1
|
Gao F, Chen X, Li X, Deng C, Luo P. The Pro-Migratory and Pro-Invasive Roles of Cancer-Associated Fibroblasts Secreted IL-17A in Prostate Cancer. J Biochem Mol Toxicol 2025; 39:e70047. [PMID: 39878093 DOI: 10.1002/jbt.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 01/31/2025]
Abstract
Cancer-associated fibroblasts (CAFs) are key stroma cells that play dominant roles in the migration and invasion of several types of cancer through the secretion of inflammatory cytokine IL-17A. This study aims to identify the potential role and regulatory mechanism of CAFs-secreted IL-17A in the migration and invasion of prostate cancer (PC). CAFs and normal fibroblasts (NFs) were obtained from fresh PC and its adjacent normal tissues, respectively. PC cells LNCaP and DU145 were co-cultured with the conditioned medium from the CAFs and NFs. IL-17A level was determined by ELISA in the cell supernatant. CCK-8, wound healing, Transwell assay, western blot analysis, staining, and primary PC lung metastasis assays were employed in vivo or in vitro to explore the effect of CAFs and IL-17A secreted by them on proliferation, migration, invasion, epithelial-mesenchymal transition (EMT) and metastasis of PC. CAFs stimulated the migration and invasion of PC cells. Importantly, CAFs exerted their roles by directly secreting IL-17A, leading to a significant increase in migration and invasion in PC cells. Mechanically, IL-17A promoted Smad3/p38 MAPK pathway-mediated EMT process, contributing to cell migration and invasion. Furthermore, CAFs secreting IL-17A activated the Smad3/p38 MAPK pathway and thus facilitated tumor growth and metastasis in nude mice. This study identifies a novel signaling pathway by which CAFs mediate migration and invasion of PC via upregulation of Smad3/p38 MAPK-mediated EMT in an IL-17A-dependent manner.
Collapse
Affiliation(s)
- Feng Gao
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xuren Chen
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Li
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunhua Deng
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peng Luo
- Department of Urology and Andrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Xiong Z, Zhuang RL, Yu SL, Xie ZX, Peng SR, Li ZA, Li BH, Xie JJ, Li YN, Li KW, Huang H. Cancer-associated fibroblasts regulate mitochondrial metabolism and inhibit chemosensitivity via ANGPTL4-IQGAP1 axis in prostate cancer. J Adv Res 2024:S2090-1232(24)00559-9. [PMID: 39647634 DOI: 10.1016/j.jare.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
INTRODUCTION Cancer-associated fibroblasts (CAFs) are a critical component of the tumor microenvironment, being implicated in enhancing tumor growth and fostering drug resistance. Nonetheless, the mechanisms underlying their function in prostate cancer (PCa) remain incompletely understood, which is essential for devising effective therapeutic strategies. OBJECTIVES The main objective of this study was to explore the mechanisms by which CAFs mediate PCa growth and chemoresistance. METHODS We validated through data analysis and experimentation that CAFs significantly impact PCa cell proliferation and chemoresistance. Subsequently, we conducted a comprehensive proteomic analysis of the conditioned media from CAFs and PCa cells and identified angiopoietin-like protein 4 (ANGPTL4) as a key factor. We employed ELISA and multiplex immunofluorescence assays, all of which indicated that ANGPTL4 was primarily secreted by CAFs.Next, we conducted metabolomics analysis, GST pull-down assays, Co-IP, and other experiments to explore the specific molecular mechanisms of ANGPTL4 and its precise effects on PCa cells. Through drug screening, we identified Quercetin 3-O-(6'-galactopyranosyl)-β-D-galactopyranoside (QGGP) as an effective inhibitor of CAFs function. Finally, we thoroughly assessed the therapeutic potential of QGGP both as a monotherapy and in combination with docetaxel in PCa cells. RESULTS We discovered that the extracrine factor ANGPTL4 is primarily expressed in CAFs in PCa. When ANGPTL4 binds to IQ motif-containing GTPase-activating protein 1 (IQGAP1) on the PCa cell membrane, it activates the Raf-MEK-ERK-PGC1α axis, promoting mitochondrial biogenesis and OXPHOS metabolism, and thereby facilitating PCa growth and chemoresistance. Furthermore, virtual and functional screening strategies identified QGGP as a specific inhibitor of IQGAP1 that promotes its degradation. Combined with docetaxel treatment, QGGP can reverse the effects of CAFs and improve the responsiveness of PCa to chemotherapy. CONCLUSIONS This study uncovers a paracrine mechanism of chemoresistance in PCa and proposes that targeting the stroma could be a therapeutic choice.
Collapse
Affiliation(s)
- Zhi Xiong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Rui-Lin Zhuang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shun-Li Yu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Zhao-Xiang Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Shi-Rong Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ze-An Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Bing-Heng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jun-Jia Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yi-Ning Li
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.
| | - Kai-Wen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Clinical Research Center for Urological Diseases, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan 511518, Guangdong, China.
| |
Collapse
|
3
|
Shiozawa Y, Parajuli KR, Pienta K, Taichman R. Role of Chemokines and Cytokines in Prostate Cancer Skeletal Metastasis. Curr Osteoporos Rep 2024; 23:3. [PMID: 39585513 DOI: 10.1007/s11914-024-00897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Once prostate cancer (PCa) bone metastases develop, the prognosis dramatically declines. The precise mechanisms regulating bone metastasis remain elusive. This review will explore recent findings related to cytokines and chemokines in the process of bone metastases. RECENT FINDINGS We discuss the role of cytokines in tumor growth, invasion, bone remodelling and angiogenesis and immune regulation in PCa skeletal metastases. Major advances in our understanding focus on immune evasion, immune checkpoint blockade, tumor-associated macrophages (TAMs), CAR-T cells, cytokine regulation of matrix metalloproteinases, cytokines including IL-10, IL-27, Interferon-γ, prostate transmembrane protein androgen induced 1 (Pmepa1), and regulation of RUNX2 transcription in supporting survival and growth of disseminated tumor cells (DTCs) and metastases development. The review highlights the complexity of cytokine actions in PCa bone metastases, suggesting potential therapeutic targets to disrupt interactions between cancer cells and their microenvironment.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, 27157, NC, USA.
| | - Keshab Raj Parajuli
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Pienta
- Cancer Ecology Center, Johns Hopkins School of Medicine, The Brady Urological Institute, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, 21287, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Russell Taichman
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, The Brady Urological Institute, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, 21287, MD, USA.
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
- Department of Basic & Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
4
|
Yan H, Mao AW, Li D, Pérez-Baena MJ, Jiménez-Navas A, Wang D, Hong R, Cai W, Pérez-Losada J, Jen KY, Wang S, Peng S, Barcellos-Hoff MH, Mao JH, Fu Y, Iczkowski KA, Gulati S, Chang H. AI-Powered cellular morphometric biomarkers discovered in needle biopsy of prostatic cancer predict neoadjuvant androgen deprivation therapy response and prognosis: an international multicenter retrospective study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.17.24317411. [PMID: 39606414 PMCID: PMC11601692 DOI: 10.1101/2024.11.17.24317411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It is imperative to identify patients with prostate cancer (PCa) who will benefit from androgen receptor signaling inhibitors that can impact quality of life upon prolonged use. Using our extensively-validated artificial-intelligence technique: cellular morphometric biomarker via machine learning (CMB-ML), we identified 13 CMBs from whole slide images of needle biopsies from the trial specimens ( NCT02430480 , n=37) that accurately predicted response to neoadjuvant androgen deprivation therapy (NADT) (AUC: 0.980). Notably, 13-CMB model stratified PCa patients into responder and non-responder groups after NADT treatment in an independent hospital cohort (n=122) that significantly associated with pathologic complete response (p=0.0005), biochemical-recurrence-free survival (p=0.024) and mTOR signaling pathway (p=0.03), suggesting potentially more clinical benefit from mTOR inhibitors in non-responder group. Additionally, genetic and genomic analysis revealed interplay between genetic variants and CMBs on NADT resistance, and provided molecular annotations for CMBs. Overall, prospective clinical implementation of 13-CMB model could assist precision care of PCa patients. Significance We describe a highly accurate CMB model to predict the therapeutic benefit in prostate cancer patients and uncover the complex interplay between genetic variants and CMBs on NADT resistance. Our model relies only on widely available needle biopsy specimens and provides a robust and cost-effective solution for clinical implementation.
Collapse
|
5
|
Jonnalagadda SK, Duan L, Dow LF, Boligala GP, Kosmacek E, McCoy K, Oberley-Deegan R, Chhonker YS, Murry DJ, Reynolds CP, Maurer BJ, Penning TM, Trippier PC. Coumarin-Based Aldo-Keto Reductase Family 1C (AKR1C) 2 and 3 Inhibitors. ChemMedChem 2024; 19:e202400081. [PMID: 38976686 PMCID: PMC11537819 DOI: 10.1002/cmdc.202400081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
A series of 7-substituted coumarin derivatives have been characterized as pan-aldo-keto reductase family 1C (AKR1C) inhibitors. The AKR1C family of enzymes are overexpressed in numerous cancers where they are involved in drug resistance development. 7-hydroxy coumarin ethyl esters and their corresponding amides have high potency for AKR1C3 and AKR1C2 inhibition. Coumarin amide 3 a possessed IC50 values of 50 nM and 90 nM for AKR1C3 and AKR1C2, respectively, and exhibits 'drug-like' metabolic stability and half-life in human and mouse liver microsomes and plasma. Compound 3 a was employed as a chemical tool to determine pan-AKR1C2/3 inhibition effects both as a radiation sensitizer and as a potentiator of chemotherapy cytotoxicity. In contrast to previously reported pan-AKR1C inhibitors, 3 a demonstrated no radiation sensitization effect in a radiation-resistant prostate cancer cell line model. Pan-AKR1C inhibition also did not potentiate the in vitro cytotoxicity of ABT-737, daunorubicin or dexamethasone, in two patient-derived T-cell ALL and pre-B-cell ALL cell lines. In contrast, a highly selective AKR1C3 inhibitor, compound K90, enhanced the cytotoxicity of both ABT-737 and daunorubicin in the T-cell ALL cell line model. Thus, the inhibitory profile required to enhance chemotherapeutic cytotoxicity in leukemia may be AKR1C isoform and drug specific.
Collapse
Affiliation(s)
- Sravan K. Jonnalagadda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Ling Duan
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Louise F. Dow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Geetha P Boligala
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Elizabeth Kosmacek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Kristyn McCoy
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Rebecca Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - Yashpal Singh Chhonker
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Darryl J. Murry
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68106, USA
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| | - C. Patrick Reynolds
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Barry J. Maurer
- School of Medicine Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas, 79430, United States
| | - Trevor M. Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Paul C. Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
- UNMC Center for Drug Design and Innovation, University of Nebraska Medical Center, Omaha, Nebraska 68106, United States
| |
Collapse
|
6
|
Xia B, Qiu L, Yue J, Si J, Zhang H. The metabolic crosstalk of cancer-associated fibroblasts and tumor cells: Recent advances and future perspectives. Biochim Biophys Acta Rev Cancer 2024; 1879:189190. [PMID: 39341468 DOI: 10.1016/j.bbcan.2024.189190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Tumor cells grow in a microenvironment with a lack of nutrients and oxygen. Cancer-associated fibroblasts (CAFs) as one major component of tumor microenvironment have strong ability to survive under stressful conditions through metabolic remodelling. Furthermore, CAFs are educated by tumor cells and help them adapt to the hostile microenvironment through their metabolic communication. By inducing catabolism, CAFs release nutrients into the microenvironment which are taken up by tumor cells to satisfy their metabolic requirements. Furthermore, CAFs can recycle toxic metabolic wastes produced by cancer cells into energetic substances, allowing cancer cells to undergo biosynthesis. Their metabolic crosstalk also enhances CAFs' pro-tumor phenotype and reshape the microenvironment facilitating tumor cells' metastasis and immune escape. In this review, we have analyzed the effect and mechanisms of metabolic crosstalk between tumor cells and CAFs. We also analyzed the future perspectives in this area from the points of CAFs heterogeneity, spatial metabonomics and patient-derived tumor organoids (PDOs). These information may deepen the knowledge of tumor metabolism regulated by CAFs and provide novel insights into the development of metabolism-based anti-cancer strategies.
Collapse
Affiliation(s)
- Bing Xia
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Liqing Qiu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, 310002, China
| | - Jing Yue
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, 310002, China
| | - Jingxing Si
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Hongfang Zhang
- Hangzhou Cancer Institution, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, 310002, China.
| |
Collapse
|
7
|
Esposito M, Yerly L, Shukla P, Hermes V, Sella F, Balazs Z, Lattmann E, Tastanova A, Turko P, Lang R, Kolm I, Staeger R, Kuonen F, Krauthammer M, Hafner J, Levesque MP, Restivo G. COL10A1 expression distinguishes a subset of cancer-associated fibroblasts present in the stroma of high-risk basal cell carcinoma. Br J Dermatol 2024; 191:775-790. [PMID: 38916477 DOI: 10.1093/bjd/ljae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND Basal cell carcinoma (BCC) is the most frequently diagnosed skin cancer and the most common malignancy in humans. Different morphological subtypes of BCC are associated with a low or high risk of recurrence and aggressiveness, but the underlying biology of how the individual subtypes arise remains largely unknown. As the majority of BCCs appear to arise from mutations in the same pathway, we hypothesized that BCC development, growth and invasive potential is also influenced by the tumour microenvironment and, in particular, by cancer-associated fibroblasts (CAFs) and the factors they secrete. OBJECTIVES To characterize the stroma of the different BCC subtypes with a focus on CAF populations. METHODS To investigate the stromal features of the different BCC subtypes, we used laser capture microdissection (LCM) followed by RNA sequencing (RNA-Seq). Fifteen BCC samples from five different 'pure' subtypes (i.e. superficial, nodular, micronodular, sclerosing and basosquamous; n = 3 each) were selected and included in the analysis. Healthy skin was used as a control (n = 6). The results were confirmed by immunohistochemistry (IHC). We validated our findings in two independent public single-cell RNA-Seq (scRNA-Seq) datasets and by RNAscope. RESULTS The stroma of the different BCC subtypes were found to have distinct gene expression signatures. Nodular and micronodular appeared to have the most similar signatures, while superficial and sclerosing the most different. By comparing low- and high-risk BCC subtypes, we found that COL10A1 is overexpressed in the stroma of sclerosing/infiltrative and basosquamous but not in micronodular high-risk subtypes. Those findings were confirmed by IHC in 93 different BCC and 13 healthy skin samples. Moreover, scRNA-Seq analysis of BCCs from two independent datasets found that the COL10A1-expressing population of cells is associated with the stroma adjacent to infiltrative BCC and shows extracellular matrix remodelling features. CONCLUSIONS We identified COL10A1 as a marker of high-risk BCC, in particular of the sclerosing/infiltrative and basosquamous subtypes. We demonstrated at the single-cell level that COL10A1 is expressed by a specific CAF population associated with the stroma of infiltrative BCC. This opens up new, tailored treatment options, and suggests COL10A1 as a new prognostic biomarker for BCC progression.
Collapse
Affiliation(s)
- Mauro Esposito
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Laura Yerly
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Prachi Shukla
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victoria Hermes
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Sella
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Zsolt Balazs
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Biomedical Informatics, University Hospital of Zurich, Zurich, Switzerland
| | - Evelyn Lattmann
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Aizhan Tastanova
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Patrick Turko
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ramon Lang
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ramon Staeger
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Michael Krauthammer
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Biomedical Informatics, University Hospital of Zurich, Zurich, Switzerland
| | - Juerg Hafner
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Liu Q, Yao F, Wu L, Xu T, Na J, Shen Z, Liu X, Shi W, Zhao Y, Liao Y. Heterogeneity and interplay: the multifaceted role of cancer-associated fibroblasts in the tumor and therapeutic strategies. Clin Transl Oncol 2024; 26:2395-2417. [PMID: 38602644 DOI: 10.1007/s12094-024-03492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/31/2024] [Indexed: 04/12/2024]
Abstract
The journey of cancer development is a multifaceted and staged process. The array of treatments available for cancer varies significantly, dictated by the disease's type and stage. Cancer-associated fibroblasts (CAFs), prevalent across various cancer types and stages, play a pivotal role in tumor genesis, progression, metastasis, and drug resistance. The strategy of concurrently targeting cancer cells and CAFs holds great promise in cancer therapy. In this review, we focus intently on CAFs, delving into their critical role in cancer's progression. We begin by exploring the origins, classification, and surface markers of CAFs. Following this, we emphasize the key cytokines and signaling pathways involved in the interplay between cancer cells and CAFs and their influence on the tumor immune microenvironment. Additionally, we examine current therapeutic approaches targeting CAFs. This article underscores the multifarious roles of CAFs within the tumor microenvironment and their potential applications in cancer treatment, highlighting their importance as key targets in overcoming drug resistance and enhancing the efficacy of tumor therapies.
Collapse
Affiliation(s)
- Qiaoqiao Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Fei Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Liangliang Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Tianyuan Xu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Zhen Shen
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China
| | - Wei Shi
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
- Department of Oncology, The First Affiliated Tumor Hospital, Guangxi University of Chinese Medicine, Nanning, 530021, Guangxi, China.
| | - Yongxiang Zhao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
9
|
Chrenková E, Študentová H, Holá K, Kahounová Z, Hendrychová R, Souček K, Bouchal J. Castration-resistant prostate cancer monitoring by cell-free circulating biomarkers. Front Oncol 2024; 14:1394292. [PMID: 39319053 PMCID: PMC11420116 DOI: 10.3389/fonc.2024.1394292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
Background Prostate cancer is the second leading cause of male cancer-related deaths in Western countries, which is predominantly attributed to the metastatic castration-resistant stage of the disease (CRPC). There is an urgent need for better prognostic and predictive biomarkers, particularly for androgen receptor targeted agents and taxanes. Methods We have searched the PubMed database for original articles and meta-analyses providing information on blood-based markers for castration-resistant prostate cancer monitoring, risk group stratification and prediction of therapy response. Results The molecular markers are discussed along with the standard clinical parameters, such as prostate specific antigen, lactate dehydrogenase or C-reactive protein. Androgen receptor (AR) alterations are commonly associated with progression to CRPC. These include amplification of AR and its enhancer, point mutations and splice variants. Among DNA methylations, a novel 5-hydroxymethylcytosine activation marker of TOP2A and EZH2 has been identified for the aggressive disease. miR-375 is currently the most promising candidate among non-coding RNAs and sphingolipid analysis has recently emerged as a novel approach. Conclusions The promising biomarkers have the potential to improve the care of metastatic prostate cancer patients, however, they need further validation for routine implementation.
Collapse
Affiliation(s)
- Eva Chrenková
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Hana Študentová
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Kateřina Holá
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Romana Hendrychová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, Olomouc, Czechia
| |
Collapse
|
10
|
Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, Liu G, Chu X, Liu X, Liu W, Tian X, Yang Y. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol 2024; 17:80. [PMID: 39223656 PMCID: PMC11367794 DOI: 10.1186/s13045-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Jianlei Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Guangnian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xinxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
11
|
Afshan S, Kim YG, Mattsson J, Åkerfelt M, Härkönen P, Baumgartner M, Nees M. Targeting the cancer cells and cancer-associated fibroblasts with next-generation FGFR inhibitors in prostate cancer co-culture models. Cancer Med 2024; 13:e70240. [PMID: 39300962 PMCID: PMC11413502 DOI: 10.1002/cam4.70240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Inhibition of androgen receptor (AR) signaling is the main treatment strategy in advanced prostate cancer (PCa). A subset of castration resistant prostate cancer (CRPC) bypasses the AR blockade by increased fibroblast growth factor receptor (FGFR) signaling. The first- and second-generation, non-covalent FGFR inhibitors (FGFRis) have largely failed in the clinical trials against PCa. PURPOSE In this study, we tested the drug sensitivity of LNCaP, VCaP, and CWR-R1PCa cell lines to second-generation, covalent FGFRis (FIIN1, FIIN2) and a novel FGFR downstream molecule inhibitor (FRS2αi). METHODS 2D and 3D mono- and co-cultures of cancer cells, and cancer-associated fibroblasts (CAFs) were used to mimic tumor-stroma interactions in the extracellular matrix (ECM). The treatment responses of the FGFR signaling molecules, the viability and proliferation of cancer cells, and CAFs were determined through immunoblotting, migration assay, cell viability assay, and real-time imaging. Immunofluorescent and confocal microscopy images of control and treated cultures of cancer cells and CAFs, and their morphometric data were deduced. RESULTS The FGFRis were more effective in mono-cultures of the cancer cells compared with co-cultures with CAFs. The FRS2αi was specifically effective in co-cultures with CAFs but was not cytotoxic to CAF mono-cultures as in the case of FIIN1 and FIIN2. At the molecular level, FRS2αi decreased p-FRS2α, p-ERK1/2, and activated apoptosis as monitored by cleaved caspase-3 activity in a concentration-dependent manner in the co-cultures. We observed no synergistic drug efficacy in the combination treatment of the FGFRi with ARi, enzalutamide, and darolutamide. The FRS2αi treatment led to a decrease in proliferation of cancer cell clusters in co-cultures as indicated by their reduced size and Ki67 expression. CONCLUSIONS CAFs exert a protective effect on cancer cells and should be included in the in vitro models to make them physiologically more relevant in screening and testing of FGFRis. The FRS2αi was the most potent agent in reducing the viability and proliferation of the 3D organotypic co-cultures, mainly by disrupting the contact between CAFs and cancer cell clusters. The next-generation FGFRi, FRS2αi, may be a better alternative treatment option for overcoming ARi treatment resistance in advanced PCa.
Collapse
Affiliation(s)
- Syeda Afshan
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
| | - Yu Gang Kim
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
- Present address:
Korea Mouse Phenotyping Center (KMPC)Seoul National UniversitySeoulSouth Korea
| | - Jesse Mattsson
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
- Present address:
DelSiTech LtdTurkuFinland
| | - Malin Åkerfelt
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
- Cell Biology, Faculty of Science and EngineeringÅbo Akademi UniversityTurkuFinland
| | - Pirkko Härkönen
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
| | - Martin Baumgartner
- Pediatric Molecular Neuro‐Oncology Research LaboratoryUniversity Children's Hospital ZurichZurichSwitzerland
| | - Matthias Nees
- FICAN West Cancer CentreInstitute of Biomedicine, University of TurkuTurkuFinland
- Department of Biochemistry and Molecular BiologyMedical University of LublinLublinPoland
| |
Collapse
|
12
|
Liu J, Bai Y, Li Y, Li X, Luo K. Reprogramming the immunosuppressive tumor microenvironment through nanomedicine: an immunometabolism perspective. EBioMedicine 2024; 107:105301. [PMID: 39178747 PMCID: PMC11388279 DOI: 10.1016/j.ebiom.2024.105301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Increasing evidence indicates that immunotherapy is hindered by a hostile tumor microenvironment (TME) featured with deprivation of critical nutrients and pooling of immunosuppressive metabolites. Tumor cells and immunosuppressive cells outcompete immune effector cells for essential nutrients. Meanwhile, a wide range of tumor cell-derived toxic metabolites exerts negative impacts on anti-tumor immune response, diminishing the efficacy of immunotherapy. Nanomedicine with excellent targetability offers a novel approach to improving cancer immunotherapy via metabolically reprogramming the immunosuppressive TME. Herein, we review recent strategies of enhancing immunotherapeutic effects through rewiring tumor metabolism via nanomedicine. Attention is drawn on immunometabolic tactics for immune cells and stromal cells in the TME via nanomedicine. Additionally, we discuss future directions of developing metabolism-regulating nanomedicine for precise and efficacious cancer immunotherapy.
Collapse
Affiliation(s)
- Jieyu Liu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinan Bai
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinggang Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
13
|
Chang L, Ding J, Pu J, Zhu J, Zhou X, Luo Q, Li J, Qian M, Lin S, Li J, Wang K. A novel lncRNA LOC101928222 promotes colorectal cancer angiogenesis by stabilizing HMGCS2 mRNA and increasing cholesterol synthesis. J Exp Clin Cancer Res 2024; 43:185. [PMID: 38965575 PMCID: PMC11223299 DOI: 10.1186/s13046-024-03095-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/07/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Metastasis is the leading cause of mortality in patients with colorectal cancer (CRC) and angiogenesis is a crucial factor in tumor invasion and metastasis. Long noncoding RNAs (lncRNAs) play regulatory functions in various biological processes in tumor cells, however, the roles of lncRNAs in CRC-associated angiogenesis remain to be elucidated in CRC, as do the underlying mechanisms. METHODS We used bioinformatics to screen differentially expressed lncRNAs from TCGA database. LOC101928222 expression was assessed by qRT-PCR. The impact of LOC101928222 in CRC tumor development was assessed both in vitro and in vivo. The regulatory mechanisms of LOC101928222 in CRC were investigated by cellular fractionation, RNA-sequencing, mass spectrometric, RNA pull-down, RNA immunoprecipitation, RNA stability, and gene-specific m6A assays. RESULTS LOC101928222 expression was upregulated in CRC and was correlated with a worse outcome. Moreover, LOC101928222 was shown to promote migration, invasion, and angiogenesis in CRC. Mechanistically, LOC101928222 synergized with IGF2BP1 to stabilize HMGCS2 mRNA through an m6A-dependent pathway, leading to increased cholesterol synthesis and, ultimately, the promotion of CRC development. CONCLUSIONS In summary, these findings demonstrate a novel, LOC101928222-based mechanism involved in the regulation of cholesterol synthesis and the metastatic potential of CRC. The LOC101928222-HMGCS2-cholesterol synthesis pathway may be an effective target for diagnosing and managing CRC metastasis.
Collapse
Affiliation(s)
- Lisha Chang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Ding
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Pu
- Department of Oncology, Lianshui County People's Hospital, Affiliated Hospital of Kangda college, Nanjing Medical University, Huaian, Jiangsu, China
| | - Jing Zhu
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiang Zhou
- Head and neck surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qian Luo
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengsen Qian
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuhui Lin
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juan Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Keming Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Kato Y, Matsumoto M, Takano N, Hirao M, Matsuda K, Tozuka T, Onda N, Nakamichi S, Takeuchi S, Miyanaga A, Noro R, Gemma A, Seike M. Induction of resistance to neurotrophic tropomyosin-receptor kinase inhibitors by HMGCS2 via a mevalonate pathway. Cancer Med 2024; 13:e7393. [PMID: 38923428 PMCID: PMC11194613 DOI: 10.1002/cam4.7393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION A neurotrophic tropomyosin receptor kinase (NTRK)-tyrosine kinase inhibitor (TKI) has shown dramatic efficacy against malignant tumors harboring an NTRK fusion gene. However, almost all tumors eventually acquire resistance to NTRK-TKIs. METHOD To investigate the mechanism of resistance to NTRK-TKIs, we established cells resistant to three types of NTRK-TKIs (larotrectinib, entrectinib, and selitrectinib) using KM12 colon cancer cells with a TPM3-NTRK1 rearrangement. RESULT Overexpression of 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) was observed in three resistant cells (KM12-LR, KM12-ER, and KM12-SR) by microarray analysis. Lower expression of sterol regulatory element-binding protein 2 (SREBP2) and peroxisome proliferator activated receptor α (PPARα) was found in two cells (KM12-ER and KM12-SR) in which HMGCS2 was overexpressed compared to the parental KM12 and KM12-LR cells. In resistant cells, knockdown of HMGCS2 using small interfering RNA improved the sensitivity to NTRK-TKI. Further treatment with mevalonolactone after HMGCS2 knockdown reintroduced the NTRK-TKI resistance. In addition, simvastatin and silibinin had a synergistic effect with NTRK-TKIs in resistant cells, and delayed tolerance was observed after sustained exposure to clinical concentrations of NTRK-TKI and simvastatin in KM12 cells. In xenograft mouse models, combination treatment with entrectinib and simvastatin reduced resistant tumor growth compared with entrectinib alone. CONCLUSION These results suggest that HMGCS2 overexpression induces resistance to NTRK-TKIs via the mevalonate pathway in colon cancer cells. Statin inhibition of the mevalonate pathway may be useful for overcoming this mechanistic resistance.
Collapse
Affiliation(s)
- Yasuhiro Kato
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Natsuki Takano
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Mariko Hirao
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Takehiro Tozuka
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Naomi Onda
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Shinji Nakamichi
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Susumu Takeuchi
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| |
Collapse
|
15
|
Bastian JLD, Zeuschner P, Stöckle M, Junker K, Linxweiler J. Tumor promoting effect of spheroids in an orthotopic prostate cancer mouse model. Sci Rep 2024; 14:8835. [PMID: 38632341 PMCID: PMC11024136 DOI: 10.1038/s41598-024-59052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
In this study, we aimed to establish a technique for intraprostatic implantation of prostate cancer (PCa) spheroids and to identify the impact of three-dimensional organization of PCa cells on tumor progression and metastasis in a representative in vivo model. 40,000 LNCaP cells were implanted into the prostate of immunodeficient SCID mice either as single cells (n = 8) or as preformed 3D spheroids (n = 8). For a follow up of 20 weeks, tumor growth was monitored by serum PSA and high-resolution 3D ultrasonography. Eventually, animals were sacrificed and autopsied. The organ dissects were analyzed for the presence of metastases by histology (H&E) and immunohistochemistry (AMACR, AR, Ki-67, CK5, CK8, E-Cadherin, Vimentin). Solid intraprostatic tumors developed in 50% of mice after spheroid implantation and in 50% of mice after implantation of a single cells. Primary tumors of LNCaP spheroids evolved earlier, exhibiting a shorter tumor doubling time whilst developing larger tumor volumes, which was reflected by a higher immunohistochemical expression of Ki-67 and AR, too. Spheroid tumors established lung and lymph node metastases in 75% of mice, in contrast to 50% of mice after single cell implantation. Our technique enables a variety of studies regarding the influence of the tumor microenvironment on PCa progression.
Collapse
Affiliation(s)
- Julius Lars Daniel Bastian
- Department of Urology and Pediatric Urology, Saarland University, Kirrbergerstr. 100 Gebäude 6, 66424, Homburg, Germany
| | - Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, Kirrbergerstr. 100 Gebäude 6, 66424, Homburg, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University, Kirrbergerstr. 100 Gebäude 6, 66424, Homburg, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Kirrbergerstr. 100 Gebäude 6, 66424, Homburg, Germany
| | - Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Kirrbergerstr. 100 Gebäude 6, 66424, Homburg, Germany.
| |
Collapse
|
16
|
Li M, Zhang L, Yu J, Wang X, Cheng L, Ma Z, Chen X, Wang L, Goh BC. AKR1C3 in carcinomas: from multifaceted roles to therapeutic strategies. Front Pharmacol 2024; 15:1378292. [PMID: 38523637 PMCID: PMC10957692 DOI: 10.3389/fphar.2024.1378292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Aldo-Keto Reductase Family 1 Member C3 (AKR1C3), also known as type 5 17β-hydroxysteroid dehydrogenase (17β-HSD5) or prostaglandin F (PGF) synthase, functions as a pivotal enzyme in androgen biosynthesis. It catalyzes the conversion of weak androgens, estrone (a weak estrogen), and PGD2 into potent androgens (testosterone and 5α-dihydrotestosterone), 17β-estradiol (a potent estrogen), and 11β-PGF2α, respectively. Elevated levels of AKR1C3 activate androgen receptor (AR) signaling pathway, contributing to tumor recurrence and imparting resistance to cancer therapies. The overexpression of AKR1C3 serves as an oncogenic factor, promoting carcinoma cell proliferation, invasion, and metastasis, and is correlated with unfavorable prognosis and overall survival in carcinoma patients. Inhibiting AKR1C3 has demonstrated potent efficacy in suppressing tumor progression and overcoming treatment resistance. As a result, the development and design of AKR1C3 inhibitors have garnered increasing interest among researchers, with significant progress witnessed in recent years. Novel AKR1C3 inhibitors, including natural products and analogues of existing drugs designed based on their structures and frameworks, continue to be discovered and developed in laboratories worldwide. The AKR1C3 enzyme has emerged as a key player in carcinoma progression and therapeutic resistance, posing challenges in cancer treatment. This review aims to provide a comprehensive analysis of AKR1C3's role in carcinoma development, its implications in therapeutic resistance, and recent advancements in the development of AKR1C3 inhibitors for tumor therapies.
Collapse
Affiliation(s)
- Mengnan Li
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Limin Zhang
- Jingzhou Hospital of Traditional Chinese Medicine, Jingzhou, China
- The Third Clinical Medical College of Yangtze University, Jingzhou, China
| | - Jiahui Yu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoxiao Wang
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Le Cheng
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Xiaoguang Chen
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China
| | - Lingzhi Wang
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology–Oncology, National University Cancer Institute, Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Guerrero-Ochoa P, Rodríguez-Zapater S, Anel A, Esteban LM, Camón-Fernández A, Espilez-Ortiz R, Gil-Sanz MJ, Borque-Fernando Á. Prostate Cancer and the Mevalonate Pathway. Int J Mol Sci 2024; 25:2152. [PMID: 38396837 PMCID: PMC10888820 DOI: 10.3390/ijms25042152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Antineoplastic therapies for prostate cancer (PCa) have traditionally centered around the androgen receptor (AR) pathway, which has demonstrated a significant role in oncogenesis. Nevertheless, it is becoming progressively apparent that therapeutic strategies must diversify their focus due to the emergence of resistance mechanisms that the tumor employs when subjected to monomolecular treatments. This review illustrates how the dysregulation of the lipid metabolic pathway constitutes a survival strategy adopted by tumors to evade eradication efforts. Integrating this aspect into oncological management could prove valuable in combating PCa.
Collapse
Affiliation(s)
- Patricia Guerrero-Ochoa
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
| | - Sergio Rodríguez-Zapater
- Minimally Invasive Research Group (GITMI), Faculty of Veterinary Medicine, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Alberto Anel
- Department of Biochemistry and Molecular and Cellular Biology, Faculty of Sciences, University of Zaragoza, 50009 Zaragoza, Spain;
| | - Luis Mariano Esteban
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain
| | - Alejandro Camón-Fernández
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
| | - Raquel Espilez-Ortiz
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Area of Urology, Department of Surgery, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | - María Jesús Gil-Sanz
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
| | - Ángel Borque-Fernando
- Health Research Institute of Aragon Foundation, 50009 Zaragoza, Spain; (P.G.-O.); (A.C.-F.); (R.E.-O.); (M.J.G.-S.)
- Department of Applied Mathematics, Escuela Universitaria Politécnica de La Almunia, Institute for Biocomputation and Physic of Complex Systems, Universidad de Zaragoza, 50100 La Almunia de Doña Godina, Spain
- Department of Urology, Miguel Servet University Hospital, 50009 Zaragoza, Spain
- Area of Urology, Department of Surgery, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
18
|
Ambrosini G, Cordani M, Zarrabi A, Alcon-Rodriguez S, Sainz RM, Velasco G, Gonzalez-Menendez P, Dando I. Transcending frontiers in prostate cancer: the role of oncometabolites on epigenetic regulation, CSCs, and tumor microenvironment to identify new therapeutic strategies. Cell Commun Signal 2024; 22:36. [PMID: 38216942 PMCID: PMC10790277 DOI: 10.1186/s12964-023-01462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/27/2023] [Indexed: 01/14/2024] Open
Abstract
Prostate cancer, as one of the most prevalent malignancies in males, exhibits an approximate 5-year survival rate of 95% in advanced stages. A myriad of molecular events and mutations, including the accumulation of oncometabolites, underpin the genesis and progression of this cancer type. Despite growing research demonstrating the pivotal role of oncometabolites in supporting various cancers, including prostate cancer, the root causes of their accumulation, especially in the absence of enzymatic mutations, remain elusive. Consequently, identifying a tangible therapeutic target poses a formidable challenge. In this review, we aim to delve deeper into the implications of oncometabolite accumulation in prostate cancer. We center our focus on the consequential epigenetic alterations and impacts on cancer stem cells, with the ultimate goal of outlining novel therapeutic strategies.
Collapse
Affiliation(s)
- Giulia Ambrosini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering & Natural Sciences, Istinye University, Istanbul, 34396, Turkey
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India
| | - Sergio Alcon-Rodriguez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Rosa M Sainz
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), 28040, Madrid, Spain
| | - Pedro Gonzalez-Menendez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, 33006, Oviedo, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, 33006, Oviedo, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), 33011, Oviedo, Spain.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, 37134, Verona, Italy.
| |
Collapse
|
19
|
Habbit NL, Anbiah B, Suresh J, Anderson L, Davies ML, Hassani I, Ghosh TM, Greene MW, Prabhakarpandian B, Arnold RD, Lipke EA. Ratiometric Inclusion of Fibroblasts Promotes Both Castration-Resistant and Androgen-Dependent Tumorigenic Progression in Engineered Prostate Cancer Tissues. Adv Healthc Mater 2023; 12:e2301139. [PMID: 37450342 DOI: 10.1002/adhm.202301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
To investigate the ratiometric role of fibroblasts in prostate cancer (PCa) progression, this work establishes a matrix-inclusive, 3D engineered prostate cancer tissue (EPCaT) model that enables direct coculture of neuroendocrine-variant castration-resistant (CPRC-ne) or androgen-dependent (ADPC) PCa cells with tumor-supporting stromal cell types. Results show that the inclusion of fibroblasts within CRPC-ne and ADPC EPCaTs drives PCa aggression through significant matrix remodeling and increased proliferative cell populations. Interestingly, this is observed to a much greater degree in EPCaTs formed with a small number of fibroblasts relative to the number of PCa cells. Fibroblast coculture also results in ADPC behavior more similar to the aggressive CRPC-ne condition, suggesting fibroblasts play a role in elevating PCa disease state and may contribute to the ADPC to CRPC-ne switch. Bulk transcriptomic analyses additionally elucidate fibroblast-driven enrichment of hallmark gene sets associated with tumorigenic progression. Finally, the EPCaT model clinical relevancy is probed through a comparison to the Cancer Genome Atlas (TCGA) PCa patient cohort; notably, similar gene set enrichment is observed between EPCaT models and the patient primary tumor transcriptome. Taken together, study results demonstrate the potential of the EPCaT model to serve as a PCa-mimetic tool in future therapeutic development efforts.
Collapse
Affiliation(s)
- Nicole L Habbit
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Benjamin Anbiah
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Joshita Suresh
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Luke Anderson
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Megan L Davies
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Iman Hassani
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Taraswi M Ghosh
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 So. Donahue Dr., Pharmaceutical Research Building, Auburn, AL, 36849, USA
| | - Michael W Greene
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, 210 Spidle Hall, Auburn, AL, 36849, USA
| | | | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 So. Donahue Dr., Pharmaceutical Research Building, Auburn, AL, 36849, USA
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| |
Collapse
|
20
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
21
|
Luca E, Zitzmann K, Bornstein S, Kugelmeier P, Beuschlein F, Nölting S, Hantel C. Three Dimensional Models of Endocrine Organs and Target Tissues Regulated by the Endocrine System. Cancers (Basel) 2023; 15:4601. [PMID: 37760571 PMCID: PMC10526768 DOI: 10.3390/cancers15184601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Immortalized cell lines originating from tumors and cultured in monolayers in vitro display consistent behavior and response, and generate reproducible results across laboratories. However, for certain endpoints, these cell lines behave quite differently from the original solid tumors. Thereby, the homogeneity of immortalized cell lines and two-dimensionality of monolayer cultures deters from the development of new therapies and translatability of results to the more complex situation in vivo. Organoids originating from tissue biopsies and spheroids from cell lines mimic the heterogeneous and multidimensional characteristics of tumor cells in 3D structures in vitro. Thus, they have the advantage of recapitulating the more complex tissue architecture of solid tumors. In this review, we discuss recent efforts in basic and preclinical cancer research to establish methods to generate organoids/spheroids and living biobanks from endocrine tissues and target organs under endocrine control while striving to achieve solutions in personalized medicine.
Collapse
Affiliation(s)
- Edlira Luca
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Kathrin Zitzmann
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Stefan Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | | | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, 80336 Munich, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Department of Medicine IV, University Hospital, LMU Munich, 80336 München, Germany
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| |
Collapse
|
22
|
Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, Yang JL. Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. J Hematol Oncol 2023; 16:103. [PMID: 37700339 PMCID: PMC10498649 DOI: 10.1186/s13045-023-01498-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023] Open
Abstract
Lipid metabolic reprogramming is an emerging hallmark of cancer. In order to sustain uncontrolled proliferation and survive in unfavorable environments that lack oxygen and nutrients, tumor cells undergo metabolic transformations to exploit various ways of acquiring lipid and increasing lipid oxidation. In addition, stromal cells and immune cells in the tumor microenvironment also undergo lipid metabolic reprogramming, which further affects tumor functional phenotypes and immune responses. Given that lipid metabolism plays a critical role in supporting cancer progression and remodeling the tumor microenvironment, targeting the lipid metabolism pathway could provide a novel approach to cancer treatment. This review seeks to: (1) clarify the overall landscape and mechanisms of lipid metabolic reprogramming in cancer, (2) summarize the lipid metabolic landscapes within stromal cells and immune cells in the tumor microenvironment, and clarify their roles in tumor progression, and (3) summarize potential therapeutic targets for lipid metabolism, and highlight the potential for combining such approaches with other anti-tumor therapies to provide new therapeutic opportunities for cancer patients.
Collapse
Affiliation(s)
- Hao-Ran Jin
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zi-Jing Wang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Jia Xi
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bi-Han Xia
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Deng
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Jin-Lin Yang
- Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, No.37 Guoxue Road, Wuhou District, Chengdu, 610041, China.
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
23
|
Chang CC, Jiang SS, Tsai FY, Hsu PJ, Hsieh CC, Wang LT, Yen ML, Yen BL. Targeting Conserved Pathways in 3D Spheroid Formation of Diverse Cell Types for Translational Application: Enhanced Functional and Antioxidant Capacity. Cells 2023; 12:2050. [PMID: 37626861 PMCID: PMC10453086 DOI: 10.3390/cells12162050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Three-dimensional (3D) in vitro spheroid/organoid culture increasingly appears to better mimic physiological states than standard 2D systems. The biological consequence of 3D spheroids, however, differs for different cell types: for pluripotent embryonic stem cells (ESCs), differentiation and loss of stemness occur, while the converse is true for somatic and cancer cells. Despite such diverse consequences, there are likely conserved mechanisms governing 3D spheroid formation across cell types that are unknown but could be efficiently targeted for translational application. To elucidate such processes, we performed transcriptome analysis with functional validation on 2D- and 3D-cultured mouse ESCs, mesenchymal stromal/stem cells (MSCs), and cancer cells. At both the transcriptomic and functional levels, 3D spheroid formation resulted in commitment towards known cell-specific functional outcomes. Surprisingly in all cell types, downregulation of the cholesterol synthesis pathway was found during 3D spheroid formation, with modulation concomitantly affecting 3D spheroid formation and cell-specific consequences; similar results were seen with human cell types. Furthermore, improved antioxidant capacity after 3D spheroid formation across cell types was further enhanced with modulation of the pathway. These findings demonstrate the profound cell-specific consequences and the translational value of understanding conserved mechanisms across diverse cell types after 3D spheroid formation.
Collapse
Affiliation(s)
- Chia-Chi Chang
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei 114, Taiwan
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan
| | | | - Fang-Yu Tsai
- National Institute of Cancer Research, NHRI, Zhunan 350, Taiwan
| | - Pei-Ju Hsu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan
| | - Chen-Chan Hsieh
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan
| | - Li-Tzu Wang
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, Taipei 100, Taiwan
| | - Men-Luh Yen
- Department of Obstetrics/Gynecology, National Taiwan University (NTU) Hospital & College of Medicine, Taipei 100, Taiwan
| | - B. Linju Yen
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei 114, Taiwan
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), Zhunan 350, Taiwan
| |
Collapse
|
24
|
Cao Z, Yao J, He Y, Lou D, Huang J, Zhang Y, Chen M, Zhou Z, Zhou X. Association Between Statin Exposure and Incidence and Prognosis of Prostate Cancer: A Meta-analysis Based on Observational Studies. Am J Clin Oncol 2023; 46:323-334. [PMID: 37143189 PMCID: PMC10281183 DOI: 10.1097/coc.0000000000001012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It is widely thought that statins have huge therapeutic potential against prostate cancer (PCA). This study aimed to investigate the effect of statin exposure on PCA incidence and prognosis. PubMed, Web of Science, Embase, and Cochrane databases were searched for observational studies on the association between statin exposure and PCA from inception until July 2022. The primary endpoints were the incidence of PCA and the survival rate. A total of 21 studies were included in this meta-analysis. The pooled estimates showed that exposure to hydrophilic statins was not associated with the incidence of PCA (odds ratio [OR]=0.94, 95% CI=0.88-1.01, P =0.075), while the incidence of PCA was significantly decreased in populations exposed to lipophilic statins compared with the nonexposed group (OR=0.94, 95% CI=0.90-0.98, P =0.001), mainly in Western countries (OR=0.94, 95% CI=0.91-0.98, P =0.006). Subgroup analysis showed that simvastatin (OR=0.83, 95% CI=0.71-0.97, P =0.016) effectively reduced the incidence of PCA. The prognosis of PCA in patients exposed to both hydrophilic (hazard ratio [HR]=0.57, 95% CI=0.49-0.66, P <0.001) and lipophilic (HR=0.65, 95% CI=0.58-0.73, P <0.001) statins were better than in the nonexposed group, and this improvement was more significant in the East than in Western countries. This study demonstrates that statins can reduce the incidence of PCA and improve prognosis, and are affected by population region and statin properties (hydrophilic and lipophilic).
Collapse
Affiliation(s)
- Zipei Cao
- Urology Department, Ningbo Urology & Nephrology Hospital
- Urology Department, Ningbo Yinzhou No. 2 Hospital, Ningbo
| | | | | | - Dandi Lou
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | | | | | | | | | - Xiaomei Zhou
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Wojtowicz K, Nowicki M. The characterization of the sensitive ovarian cancer cell lines A2780 and W1 in response to ovarian CAFs. Biochem Biophys Res Commun 2023; 662:1-7. [PMID: 37088000 DOI: 10.1016/j.bbrc.2023.04.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
PURPOSE The cancer-associated fibroblasts (CAFs) are one of the most abundant components of the tumor microenvironment (TME). CAFs have been implicated in tumor progression, extracellular matrix (ECM) remodeling, and treatment resistance. Drug resistance is the primary limiting factor in achieving cures for patients with cancer, particularly ovarian cancer. Therefore, inhibiting CAFs can be an effective strategies for cancer treatment. In this research, we studied whether CAFs have an influence on drug-sensitive ovarian cancer cells to become more resistant. We examined the influence of CAFs on genes and proteins expression changes in sensitive ovarian cancer cells. We prepared a 3D co-culture to investigate the role of CAFs on cancer cell morphology. METHODS Here, we performed a detailed analysis of drug-sensitive ovarian cancer cell lines (A2780 and W1) and the influence of ovarian CAFs on the A2780 and W1 cells morphology, genes and proteins expression. The 2D and 3D cultures, genes expression analysis (TaqMan qPCR), and proteins expression (Western blot analysis) were assessed in this study. RESULTS We observed upregulation of ABCC5, CYP2C8, CYP2C9, and DHFR mRNA in cell lines supplemented by CAFs medium. We showed fibronectin overexpression and COL3A1 downregulation after supplementation with CAFs. Co-culturing with CAFs prevented the formation of spheroids in 3D conditions. CONCLUSION We demonstrated that the process of drug resistance in ovarian cancer cells is launched by CAFs. CAFs not only simulate cancer cells to produce drug transporters and specific enzymes production, but also remodel the TME to increase drug resistance. We believe that cancer progression and migration is due to the CAFs po-tumorigenic activity.
Collapse
Affiliation(s)
- Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
26
|
du Plessis TL, Abdulla N, Kaur M. The utility of 3D models to study cholesterol in cancer: Insights and future perspectives. Front Oncol 2023; 13:1156246. [PMID: 37077827 PMCID: PMC10106729 DOI: 10.3389/fonc.2023.1156246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Cholesterol remains a vital molecule required for life; however, increasing evidence exists implicating cholesterol in cancer development and progression. Numerous studies investigating the relationship between cholesterol and cancer in 2-dimensional (2D) culture settings exist, however these models display inherent limitations highlighting the incipient need to develop better models to study disease pathogenesis. Due to the multifaceted role cholesterol plays in the cell, researchers have begun utilizing 3-dimensional (3D) culture systems, namely, spheroids and organoids to recapitulate cellular architecture and function. This review aims to describe current studies exploring the relationship between cancer and cholesterol in a variety of cancer types using 3D culture systems. We briefly discuss cholesterol dyshomeostasis in cancer and introduce 3D in-vitro culture systems. Following this, we discuss studies performed in cancerous spheroid and organoid models that focused on cholesterol, highlighting the dynamic role cholesterol plays in various cancer types. Finally, we attempt to provide potential gaps in research that should be explored in this rapidly evolving field of study.
Collapse
|
27
|
Liu X, Tang J, Peng L, Nie H, Zhang Y, Liu P. Cancer-associated fibroblasts promote malignant phenotypes of prostate cancer cells via autophagy : Cancer-associated fibroblasts promote prostate cancer development. Apoptosis 2023; 28:881-891. [PMID: 37000314 DOI: 10.1007/s10495-023-01828-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 04/01/2023]
Abstract
Dysregulation of autophagy in cancer-associated fibroblasts (CAFs) has been demonstrated to play a role in malignant phenotypes of human tumors. We intended to investigate the function of CAFs autophagy in prostate cancer (PCa). Firstly, CAFs and normal fibroblasts (NFs) were isolated from cancerous and adjacent normal tissues of PCa patients, for the following experimental preparation. In comparison with NFs, CAFs expressed higher levels of the myofibroblast marker ?-smooth muscle actin (?-SMA) and the mesenchymal marker Vimentin. Besides, CAFs possessed a higher autophagic level than NFs. As for malignant phenotypes, PCa cells co-cultured with CAFs-CM showed greater proliferation, migration and invasion capabilities, while these outcomes were obviously abolished by autophagy inhibition with 3-Methyladenine (3-MA). Moreover, silencing of ATG5 in CAFs inhibited fibroblasts autophagic level and suppressed malignant phenotypes of PCa cells, while ATG5 overexpression in NFs exerted opposite effects. Depletion of ATG5 in CAFs inhibited the xenograft tumor growth and lung metastasis of PCa cells. Taken together, our data demonstrated the promotive effect of CAFs on PCa malignant phenotypes through ATG5-dependent autophagy, suggesting a novel mechanism for PCa progression.
Collapse
Affiliation(s)
- XuKai Liu
- Department of Neurosurgery, Zhuzhou Central Hospital, Zhuzhou, Hunan Province, 412007, P.R. China
| | - JiZu Tang
- Department of Orthopaedics, Zhuzhou Central Hospital, Zhuzhou, Hunan Province, 412007, P.R. China
| | - LiQiang Peng
- Department of Trauma Center, Zhuzhou Central Hospital, Zhuzhou, Hunan Province, 412007, P.R. China
| | - HaiBo Nie
- Department of Urology, Zhuzhou Central Hospital, Zhuzhou, Hunan Province, 412007, P.R. China
| | - YuanGuang Zhang
- Department of Spine surgery, Zhuzhou Central Hospital, No. 116, Changjiang South Road, Tianyuan District, Zhuzhou, Hunan Province, 412007, P.R. China.
| | - Pan Liu
- Department of Emergency, Zhuzhou Central Hospital, No. 116, Changjiang South Road, Tianyuan District, Zhuzhou, Hunan Province, 412007, P.R. China.
| |
Collapse
|
28
|
Owen JS, Clayton A, Pearson HB. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022; 13:67. [PMID: 36671452 PMCID: PMC9856041 DOI: 10.3390/biom13010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
The continuous remodeling of the tumor microenvironment (TME) during prostate tumorigenesis is emerging as a critical event that facilitates cancer growth, progression and drug-resistance. Recent advances have identified extensive communication networks that enable tumor-stroma cross-talk, and emphasized the functional importance of diverse, heterogeneous stromal fibroblast populations during malignant growth. Cancer-associated fibroblasts (CAFs) are a vital component of the TME, which mediate key oncogenic events including angiogenesis, immunosuppression, metastatic progression and therapeutic resistance, thus presenting an attractive therapeutic target. Nevertheless, how fibroblast heterogeneity, recruitment, cell-of-origin and differential functions contribute to prostate cancer remains to be fully delineated. Developing our molecular understanding of these processes is fundamental to developing new therapies and biomarkers that can ultimately improve clinical outcomes. In this review, we explore the current challenges surrounding fibroblast identification, discuss new mechanistic insights into fibroblast functions during normal prostate tissue homeostasis and tumorigenesis, and illustrate the diverse nature of fibroblast recruitment and CAF generation. We also highlight the promise of CAF-targeted therapies for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Jasmine S. Owen
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Aled Clayton
- Tissue Microenvironment Group, Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, UK
| |
Collapse
|
29
|
Long-Term Treatment with Simvastatin Leads to Reduced Migration Capacity of Prostate Cancer Cells. Biomedicines 2022; 11:biomedicines11010029. [PMID: 36672537 PMCID: PMC9855777 DOI: 10.3390/biomedicines11010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Statins have been shown to improve survival of metastatic prostate cancer (mPCa). Nevertheless, their therapeutic use is still under debate. In the present study, we investigated the short-term effects of three different statins (simvastatin, atorvastatin and rosuvastatin) in various PCa cell lines mimicking androgen-sensitive and -insensitive PCa. Moreover, we generated three new PCa cell lines (LNCaPsim, ABLsim, PC-3sim) that were cultured with simvastatin over several months. Our data showed that the three statins expressed highly diverse short-term effects, with the strongest growth-inhibitory effect from simvastatin in PC-3 cells and almost no effect from rosuvastatin in any of the cell lines. Long-term treatment with simvastatin resulted in a loss of response to statins in all three cell lines, which was associated with an upregulation of cholesterol and fatty acid pathways as revealed through RNA sequencing. Despite that, long-term treated cells exhibited diminished spheroid growth and significantly reduced migration capacity per se and to differentiated osteoclasts. These findings were strengthened by reduced expression of genes annotated to cell adhesion and migration after long-term simvastatin treatment. Notably, mPCa patients taking statins were found to have lower numbers of circulating tumor cells in their blood with reduced levels of PSA and alkaline phosphatase. Our data suggest that long-term usage of simvastatin hampers the metastatic potential of PCa cells and may therefore be a potential therapeutic drug for mPCa.
Collapse
|
30
|
Cui X, Yao Z, Zhao T, Guo J, Ding J, Zhang S, Liang Z, Wei Z, Zoa A, Tian Y, Li J. siAKR1C3@PPA complex nucleic acid nanoparticles inhibit castration-resistant prostate cancer in vitro. Front Oncol 2022; 12:1069033. [PMID: 36591491 PMCID: PMC9800608 DOI: 10.3389/fonc.2022.1069033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction AKR1C3, as a crucial androgenic enzyme, implicates the androgen biosynthesis and promoting prostate cancer cell growth in vitro. This study provides a new gene therapy strategy for targeting AKR1C3 to treat castration-resistant prostate cancer. Methods siAKR1C3@PPA is assembled from PEG3500, PAMAM, Aptamer-PSMA, and siRNA for AKR1C3. We analyzed the relationship between AKR1C3 expression and the survival rate of prostate cancer patients based on the GEPIA online database to perform disease-free survival, and found that AKR1C3 may be an important factor leading to poor prognosis in prostate cancer. Considering AKR1C3 as a therapeutic target for castration-resistant prostate cancer, we constructed a complex nucleic acid nanoparticle, siAKR1C3@PPA to investigate the inhibitory effect on castration-resistant prostate cancer. Results Aptamer-PSMA acts as a target to guide siAKR1C3@PPA into PSMA-positive prostate cancer cells and specifically down regulate AKR1C3. Cyclin D1 was decreased as a result of siAKR1C3@PPA treatment. Changes in Cyclin D1 were consistent with decreased expression of AKR1C3 in LNCaP-AKR1C3 cells and 22RV1 cells. Furthermore, in the LNCaP-AKR1C3 group, 1070 proteins were upregulated and 1015 proteins were downregulated compared to the LNCaP group according to quantitative 4D label-free proteomics. We found 42 proteins involved in cell cycle regulation. In a validated experiment, we demonstrated that PCNP and CINP were up-regulated, and TERF2 and TP53 were down-regulated by western blotting. Conclusion We concluded that siAKR1C3@PPA may arrest the cell cycle and affect cell proliferation.
Collapse
Affiliation(s)
- Xiaoli Cui
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhou Yao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Tianyu Zhao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiahui Guo
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jipeng Ding
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Siwei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zuowen Liang
- Department of Andrology, First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhengren Wei
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Alexis Zoa
- Department of Pharmacology, School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Yuantong Tian
- Department of Pharmacology, School of Pharmacy, Gannan Medical University, Ganzhou, China,*Correspondence: Yuantong Tian, ; Jing Li,
| | - Jing Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China,*Correspondence: Yuantong Tian, ; Jing Li,
| |
Collapse
|
31
|
Marklund M, Schultz N, Friedrich S, Berglund E, Tarish F, Tanoglidi A, Liu Y, Bergenstråhle L, Erickson A, Helleday T, Lamb AD, Sonnhammer E, Lundeberg J. Spatio-temporal analysis of prostate tumors in situ suggests pre-existence of treatment-resistant clones. Nat Commun 2022; 13:5475. [PMID: 36115838 PMCID: PMC9482614 DOI: 10.1038/s41467-022-33069-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/30/2022] [Indexed: 11/25/2022] Open
Abstract
The molecular mechanisms underlying lethal castration-resistant prostate cancer remain poorly understood, with intratumoral heterogeneity a likely contributing factor. To examine the temporal aspects of resistance, we analyze tumor heterogeneity in needle biopsies collected before and after treatment with androgen deprivation therapy. By doing so, we are able to couple clinical responsiveness and morphological information such as Gleason score to transcriptome-wide data. Our data-driven analysis of transcriptomes identifies several distinct intratumoral cell populations, characterized by their unique gene expression profiles. Certain cell populations present before treatment exhibit gene expression profiles that match those of resistant tumor cell clusters, present after treatment. We confirm that these clusters are resistant by the localization of active androgen receptors to the nuclei in cancer cells post-treatment. Our data also demonstrates that most stromal cells adjacent to resistant clusters do not express the androgen receptor, and we identify differentially expressed genes for these cells. Altogether, this study shows the potential to increase the power in predicting resistant tumors.
Collapse
Affiliation(s)
- Maja Marklund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Niklas Schultz
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Stefanie Friedrich
- Department of Biochemistry and Biophysics, Stockholm University, Science for Laboratory, Solna, Sweden
| | - Emelie Berglund
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Firas Tarish
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Anna Tanoglidi
- Department of Pathology, Evangelismos General Hospital, 45-47 Ipsilantou str, Athens, Greece
| | - Yao Liu
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Ludvig Bergenstråhle
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden
| | - Andrew Erickson
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Thomas Helleday
- Division of Translational Medicine & Chemical Biology, Karolinska Institute, Science for Life Laboratory, Solna, Sweden
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Erik Sonnhammer
- Department of Biochemistry and Biophysics, Stockholm University, Science for Laboratory, Solna, Sweden.
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
32
|
Role of Lipids and Lipid Metabolism in Prostate Cancer Progression and the Tumor’s Immune Environment. Cancers (Basel) 2022; 14:cancers14174293. [PMID: 36077824 PMCID: PMC9454444 DOI: 10.3390/cancers14174293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Modulation of lipid metabolism during cancer development and progression is one of the hallmarks of cancer in solid tumors; its importance in prostate cancer (PCa) has been demonstrated in numerous studies. Lipid metabolism is known to interact with androgen receptor signaling, an established driver of PCa progression and castration resistance. Similarly, immune cell infiltration into prostate tissue has been linked with the development and progression of PCa as well as with disturbances in lipid metabolism. Immuno-oncological drugs inhibit immune checkpoints to activate immune cells’ abilities to recognize and destroy cancer cells. These drugs have proved to be successful in treating some solid tumors, but in PCa their efficacy has been poor, with only a small minority of patients demonstrating a treatment response. In this review, we first describe the importance of lipid metabolism in PCa. Second, we collate current information on how modulation of lipid metabolism of cancer cells and the surrounding immune cells may impact the tumor’s immune responses which, in part, may explain the unimpressive results of immune-oncological treatments in PCa.
Collapse
|
33
|
Cancer associated fibroblasts secreted exosomal miR-1290 contributes to prostate cancer cell growth and metastasis via targeting GSK3β. Cell Death Dis 2022; 8:371. [PMID: 35999213 PMCID: PMC9399109 DOI: 10.1038/s41420-022-01163-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/22/2023]
Abstract
Cancer-associated fibroblasts (CAFs) play crucial roles in mediating tumor growth and metastasis via transferring exosomes to neighboring cells, whereas the mechanisms by which CAFs regulate the tumorgenesis of prostate cancer (PC) remain largely unknown. In this study, CAFs and normal fibroblasts (NFs) were isolated from PC tissues and adjacent normal tissues, respectively. Exosomes (NFs-Exo and CAFs-Exo) were then isolated from the supernatant of NFs and CAFs. Next, the differentially expressed miRNAs (DEMs) between NFs-Exo and CAFs-Exo were identified using RNA-sequencing. Cell viability, migration and invasion were detected with CCK-8 and Transwell assays. Protein expression was measured with western blot. We found that CAFs-Exo remarkably enhanced PC cell migration, invasion, stemness, epithelial-mesenchymal transition (EMT) and metastasis. Significantly, miR-1290 level was upregulated in CAFs-Exo compared to NFs-Exo. In addition, CAFs could transfer exosomes to PC cells, resulting in a marked increase of miR-1290 level in cells. Moreover, exosomal miR-1290 could inhibit GSK3β/β-catenin signaling by binding with the downstream target GSK3β mRNA. Meanwhile, miR-1290 antagomir notably reversed the effects of CAFs-Exo on PC cells through activating GSK3β/β-catenin signaling. Collectively, exosomal miR-1290 from CAFs could promote PC cell growth and metastasis via inhibiting GSK3β/β-catenin signaling, suggesting that miR-1290 may serve as potential therapeutic target for the treatment of PC.
Collapse
|
34
|
Liu Y, Wang T, Li R. A prognostic Risk Score model for oral squamous cell carcinoma constructed by 6 glycolysis-immune-related genes. BMC Oral Health 2022; 22:324. [PMID: 35922788 PMCID: PMC9351085 DOI: 10.1186/s12903-022-02358-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most frequent tumor of the head and neck. The glycolysis-related genes and immune-related genes have been proven prognostic values in various cancers. Our study aimed to test the prognostic value of glycolysis-immune-related genes in OSCC. Methods Data of OSCC patients were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Enrichment analysis was applied to the glycolysis- and immune-related genes screened by differential expression analysis. Univariate Cox and LASSO Cox analyses were used to filtrate the genes related to the prognosis of OSCC and to construct Risk Score model. Results A Risk Score model was constructed by six glycolysis-immune-related genes (including ALDOC, VEGFA, HRG, PADI3, IGSF11 and MIPOL1). High risk OSCC patients (Risk Score >−0.3075) had significantly worse overall survival than that of low risk patients (Risk Score <−0.3075). Conclusions The Risk Score model constructed basing on 6 glycolysis-immune-related genes was reliable in stratifying OSCC patients with different prognosis.
Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02358-0.
Collapse
Affiliation(s)
- Yi Liu
- Department of Stomatology, Tianjin First Central Hospital, Nankai District, No.24 Fukang Road, Tianjin, 300192, People's Republic of China.
| | - Tong Wang
- Department of Stomatology, Tianjin First Central Hospital, Nankai District, No.24 Fukang Road, Tianjin, 300192, People's Republic of China
| | - Ronghua Li
- Department of Stomatology, Tianjin First Central Hospital, Nankai District, No.24 Fukang Road, Tianjin, 300192, People's Republic of China
| |
Collapse
|
35
|
Henrique RBL, Lima RRM, Monteiro CAP, Oliveira WF, Pereira G, Cabral Filho PE, Fontes A. Advances in the study of spheroids as versatile models to evaluate biological interactions of inorganic nanoparticles. Life Sci 2022; 302:120657. [PMID: 35609631 DOI: 10.1016/j.lfs.2022.120657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 12/26/2022]
Abstract
Spheroids are in vitro three-dimensional multicellular microstructures able to mimic the biological microenvironment, including the complexity of tumor architecture. Therefore, results closer to those expected for in vivo organisms can be reached using spheroids compared to the cell culture monolayer model. Inorganic nanoparticles (NPs) have also been playing relevant roles in the comprehension of biological processes. Moreover, they have been probed as novel diagnostic and therapeutical nanosystems. In this context, in this review, we present applications, published in the last five years, which show that spheroids can be versatile models to study and evaluate biological interactions involving inorganic NPs. Applications of spheroids associated with (i) basic studies to assess the penetration profile of nanostructures, (ii) the evaluation of NP toxicity, and (iii) NP-based therapeutical approaches are described. Fundamentals of spheroids and their formation methods are also included. We hope that this review can be a reference and guide future investigations related to this interesting three-dimensional biological model, favoring advances to Nanobiotechnology.
Collapse
Affiliation(s)
- Rafaella B L Henrique
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rennan R M Lima
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Camila A P Monteiro
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Weslley F Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Goreti Pereira
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
36
|
Mutant p53, the Mevalonate Pathway and the Tumor Microenvironment Regulate Tumor Response to Statin Therapy. Cancers (Basel) 2022; 14:cancers14143500. [PMID: 35884561 PMCID: PMC9323637 DOI: 10.3390/cancers14143500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor cells have the ability to co-opt multiple metabolic pathways, enhance glucose uptake and utilize aerobic glycolysis to promote tumorigenesis, which are characteristics constituting an emerging hallmark of cancer. Mutated tumor suppressor and proto-oncogenes are frequently responsible for enhanced metabolic pathway signaling. The link between mutant p53 and the mevalonate (MVA) pathway has been implicated in the advancement of various malignancies, with tumor cells relying heavily on increased MVA signaling to fuel their rapid growth, metastatic spread and development of therapy resistance. Statin drugs inhibit HMG-CoA reductase, the pathway’s rate-limiting enzyme, and as such, have long been studied as a potential anti-cancer therapy. However, whether statins provide additional anti-cancer properties is worthy of debate. Here, we examine retrospective, prospective and pre-clinical studies involving the use of statins in various cancer types, as well as potential issues with statins’ lack of efficacy observed in clinical trials and future considerations for upcoming clinical trials.
Collapse
|
37
|
Mulvey A, Muggeo-Bertin E, Berthold DR, Herrera FG. Overcoming Immune Resistance With Radiation Therapy in Prostate Cancer. Front Immunol 2022; 13:859785. [PMID: 35603186 PMCID: PMC9115849 DOI: 10.3389/fimmu.2022.859785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/31/2022] [Indexed: 01/13/2023] Open
Abstract
Prostate cancer is the second most common cancer in men and represents a significant healthcare burden worldwide. Therapeutic options in the metastatic castration-resistant setting remain limited, despite advances in androgen deprivation therapy, precision medicine and targeted therapies. In this review, we summarize the role of immunotherapy in prostate cancer and offer perspectives on opportunities for future development, based on current knowledge of the immunosuppressive tumor microenvironment. Furthermore, we discuss the potential for synergistic therapeutic strategies with modern radiotherapy, through modulation of the tumor microenvironment. Emerging clinical and pre-clinical data suggest that radiation can convert immune desert tumors into an inflamed immunological hub, potentially sensitive to immunotherapy.
Collapse
Affiliation(s)
- Arthur Mulvey
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Emilien Muggeo-Bertin
- Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Dominik R Berthold
- Department of Oncology, Medical Oncology Service, Lausanne University Hospital, Lausanne, Switzerland
| | - Fernanda G Herrera
- Department of Oncology, Immuno-Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Department of Oncology, Radiation Oncology Service, Lausanne University Hospital, Lausanne, Switzerland.,Ludwig Institute for Cancer Research - Lausanne Branch, Lausanne, Switzerland
| |
Collapse
|
38
|
Subtypes in pancreatic ductal adenocarcinoma based on niche factor dependency show distinct drug treatment responses. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:89. [PMID: 35272688 PMCID: PMC8908673 DOI: 10.1186/s13046-022-02301-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/24/2022] [Indexed: 12/30/2022]
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma in which microenvironmental (niche) factors promote PDAC progression. In mouse models, reduction of the stroma increased the proportion of poorly differentiated PDAC with a worse prognosis. Here, we aimed to clarify the effects of stroma on PDAC that may define the PDAC phenotype and induce distinct therapeutic responses. Methods The molecular features of PDAC based on differentiation grade were clarified by genome and transcriptome analysis using PDAC organoids (PDOs). We identified the dependency on niche factors that might regulate the differentiation grade. A three-dimensional co-culture model with cancer-associated fibroblasts (CAFs) was generated to determine whether CAFs provide niche factors essential for differentiated PDAC. PDOs were subtyped based on niche factor dependency, and the therapeutic responses for each subtype were compared. Results The expression profiles of PDOs differed depending on the differentiation grade. Consistent with the distinct profiles, well differentiated types showed high niche dependency, while poorly differentiated types showed low niche dependency. The three-dimensional co-culture model revealed that well differentiated PDOs were strongly dependent on CAFs for growth, and moderately differentiated PDOs showed plasticity to change morphology depending on CAFs. Differentiated PDOs upregulated the expression of mevalonate pathway-related genes correlated with the niche dependency and were more sensitive to simvastatin than poorly differentiated PDOs. Conclusions Our findings suggest that CAFs maintain the differentiated PDAC phenotype through secreting niche factors and induce distinct drug responses. These results may lead to the development of novel subtype-based therapeutic strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02301-9.
Collapse
|
39
|
Homo Sapiens (Hsa)-microRNA (miR)-6727-5p Contributes to the Impact of High-Density Lipoproteins on Fibroblast Wound Healing In Vitro. MEMBRANES 2022; 12:membranes12020154. [PMID: 35207076 PMCID: PMC8876102 DOI: 10.3390/membranes12020154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/26/2022]
Abstract
Chronic, non-healing wounds are a significant cause of global morbidity and mortality, and strategies to improve delayed wound closure represent an unmet clinical need. High-density lipoproteins (HDL) can enhance wound healing, but exploitation of this finding is challenging due to the complexity and instability of these heterogeneous lipoproteins. The responsiveness of primary human neonatal keratinocytes, and neonatal and human dermal fibroblasts (HDF) to HDL was confirmed by cholesterol efflux, but promotion of ‘scrape’ wound healing occurred only in primary human neonatal (HDFn) and adult fibroblasts (HDFa). Treatment of human fibroblasts with HDL induced multiple changes in the expression of small non-coding microRNA sequences, determined by microchip array, including hsa-miR-6727-5p. Intriguingly, levels of hsa-miR-6727-5p increased in HDFn, but decreased in HDFa, after exposure to HDL. Delivery of a hsa-miR-6727-5p mimic elicited repression of different target genes in HDFn (ZNF584) and HDFa (EDEM3, KRAS), and promoted wound closure in HDFn. By contrast, a hsa-miR-6727-5p inhibitor promoted wound closure in HDFa. We conclude that HDL treatment exerts distinct effects on the expression of hsa-miR-6727-5p in neonatal and adult fibroblasts, and that this is a sequence which plays differential roles in wound healing in these cell types, but cannot replicate the myriad effects of HDL.
Collapse
|
40
|
Delinassios JG, Hoffman RM. The cancer-inhibitory effects of proliferating tumor-residing fibroblasts. Biochim Biophys Acta Rev Cancer 2021; 1877:188673. [PMID: 34953931 DOI: 10.1016/j.bbcan.2021.188673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/09/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022]
Abstract
Initiation, local progression, and metastasis of cancer are associated with specific morphological, molecular, and functional changes in the extracellular matrix and the fibroblasts within the tumor microenvironment (TME). In the early stages of tumor development, fibroblasts are an obstacle that cancer cells must surpass or nullify to progress. Thus, in early tumor progression, specific signaling from cancer cells activates bio-pathways, which abolish the innate anticancer properties of fibroblasts and convert a high proportion of them to tumor-promoting cancer-associated fibroblasts (CAFs). Following this initial event, a wide spectrum of gene expression changes gradually leads to the development of a stromal fibroblast population with complex heterogeneity, creating fibroblast subtypes with characteristic profiles, which may alternate between being tumor-promotive and tumor-suppressive, topologically and chronologically in the TME. These fibroblast subtypes form the tumor's histological landscape including areas of cancer growth, inflammation, angiogenesis, invasion fronts, proliferating and non-proliferating fibroblasts, cancer-cell apoptosis, fibroblast apoptosis, and necrosis. These features reflect general deregulation of tissue homeostasis within the TME. This review discusses fundamental and current knowledge that has established the existence of anticancer fibroblasts within the various interacting elements of the TME. It is proposed that the maintenance of fibroblast proliferation is an essential parameter for the activation of their anticancer capacity, similar to that by which normal fibroblasts would be activated in wound repair, thus maintaining tissue homeostasis. Encouragement of research in this direction may render new means of cancer therapy and a greater understanding of tumor progression.
Collapse
Affiliation(s)
- John G Delinassios
- International Institute of Anticancer Research, 1(st) km Kapandritiou-Kalamou Rd., Kapandriti, 19014 Attica, Greece.
| | - Robert M Hoffman
- Department of Surgery, University of California, 9300 Campus Point Drive, La Jolla, CA 92037, USA; AntiCancer Inc., 7917 Ostrow St, San Diego, CA 92111, USA.
| |
Collapse
|
41
|
[Spheroids to organoids: Solid cancer models for anticancer drug discovery]. Bull Cancer 2021; 109:49-57. [PMID: 34848046 DOI: 10.1016/j.bulcan.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022]
Abstract
Cell culture is an important and necessary technology in oncology research. Currently, two-dimensional (2D) cell culture models are the most widely used, but they cannot reproduce the complexity and pathophysiology of tumors in vivo. This may be a major cause of the high rate of attrition of anticancer drugs entering clinical trials, the rate of new anticancer drugs entering the market being less than 5 %. One way to improve the success of new cancer drugs in the clinic is based on the use of three-dimensional (3D) cell culture models, more able to represent the complex environment and architecture of tumors. These 3D culture systems are also a powerful research tool for modeling the evolution of cancer from early stages to metastasis. Spheroids and organoids, the most adaptable models among 3D culture systems, are beginning to be used in pharmaceutical research and personalized medicine. In this article, we review the use of spheroids and organoids by highlighting their differences, discussing their impact on drug development, and looking at future challenges.
Collapse
|
42
|
Hermawan A, Putri H. Systematic analysis of potential targets of the curcumin analog pentagamavunon-1 (PGV-1) in overcoming resistance of glioblastoma cells to bevacizumab. Saudi Pharm J 2021; 29:1289-1302. [PMID: 34819791 PMCID: PMC8596150 DOI: 10.1016/j.jsps.2021.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Background Glioblastoma is one of the most aggressive and deadliest malignant tumors. Acquired resistance decreases the effectiveness of bevacizumab in glioblastoma treatment and thus increases the mortality rate in patients with glioblastoma. In this study, the potential targets of pentagamavunone-1 (PGV-1), a curcumin analog, were explored as a complementary treatment to bevacizumab in glioblastoma therapy. Methods Target prediction, data collection, and analysis were conducted using the similarity ensemble approach (SEA), SwissTargetPrediction, STRING DB, and Gene Expression Omnibus (GEO) datasets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were conducted using Webgestalt and DAVID, respectively. Hub genes were selected based on the highest degree scores using the CytoHubba. Analysis of genetic alterations and gene expression as well as Kaplan–Meier survival analysis of selected genes were conducted with cBioportal and GEPIA. Immune infiltration correlations between selected genes and immune cells were analyzed with database TIMER 2.0. Results We found 374 targets of PGV-1, 1139 differentially expressed genes (DEGs) from bevacizumab-resistant-glioblastoma cells. A Venn diagram analysis using these two sets of data resulted in 21 genes that were identified as potential targets of PGV-1 against bevacizumab resistance (PBR). PBR regulated the metabolism of xenobiotics by cytochrome P450. Seven potential therapeutic PBR, namely GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110 were found to have genetic alterations in 1.2%–30% of patients with glioblastoma. Analysis using the GEPIA database showed that the mRNA expression of ADAM10, AKR1B1, and HSD17B10 was significantly upregulated in glioblastoma patients. Kaplan–Meier survival analysis showed that only patients with low mRNA expression of AKR1B1 had significantly better overall survival than the patients in the high mRNA group. We also found a correlation between PBR and immune cells and thus revealed the potential of PGV-1 as an immunotherapeutic agent via targeting of PBR. Conclusion This study highlighted seven PBR, namely, GSTM1, AKR1C3, AKR1C4, PTGS2, ADAM10, AKR1B1, and HSD17B110. This study also emphasized the potential of PBR as a target for immunotherapy with PGV-1. Further validation of the results of this study is required for the development of PGV-1 as an adjunct to immunotherapy for glioblastoma to counteract bevacizumab resistance.
Collapse
Key Words
- ADAM10, a disintegrant and metalloproteinase 10
- AKRs, Aldo keto reductases
- Bevacizumab resistance
- Bioinformatics
- CAFs, Cancer-associated fibroblasts
- COX-2, cyclooxigenase-2
- DEGs, differentially expressed genes
- DT, Direct targets of PGV-1
- GSTM1, glutathione S-transferase mu 1
- GSTP1, glutathione S-transferase Pi-1
- Glioblastoma
- HSD17B10, Human type 10 17beta-hydroxysteroid dehydrogenase
- Immunotherapy
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- PBR, potential therapeutic target genes of PGV-1 against bevacizumab resistance glioblastoma
- PGV-1
- PGV-1, Pentagamavunon-1
- PTGS2, prostaglandin-endoperoxide synthase 2
- ROS, reactive oxygen species
- SEA, Similarity ensemble approach
- Target prediction
- VEGF, vascular endothelial growth factor
- Webgestalt, WEB-based GEne SeT AnaLysis Toolkit
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| |
Collapse
|
43
|
Sex-Based Differences in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1329:499-533. [PMID: 34664253 DOI: 10.1007/978-3-030-73119-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Cancers are heterogeneous multifactorial diseases consisting of a major public health issue worldwide. Sex disparities are evidenced in cancer incidence, mortality, expression of prognosis factor, response to treatment, and survival. For both sexes, an interplay of intrinsic and environmental factors influences cancer cells and tumor microenvironment (TME) components. The TME cumulates both supportive and communicative functions, contributing to cancer development, progression, and metastasis dissemination. The frontline topics of this chapter are focused on the contribution of sex, via steroid hormones, such as estrogens and androgens, on the following components of the TME: cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), blood and lymphatic endothelial cells, and immunity/inflammatory system.
Collapse
|
44
|
Pamarthy S, Sabaawy HE. Patient derived organoids in prostate cancer: improving therapeutic efficacy in precision medicine. Mol Cancer 2021; 20:125. [PMID: 34587953 PMCID: PMC8480086 DOI: 10.1186/s12943-021-01426-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/11/2021] [Indexed: 12/30/2022] Open
Abstract
With advances in the discovery of the clinical and molecular landscapes of prostate cancer (PCa), implementation of precision medicine-guided therapeutic testing in the clinic has become a priority. Patient derived organoids (PDOs) are three-dimensional (3D) tissue cultures that promise to enable the validation of preclinical drug testing in precision medicine and coclinical trials by modeling PCa for predicting therapeutic responses with a reliable efficacy. We evaluate the advances in 3D culture and PDO use to model clonal heterogeneity and screen for effective targeted therapies, with a focus on the technological advances in generating PDOs. Recent innovations include the utilization of PDOs both in original research and/or correlative studies in clinical trials to examine drug effects within the PCa tumor microenvironment (TME). There has also been a significant improvement with the utilization of various extracellular matrices and single cell assays for the generation and long-term propagation of PDOs. Single cell derived PDOs could faithfully recapitulate the original tumor and reflect the heterogeneity features. While most PDO use for precision medicine understandably involved tissues derived from metastatic patients, we envision that the generation of PDOs from localized PCa along with the incorporation of cells of the TME in tissue models would fulfill the great potential of PDOs in predicting drug clinical benefits. We conclude that single cell derived PDOs reiterate the molecular features of the original tumor and represent a reliable pre-clinical PCa model to understand individual tumors and design tailored targeted therapies.
Collapse
Affiliation(s)
- Sahithi Pamarthy
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, Rm 4557, New Brunswick, NJ, 08901, USA
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers University, 195 Little Albany St, Rm 4557, New Brunswick, NJ, 08901, USA.
- Clinical Investigations and Precision Therapeutics Program, Devision of Medical Oncology, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Departments of Pathology and Laboratory Medicine, RBHS-Robert Wood Johnson Medical School, New Brunswick, USA.
- Departments of Medicine, RBHS-Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
45
|
Püschel J, Dubrovska A, Gorodetska I. The Multifaceted Role of Aldehyde Dehydrogenases in Prostate Cancer Stem Cells. Cancers (Basel) 2021; 13:4703. [PMID: 34572930 PMCID: PMC8472046 DOI: 10.3390/cancers13184703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are the only tumor cells possessing self-renewal and differentiation properties, making them an engine of tumor progression and a source of tumor regrowth after treatment. Conventional therapies eliminate most non-CSCs, while CSCs often remain radiation and drug resistant, leading to tumor relapse and metastases. Thus, targeting CSCs might be a powerful tool to overcome tumor resistance and increase the efficiency of current cancer treatment strategies. The identification and isolation of the CSC population based on its high aldehyde dehydrogenase activity (ALDH) is widely accepted for prostate cancer (PCa) and many other solid tumors. In PCa, several ALDH genes contribute to the ALDH activity, which can be measured in the enzymatic assay by converting 4, 4-difluoro-4-bora-3a, 4a-diaza-s-indacene (BODIPY) aminoacetaldehyde (BAAA) into the fluorescent product BODIPY-aminoacetate (BAA). Although each ALDH isoform plays an individual role in PCa biology, their mutual functional interplay also contributes to PCa progression. Thus, ALDH proteins are markers and functional regulators of CSC properties, representing an attractive target for cancer treatment. In this review, we discuss the current state of research regarding the role of individual ALDH isoforms in PCa development and progression, their possible therapeutic targeting, and provide an outlook for the future advances in this field.
Collapse
Affiliation(s)
- Jakob Püschel
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| | - Anna Dubrovska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, 01309 Dresden, Germany;
| |
Collapse
|
46
|
Pandey M, Cuddihy G, Gordon JA, Cox ME, Wasan KM. Inhibition of Scavenger Receptor Class B Type 1 (SR-B1) Expression and Activity as a Potential Novel Target to Disrupt Cholesterol Availability in Castration-Resistant Prostate Cancer. Pharmaceutics 2021; 13:1509. [PMID: 34575583 PMCID: PMC8467449 DOI: 10.3390/pharmaceutics13091509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
There have been several studies that have linked elevated scavenger receptor class b type 1 (SR-B1) expression and activity to the development and progression of castration-resistant prostate cancer (CRPC). SR-B1 facilitates the influx of cholesterol to the cell from lipoproteins in systemic circulation. This influx of cholesterol may be important for many cellular functions, including the synthesis of androgens. Castration-resistant prostate cancer tumors can synthesize androgens de novo to supplement the loss of exogenous sources often induced by androgen deprivation therapy. Silencing of SR-B1 may impact the ability of prostate cancer cells, particularly those of the castration-resistant state, to maintain the intracellular supply of androgens by removing a supply of cholesterol. SR-B1 expression is elevated in CRPC models and has been linked to poor survival of patients. The overarching belief has been that cholesterol modulation, through either synthesis or uptake inhibition, will impact essential signaling processes, impeding the proliferation of prostate cancer. The reduction in cellular cholesterol availability can impede prostate cancer proliferation through both decreased steroid synthesis and steroid-independent mechanisms, providing a potential therapeutic target for the treatment of prostate cancer. In this article, we discuss and highlight the work on SR-B1 as a potential novel drug target for CRPC management.
Collapse
Affiliation(s)
- Mitali Pandey
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Grace Cuddihy
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Jacob A. Gordon
- Oncology Bioscience, Oncology R&D, AstraZeneca, Boston, MA 02451, USA;
| | - Michael E. Cox
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| | - Kishor M. Wasan
- Department of Urological Sciences, Faculty of Medicine, University of British Columbia, Vancouver Prostate Centre, Vancouver, BC V6T 1Z3, Canada; (M.P.); (M.E.C.)
| |
Collapse
|
47
|
Ladurner M, Wieser M, Eigentler A, Seewald M, Dobler G, Neuwirt H, Kafka M, Heidegger I, Horninger W, Bektic J, Klocker H, Obrist P, Eder IE. Validation of Cell-Free RNA and Circulating Tumor Cells for Molecular Marker Analysis in Metastatic Prostate Cancer. Biomedicines 2021; 9:biomedicines9081004. [PMID: 34440208 PMCID: PMC8391593 DOI: 10.3390/biomedicines9081004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 12/22/2022] Open
Abstract
Since tissue material is often lacking in metastatic prostate cancer (mPCa), there is increasing interest in using liquid biopsies for treatment decision and monitoring therapy responses. The purpose of this study was to validate the usefulness of circulating tumor cells (CTCs) and plasma-derived cell-free (cf) RNA as starting material for gene expression analysis through qPCR. CTCs were identified upon prostate-specific membrane antigen and/or cytokeratin positivity after enrichment with ScreenCell (Westford, Massachusetts, USA) filters or the microfluidic ParsortixTM (Guildford, Surrey, United Kingdom) system. Overall, 50% (28/56) of the patients had ≥5 CTCs/7.5 mL of blood. However, CTC count did not correlate with Gleason score, serum PSA, or gene expression. Notably, we observed high expression of CD45 in CTC samples after enrichment, which could be successfully eliminated through picking of single cells. Gene expression in picked CTCs was, however, rather low. In cfRNA from plasma, on the other hand, gene expression levels were higher compared to those found in CTCs. Moreover, we found that PSA was significantly increased in plasma-derived cfRNA of mPCa patients compared to healthy controls. High PSA expression was also associated with poor overall survival, indicating that using cfRNA from plasma could be used as a valuable tool for molecular expression analysis.
Collapse
Affiliation(s)
- Michael Ladurner
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Manuel Wieser
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria; (M.W.); (M.S.); (P.O.)
| | - Andrea Eigentler
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Martin Seewald
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria; (M.W.); (M.S.); (P.O.)
| | - Gabriele Dobler
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Hannes Neuwirt
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Mona Kafka
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Isabel Heidegger
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Wolfgang Horninger
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Jasmin Bektic
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Helmut Klocker
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
| | - Peter Obrist
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria; (M.W.); (M.S.); (P.O.)
| | - Iris E. Eder
- Department of Urology, Medical University Innsbruck, 6020 Innsbruck, Austria; (M.L.); (A.E.); (G.D.); (M.K.); (I.H.); (W.H.); (J.B.); (H.K.)
- Correspondence: ; Tel.: +43-512-504-24819; Fax: +43-512-504-24817
| |
Collapse
|
48
|
Miller AL, Garcia PL, Fehling SC, Gamblin TL, Vance RB, Council LN, Chen D, Yang ES, van Waardenburg RCAM, Yoon KJ. The BET Inhibitor JQ1 Augments the Antitumor Efficacy of Gemcitabine in Preclinical Models of Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13143470. [PMID: 34298684 PMCID: PMC8303731 DOI: 10.3390/cancers13143470] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Gemcitabine is used to treat pancreatic cancer (PC), but is not curative. We sought to determine whether gemcitabine + a BET bromodomain inhibitor was superior to gemcitabine, and identify proteins that may contribute to the efficacy of this combination. This study was based on observations that cell cycle dysregulation and DNA damage augment the efficacy of gemcitabine. BET inhibitors arrest cells in G1 and allow increases in DNA damage, likely due to inhibition of expression of DNA repair proteins Ku80 and RAD51. BET inhibitors (JQ1 or I-BET762) + gemcitabine were synergistic in vitro, in Panc1, MiaPaCa2 and Su86 PC cell lines. JQ1 + gemcitabine was more effective in vivo than either drug alone in patient-derived xenograft models (P < 0.01). Increases in the apoptosis marker cleaved caspase 3 and DNA damage marker γH2AX paralleled antitumor efficacy. Notably, RNA-seq data showed that JQ1 + gemcitabine selectively inhibited HMGCS2 and APOC1 ~6-fold, compared to controls. These proteins contribute to cholesterol biosynthesis and lipid metabolism, and their overexpression supports tumor cell proliferation. IPA data indicated that JQ1 + gemcitabine selectively inhibited the LXR/RXR activation pathway, suggesting the hypothesis that this inhibition may contribute to the observed in vivo efficacy of JQ1 + gemcitabine.
Collapse
Affiliation(s)
- Aubrey L. Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
| | - Patrick L. Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
| | - Samuel C. Fehling
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
| | - Tracy L. Gamblin
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
| | - Rebecca B. Vance
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
| | - Leona N. Council
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- The Birmingham Veterans Administration Medical Center, Birmingham, AL 35233, USA
| | - Dongquan Chen
- Department of Medicine, Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Eddy S. Yang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Robert C. A. M. van Waardenburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
| | - Karina J. Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
- Correspondence: ; Tel.: +1-205-934-6761
| |
Collapse
|
49
|
Shen S, Li J, Huo S, Ma M, Zhu X, Rasam S, Duan X, Qu M, Titus MA, Qu J. Parallel, High-Quality Proteomic and Targeted Metabolomic Quantification Using Laser Capture Microdissected Tissues. Anal Chem 2021; 93:8711-8718. [PMID: 34110778 PMCID: PMC10640922 DOI: 10.1021/acs.analchem.1c01026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantitative proteomics/metabolomics investigation of laser-capture-microdissection (LCM) cell populations from clinical cohorts affords precise insights into disease/therapeutic mechanisms, nonetheless high-quality quantification remains a prominent challenge. Here, we devised an LC/MS-based approach allowing parallel, robust global-proteomics and targeted-metabolomics quantification from the same LCM samples, using biopsies from prostate cancer (PCa) patients as the model system. The strategy features: (i) an optimized molecular weight cutoff (MWCO) filter-based separation of proteins and small-molecule fractions with high and consistent recoveries; (ii) microscale derivatization and charge-based enrichment for ultrasensitive quantification of key androgens (LOQ = 5 fg/1k cells) with excellent accuracy/precision; (iii) reproducible/precise proteomics quantification with low-missing-data using a detergent-cocktail-based sample preparation and an IonStar pipeline for reproducible and precise protein quantification with excellent data quality. Key parameters enabling robust/reproducible quantification have been meticulously evaluated and optimized, and the results underscored the importance of surveying quantitative performances against key parameters to facilitate fit-for-purpose method development. As a proof-of-concept, high-quality quantification of the proteome and androgens in LCM samples of PCa patient-matched cancerous and benign epithelial/stromal cells was achieved (N = 16), which suggested distinct androgen distribution patterns across cell types and regions, as well as the dysregulated pathways involved in tumor-stroma crosstalk in PCa pathology. This strategy markedly leverages the scope of quantitative-omics investigations using LCM samples, and combining with IonStar, can be readily adapted to larger-cohort clinical analysis. Moreover, the capacity of parallel proteomics/metabolomics quantification permits precise corroboration of regulatory processes on both protein and small-molecule levels, with decreased batch effect and enhanced utilization of samples.
Collapse
Affiliation(s)
- Shichen Shen
- Department of Pharmaceutical Sciences, SUNY-Buffalo, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York 14203, United States
| | - Jun Li
- Department of Pharmaceutical Sciences, SUNY-Buffalo, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York 14203, United States
| | - Shihan Huo
- Department of Pharmaceutical Sciences, SUNY-Buffalo, Buffalo, New York 14214, United States
| | - Min Ma
- Roswell Park Comprehensive Cancer Institute, Buffalo, New York 14203, United States
| | - Xiaoyu Zhu
- Department of Pharmaceutical Sciences, SUNY-Buffalo, Buffalo, New York 14214, United States
| | - Sailee Rasam
- Department of Biochemistry, SUNY-Buffalo, Buffalo, New York 14203, United States
| | - Xiaotao Duan
- Department of Pharmaceutical Sciences, SUNY-Buffalo, Buffalo, New York 14214, United States
| | - Miao Qu
- Department of Neurology, Xuanwu Hospital, Beijing, China 100053
| | - Mark A Titus
- Roswell Park Comprehensive Cancer Institute, Buffalo, New York 14203, United States
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Jun Qu
- Department of Pharmaceutical Sciences, SUNY-Buffalo, Buffalo, New York 14214, United States
- New York State Center of Excellence in Bioinformatics & Life Sciences, Buffalo, New York 14203, United States
| |
Collapse
|
50
|
Joshi RS, Kanugula SS, Sudhir S, Pereira MP, Jain S, Aghi MK. The Role of Cancer-Associated Fibroblasts in Tumor Progression. Cancers (Basel) 2021; 13:cancers13061399. [PMID: 33808627 PMCID: PMC8003545 DOI: 10.3390/cancers13061399] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 12/15/2022] Open
Abstract
In the era of genomic medicine, cancer treatment has become more personalized as novel therapeutic targets and pathways are identified. Research over the past decade has shown the increasing importance of how the tumor microenvironment (TME) and the extracellular matrix (ECM), which is a major structural component of the TME, regulate oncogenic functions including tumor progression, metastasis, angiogenesis, therapy resistance, and immune cell modulation, amongst others. Within the TME, cancer-associated fibroblasts (CAFs) have been identified in several systemic cancers as critical regulators of the malignant cancer phenotype. This review of the literature comprehensively profiles the roles of CAFs implicated in gastrointestinal, endocrine, head and neck, skin, genitourinary, lung, and breast cancers. The ubiquitous presence of CAFs highlights their significance as modulators of cancer progression and has led to the subsequent characterization of potential therapeutic targets, which may help advance the cancer treatment paradigm to determine the next generation of cancer therapy. The aim of this review is to provide a detailed overview of the key roles that CAFs play in the scope of systemic disease, the mechanisms by which they enhance protumoral effects, and the primary CAF-related markers that may offer potential targets for novel therapeutics.
Collapse
Affiliation(s)
- Rushikesh S. Joshi
- School of Medicine, University of California, San Diego, La Jolla, CA 92092, USA;
| | | | - Sweta Sudhir
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Matheus P. Pereira
- School of Medicine, University of California, San Francisco, CA 94143, USA;
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA;
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA;
- Correspondence: ; Tel.: +1-415-514-9820
| |
Collapse
|