a more targeted use of oxygen.
Collapse
|
39
|
Manilall A, Mokotedi L, Gunter S, Le Roux R, Fourie S, Flanagan CA, Millen AME. Increased protein phosphatase 5 expression in inflammation-induced left ventricular dysfunction in rats. BMC Cardiovasc Disord 2022; 22:539. [PMID: 36494772 PMCID: PMC9732989 DOI: 10.1186/s12872-022-02977-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Titin phosphorylation contributes to left ventricular (LV) diastolic dysfunction. The independent effects of inflammation on the molecular pathways that regulate titin phosphorylation are unclear. METHODS We investigated the effects of collagen-induced inflammation and subsequent tumor necrosis factor-α (TNF-α) inhibition on mRNA expression of genes involved in regulating titin phosphorylation in 70 Sprague-Dawley rats. LV diastolic function was assessed with echocardiography. Circulating inflammatory markers were quantified by enzyme-linked immunosorbent assay and relative LV gene expression was assessed by Taqman® polymerase chain reaction. Differences in normally distributed variables between the groups were determined by two-way analysis of variance (ANOVA), followed by Tukey post-hoc tests. For non-normally distributed variables, group differences were determined by Kruskal-Wallis tests. RESULTS Collagen inoculation increased LV relative mRNA expression of vascular cell adhesion molecule 1 (VCAM1), pentraxin 3 (PTX3), and inducible nitric oxide synthase (iNOS) compared to controls, indicating local microvascular inflammation. Collagen inoculation decreased soluble guanylate cyclase alpha-2 (sGCα2) and soluble guanylate cyclase beta-2 (sGCβ2) expression, suggesting downregulation of nitric oxide-soluble guanylate cyclase-cyclic guanosine monophosphate (NO-sGC-cGMP) signaling. Inhibiting TNF-α prevented collagen-induced changes in VCAM1, iNOS, sGCα2 and sGCβ2 expression. Collagen inoculation increased protein phosphatase 5 (PP5) expression. Like LV diastolic dysfunction, increased PP5 expression was not prevented by TNF-α inhibition. CONCLUSION Inflammation-induced LV diastolic dysfunction may be mediated by a TNF-α-independent increase in PP5 expression and dephosphorylation of the N2-Bus stretch element of titin, rather than by TNF-α-induced downregulation of NO-sGC-cGMP pathway-dependent titin phosphorylation. The steady rise in number of patients with inflammation-induced diastolic dysfunction, coupled with low success rates of current therapies warrants a better understanding of the systemic signals and molecular pathways responsible for decreased titin phosphorylation in development of LV diastolic dysfunction. The therapeutic potential of inhibiting PP5 upregulation in LV diastolic dysfunction requires investigation.
Collapse
Affiliation(s)
- Ashmeetha Manilall
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Lebogang Mokotedi
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Sulè Gunter
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Regina Le Roux
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Serena Fourie
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Colleen A. Flanagan
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| | - Aletta M. E. Millen
- grid.11951.3d0000 0004 1937 1135Integrated Molecular Physiology Research Initiative, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193 South Africa
| |
Collapse
|
40
|
Afolabi OA, Hamed MA, Anyogu DC, Adeyemi DH, Odetayo AF, Akhigbe RE. Atorvastatin-mediated downregulation of VCAM-1 and XO/UA/caspase 3 signaling averts oxidative damage and apoptosis induced by ovarian ischaemia/reperfusion injury. Redox Rep 2022; 27:212-220. [PMID: 36200598 PMCID: PMC9553180 DOI: 10.1080/13510002.2022.2129192] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background Oxidative damage is critical in the pathogenesis of ovarian ischaemia/reperfusion (I/R) injury, and statins have been reported to exert antioxidant activity. However, the role of VCAM-1 and xanthine oxidase (XO)/uric acid (UA) in ovarian I/R injury is not known. Also, whether or not atorvastatin exerts antioxidant activity like other statins is unclear. Objectives This study investigated the involvement of VCAM-1 and XO/UA in ovarian I/R injury and the likely protective role of atorvastatin. Methods Forty female Wistar rats were randomized into sham-operated, ischaemia, ischaemia/reperfusion (I/R), ischaemia and atorvastatin, and I/R and atorvastatin. Results In comparison with the sham-operated group, atorvastatin blunted ischaemia and I/R-induced distortion of ovarian histoarchitecture and follicular degeneration. Also, atorvastatin alleviated ischaemia and I/R-induced rise in XO, UA, and malondialdehyde, which was accompanied by inhibition of ischaemia and I/R-induced reductions in reduced glutathione level, enzymatic antioxidant activities and increase in myeloperoxidase activity and TNF-α and IL-6 levels by atorvastatin treatment. Additionally, atorvastatin blocked ischaemia and I/R-induced increase in VCAM-1 expression, caspase 3 activity, 8-hydroxydeoxyguanosine level and ovarian DNA fragmentation index. Conclusion For the first time, this study revealed that atorvastatin-mediated downregulation of VCAM-1 and XO/UA/caspase 3 signaling averts oxidative injury, inflammation, and apoptosis induced by ovarian ischaemia/reperfusion injury.
Collapse
Affiliation(s)
- O A Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - M A Hamed
- Brainwill Laboratories, Osogbo, Nigeria.,Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - D C Anyogu
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria
| | - D H Adeyemi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - A F Odetayo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria.,Department of Physiology, University of Ilorin, Ilorin, Nigeria
| | - R E Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria.,Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| |
Collapse
|
41
|
Zinc normalizes hepatic lipid handling via modulation of ADA/XO/UA pathway and caspase 3 signaling in highly active antiretroviral therapy-treated Wistar rats. Chem Biol Interact 2022; 368:110233. [DOI: 10.1016/j.cbi.2022.110233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/23/2022]
|
42
|
Firefighters With Higher Cardiorespiratory Fitness Demonstrate Lower Markers of Cardiovascular Disease Risk. J Occup Environ Med 2022; 64:1036-1040. [PMID: 35902372 DOI: 10.1097/jom.0000000000002632] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE High cardiorespiratory fitness (CRF) is associated with reduced markers of oxidative stress and cardiovascular disease (CVD) risk factors; however, this relationship has not been elucidated in firefighters. The purpose of this study was to examine differences in markers of CVD risk between firefighters who have either high or low levels of CRF. METHODS Forty-six firefighters participated in a maximal graded exercise test and a dual-energy x-ray absorptiometry scan and provided a fasted blood sample. V˙O 2max values were categorized based on American College of Sports Medicine guidelines to establish high- and low-fitness groups. RESULTS High fitness firefighters demonstrated significantly higher high-density lipoprotein cholesterol and lower markers of CVD risk: cholesterol, triglycerides, low-density lipoprotein cholesterol, insulin, homeostatic model assessment for insulin resistance, C-reactive protein, and advanced oxidation protein products concentrations. CONCLUSION Firefighters are encouraged to maintain high CRF to reduce risk of CVD.
Collapse
|
43
|
Abstract
Purpose: COVID-19, a novel infection, presented with several complications, including socioeconomical and reproductive health challenges such as erectile dysfunction (ED). The present review summarizes the available shreds of evidence on the impact of COVID-19 on ED.Materials and methods: All published peer-reviewed articles from the onset of the COVID-19 outbreak to date, relating to ED, were reviewed. Results: Available pieces of evidence that ED is a consequence of COVID-19 are convincing. COVID-19 and ED share common risk factors such as disruption of vascular integrity, cardiovascular disease (CVD), cytokine storm, diabetes, obesity, and chronic kidney disease (CKD). COVID-19 also induces impaired pulmonary haemodynamics, increased ang II, testicular damage and low serum testosterone, and reduced arginine-dependent NO bioavailability that promotes reactive oxygen species (ROS) generation and endothelial dysfunction, resulting in ED. In addition, COVID-19 triggers psychological/mental stress and suppresses testosterone-dependent dopamine concentration, which contributes to incident ED.Conclusions: In conclusion, COVID-19 exerts a detrimental effect on male reproductive function, including erectile function. This involves a cascade of events from multiple pathways. As the pandemic dwindles, identifying the long-term effects of COVID-19-induced ED, and proffering adequate and effective measures in militating against COVID-19-induced ED remains pertinent.
Collapse
Affiliation(s)
- D H Adeyemi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Nigeria
| | - A F Odetayo
- Department of Physiology, University of Ilorin, Ilorin, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - M A Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- The Brainwill Laboratories, Osogbo, Nigeria
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
44
|
Afolabi OA, Akhigbe TM, Akhigbe RE, Alabi BA, Gbolagun OT, Taiwo ME, Fakeye OO, Yusuf EO. Methanolic Moringa oleifera leaf extract protects against epithelial barrier damage and enteric bacterial translocation in intestinal I/R: Possible role of caspase 3. Front Pharmacol 2022; 13:989023. [PMID: 36210817 PMCID: PMC9546449 DOI: 10.3389/fphar.2022.989023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Activation of caspase 3 has been implicated in the pathogenesis of I/R injury in various organs, but there is a paucity of data on its role in IIRI. Also, no reports were found on the beneficial role of methanolic Moringa oleifera leaf extract (MMOLE) in IIRI. This study investigated the involvement of caspase 3 in IIRI, and the impact of MMOLE in IIRI. Methods: Male Wistar rats were randomized into five groups; the sham-operated group that was sham-operated and received 0.5 ml of distilled water for 7 days prior to sham surgery, and the IIRI, febuxostat (FEB) +IIRI, low dose MMOLE (LDMO)+IIRI, and high dose MMOLE (HDMO)+IIRI groups that underwent I/R and also received 0.5 ml of distilled water, 10 mg/kg of febuxostat, 200 mg/kg of MMOLE, and 400 mg/kg of MMOLE respectively for 7 days prior to I/R. Markers of hepatic function, oxidative stress, and inflammation as well as enteric bacterial translocation and histoarchitecture integrity of intestinal and hepatic tissues were evaluated. The bioactive components of MMOLE were also determined by GC-MS. Results: As revealed by GC-MS, the active bioactive components of MMOLE were thiosemicarbazone, hydrazine, 1,3-dioxolane, octanoic acid, 1,3-benzenediamine, 9-octadecenoic acid, oleic acid, nonadecanoic acid, 3-undecanone, phosphonic acid, and cyclopentanecarboxylic acid. MMOLE alleviated IIRI-induced rise in intestinal and hepatic injury markers, malondialdehyde, TNF-α, IL-6, and myeloperoxidase activities. MMOLE improved IIRI-induced suppression of reduced glutathione, thiol and non-thiol proteins, and superoxide dismutase, catalase and glutathione peroxidase activities. These were associated with suppression of IIRI-induced caspase 3 activity and bacterial translocation. Histopathological evaluation revealed that MMOLE attenuated IIRI-induced alterations in intestinal and hepatic histoarchitecture integrity. MMOLE also militated against increased absolute and relative intestinal and hepatic weight, intestinal and hepatic injuries, epithelial mucosal barrier dysfunction, and enteric bacterial translocation associated with IIRI by downregulating oxidative stress-mediated activation of caspase 3. Conclusion: IIRI is associated with a rise in caspase 3 activity. Also, MMOLE confers protection against IIRI, possibly due to its constituent bioactive molecules, especially hydrazine, 9-octadecenoic acid, 1,3-dioxolane, oleic acid, and nonadecanoic acid.
Collapse
Affiliation(s)
- O A. Afolabi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - T M. Akhigbe
- Department of Agronomy, Osun State University, Osogbo, Osun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
| | - R E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria
- *Correspondence: R E. Akhigbe,
| | - B A. Alabi
- Department of Pharmacology, Bowen University, Ogbomoso, Nigeria
| | - O T. Gbolagun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - M E. Taiwo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - O O. Fakeye
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - E O. Yusuf
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
45
|
Jusup S, Douwes M, Purwanto B, Indarto D, Hartono H, Pamungkasari EP. Morning Exercise is More Effective in Ameliorating Oxidative Stress in Patients with Type 2 Diabetes Mellitus. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Introduction: Exercise has been believed to be an important step in treating and preventing Type 2 Diabetes Mellitus complications. The circadian rhythm influences systems in the body, including antioxidants in the human body. By synchronizing exercise with exercise time, it will maximize the benefits of exercise for health.
Aim: Examining the effect of morning and afternoon exercise on increasing antioxidants and improving oxidative stress in patients with T2DM.
Methods: Twenty-two T2DM patients were randomly assigned to morning and afternoon exercise groups. The exercise treatment in this study was in the form of diabetes Persadia gymnastic, for 10 weeks. All participants were taken venous blood before exercise and after the tenth week. The data examined consisted of GPx-1 (Glutathione Peroxidase-1) and MDA (malodialdehyde). The pre and post data were statistically processed using a comparative test.
Results: After 10 weeks of exercise, GPx-1 levels increased significantly in both groups (p<0.05). The increase in this enzyme was considerably greater (p<0.05) in the morning group than in the afternoon group (130.37 ± 2.4 h/ml VS 72.38 ± 3.93 h/ml). MDA levels decreased significantly in morning and afternoon groups (p<0.05). The decrease in MDA was significantly greater (p<0.05) in the morning than in the afternoon exercise group (8.22 ± 0.36 nmol/ml VS 5.2 ± 0.86 nmol/ml).
Conclusions: Exercise in the morning was more effective in improving oxidative stress by increasing glutathione peroxidase-1 enzyme and reducing malondialdehyde in patients with Type 2 Diabetes Mellitus.
Keywords: Exercise; Glutathione Peroxidase; Malondialdehyde, T2DM.
Collapse
|
46
|
Oyedokun PA, Akhigbe RE, Ajayi LO, Ajayi AF. Impact of hypoxia on male reproductive functions. Mol Cell Biochem 2022; 478:875-885. [PMID: 36107286 DOI: 10.1007/s11010-022-04559-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
Male reproductive functions, which include testicular steroidogenesis, spermatogenesis, and sexual/erectile functions are key in male fertility, but may be adversely altered by several factors, including hypoxia. This review demonstrates the impact of hypoxia on male reproductive functions. Acute exposure to hypoxia promotes testosterone production via stimulation of autophagy and upregulation of steroidogenic enzymes and voltage-gated L-type calcium channel, nonetheless, chronic exposure to hypoxia impairs steroidogenesis via suppression of the hypothalamic-pituitary-testicular axis. Also, hypoxia distorts spermatogenesis and reduces sperm count, motility, and normal forms via upregulation of VEGF and oxidative stress-sensitive signaling. Furthermore, hypoxia induces sexual and erectile dysfunction via a testosterone-dependent downregulation of NO/cGMP signaling and upregulation of PGE1/TGFβ1-driven penile endothelial dysfunction. Notably, hypoxia programs male sexual function and spermatogenesis/sperm quality via feminization and demasculinization of males and oxidative stress-mediated alteration in sperm DNA methylation. Since oxidative stress plays a central role in hypoxia-induced male reproductive dysfunction, studies exploring the effects of antioxidants and upregulation of transcription of antioxidants on hypoxia-induced male reproductive dysfunction are recommended.
Collapse
Affiliation(s)
- P A Oyedokun
- Anchor Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - R E Akhigbe
- Anchor Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria.
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria.
| | - L O Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - A F Ajayi
- Anchor Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
47
|
Cicero AFG, Fogacci F, Di Micoli A, Veronesi M, Borghi C. Noninvasive instrumental evaluation of coenzyme Q 10 phytosome on endothelial reactivity in healthy nonsmoking young volunteers: A double-blind, randomized, placebo-controlled crossover clinical trial. Biofactors 2022; 48:1160-1165. [PMID: 35342994 PMCID: PMC9790510 DOI: 10.1002/biof.1839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 12/30/2022]
Abstract
Coenzyme Q10 (CoQ10 ) is a natural antioxidant compound that prevents the vascular damage induced by free radicals and the activation of inflammatory signaling pathways. Supplementation with CoQ10 is safe though its bioavailability is generally low, as far as variable depending on the pharmaceutical form of preparation. Recently, the development of phytosome technology has improved the bioavailability of CoQ10 and definitely facilitated its effective use in clinical practice. The present double-blind, randomized, placebo-controlled, crossover clinical study aimed to investigate the effect on endothelial reactivity and total antioxidant capacity (TAC) of either acute and chronic supplementation with CoQ10 phytosome in a sample of 20 healthy young nonsmoking subjects. CoQ10 phytosome supplementation acutely improved endothelial reactivity in comparison with baseline and placebo (+4.7% ± 0.9% vs. -0.1 %± 0.3% p < 0.05). Middle-term supplementation of the tested pharmaceutical formulation of CoQ10 significantly improved mean arterial pressure (-2.2 ± 1.1 mmHg vs. 0.2 ± 0.7 mmHg, p < 0.05 vs. placebo) and TAC (+29.6% ± 3.2% vs. +1.9% ± 0.8%, p < 0.05 vs. placebo). Endothelial reactivity improved compared with baseline following middle-term dietary supplementation with CoQ10 phytosome (+5.7% ± 1.1%, p < 0.05).
Collapse
Affiliation(s)
- Arrigo F. G. Cicero
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Federica Fogacci
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | | | - Maddalena Veronesi
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| | - Claudio Borghi
- Atherosclerosis and Dyslipidemia Research Unit, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- Hypertension and Cardiovascular Risk Research Group, Medical and Surgical Sciences DepartmentAlma Mater Studiorum University of BolognaBolognaItaly
- IRCCS Azienda Ospedaliero‐Universitaria di BolognaBolognaItaly
| |
Collapse
|
48
|
Restoration of Hepatic and Intestinal Integrity by Phyllanthus amarus Is Dependent on Bax/Caspase 3 Modulation in Intestinal Ischemia-/Reperfusion-Induced Injury. Molecules 2022; 27:molecules27165073. [PMID: 36014309 PMCID: PMC9413108 DOI: 10.3390/molecules27165073] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022] Open
Abstract
Ethnopharmacological relevance: Oxidative stress is a key player in intestinal ischemia/reperfusion (I/R) injury (IIRI) with a tendency to trigger systemic inflammatory response, resulting in progressive distal organ injury. To date, the role of Bax/caspase 3 signaling in IIRI has not been reported. Furthermore, the discovery of a safe and effective drug remains pertinent in improving the outcome of IIRI. Therefore, this study investigated the role of Bax/caspase 3 signaling in intestinal I/R-induced intestinal and hepatic injury. In addition, the protective effect and possible associated mechanism of action of methanolic Phyllanthus amarus leaf extract (PA) against intestinal I/R-induced intestinal and hepatic injury were evaluated. Materials and methods: Fifty male Wistar rats were randomized into five groups (n = 10). The sham-operated group was received 0.5 mL of distilled water for seven days prior to the sham surgery, while the IIRI, febuxostat (FEB) + IIRI, low-dose PA (LDPA) + IIRI, and high-dose PA (HDPA) + IIRI groups underwent the I/R procedure. In addition to the procedure, IIRI, FEB + IIRI, LDPA + IIRI, and HDPA + IIRI received 0.5 mL of distilled water, 10 mg/kg of febuxostat, 200 mg/kg of PA, and 400 mg/kg of PA, respectively, for seven days prior to the I/R procedure. Results: Administration of methanolic Phyllanthus amarus leaf extracts attenuated the intestinal I/R-induced rise in intestinal and hepatic injury markers, malondialdehyde, nitric oxide, TNF-α, IL-6, and myeloperoxidase activities. In addition, Phyllanthus amarus ameliorated I/R-induced suppression of reduced glutathione, thiol and non-thiol proteins, and superoxide dismutase, catalase, and glutathione peroxidase activities in intestinal and hepatic tissues. These were coupled with the suppression of I/R-induced bacterial translocation, downregulation of I/R-induced activation of Bax/caspase 3 signaling, and improvement of I/R-induced distortion of intestinal and hepatic histoarchitecture by Phyllanthus amarus. Conclusion: Methanolic Phyllanthus amarus leaf extract protects against intestinal and hepatic injuries associated with intestinal I/R by suppressing oxidative-stress-mediated activation of Bax/caspase 3 signaling. The beneficial effects of Phyllanthus amarus may be ascribed to its constituent bioactive molecules, especially tannins, anthocyanin, alkaloids, and phenolics.
Collapse
|
49
|
Wei X, Yao J, Wang F, Wu D, Zhang R. Extraction, isolation, structural characterization, and antioxidant activity of polysaccharides from elderberry fruit. Front Nutr 2022; 9:947706. [PMID: 35928842 PMCID: PMC9343709 DOI: 10.3389/fnut.2022.947706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
The isolation, purification, and antioxidant activity of polysaccharides extracted from elderberry fruits were studied. Two neutral polysaccharides (EFP-0 and EFP-1) and three acidic polysaccharides (EFP-2, EFP-3, and EFP-4) were isolated from elderberry. EFP-0, EFP-1, EFP-2, EFP-3, and EFP-4 all contain arabinose, galactose, glucose, and mannose, with molecular weights of 1.7981 × 106, 7.0523 × 106, 7.7638 × 106, 4.3855 × 105, and 7.3173 × 105 Da, respectively. Structural characterization showed that the backbone of EFP-2 consisted of →4)-Manp (1→4)-β-D-Glcp (1→ and →4)-β-D-Glcp (1→5)-α-L-Araf (1→units, and T-α-L-Araf (1→ and T-β-D-Galp (1→ residues were detected by methylation analysis and NMR analysis. In addition, the MTT assay and zebrafish oxidative damage assay showed that EFP-2 had a protective effect on H2O2-damaged RAW264.7 cells in a dose-dependent manner, and zebrafish with the addition of EFP-2 would have low levels of ROS in vivo which showed significant antioxidant activity. Therefore, the results showed that the elderberry polysaccharides have antioxidant activity and can be used as potential antioxidants in functional foods.
Collapse
Affiliation(s)
- Xinxin Wei
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Junxiu Yao
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry Science, Jinan, China
| | - Fangzhou Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
- Department of Food Science and Formulation, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Dejun Wu
- Key Laboratory for Genetics and Breeding in Forest Trees of Shandong Province, Shandong Academy of Forestry Science, Jinan, China
- *Correspondence: Dejun Wu,
| | - Rentang Zhang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, China
- Rentang Zhang,
| |
Collapse
|
50
|
Karnewar S, Pulipaka S, Katta S, Panuganti D, Neeli PK, Thennati R, Jerald MK, Kotamraju S. Mitochondria-targeted esculetin mitigates atherosclerosis in the setting of aging via the modulation of SIRT1-mediated vascular cell senescence and mitochondrial function in Apoe mice. Atherosclerosis 2022; 356:28-40. [DOI: 10.1016/j.atherosclerosis.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022]
|