1
|
Pan Y, Zhou Y, Shen Y, Xu L, Liu H, Zhang N, Huang T, Meng K, Liu Y, Wang L, Bai G, Chen Q, Zhu Y, Zou X, Wang S, Wang Z, Wang L. Hypoxia Stimulates PYGB Enzymatic Activity to Promote Glycogen Metabolism and Cholangiocarcinoma Progression. Cancer Res 2024; 84:3803-3817. [PMID: 39163511 DOI: 10.1158/0008-5472.can-24-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/13/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Cholangiocarcinoma (CCA) displays enhanced glycolysis, pivotal for fulfilling the heightened energy demands intrinsic to its malignant progression. Recent research has indicated that endogenous glycogen rather than exogenous glucose acts as the major carbon source for glycolysis, highlighting the need to better understand the regulation of glycogen homeostasis in CCA. Here, through comprehensive integrative analysis, we identified that glycogen phosphorylase brain form (PYGB), the main enzyme involved in glycogen homeostasis, was markedly upregulated in CCA tissues, serving as an independent prognostic indicator for human patients with CCA. Moreover, elevated PYGB expression potentiated cholangiocarcinogenesis and augmented CCA cell proliferation in both organoid and xenograft models. Hypoxia stimulated PYGB activity in a phosphoglycerate kinase 1-dependent manner, leading to glycogenolysis and the subsequent release of glucose-6-phosphate (G6P) and thereby facilitating aerobic glycolysis. Notably, a virtual screening pinpointed the β-blocker carvedilol as a potent pharmacologic inhibitor of PYGB that could attenuate CCA progression. Collectively, these findings position PYGB as a promising prognostic biomarker and therapeutic target for CCA. Significance: Cholangiocarcinoma cells exhibit high glycogen phosphorylase activity under hypoxic conditions that mediates metabolic reprograming to promote glycolysis and support tumor development.
Collapse
Affiliation(s)
- Yani Pan
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yue Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yonghua Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongwen Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nannan Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of China Pharmaceutical University, Nanjing, China
| | - Tianlu Huang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Kui Meng
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yu Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lishan Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ge Bai
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of China Pharmaceutical University, Nanjing, China
| | - Yun Zhu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Siliang Wang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhangding Wang
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Sokolowski EK, Kursawe R, Selvam V, Bhuiyan RM, Thibodeau A, Zhao C, Spracklen CN, Ucar D, Stitzel ML. Multi-omic human pancreatic islet endoplasmic reticulum and cytokine stress response mapping provides type 2 diabetes genetic insights. Cell Metab 2024; 36:2468-2488.e7. [PMID: 39383866 DOI: 10.1016/j.cmet.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024]
Abstract
Endoplasmic reticulum (ER) and inflammatory stress responses contribute to islet dysfunction in type 2 diabetes (T2D). Comprehensive genomic understanding of these human islet stress responses and whether T2D-associated genetic variants modulate them is lacking. Here, comparative transcriptome and epigenome analyses of human islets exposed ex vivo to these stressors revealed 30% of expressed genes and 14% of islet cis-regulatory elements (CREs) as stress responsive, modulated largely in an ER- or cytokine-specific fashion. T2D variants overlapped 86 stress-responsive CREs, including 21 induced by ER stress. We linked the rs6917676-T T2D risk allele to increased islet ER-stress-responsive CRE accessibility and allele-specific β cell nuclear factor binding. MAP3K5, the ER-stress-responsive putative rs6917676 T2D effector gene, promoted stress-induced β cell apoptosis. Supporting its pro-diabetogenic role, MAP3K5 expression correlated inversely with human islet β cell abundance and was elevated in T2D β cells. This study provides genome-wide insights into human islet stress responses and context-specific T2D variant effects.
Collapse
Affiliation(s)
- Eishani K Sokolowski
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Romy Kursawe
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Vijay Selvam
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Redwan M Bhuiyan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
| | - Asa Thibodeau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Chi Zhao
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Cassandra N Spracklen
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Duygu Ucar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| | - Michael L Stitzel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA; Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA; Institute of Systems Genomics, University of Connecticut, Farmington, CT 06032, USA.
| |
Collapse
|
3
|
Jahn J, Ehlen QT, Kaplan L, Best TM, Meng Z, Huang CY. Interplay of Glucose Metabolism and Hippo Pathway in Chondrocytes: Pathophysiology and Therapeutic Targets. Bioengineering (Basel) 2024; 11:972. [PMID: 39451348 PMCID: PMC11505586 DOI: 10.3390/bioengineering11100972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we explore the intricate relationship between glucose metabolism and mechanotransduction pathways, with a specific focus on the role of the Hippo signaling pathway in chondrocyte pathophysiology. Glucose metabolism is a vital element in maintaining proper chondrocyte function, but it has also been implicated in the pathogenesis of osteoarthritis (OA) via the induction of pro-inflammatory signaling pathways and the establishment of an intracellular environment conducive to OA. Alternatively, mechanotransduction pathways such as the Hippo pathway possess the capacity to respond to mechanical stimuli and have an integral role in maintaining chondrocyte homeostasis. However, these mechanotransduction pathways can be dysregulated and potentially contribute to the progression of OA. We discussed how alterations in glucose levels may modulate the Hippo pathway components via a variety of mechanisms. Characterizing the interaction between glucose metabolism and the Hippo pathway highlights the necessity of balancing both metabolic and mechanical signaling to maintain chondrocyte health and optimal functionality. Furthermore, this review demonstrates the scarcity of the literature on the relationship between glucose metabolism and mechanotransduction and provides a summary of current research dedicated to this specific area of study. Ultimately, increased research into this topic may elucidate novel mechanisms and relationships integrating mechanotransduction and glucose metabolism. Through this review we hope to inspire future research into this topic to develop innovative treatments for addressing the clinical challenges of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Quinn T. Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
| | - Lee Kaplan
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Thomas M. Best
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Orthopedics, University of Miami, Miami, FL 33136, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
| | - Zhipeng Meng
- University of Miami Miller School of Medicine, Miami, FL 33136, USA; (J.J.); (Q.T.E.); (L.K.); (T.M.B.); (Z.M.)
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- UHealth Sports Medicine Institute, University of Miami, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
4
|
Suaifan GARY, Alkhawaja B, Shehadeh MB, Sharmaa M, Hor Kuan C, Okechukwu PN. Glucosamine substituted sulfonylureas: IRS-PI3K-PKC-AKT-GLUT4 insulin signalling pathway intriguing agent. RSC Med Chem 2024; 15:695-703. [PMID: 38389876 PMCID: PMC10880904 DOI: 10.1039/d3md00647f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/30/2023] [Indexed: 02/24/2024] Open
Abstract
Normally, skeletal muscle accounts for 70-80% of insulin-stimulated glucose uptake in the postprandial hyperglycemia state. Consequently, abnormalities in glucose uptake by skeletal muscle or insulin resistance (IR) are deemed as initial metabolic defects in the pathogenesis of type 2 diabetes mellitus (T2DM). Globally, T2DM is growing in exponential proportion. The majority of T2DM patients are treated with sulfonylureas in combination with other drugs to improve insulin sensitivity. Glycosylated sulfonylureas (sulfonylurea-glucosamine analogues) are modified analogues of sulfonylurea that have been previously reported to possess antidiabetic activity. The aim of this study was to evaluate the impact of glycosylated sulfonylureas on the insulin signalling pathway at the molecular level using L6 skeletal muscle cell (in vitro) and extracted soleus muscle (ex vivo) models. To create an in vitro model, insulin resistance was established utilizing a high insulin-glucose approach in differentiated L6 muscle cells from Rattus norvegicus. Additionally, for the ex vivo model, extracted soleus muscles, adult Sprague-Dawley rats were subjected to a solution containing 25 mmol L-1 glucose and 100 mmol L-1 insulin for 24 hours to induce insulin resistance. After insulin resistance, compounds under investigation and standard medicines (metformin and glimepiride) were tested. The differential expression of PI3K, IRS-1, PKC, AKT2, and GLUT4 genes involved in the insulin signaling pathway was evaluated using qPCR. The evaluated glycosylated sulfonylurea analogues exhibited a significant increase in the gene expression of insulin-dependent pathways both in vitro and ex vivo, confirming the rejuvenation of the impaired insulin signaling pathway genes. Altogether, glycosylated sulfonylurea analogues described in this study represent potential therapeutic anti-diabetic drugs.
Collapse
Affiliation(s)
- Ghadeer A R Y Suaifan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan Amman 11942 Jordan
| | - Bayan Alkhawaja
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Mayadah B Shehadeh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan Amman 11942 Jordan
| | - Mridula Sharmaa
- Department of Food and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| | - Chan Hor Kuan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
- Faculty of Pharmacy and Medical Sciences, University of Petra Amman 11196 Jordan
| | - Patrick Nwabueze Okechukwu
- Department of Food and Nutrition, Faculty of Applied Sciences, UCSI University Kuala Lumpur 56000 Malaysia
| |
Collapse
|
5
|
Santo-Domingo J, Lassueur S, Galindo AN, Alvarez-Illera P, Romero-Sanz S, Caldero-Escudero E, de la Fuente S, Dayon L, Wiederkehr A. SLC25A46 promotes mitochondrial fission and mediates resistance to lipotoxic stress in INS-1E insulin-secreting cells. J Cell Sci 2023; 136:jcs260049. [PMID: 36942724 DOI: 10.1242/jcs.260049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Glucose sensing in pancreatic β-cells depends on oxidative phosphorylation and mitochondria-derived signals that promote insulin secretion. Using mass spectrometry-based phosphoproteomics to search for downstream effectors of glucose-dependent signal transduction in INS-1E insulinoma cells, we identified the outer mitochondrial membrane protein SLC25A46. Under resting glucose concentrations, SLC25A46 was phosphorylated on a pair of threonine residues (T44/T45) and was dephosphorylated in response to glucose-induced Ca2+ signals. Overexpression of SLC25A46 in INS-1E cells caused complete mitochondrial fragmentation, resulting in a mild mitochondrial defect associated with lowered glucose-induced insulin secretion. In contrast, inactivation of the Slc25a46 gene resulted in dramatic mitochondrial hyperfusion, without affecting respiratory activity or insulin secretion. Consequently, SLC25A46 is not essential for metabolism-secretion coupling under normal nutrient conditions. Importantly, insulin-secreting cells lacking SLC25A46 had an exacerbated sensitivity to lipotoxic conditions, undergoing massive apoptosis when exposed to palmitate. Therefore, in addition to its role in mitochondrial dynamics, SLC25A46 plays a role in preventing mitochondria-induced apoptosis in INS-E cells exposed to nutrient stress. By protecting mitochondria, SLC25A46 might help to maintain β-cell mass essential for blood glucose control.
Collapse
Affiliation(s)
- Jaime Santo-Domingo
- Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
- Department of Biochemistry and Molecular Biology, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Faculty of Medicine, 47003 Valladolid, Spain
| | - Steve Lassueur
- Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Antonio Núñez Galindo
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
| | - Pilar Alvarez-Illera
- Department of Biochemistry and Molecular Biology, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Faculty of Medicine, 47003 Valladolid, Spain
| | - Silvia Romero-Sanz
- Department of Biochemistry and Molecular Biology, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Faculty of Medicine, 47003 Valladolid, Spain
| | - Elena Caldero-Escudero
- Department of Biochemistry and Molecular Biology, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Faculty of Medicine, 47003 Valladolid, Spain
| | - Sergio de la Fuente
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Loïc Dayon
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Andreas Wiederkehr
- Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, CH-1015 Lausanne, Switzerland
- Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Shah DP, Joshi M, Shedaliya U, Krishnakumar A. Recurrent hypoglycemia dampens functional regulation mediated via Neurexin-1, Neuroligin-2 and Mint-1 docking proteins: Intensified complications during diabetes. Cell Signal 2023; 104:110582. [PMID: 36587752 DOI: 10.1016/j.cellsig.2022.110582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Glycemic regulation is important for maintaining critical physiological functions. Extreme variation in levels of circulating glucose are known to affect insulin secretion. Elevated insulin levels result in lowering of circulating glycemic levels culminating into hypoglycemia. Recurrence of hypoglycemia are often noted owing to fasting conditions, untimely meals, irregular dietary consumption, or as a side-effect of disease pathophysiology. Such events of hypoglycemia threaten to hamper the patterns of insulin secretion in diabetic condition. Insulin vesicle docking is a prerequisite phase which ensures anchoring of the vesicles to the β-cell membrane in order to expel the insulin cargo. Neurexin and Neuroligin are the marker docking proteins which assists in the tethering of the insulin granules to the secretory membrane. However, these cell adhesion molecules indirectly affect the glycemic levels by regulating insulin secretion. The effect of extreme levels of glycemic fluctuations on these molecules, and how it affects the docking machinery remains obscure. Our current study demonstrates down-regulated expression of Neurexin-1, Neuroligin-2 and Mint-1 molecules during hyperglycemia, hypoglycemia and diabetic hypoglycemia in rodents as well as for an in-vitro system using MIN6 cell-line. Studies with fluorescently labelled insulin revealed presence of lessened functional insulin secretory granules, concomitant with the alterations in morphology and as a result of hypoglycemia in control and diabetic condition which was found to be further deteriorating. Our studies indicate towards a feeble vesicular anchorage, which may partly be responsible for dwindled insulin secretion during diabetes. However, hypoglycemia poses as a potent diabetic complication in further deteriorating the docking machinery. To the best of our knowledge this is the first report which demonstrates the effect of hypoglycemic events in affecting insulin secretion by weakening insulin vesicular anchorage in normal and diabetic individuals.
Collapse
Affiliation(s)
- Dhriti P Shah
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Madhavi Joshi
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Urja Shedaliya
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India
| | - Amee Krishnakumar
- Institute of Science, Nirma University, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
7
|
Hali M, Wadzinski BE, Kowluru A. Alpha4 contributes to the dysfunction of the pancreatic beta cell under metabolic stress. Mol Cell Endocrinol 2022; 557:111754. [PMID: 35987388 PMCID: PMC9620510 DOI: 10.1016/j.mce.2022.111754] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
The current study examined the roles of Alpha4, a non-canonical subunit of protein phosphatase 2A, in the regulation of acute (insulin secretion) and chronic (cell dysfunction) effects of glucose in pancreatic beta cells. Alpha4 is expressed in human islets, rat islets and INS-1832/13 cells. Incubation of INS-1832/13 cells and rat islets with high glucose (HG) significantly increased the expression of Alpha4. C2-Ceramide, a biologically active sphingolipid, also increased the expression of Alpha4 in INS-1832/13 cells and rat islets. Subcellular distribution studies of Alpha4 in low glucose (LG) and HG exposed INS-1832/13 cells revealed that it is predominantly cytosolic, and its expression is significantly increased in the non-nuclear/cytosolic fractions in cells exposed to HG. siRNA-mediated knockdown of Alpha4 exerted minimal effects on glucose- or KCl-induced insulin secretion. siRNA-mediated deletion of Alpha4 significantly increased p38MAPK and JNK1/2 phosphorylation under LG conditions, comparable to the degree seen under HG conditions. Paradoxically, a significant potentiation of HG-induced p38MAPK and JNK2 phosphorylation was noted following Alpha4 deletion. HG-induced CHOP expression (ER stress marker) and caspase-3 activation were markedly attenuated in cells following Alpha4 knockdown. Deletion of Alpha4 in INS-1832/13 cells prevented HG-induced loss in the expression of Connexin36, a gap junction channel protein, which has been implicated in normal beta cell function. Lastly, depletion of endogenous Alpha4 significantly reduced HG-induced cell death in INS-1832/13 cells. Based on these findings we conclude that Alpha4 contributes to HG-induced metabolic dysfunction of the islet beta cell.
Collapse
Affiliation(s)
- Mirabela Hali
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Anjaneyulu Kowluru
- Biomedical Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
8
|
Wu Z, Jayachandran M, Cheang WS, Xu B. Black Truffle Extract Exerts Antidiabetic Effects through Inhibition of Inflammation and Lipid Metabolism Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6099872. [PMID: 35251478 PMCID: PMC8894047 DOI: 10.1155/2022/6099872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
Black truffle, a culinary and medical fungus, is highly valued worldwide for its nutritional and therapeutic importance. To enhance the existing knowledge about the beneficial properties, this study investigates the antioxidant, antihyperlipidemic, and anti-inflammatory effects of black truffle extract in in vitro biochemical assays and animal study. Briefly, black truffle extract was administered orally to treat streptozotocin- (STZ-) induced diabetic Wistar rats for 45 days. At the end of the experimental duration, rats were sacrificed to perform biochemical and gene expression analyses related to lipid regulatory and inflammatory pathways. Our results indicated that total cholesterol, triglycerides, free fatty acids, phospholipids, and low-density lipoprotein in different tissues and circulation were significantly increased in diabetic rats. Furthermore, the β-hydroxy β-methylglutaryl-CoA enzyme was also significantly increased; lipoprotein lipase and lecithin-cholesterol acyltransferase enzymes were significantly decreased in diabetic rats. However, the above conditions were reversed upon black truffle extract feeding. Furthermore, black truffle extract was also found to downregulate the expression of proinflammatory cytokines (tumor necrosis factor-α and interleukin-6) and lipid regulatory genes (serum regulatory element-binding protein-1 and fatty acid synthase). The truffle extract-treated effects were comparable to glibenclamide and medication commonly used to treat diabetes mellitus. Overall, our results suggested that black truffle possesses strong antihyperlipidemic and anti-inflammatory effects on diabetic rats. These findings will enhance the current knowledge about the therapeutic importance of black truffles. They might be exploited as a possible food supplement or even as a natural source of pharmaceutical agents for diabetes prevention and treatment.
Collapse
Affiliation(s)
- Ziyuan Wu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Muthukumaran Jayachandran
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Wai San Cheang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao SAR, China
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| |
Collapse
|
9
|
Corkey BE, Deeney JT, Merrins MJ. What Regulates Basal Insulin Secretion and Causes Hyperinsulinemia? Diabetes 2021; 70:2174-2182. [PMID: 34593535 PMCID: PMC8576498 DOI: 10.2337/dbi21-0009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
We hypothesize that basal hyperinsulinemia is synergistically mediated by an interplay between increased oxidative stress and excess lipid in the form of reactive oxygen species (ROS) and long-chain acyl-CoA esters (LC-CoA). In addition, ROS production may increase in response to inflammatory cytokines and certain exogenous environmental toxins that mislead β-cells into perceiving nutrient excess when none exists. Thus, basal hyperinsulinemia is envisioned as an adaptation to sustained real or perceived nutrient excess that only manifests as a disease when the excess demand can no longer be met by an overworked β-cell. In this article we will present a testable hypothetical mechanism to explain the role of lipids and ROS in basal hyperinsulinemia and how they differ from glucose-stimulated insulin secretion (GSIS). The model centers on redox regulation, via ROS, and S-acylation-mediated trafficking via LC-CoA. These pathways are well established in neural systems but not β-cells. During GSIS, these signals rise and fall in an oscillatory pattern, together with the other well-established signals derived from glucose metabolism; however, their precise roles have not been defined. We propose that failure to either increase or decrease ROS or LC-CoA appropriately will disturb β-cell function.
Collapse
Affiliation(s)
- Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Jude T Deeney
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Matthew J Merrins
- Department of Biomolecular Chemistry and Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| |
Collapse
|
10
|
Jia Q, Sieburth D. Mitochondrial hydrogen peroxide positively regulates neuropeptide secretion during diet-induced activation of the oxidative stress response. Nat Commun 2021; 12:2304. [PMID: 33863916 PMCID: PMC8052458 DOI: 10.1038/s41467-021-22561-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondria play a pivotal role in the generation of signals coupling metabolism with neurotransmitter release, but a role for mitochondrial-produced ROS in regulating neurosecretion has not been described. Here we show that endogenously produced hydrogen peroxide originating from axonal mitochondria (mtH2O2) functions as a signaling cue to selectively regulate the secretion of a FMRFamide-related neuropeptide (FLP-1) from a pair of interneurons (AIY) in C. elegans. We show that pharmacological or genetic manipulations that increase mtH2O2 levels lead to increased FLP-1 secretion that is dependent upon ROS dismutation, mitochondrial calcium influx, and cysteine sulfenylation of the calcium-independent PKC family member PKC-1. mtH2O2-induced FLP-1 secretion activates the oxidative stress response transcription factor SKN-1/Nrf2 in distal tissues and protects animals from ROS-mediated toxicity. mtH2O2 levels in AIY neurons, FLP-1 secretion and SKN-1 activity are rapidly and reversibly regulated by exposing animals to different bacterial food sources. These results reveal a previously unreported role for mtH2O2 in linking diet-induced changes in mitochondrial homeostasis with neuropeptide secretion.
Collapse
Affiliation(s)
- Qi Jia
- PIBBS program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Derek Sieburth
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Bosi E, Marselli L, De Luca C, Suleiman M, Tesi M, Ibberson M, Eizirik DL, Cnop M, Marchetti P. Integration of single-cell datasets reveals novel transcriptomic signatures of β-cells in human type 2 diabetes. NAR Genom Bioinform 2020; 2:lqaa097. [PMID: 33575641 PMCID: PMC7679065 DOI: 10.1093/nargab/lqaa097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic islet β-cell failure is key to the onset and progression of type 2 diabetes (T2D). The advent of single-cell RNA sequencing (scRNA-seq) has opened the possibility to determine transcriptional signatures specifically relevant for T2D at the β-cell level. Yet, applications of this technique have been underwhelming, as three independent studies failed to show shared differentially expressed genes in T2D β-cells. We performed an integrative analysis of the available datasets from these studies to overcome confounding sources of variability and better highlight common T2D β-cell transcriptomic signatures. After removing low-quality transcriptomes, we retained 3046 single cells expressing 27 931 genes. Cells were integrated to attenuate dataset-specific biases, and clustered into cell type groups. In T2D β-cells (n = 801), we found 210 upregulated and 16 downregulated genes, identifying key pathways for T2D pathogenesis, including defective insulin secretion, SREBP signaling and oxidative stress. We also compared these results with previous data of human T2D β-cells from laser capture microdissection and diabetic rat islets, revealing shared β-cell genes. Overall, the present study encourages the pursuit of single β-cell RNA-seq analysis, preventing presently identified sources of variability, to identify transcriptomic changes associated with human T2D and underscores specific traits of dysfunctional β-cells across different models and techniques.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Lorella Marselli
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Carmela De Luca
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Mara Suleiman
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Marta Tesi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, University of Lausanne, Quartier Sorge, CH-1015 Lausanne, Switzerland
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| |
Collapse
|
12
|
Dayon L, Affolter M. Progress and pitfalls of using isobaric mass tags for proteome profiling. Expert Rev Proteomics 2020; 17:149-161. [PMID: 32067523 DOI: 10.1080/14789450.2020.1731309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Quantitative proteomics using mass spectrometry is performed via label-free or label-based approaches. Labeling strategies rely on the incorporation of stable heavy isotopes by metabolic, enzymatic, or chemical routes. Isobaric labeling uses chemical labels of identical masses but of different fragmentation behaviors to allow the relative quantitative comparison of peptide/protein abundances between biological samples.Areas covered: We have carried out a systematic review on the use of isobaric mass tags in proteomic research since their inception in 2003. We focused on their quantitative performances, their multiplexing evolution, as well as their broad use for relative quantification of proteins in pre-clinical models and clinical studies. Current limitations, primarily linked to the quantitative ratio distortion, as well as state-of-the-art and emerging solutions to improve their quantitative readouts are discussed.Expert opinion: The isobaric mass tag technology offers a unique opportunity to compare multiple protein samples simultaneously, allowing higher sample throughput and internal relative quantification for improved trueness and precision. Large studies can be performed when shared reference samples are introduced in multiple experiments. The technology is well suited for proteome profiling in the context of proteomic discovery studies.
Collapse
Affiliation(s)
- Loïc Dayon
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Lausanne, Switzerland.,Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michael Affolter
- Proteomics, Nestlé Institute of Food Safety & Analytical Sciences, Nestlé Research, Lausanne, Switzerland
| |
Collapse
|
13
|
Santo-Domingo J, Dayon L, Wiederkehr A. Protein Lysine Acetylation: Grease or Sand in the Gears of β-Cell Mitochondria? J Mol Biol 2019; 432:1446-1460. [PMID: 31628953 DOI: 10.1016/j.jmb.2019.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023]
Abstract
Mitochondria carry out many essential functions in metabolism. A central task is the oxidation of nutrients and the generation of ATP by oxidative phosphorylation. Mitochondrial metabolism needs to be tightly regulated for the cell to respond to changes in ATP demand and nutrient supply. Here, we review how protein lysine acetylation contributes to the regulation of mitochondrial metabolism in insulin target tissues and the insulin-secreting pancreatic β-cell. We summarize recent evidence showing that in pancreatic β-cells, lysine acetylation occurs on a large number of proteins involved in metabolism. Furthermore, we give a brief overview of the molecular mechanism that controls lysine acetylation dynamics. We propose that protein lysine acetylation is an important mechanism for the fine-tuning of mitochondrial activity in β-cells during normal physiology. In contrast, nutrient oversupply, oxidative stress, or inhibition of the mitochondrial deacetylase SIRT3 leads to protein lysine hyperacetylation, which impairs mitochondrial function. By perturbing mitochondrial activity in β-cells and insulin target tissues, protein lysine hyperacetylation may contribute to the development of type 2 diabetes.
Collapse
Affiliation(s)
- Jaime Santo-Domingo
- Mitochondrial Function, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Loïc Dayon
- Proteomics, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Andreas Wiederkehr
- Mitochondrial Function, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland.
| |
Collapse
|