1
|
Kara D, Liu Y, Chen S, Garrett T, Younis A, Sugawara M, Bolen MA, Bi X, Wazni O, Nakagawa H, Kwon D, Nguyen C. In vivo cardiac diffusion tensor imaging on an MR system featuring ultrahigh performance gradients with 200 mT/m maximum gradient strength. Magn Reson Med 2025; 93:673-688. [PMID: 39313764 PMCID: PMC11604833 DOI: 10.1002/mrm.30308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Our aim is to assess the potential of an MR system with ultrahigh performance gradients (200 mT/m maximum gradient strength) to address two interrelated challenges in cardiac DTI: low SNR and sensitivity to bulk motion. METHODS Imaging was performed in 20 healthy volunteers, two patients, and one swine post-myocardial infarction. The impact of maximum gradient strength was assessed with spin echo cardiac DTI featuring second-order motion compensation and varying maximum system gradient strengths (40, 80, 200 mT/m). Motion compensation requirements at 200 mT/m were assessed with sequences featuring zeroth-, first-, and second-order motion compensation. SNR, mean diffusivity, fractional anisotropy, helix angle transmurality, and secondary eigenvector angle in the left ventricle were compared. RESULTS Increasing maximum system gradient strength from 40 and 80 mT/m to 200 mT/m increased SNR of b = 500 s/mm2 images by 150% and 40% due to reductions in TE. Observed improvements in DTI metrics included reduction in variance in mean diffusivity and helix angle transmurality across healthy volunteers, improved visualization of myocardial borders and delineation of suspected scar. Whereas second-order motion compensation acquisitions were robust to motion-induced signal dropout, zeroth- and first-order motion compensation acquisitions suffered from severe signal loss and localized signal voids, respectively. CONCLUSION Ultrahigh performance gradients (200 mT/m) enable high SNR DWIs of the heart and resultant improvements in diffusion tensor metrics. Despite reduced diffusion-encoding duration, second-order motion compensation is required to overcome sensitivity to cardiac motion.
Collapse
Affiliation(s)
- Danielle Kara
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic
ClevelandOhioUSA
- Diagnostic Radiology, Imaging Institute, Cleveland ClinicClevelandOhioUSA
| | - Yuchi Liu
- Cardiovascular MR R&D CollaborationsSiemens Medical Solutions USA, Inc.MalvernPennsylvaniaUSA
| | - Shi Chen
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic
ClevelandOhioUSA
| | - Thomas Garrett
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic
ClevelandOhioUSA
| | - Arwa Younis
- Department of Cardiovascular & Metabolic ScienceLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
| | - Masafumi Sugawara
- Department of Cardiovascular & Metabolic ScienceLerner Research Institute, Cleveland ClinicClevelandOhioUSA
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
| | - Michael A. Bolen
- Diagnostic Radiology, Imaging Institute, Cleveland ClinicClevelandOhioUSA
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
| | - Xiaoming Bi
- Cardiovascular MR R&D CollaborationsSiemens Medical Solutions USA, Inc.MalvernPennsylvaniaUSA
| | - Oussama Wazni
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
| | - Hiroshi Nakagawa
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
| | - Deborah Kwon
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic
ClevelandOhioUSA
- Diagnostic Radiology, Imaging Institute, Cleveland ClinicClevelandOhioUSA
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
| | - Christopher Nguyen
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic
ClevelandOhioUSA
- Diagnostic Radiology, Imaging Institute, Cleveland ClinicClevelandOhioUSA
- Cardiovascular MedicineHeart Vascular Thoracic Institute, Cleveland ClinicClevelandOhioUSA
- Biomedical Engineering, Lerner Research InstituteCleveland Clinic and Case Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
2
|
Dall'Armellina E, Ennis DB, Axel L, Croisille P, Ferreira PF, Gotschy A, Lohr D, Moulin K, Nguyen C, Nielles-Vallespin S, Romero W, Scott AD, Stoeck C, Teh I, Tunnicliffe L, Viallon M, Wang, Young AA, Schneider JE, Sosnovik DE. Cardiac diffusion-weighted and tensor imaging: a Society for Cardiovascular Magnetic Resonance (SCMR) special interest group consensus statement. J Cardiovasc Magn Reson 2024:101109. [PMID: 39442672 DOI: 10.1016/j.jocmr.2024.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Thanks to recent developments in Cardiovascular magnetic resonance (CMR), cardiac diffusion-weighted magnetic resonance is fast emerging in a range of clinical applications. Cardiac diffusion-weighted imaging (cDWI) and diffusion tensor imaging (cDTI) now enable investigators and clinicians to assess and quantify the 3D microstructure of the heart. Free-contrast DWI is uniquely sensitized to the presence and displacement of water molecules within the myocardial tissue, including the intra-cellular, extra-cellular and intra-vascular spaces. CMR can determine changes in microstructure by quantifying: a) mean diffusivity (MD) -measuring the magnitude of diffusion; b) fractional anisotropy (FA) - specifying the directionality of diffusion; c) helix angle (HA) and transverse angle (TA) -indicating the orientation of the cardiomyocytes; d) E2A and E2A mobility - measuring the alignment and systolic-diastolic mobility of the sheetlets, respectively. This document provides recommendations for both clinical and research cDWI and cDTI, based on published evidence when available and expert consensus when not. It introduces the cardiac microstructure focusing on the cardiomyocytes and their role in cardiac physiology and pathophysiology. It highlights methods, observations and recommendations in terminology, acquisition schemes, post-processing pipelines, data analysis and interpretation of the different biomarkers. Despite the ongoing challenges discussed in the document and the need for ongoing technical improvements, it is clear that cDTI is indeed feasible, can be accurately and reproducibly performed and, most importantly, can provide unique insights into myocardial pathophysiology.
Collapse
Affiliation(s)
- E Dall'Armellina
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - D B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
| | - L Axel
- Department of Radiology, and Division of Cardiology, Department of Internal Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - P Croisille
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Department of Radiology, University Hospital Saint-Etienne, France
| | - P F Ferreira
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - A Gotschy
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland and Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - D Lohr
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center Wuerzburg (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - K Moulin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, US
| | - C Nguyen
- Harvard Medical School, MA, and Cardiovascular Innovation Research Center, Cleveland Clinic, United States
| | - S Nielles-Vallespin
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - W Romero
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, Saint Etienne, France
| | - A D Scott
- Royal Brompton Hospital and National Heart and Lung Institute, Imperial College London, London, UK
| | - C Stoeck
- University and ETH Zurich, Switzerland
| | - I Teh
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - L Tunnicliffe
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford UK
| | - M Viallon
- Univ Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, F-42023, Department of Radiology, University Hospital Saint-Etienne, France
| | - Wang
- Department of Radiology, Stanford University, Stanford, California, USA
| | | | - J E Schneider
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds, UK
| | - D E Sosnovik
- Martinos Center for Biomedical Imaging and Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Sosnovik DE, Ennis DB. Diffusion tensor magnetic resonance imaging of the heart: Now feasible on your neighborhood scanner. J Cardiovasc Magn Reson 2024; 26:101101. [PMID: 39326559 DOI: 10.1016/j.jocmr.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024] Open
Affiliation(s)
- David E Sosnovik
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA; Health Sciences and Technology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA; Division of Radiology, Veterans Administration Health Care System, Palo Alto, California, USA
| |
Collapse
|
4
|
Afzali M, Mueller L, Coveney S, Fasano F, Evans CJ, Engel M, Szczepankiewicz F, Teh I, Dall'Armellina E, Jones DK, Schneider JE. In vivo diffusion MRI of the human heart using a 300 mT/m gradient system. Magn Reson Med 2024; 92:1022-1034. [PMID: 38650395 DOI: 10.1002/mrm.30118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE This work reports for the first time on the implementation and application of cardiac diffusion-weighted MRI on a Connectom MR scanner with a maximum gradient strength of 300 mT/m. It evaluates the benefits of the increased gradient performance for the investigation of the myocardial microstructure. METHODS Cardiac diffusion-weighted imaging (DWI) experiments were performed on 10 healthy volunteers using a spin-echo sequence with up to second- and third-order motion compensation (M 2 $$ {M}_2 $$ andM 3 $$ {M}_3 $$ ) andb = 100 , 450 $$ b=100,450 $$ , and 1000s / m m 2 $$ \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ (twice theb max $$ {b}_{\mathrm{max}} $$ commonly used on clinical scanners). Mean diffusivity (MD), fractional anisotropy (FA), helix angle (HA), and secondary eigenvector angle (E2A) were calculated for b = [100, 450]s / m m 2 $$ \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ and b = [100, 1000]s / m m 2 $$ \mathrm{s}/\mathrm{m}{\mathrm{m}}^2 $$ for bothM 2 $$ {M}_2 $$ andM 3 $$ {M}_3 $$ . RESULTS The MD values withM 3 $$ {M}_3 $$ are slightly higher than withM 2 $$ {M}_2 $$ withΔ MD = 0 . 05 ± 0 . 05 [ × 1 0 - 3 mm 2 / s ] ( p = 4 e - 5 ) $$ \Delta \mathrm{MD}=0.05\pm 0.05\kern0.3em \left[\times 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=4e-5\right) $$ forb max = 450 s / mm 2 $$ {b}_{\mathrm{max}}=450\kern0.3em \mathrm{s}/{\mathrm{mm}}^2 $$ andΔ MD = 0 . 03 ± 0 . 03 [ × 1 0 - 3 mm 2 / s ] ( p = 4 e - 4 ) $$ \Delta \mathrm{MD}=0.03\pm 0.03\kern0.3em \left[\times \kern0.3em 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=4e-4\right) $$ forb max = 1000 s / mm 2 $$ {b}_{\mathrm{max}}=1000\kern0.3em \mathrm{s}/{\mathrm{mm}}^2 $$ . A reduction in MD is observed by increasing theb max $$ {b}_{\mathrm{max}} $$ from 450 to 1000s / mm 2 $$ \mathrm{s}/{\mathrm{mm}}^2 $$ (Δ MD = 0 . 06 ± 0 . 04 [ × 1 0 - 3 mm 2 / s ] ( p = 1 . 6 e - 9 ) $$ \Delta \mathrm{MD}=0.06\pm 0.04\kern0.3em \left[\times \kern0.3em 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=1.6e-9\right) $$ forM 2 $$ {M}_2 $$ andΔ MD = 0 . 08 ± 0 . 05 [ × 1 0 - 3 mm 2 / s ] ( p = 1 e - 9 ) $$ \Delta \mathrm{MD}=0.08\pm 0.05\kern0.3em \left[\times \kern0.3em 1{0}^{-3}\kern0.3em {\mathrm{mm}}^2/\mathrm{s}\right]\kern0.3em \left(p=1e-9\right) $$ forM 3 $$ {M}_3 $$ ). The difference between FA, E2A, and HA was not significant in different schemes (p > 0 . 05 $$ p>0.05 $$ ). CONCLUSION This work demonstrates cardiac DWI in vivo with higher b-value and higher order of motion compensated diffusion gradient waveforms than is commonly used. Increasing the motion compensation order fromM 2 $$ {M}_2 $$ toM 3 $$ {M}_3 $$ and the maximum b-value from 450 to 1000 s / mm 2 $$ \mathrm{s}/{\mathrm{mm}}^2 $$ affected the MD values but FA and the angular metrics (HA and E2A) remained unchanged. Our work paves the way for cardiac DWI on the next-generation MR scanners with high-performance gradient systems.
Collapse
Affiliation(s)
- Maryam Afzali
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Lars Mueller
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sam Coveney
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Fabrizio Fasano
- Siemens Healthcare Ltd, Camberly, UK
- Siemens Healthcare GmbH, Erlangen, Germany
| | - Christopher John Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Maria Engel
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | | | - Irvin Teh
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Erica Dall'Armellina
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Jürgen E Schneider
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Shyam-Sundar V, Harding D, Khan A, Abdulkareem M, Slabaugh G, Mohiddin SA, Petersen SE, Aung N. Imaging for the diagnosis of acute myocarditis: can artificial intelligence improve diagnostic performance? Front Cardiovasc Med 2024; 11:1408574. [PMID: 39314764 PMCID: PMC11417618 DOI: 10.3389/fcvm.2024.1408574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Myocarditis is a cardiovascular disease characterised by inflammation of the heart muscle which can lead to heart failure. There is heterogeneity in the mode of presentation, underlying aetiologies, and clinical outcome with impact on a wide range of age groups which lead to diagnostic challenges. Cardiovascular magnetic resonance (CMR) is the preferred imaging modality in the diagnostic work-up of those with acute myocarditis. There is a need for systematic analytical approaches to improve diagnosis. Artificial intelligence (AI) and machine learning (ML) are increasingly used in CMR and has been shown to match human diagnostic performance in multiple disease categories. In this review article, we will describe the role of CMR in the diagnosis of acute myocarditis followed by a literature review on the applications of AI and ML to diagnose acute myocarditis. Only a few papers were identified with limitations in cases and control size and a lack of detail regarding cohort characteristics in addition to the absence of relevant cardiovascular disease controls. Furthermore, often CMR datasets did not include contemporary tissue characterisation parameters such as T1 and T2 mapping techniques, which are central to the diagnosis of acute myocarditis. Future work may include the use of explainability tools to enhance our confidence and understanding of the machine learning models with large, better characterised cohorts and clinical context improving the diagnosis of acute myocarditis.
Collapse
Affiliation(s)
- Vijay Shyam-Sundar
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom
| | - Daniel Harding
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom
| | - Abbas Khan
- Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
| | - Musa Abdulkareem
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Greg Slabaugh
- Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
- School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom
| | - Saidi A. Mohiddin
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom
| | - Steffen E. Petersen
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom
- Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
| | - Nay Aung
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Barts Heart Centre, St Bartholomew’s Hospital, London, United Kingdom
- Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
6
|
Huang Z, Alkhars H, Gunderman A, Sigounas D, Cleary K, Chen Y. Optimal Concentric Tube Robot Design for Safe Intracerebral Hemorrhage Removal. JOURNAL OF MECHANISMS AND ROBOTICS 2024; 16:081005. [PMID: 38434486 PMCID: PMC10906783 DOI: 10.1115/1.4063979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Purpose The purpose of this paper is to investigate the geometrical design and path planning of Concentric tube robots (CTR) for intracerebral hemorrhage (ICH) evacuation, with a focus on minimizing the risk of damaging white matter tracts and cerebral arteries. Methods To achieve our objective, we propose a parametrization method describing a general class of CTR geometric designs. We present mathematical models that describe the CTR design constraints and provide the calculation of a path risk value. We then use a genetic algorithm to determine the optimal tube geometry for targeting within the brain. Results Our results show that a multi-tube CTR design can significantly reduce the risk of damaging critical brain structures compared to the conventional straight tube design. However, there is no significant relationship between the path risk value and the number and shape of the additional inner curved tubes. Conclusion Considering the challenges of CTR hardware design, fabrication, and control, we conclude that the most practical geometry for a CTR path in ICH treatment is a straight outer tube followed by a planar curved inner tube. These findings have important implications for the development of safe and effective CTRs for ICH evacuation by enabling dexterous manipulation to minimize damage to critical brain structures.
Collapse
Affiliation(s)
- Zhefeng Huang
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hussain Alkhars
- George Washington University School of Medicine, Washington, DC, USA
| | - Anthony Gunderman
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Dimitri Sigounas
- George Washington University School of Medicine, Washington, DC, USA
| | - Kevin Cleary
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Health System, Washington, DC, USA
| | - Yue Chen
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
7
|
Scott AD, Wen K, Luo Y, Huang J, Gover S, Soundarajan R, Ferreira PF, Pennell DJ, Nielles-Vallespin S. The effects of field strength on stimulated echo and motion-compensated spin-echo diffusion tensor cardiovascular magnetic resonance sequences. J Cardiovasc Magn Reson 2024; 26:101052. [PMID: 38936803 PMCID: PMC11283220 DOI: 10.1016/j.jocmr.2024.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/03/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND In-vivo diffusion tensor cardiovascular magnetic resonance (DT-CMR) is an emerging technique for microstructural tissue characterization in the myocardium. Most studies are performed at 3T, where higher signal-to-noise ratio (SNR) should benefit this signal-starved method. However, a few studies have suggested that DT-CMR is possible at 1.5T, where echo planar imaging artifacts may be less severe and 1.5T hardware is more widely available. METHODS We recruited 20 healthy volunteers and performed mid-ventricular short-axis DT-CMR at 1.5T and 3T. Acquisitions were performed at peak systole and end-diastole using both stimulated echo acquisition mode (STEAM) and motion-compensated spin-echo (MCSE) sequences at matched spatial resolutions. DT-CMR parameters were averaged over the left ventricle and compared between 1.5T and 3T sequences using both datasets with and without the blow reference data included. RESULTS Eleven (1.5T) and 12 (3T) diastolic MCSE acquisitions were rejected as the helix angle (HA) demonstrated <50% normal appearance circumferentially or the acquisition was abandoned due to poor image quality; a maximum of one acquisition was rejected for other datasets. Subjective HA map quality was significantly better at 3T than 1.5T for STEAM (p < 0.05), but not for MCSE and other DT-CMR quality measures were consistent with improvements in STEAM at 3T over 1.5T. When blow data were excluded, no significant differences in mean diffusivity were observed between field strengths, but fractional anisotropy was significantly higher at 1.5T than 3T for STEAM systole (p < 0.05). Absolute second eigenvector orientation (E2A, sheetlet angle) was significantly higher at 1.5T than 3T for MCSE systole and STEAM diastole, but significantly lower for STEAM systole (all p < 0.05). Transmural HA distribution was less steep at 1.5T than 3T for STEAM diastole data (p < 0.05). SNR was higher at 3T than 1.5T for all acquisitions (p < 0.05). CONCLUSION While 3T provides benefits in terms of SNR, both STEAM and MCSE can be performed at 1.5T. However, MCSE is unreliable in diastole at both field strengths and STEAM benefits from the improved SNR at 3T over 1.5T. Future clinical research studies may be able to leverage the wider availability of 1.5T CMR hardware where MCSE acquisitions are desirable.
Collapse
Affiliation(s)
- Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK.
| | - Ke Wen
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK; EPSRC Centre for Doctoral Training in Smart Medical Imaging, King's College London and Imperial College London, 5th Floor Beckett House, 1 Lambeth Palace Road, London SE1 7EU, UK
| | - Yaqing Luo
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK; EPSRC Centre for Doctoral Training in Smart Medical Imaging, King's College London and Imperial College London, 5th Floor Beckett House, 1 Lambeth Palace Road, London SE1 7EU, UK
| | - Jiahao Huang
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; Department of Bioengineering, Imperial College London, Royal School of Mines, Exhibition Road, London SW7 2AZ, UK
| | - Simon Gover
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
| | - Rajkumar Soundarajan
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Dudley J Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust, Sydney Street, London SW3 6NP, UK; National Heart and Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK
| |
Collapse
|
8
|
Sadighi M, Kara D, Mai D, Nguyen K, Chen S, Kwon D, Nguyen C. Cardiac DTI using short-axis PROPELLER: A feasibility study. Magn Reson Med 2024; 91:2546-2558. [PMID: 38376096 PMCID: PMC11102807 DOI: 10.1002/mrm.30020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/21/2024]
Abstract
PURPOSE We aimed to develop a free-breathing (FB) cardiac DTI (cDTI) method based on short-axis PROPELLER (SAP) and M2 motion compensated spin-echo EPI (SAP-M2-EPI) to mitigate geometric distortion and eliminate aliasing in acquired diffusion-weighted (DW) images, particularly in patients with a higher body mass index (BMI). THEORY AND METHODS The study involved 10 healthy volunteers whose BMI values fell into specific categories: BMI <25 (4 volunteers), 25< BMI <28 (5 volunteers), and BMI >30 (1 volunteer). We compared DTI parameters, including fractional anisotropy (FA), mean diffusivity (MD), and helix angle transmurality (HAT), between SAP-M2-EPI and M2-ssEPI. To evaluate the performance of SAP-M2-EPI in reducing geometric distortions in the left ventricle (LV) compared to CINE and M2-ssEPI, we utilized the DICE similarity coefficient (DSC) and assessed misregistration area. RESULTS In all volunteers, SAP-M2-EPI yielded high-quality LV DWIs without aliasing, demonstrating significantly reduced geometric distortion (with an average DSC of 0.92 and average misregistration area of 90 mm2) and diminished signal loss due to bulk motion when compared to M2-ssEPI. DTI parameter maps exhibited consistent patterns across slices without motion related artifacts. CONCLUSION SAP-M2-EPI facilitates free-breathing cDTI of the entire LV, effectively eliminating aliasing and minimizing geometric distortion compared to M2-ssEPI. Furthermore, it preserves accurate quantification of myocardial microstructure.
Collapse
Affiliation(s)
- Mehdi Sadighi
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Danielle Kara
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Dingheng Mai
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Khoi Nguyen
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shi Chen
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Deborah Kwon
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Imaging Institute,Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher Nguyen
- Cardiovascular Innovation Research Center (CIRC), Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
- Imaging Institute,Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Arvidsson PM, Berg J, Carlsson M, Arheden H. Noninvasive Pressure-Volume Loops Predict Major Adverse Cardiac Events in Heart Failure With Reduced Ejection Fraction. JACC. ADVANCES 2024; 3:100946. [PMID: 38938852 PMCID: PMC11198266 DOI: 10.1016/j.jacadv.2024.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/05/2024] [Accepted: 03/06/2024] [Indexed: 06/29/2024]
Abstract
Background Heart failure with reduced ejection fraction (HFrEF) is characterized by ventricular remodeling and impaired myocardial energetics. Left ventricular pressure-volume (PV) loop analysis can be performed noninvasively using cardiovascular magnetic resonance (CMR) imaging to assess cardiac thermodynamic efficiency. Objectives The aim of the study was to investigate whether noninvasive PV loop parameters, derived from CMR, could predict major adverse cardiac events (MACE) in HFrEF patients. Methods PV loop parameters (stroke work, ventricular efficiency, external power, contractility, and energy per ejected volume) were computed from CMR cine images and brachial blood pressure. The primary end point was MACE (cardiovascular death, heart failure (HF) hospitalization, myocardial infarction, revascularization, ventricular tachycardia/fibrillation, heart transplantation, or left ventricular assist device implantation within 5 years). Associations between PV loop parameters and MACE were evaluated using multivariable Cox regression. Results One hundred and sixty-four HFrEF patients (left ventricular ejection fraction ≤40%, age 63 [IQR: 55-70] years, 79% male) who underwent clinical CMR examination between 2004 and 2014 were included. Eighty-eight patients (54%) experienced at least one MACE after an average of 2.8 years. Unadjusted models demonstrated a significant association between MACE and all PV loop parameters (P < 0.05 for all), HF etiology (P < 0.001), left ventricular ejection fraction (P = 0.003), global longitudinal strain (P < 0.001), and N-terminal prohormone of brain natriuretic peptide level (P = 0.001). In the multivariable Cox regression analysis adjusted for age, sex, hypertension, diabetes, and HF etiology, ventricular efficiency was associated with MACE (HR: 1.04 (95% CI: 1.01-1.08) per-% decrease, P = 0.01). Conclusions Ventricular efficiency, derived from noninvasive PV loop analysis from standard CMR scans, is associated with MACE in patients with HFrEF.
Collapse
Affiliation(s)
- Per M. Arvidsson
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Jonathan Berg
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Marcus Carlsson
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Håkan Arheden
- Department of Clinical Sciences Lund, Clinical Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Huo Z, Wen K, Luo Y, Neji R, Kunze KP, Ferreira PF, Pennell DJ, Scott AD, Nielles-Vallespin S. Referenceless Nyquist ghost correction outperforms standard navigator-based method and improves efficiency of in vivo diffusion tensor cardiovascular magnetic resonance. Magn Reson Med 2024; 91:2403-2416. [PMID: 38263908 DOI: 10.1002/mrm.30012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/20/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024]
Abstract
PURPOSE The study aims to assess the potential of referenceless methods of EPI ghost correction to accelerate the acquisition of in vivo diffusion tensor cardiovascular magnetic resonance (DT-CMR) data using both computational simulations and data from in vivo experiments. METHODS Three referenceless EPI ghost correction methods were evaluated on mid-ventricular short axis DT-CMR spin echo and STEAM datasets from 20 healthy subjects at 3T. The reduced field of view excitation technique was used to automatically quantify the Nyquist ghosts, and DT-CMR images were fit to a linear ghost model for correction. RESULTS Numerical simulation showed the singular value decomposition (SVD) method is the least sensitive to noise, followed by Ghost/Object method and entropy-based method. In vivo experiments showed significant ghost reduction for all correction methods, with referenceless methods outperforming navigator methods for both spin echo and STEAM sequences at b = 32, 150, 450, and 600 smm - 2 $$ {\mathrm{smm}}^{-2} $$ . It is worth noting that as the strength of the diffusion encoding increases, the performance gap between the referenceless method and the navigator-based method diminishes. CONCLUSION Referenceless ghost correction effectively reduces Nyquist ghost in DT-CMR data, showing promise for enhancing the accuracy and efficiency of measurements in clinical practice without the need for any additional reference scans.
Collapse
Affiliation(s)
- Zimu Huo
- CMR Unit, Royal Brompton Hosptial, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Ke Wen
- CMR Unit, Royal Brompton Hosptial, Guy's and St Thomas' NHS Foundation Trust, London, UK
- NHLI, Imperial College London, London, UK
| | - Yaqing Luo
- CMR Unit, Royal Brompton Hosptial, Guy's and St Thomas' NHS Foundation Trust, London, UK
- NHLI, Imperial College London, London, UK
| | - Radhouene Neji
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Karl P Kunze
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK
| | - Pedro F Ferreira
- CMR Unit, Royal Brompton Hosptial, Guy's and St Thomas' NHS Foundation Trust, London, UK
- NHLI, Imperial College London, London, UK
| | - Dudley J Pennell
- CMR Unit, Royal Brompton Hosptial, Guy's and St Thomas' NHS Foundation Trust, London, UK
- NHLI, Imperial College London, London, UK
| | - Andrew D Scott
- CMR Unit, Royal Brompton Hosptial, Guy's and St Thomas' NHS Foundation Trust, London, UK
- NHLI, Imperial College London, London, UK
| | - Sonia Nielles-Vallespin
- CMR Unit, Royal Brompton Hosptial, Guy's and St Thomas' NHS Foundation Trust, London, UK
- NHLI, Imperial College London, London, UK
| |
Collapse
|
11
|
Moulin K, Stoeck CT, Axel L, Broncano J, Croisille P, Dall'Armellina E, Ennis DB, Ferreira PF, Gotschy A, Miro S, Schneider JE, Scott AD, Sosnovik DE, Teh I, Tous C, Tunnicliffe EM, Viallon M, Nguyen C. In Vivo Cardiac Diffusion Imaging Without Motion-Compensation Leads to Unreasonably High Diffusivity. J Magn Reson Imaging 2023; 58:1990-1991. [PMID: 37000010 DOI: 10.1002/jmri.28703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 04/01/2023] Open
Affiliation(s)
- Kevin Moulin
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH, Zurich, Switzerland
- Center for Preclinical Development, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Leon Axel
- Department of Radiology, New York University Grossman School of Medicine, New York City, New York, USA
| | - Jordi Broncano
- Department of Radiology, Hospital San Juan de Dios, Hospital de la Cruz Roja, HT-RESALTA, HT Médica, Córdoba, Spain
| | - Pierre Croisille
- Department of Radiology, University Hospital of Saint-Etienne, Saint-Etienne, France
- CREATIS UMR CNRS5220 INSERM U1206, University of Lyon, Lyon, France
| | - Erica Dall'Armellina
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alexander Gotschy
- Institute for Biomedical Engineering, University and ETH, Zurich, Switzerland
| | - Santiago Miro
- Department of Radiology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Jurgen E Schneider
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - David E Sosnovik
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Cyril Tous
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Elizabeth M Tunnicliffe
- Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Magalie Viallon
- Department of Radiology, University Hospital of Saint-Etienne, Saint-Etienne, France
- CREATIS UMR CNRS5220 INSERM U1206, University of Lyon, Lyon, France
| | - Christopher Nguyen
- Cardiovascular Innovation Research Center, Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
12
|
Xiang X, Lin X, Zhang B, Lin C, Lei J, Guo S, Zhao S. Response to "In Vivo Cardiac Diffusion Imaging Without Motion-Compensation Leads to Unreasonably High Diffusivity". J Magn Reson Imaging 2023; 58:1992. [PMID: 36965180 DOI: 10.1002/jmri.28700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Affiliation(s)
- Xiaorui Xiang
- MR Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaoqiang Lin
- Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Baoteng Zhang
- Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Chen Lin
- Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Junqiang Lei
- Department of Radiology, First Hospital of Lanzhou University, Lanzhou, China
| | - Shunlin Guo
- Department of Radiology, First Hospital of Lanzhou University, Lanzhou, China
| | - Shihua Zhao
- MR Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Mahmood A, Simon J, Cooper J, Murphy T, McCracken C, Quiroz J, Laranjo L, Aung N, Lee AM, Khanji MY, Neubauer S, Raisi-Estabragh Z, Maurovich-Horvat P, Petersen SE. Neuroticism personality traits are linked to adverse cardiovascular phenotypes in the UK Biobank. Eur Heart J Cardiovasc Imaging 2023; 24:1460-1467. [PMID: 37440761 PMCID: PMC10610755 DOI: 10.1093/ehjci/jead166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
AIMS To evaluate the relationship between neuroticism personality traits and cardiovascular magnetic resonance (CMR) measures of cardiac morphology and function, considering potential differential associations in men and women. METHODS AND RESULTS The analysis includes 36 309 UK Biobank participants (average age = 63.9 ± 7.7 years; 47.8% men) with CMR available and neuroticism score assessed by the 12-item Eysenck Personality Questionnaire-Revised Short Form. CMR scans were performed on 1.5 Tesla scanners (MAGNETOM Aera, Siemens Healthcare, Erlangen, Germany) according to pre-defined protocols and analysed using automated pipelines. We considered measures of left ventricular (LV) and right ventricular (RV) structure and function, and indicators of arterial compliance. Multivariable linear regression was used to estimate association of neuroticism score with individual CMR metrics, with adjustment for age, sex, obesity, deprivation, smoking, diabetes, hypertension, hypercholesterolaemia, alcohol use, exercise, and education. Higher neuroticism scores were associated with smaller LV and RV end-diastolic volumes, lower LV mass, greater concentricity (higher LV mass to volume ratio), and higher native T1. Greater neuroticism was also linked to poorer LV and RV function (lower stroke volumes) and greater arterial stiffness. In sex-stratified analyses, the relationships between neuroticism and LV stroke volume, concentricity, and arterial stiffness were attenuated in women. In men, association (with exception of native T1) remained robust. CONCLUSION Greater tendency towards neuroticism personality traits is linked to smaller, poorer functioning ventricles with lower LV mass, higher myocardial fibrosis, and higher arterial stiffness. These relationships are independent of traditional vascular risk factors and are more robust in men than women.
Collapse
Affiliation(s)
- Adil Mahmood
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Judit Simon
- MTA-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Jackie Cooper
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Theodore Murphy
- Department of Cardiology and Cardiovascular Imaging, Beacon Hospital, Dublin, Ireland
| | - Celeste McCracken
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Juan Quiroz
- Centre for Big Data Research in Health (CBDRH), The University of New South Wales (UNSW), Sydney, Australia
| | - Liliana Laranjo
- Faculty of Medicine and Health, Westmead Applied Research Centre (WARC), University of Sydney, Australia
| | - Nay Aung
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, EC1A 7BE, London, UK
| | - Aaron Mark Lee
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Mohammed Y Khanji
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, EC1A 7BE, London, UK
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Zahra Raisi-Estabragh
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, EC1A 7BE, London, UK
| | - Pal Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Steffen E Petersen
- William Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, Barts Health NHS Trust, West Smithfield, EC1A 7BE, London, UK
- Health Data Research UK, London, UK
- Alan Turing Institute, London, UK
| |
Collapse
|
14
|
Usman M, Mendiola EA, Mukherjee T, Mehdi RR, Ohayon J, Alluri PG, Sadayappan S, Choudhary G, Avazmohammadi R. On the possibility of estimating myocardial fiber architecture from cardiac strains. FUNCTIONAL IMAGING AND MODELING OF THE HEART : ... INTERNATIONAL WORKSHOP, FIMH ..., PROCEEDINGS. FIMH 2023; 13958:74-83. [PMID: 37671365 PMCID: PMC10478796 DOI: 10.1007/978-3-031-35302-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The myocardium is composed of a complex network of contractile myofibers that are organized in such a way as to produce efficient contraction and relaxation of the heart. The myofiber architecture in the myocardium is a key determinant of cardiac motion and the global or organ-level function of the heart. Reports of architectural remodeling in cardiac diseases, such as pulmonary hypertension and myocardial infarction, potentially contributing to cardiac dysfunction call for the inclusion of an architectural marker for an improved assessment of cardiac function. However, the in-vivo quantification of three-dimensional myo-architecture has proven challenging. In this work, we examine the sensitivity of cardiac strains to varying myofiber orientation using a multiscale finite-element model of the LV. Additionally, we present an inverse modeling approach to predict the myocardium fiber structure from cardiac strains. Our results indicate a strong correlation between fiber orientation and LV kinematics, corroborating that the fiber structure is a principal determinant of LV contractile behavior. Our inverse model was capable of accurately predicting the myocardial fiber range and regional fiber angles from strain measures. A concrete understanding of the link between LV myofiber structure and motion, and the development of non-invasive and feasible means of characterizing the myocardium architecture is expected to lead to advanced LV functional metrics and improved prognostic assessment of structural heart disease.
Collapse
Affiliation(s)
- Muhammad Usman
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Emilio A Mendiola
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Tanmay Mukherjee
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Rana Raza Mehdi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jacques Ohayon
- Savoie Mont-Blanc University, Polytech Annecy-Chambéry, Le Bourget du Lac, France
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX 77030, USA
| | - Prasanna G Alluri
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Gaurav Choudhary
- Department of Medicine, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX 77030, USA
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
| |
Collapse
|
15
|
Das N, Das S. Epoch and accuracy based empirical study for cardiac MRI segmentation using deep learning technique. PeerJ 2023; 11:e14939. [PMID: 36974136 PMCID: PMC10039650 DOI: 10.7717/peerj.14939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/01/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac magnetic resonance imaging (CMRI) is a non-invasive imaging technique to analyse the structure and function of the heart. It was enhanced considerably over several years to deliver functional information for diagnosing and managing cardiovascular disease. CMRI image delivers non-invasive, clear access to the heart and great vessels. The segmentation of CMRI provides quantification parameters such as myocardial viability, ejection fraction, cardiac chamber volume, and morphological details. In general, experts interpret the CMR images by delineating the images manually. The manual segmentation process is time-consuming, and it has been observed that the final observation varied with the opinion of the different experts. Convolution neural network is a new-age technology that provides impressive results compared to manual ones. In this study convolution neural network model is used for the segmentation task. The neural network parameters have been optimized to perform on the novel data set for accurate predictions. With other parameters, epochs play an essential role in training the network, as the network should not be under-fitted or over-fitted. The relationship between the hyperparameter epoch and accuracy is established in the model. The model delivers the accuracy of 0.88 in terms of the IoU coefficient.
Collapse
Affiliation(s)
- Niharika Das
- Maulana Azad National Institute of Technology, Bhopal, India
| | - Sujoy Das
- Maulana Azad National Institute of Technology, Bhopal, India
| |
Collapse
|
16
|
Kreiniz N, Gertz MA. Bad players in AL amyloidosis in the current era of treatment. Expert Rev Hematol 2023; 16:33-49. [PMID: 36620914 PMCID: PMC9905376 DOI: 10.1080/17474086.2023.2166924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Systemic AL amyloidosis (ALA) is a clonal plasma cell (PC) disease characterized by deposition of amyloid fibrils in different organs and tissues. Traditionally, the prognosis of ALA is poor and is primarily defined by cardiac involvement. The modern prognostic models are based on cardiac markers and free light chain difference (dFLC). Cardiac biomarkers have low specificity and are dependent on renal function, volume status, and cardiac diseases other than ALA. New therapies significantly improved the prognosis of the disease. The advancements in technologies - cardiac echocardiography (ECHO) and cardiac MRI (CMR), as well as new biological markers, relying on cardiac injury, inflammation, endothelial damage, and clonal and non-clonal PC markers are promising. AREAS COVERED An update on the prognostic significance of cardiac ALA, number of involved organs, response to treatment, including minimal residual disease (MRD), ECHO, MRI, and new biological markers will be discussed. The literature search was done in PubMed and Google Scholar, and the most recent and relevant data are included. EXPERT OPINION Prospective multicenter trials, evaluating multiple clinical and laboratory parameters, should be done to improve the risk assessment models in ALA in the modern era of therapy.
Collapse
Affiliation(s)
- Natalia Kreiniz
- Division of Hematology, Bnai Zion Medical Centre, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | |
Collapse
|
17
|
van Gorkum RJH, Guenthner C, Koethe A, Stoeck CT, Kozerke S. Characterization and correction of diffusion gradient-induced eddy currents in second-order motion-compensated echo-planar and spiral cardiac DTI. Magn Reson Med 2022; 88:2378-2394. [PMID: 35916545 PMCID: PMC9804234 DOI: 10.1002/mrm.29378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 01/05/2023]
Abstract
PURPOSE Very high gradient amplitudes played out over extended time intervals as required for second-order motion-compensated cardiac DTI may violate the assumption of a linear time-invariant gradient system model. The aim of this work was to characterize diffusion gradient-related system nonlinearity and propose a correction approach for echo-planar and spiral spin-echo motion-compensated cardiac DTI. METHODS Diffusion gradient-induced eddy currents of 9 diffusion directions were characterized at b values of 150 s/mm2 and 450 s/mm2 for a 1.5 Tesla system and used to correct phantom, ex vivo, and in vivo motion-compensated cardiac DTI data acquired with echo-planar and spiral trajectories. Predicted trajectories were calculated using gradient impulse response function and diffusion gradient strength- and direction-dependent zeroth- and first-order eddy current responses. A reconstruction method was implemented using the predicted <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:semantics><mml:mrow><mml:mi>k</mml:mi></mml:mrow> <mml:annotation>$$ k $$</mml:annotation></mml:semantics> </mml:math> -space trajectories to additionally include off-resonances and concomitant fields. Resulting images were compared to a reference reconstruction omitting diffusion gradient-induced eddy current correction. RESULTS Diffusion gradient-induced eddy currents exhibited nonlinear effects when scaling up the gradient amplitude and could not be described by a 3D basis alone. This indicates that a gradient impulse response function does not suffice to describe diffusion gradient-induced eddy currents. Zeroth- and first-order diffusion gradient-induced eddy current effects of up to -1.7 rad and -16 to +12 rad/m, respectively, were identified. Zeroth- and first-order diffusion gradient-induced eddy current correction yielded improved image quality upon image reconstruction. CONCLUSION The proposed approach offers correction of diffusion gradient-induced zeroth- and first-order eddy currents, reducing image distortions to promote improvements of second-order motion-compensated spin-echo cardiac DTI.
Collapse
Affiliation(s)
| | - Christian Guenthner
- Institute for Biomedical Engineering, University and ETH Zurich
ZurichSwitzerland
| | - Andreas Koethe
- Institute for Biomedical Engineering, University and ETH Zurich
ZurichSwitzerland,Center for Proton Therapy, Paul Scherrer InstituteVilligenSwitzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich
ZurichSwitzerland,Division of Surgical ResearchUniversity Hospital Zurich, University ZurichZurichSwitzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich
ZurichSwitzerland
| |
Collapse
|
18
|
Mazur W, Urbańczyk-Zawadzka M, Czyż Ł, Kwiecień E, Banyś R, Musiałek P, Krzyżak AT. Diffusion-tensor magnetic resonance imaging of the human heart in health and in acute myocardial infarction using diffusion-weighted echo-planar imaging technique with spin-echo signals. ADVANCES IN INTERVENTIONAL CARDIOLOGY 2022; 18:416-422. [PMID: 36967856 PMCID: PMC10031662 DOI: 10.5114/aic.2022.121344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/13/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction Originally thought unsuitable due to proneness to myocardial motion and susceptibility artefacts, spin-echo echo planar imaging (SE-EPI) has gained attention for the cardiac diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) offering higher SNR and lower achievable echo time (TE). Aim The application of DTI for patients with acute myocardial infarction (AMI) using our methodology developed on the basis of the SE-EPI sequence. Material and methods Twelve patients with AMI and six healthy controls were enrolled in the preliminary DTI study within the CIRCULATE STRATEGMED 2 project. Our method relied on a pilot ECG-triggered DTI examination, based on which the initial evaluation was possible and allowed proper manipulation of TE (64/47 ms for patients/control), repetition time (TR) and ECG trigger delay in the consecutive DTI. Results The study demonstrated that by using our algorithm it was possible to obtain DWI images showing infarct zones identified on T1-weighted images with late gadolinium-enhancement (LGE) with division into subtle and severe damage. Quantitative DTI showed increased mean diffusivity (MD) and decreased fractional anisotropy (FA) in the infarct compared to remote tissue. The application of B-matrix spatial distribution (BSD) calibration allowed the improvement of FA. Conclusions Our algorithm is suitable for qualitative assessment of infarction zones with different severity. The analysis of the quantitative DTI showed that despite the lack of motion compensation blocks in the applied SE-EPI sequence, it was possible to approach the diffusion tensor parameter values reported for the myocardium.
Collapse
Affiliation(s)
- Weronika Mazur
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Krakow, Poland
| | | | - Łukasz Czyż
- Department of Cardiac and Vascular Diseases, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Ewa Kwiecień
- Department of Cardiac and Vascular Diseases, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Robert Banyś
- Department of Radiology, John Paul II Hospital, Krakow, Poland
| | - Piotr Musiałek
- Department of Cardiac and Vascular Diseases, Jagiellonian University, John Paul II Hospital, Krakow, Poland
| | - Artur T. Krzyżak
- Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
| |
Collapse
|
19
|
Aimo A, Huang L, Tyler A, Barison A, Martini N, Saccaro LF, Roujol S, Masci PG. Quantitative susceptibility mapping (QSM) of the cardiovascular system: challenges and perspectives. J Cardiovasc Magn Reson 2022; 24:48. [PMID: 35978351 PMCID: PMC9387036 DOI: 10.1186/s12968-022-00883-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Quantitative susceptibility mapping (QSM) is a powerful, non-invasive, magnetic resonance imaging (MRI) technique that relies on measurement of magnetic susceptibility. So far, QSM has been employed mostly to study neurological disorders characterized by iron accumulation, such as Parkinson's and Alzheimer's diseases. Nonetheless, QSM allows mapping key indicators of cardiac disease such as blood oxygenation and myocardial iron content. For this reason, the application of QSM offers an unprecedented opportunity to gain a better understanding of the pathophysiological changes associated with cardiovascular disease and to monitor their evolution and response to treatment. Recent studies on cardiovascular QSM have shown the feasibility of a non-invasive assessment of blood oxygenation, myocardial iron content and myocardial fibre orientation, as well as carotid plaque composition. Significant technical challenges remain, the most evident of which are related to cardiac and respiratory motion, blood flow, chemical shift effects and susceptibility artefacts. Significant work is ongoing to overcome these challenges and integrate the QSM technique into clinical practice in the cardiovascular field.
Collapse
Affiliation(s)
- Alberto Aimo
- Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Li Huang
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Andrew Tyler
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Andrea Barison
- Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | | | | | - Sébastien Roujol
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
- Department of Biomedical Engineering, School of Imaging Sciences & Biomedical Engineering, King's College London, St Thomas' Hospital, 4th Floor Lambeth Wing, London, SE1 7EH, UK.
| | - Pier-Giorgio Masci
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
20
|
Scott AD, Jackson T, Khalique Z, Gorodezky M, Pardoe B, Begum L, Bruno VD, Chowdhury RA, Ferreira PF, Nielles‐Vallespin S, Roehl M, McCarthy KP, Sarathchandra P, Rose JN, Doorly DJ, Pennell DJ, Ascione R, de Silva R, Firmin DN. Development of a cardiovascular magnetic resonance-compatible large animal isolated heart model for direct comparison of beating and arrested hearts. NMR IN BIOMEDICINE 2022; 35:e4692. [PMID: 35040195 PMCID: PMC9286060 DOI: 10.1002/nbm.4692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 06/02/2023]
Abstract
Cardiac motion results in image artefacts and quantification errors in many cardiovascular magnetic resonance (CMR) techniques, including microstructural assessment using diffusion tensor cardiovascular magnetic resonance (DT-CMR). Here, we develop a CMR-compatible isolated perfused porcine heart model that allows comparison of data obtained in beating and arrested states. Ten porcine hearts (8/10 for protocol optimisation) were harvested using a donor heart retrieval protocol and transported to the remote CMR facility. Langendorff perfusion in a 3D-printed chamber and perfusion circuit re-established contraction. Hearts were imaged using cine, parametric mapping and STEAM DT-CMR at cardiac phases with the minimum and maximum wall thickness. High potassium and lithium perfusates were then used to arrest the heart in a slack and contracted state, respectively. Imaging was repeated in both arrested states. After imaging, tissue was removed for subsequent histology in a location matched to the DT-CMR data using fiducial markers. Regular sustained contraction was successfully established in six out of 10 hearts, including the final five hearts. Imaging was performed in four hearts and one underwent the full protocol, including colocalised histology. The image quality was good and there was good agreement between DT-CMR data in equivalent beating and arrested states. Despite the use of autologous blood and dextran within the perfusate, T2 mapping results, DT-CMR measures and an increase in mass were consistent with development of myocardial oedema, resulting in failure to achieve a true diastolic-like state. A contiguous stack of 313 5-μm histological sections at and a 100-μm thick section showing cell morphology on 3D fluorescent confocal microscopy colocalised to DT-CMR data were obtained. A CMR-compatible isolated perfused beating heart setup for large animal hearts allows direct comparisons of beating and arrested heart data with subsequent colocalised histology, without the need for onsite preclinical facilities.
Collapse
Affiliation(s)
- Andrew D. Scott
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Tim Jackson
- Department of PerfusionRoyal Brompton HospitalLondonUK
| | - Zohya Khalique
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Margarita Gorodezky
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Ben Pardoe
- Department of PerfusionRoyal Brompton HospitalLondonUK
| | - Lale Begum
- Department of PerfusionRoyal Brompton HospitalLondonUK
| | - V. Domenico Bruno
- Translational Biomedical Research CentreUniversity of BristolBristolUK
- Bristol Heart InstituteUniversity Hospital Bristol NHS Foundation TrustBristolUK
| | - Rasheda A. Chowdhury
- National Heart and Lung InstituteImperial CollegeLondonUK
- Imperial Centre for Cardiac EngineeringImperial CollegeLondonUK
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Malte Roehl
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | | | - Padmini Sarathchandra
- National Heart and Lung InstituteImperial CollegeLondonUK
- Magdi Yacoub Institute, National Heart and Lung InstituteImperial CollegeLondonUK
| | - Jan N. Rose
- Department of AeronauticsImperial CollegeLondonUK
| | | | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Raimondo Ascione
- Translational Biomedical Research CentreUniversity of BristolBristolUK
- Bristol Heart InstituteUniversity Hospital Bristol NHS Foundation TrustBristolUK
| | - Ranil de Silva
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - David N. Firmin
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| |
Collapse
|
21
|
Teh I, Romero R. WA, Boyle J, Coll‐Font J, Dall'Armellina E, Ennis DB, Ferreira PF, Kalra P, Kolipaka A, Kozerke S, Lohr D, Mongeon F, Moulin K, Nguyen C, Nielles‐Vallespin S, Raterman B, Schreiber LM, Scott AD, Sosnovik DE, Stoeck CT, Tous C, Tunnicliffe EM, Weng AM, Croisille P, Viallon M, Schneider JE. Validation of cardiac diffusion tensor imaging sequences: A multicentre test-retest phantom study. NMR IN BIOMEDICINE 2022; 35:e4685. [PMID: 34967060 PMCID: PMC9285553 DOI: 10.1002/nbm.4685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/19/2021] [Accepted: 12/24/2021] [Indexed: 05/23/2023]
Abstract
Cardiac diffusion tensor imaging (DTI) is an emerging technique for the in vivo characterisation of myocardial microstructure, and there is a growing need for its validation and standardisation. We sought to establish the accuracy, precision, repeatability and reproducibility of state-of-the-art pulse sequences for cardiac DTI among 10 centres internationally. Phantoms comprising 0%-20% polyvinylpyrrolidone (PVP) were scanned with DTI using a product pulsed gradient spin echo (PGSE; N = 10 sites) sequence, and a custom motion-compensated spin echo (SE; N = 5) or stimulated echo acquisition mode (STEAM; N = 5) sequence suitable for cardiac DTI in vivo. A second identical scan was performed 1-9 days later, and the data were analysed centrally. The average mean diffusivities (MDs) in 0% PVP were (1.124, 1.130, 1.113) x 10-3 mm2 /s for PGSE, SE and STEAM, respectively, and accurate to within 1.5% of reference data from the literature. The coefficients of variation in MDs across sites were 2.6%, 3.1% and 2.1% for PGSE, SE and STEAM, respectively, and were similar to previous studies using only PGSE. Reproducibility in MD was excellent, with mean differences in PGSE, SE and STEAM of (0.3 ± 2.3, 0.24 ± 0.95, 0.52 ± 0.58) x 10-5 mm2 /s (mean ± 1.96 SD). We show that custom sequences for cardiac DTI provide accurate, precise, repeatable and reproducible measurements. Further work in anisotropic and/or deforming phantoms is warranted.
Collapse
Affiliation(s)
- Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - William A. Romero R.
- Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1UJM‐Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F‐42023Saint EtienneFrance
| | - Jordan Boyle
- School of Mechanical EngineeringUniversity of LeedsLeedsUK
| | - Jaume Coll‐Font
- Cardiovascular Research Center and A. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Erica Dall'Armellina
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Daniel B. Ennis
- Division of RadiologyVA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance UnitThe Royal Brompton and Harefield NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Prateek Kalra
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Arunark Kolipaka
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Sebastian Kozerke
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - David Lohr
- Department of Cardiovascular ImagingComprehensive Heart Failure CenterWürzburgGermany
| | | | - Kévin Moulin
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
| | - Christopher Nguyen
- Cardiovascular Research Center and A. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance UnitThe Royal Brompton and Harefield NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Brian Raterman
- Department of RadiologyThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Laura M. Schreiber
- Department of Cardiovascular ImagingComprehensive Heart Failure CenterWürzburgGermany
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance UnitThe Royal Brompton and Harefield NHS Foundation TrustLondonUK
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - David E. Sosnovik
- Cardiovascular Research Center and A. A. Martinos Center for Biomedical ImagingMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Christian T. Stoeck
- Institute for Biomedical EngineeringUniversity and ETH ZurichZurichSwitzerland
| | - Cyril Tous
- Department of Radiology, Radiation‐Oncology and Nuclear Medicine and Institute of Biomedical EngineeringUniversité de MontréalMontréalCanada
| | - Elizabeth M. Tunnicliffe
- Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Oxford NIHR Biomedical Research CentreOxfordUK
| | - Andreas M. Weng
- Department of Diagnostic and Interventional RadiologyUniversity Hospital WürzburgWürzburgGermany
| | - Pierre Croisille
- Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1UJM‐Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F‐42023Saint EtienneFrance
| | - Magalie Viallon
- Univ Lyon, INSA‐Lyon, Université Claude Bernard Lyon 1UJM‐Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1294, F‐42023Saint EtienneFrance
| | - Jürgen E. Schneider
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
22
|
In Vivo Super-Resolution Cardiac Diffusion Tensor MRI: A Feasibility Study. Diagnostics (Basel) 2022; 12:diagnostics12040877. [PMID: 35453925 PMCID: PMC9028988 DOI: 10.3390/diagnostics12040877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
A super-resolution (SR) technique is proposed for imaging myocardial fiber architecture with cardiac magnetic resonance. Images were acquired with a motion-compensated cardiac diffusion tensor imaging (cDTI) sequence. The heart left ventricle was covered with three stacks of thick slices, in short axis, horizontal and vertical long axes orientations, respectively. The three low-resolution stacks (2 × 2 × 8 mm3) were combined into an isotropic volume (2 × 2 × 2 mm3) by a super-resolution reconstruction. For in vivo measurements, each slice was acquired during a breath-hold period. Bulk motion was corrected by optimizing a similarity metric between intensity profiles from all intersecting slices in the dataset. The benefit of the proposed approach was evaluated using a numerical heart phantom, a physical helicoidal phantom with artificial fibers, and six healthy subjects. The SR technique showed improved results compared to the native scans, in terms of image quality and cDTI metrics. In particular, the myocardial helix angle (HA) was more accurately estimated in the physical phantom (HA = 41.5° ± 1.1°, with the ground truth being 42.0°). In vivo, it resulted in a sharper rate of change of HA across the myocardial wall (−0.993°/% ± 0.007°/% against −0.873°/% ± 0.010°/%).
Collapse
|
23
|
Rodriguez Padilla J, Petras A, Magat J, Bayer J, Bihan-Poudec Y, El-Hamrani D, Ramlugun G, Neic A, Augustin C, Vaillant F, Constantin M, Benoist D, Pourtau L, Dubes V, Rogier J, Labrousse L, Bernus O, Quesson B, Haissaguerre M, Gsell M, Plank G, Ozenne V, Vigmond E. Impact of Intraventricular Septal Fiber Orientation on Cardiac Electromechanical Function. Am J Physiol Heart Circ Physiol 2022; 322:H936-H952. [PMID: 35302879 PMCID: PMC9109800 DOI: 10.1152/ajpheart.00050.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac fiber direction is an important factor determining the propagation of electrical activity, as well as the development of mechanical force. In this article, we imaged the ventricles of several species with special attention to the intraventricular septum to determine the functional consequences of septal fiber organization. First, we identified a dual-layer organization of the fiber orientation in the intraventricular septum of ex vivo sheep hearts using diffusion tensor imaging at high field MRI. To expand the scope of the results, we investigated the presence of a similar fiber organization in five mammalian species (rat, canine, pig, sheep, and human) and highlighted the continuity of the layer with the moderator band in large mammalian species. We implemented the measured septal fiber fields in three-dimensional electromechanical computer models to assess the impact of the fiber orientation. The downward fibers produced a diamond activation pattern superficially in the right ventricle. Electromechanically, there was very little change in pressure volume loops although the stress distribution was altered. In conclusion, we clarified that the right ventricular septum has a downwardly directed superficial layer in larger mammalian species, which can have modest effects on stress distribution. NEW & NOTEWORTHY A dual-layer organization of the fiber orientation in the intraventricular septum was identified in ex vivo hearts of large mammals. The RV septum has a downwardly directed superficial layer that is continuous with the moderator band. Electrically, it produced a diamond activation pattern. Electromechanically, little change in pressure volume loops were noticed but stress distribution was altered. Fiber distribution derived from diffusion tensor imaging should be considered for an accurate strain and stress analysis.
Collapse
Affiliation(s)
| | - Argyrios Petras
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Linz, Austria
| | - Julie Magat
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Jason Bayer
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| | - Yann Bihan-Poudec
- Centre de Neuroscience Cognitive, CNRS UMR 5229, Université Claude Bernard Lyon I, France
| | - Dounia El-Hamrani
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Girish Ramlugun
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Aurel Neic
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Christoph Augustin
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Fanny Vaillant
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Marion Constantin
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - David Benoist
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Line Pourtau
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Virginie Dubes
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | | | - Olivier Bernus
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | - Bruno Quesson
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France.,INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, Bordeaux, France
| | | | - Matthias Gsell
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center, Division of Biophysics, Medical University of Graz, Graz, Austria.,BioTechMed-Graz, Graz, Austria
| | - Valéry Ozenne
- Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, CNRS/Université de Bordeaux, Bordeaux, France
| | - Edward Vigmond
- Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Pessac-Bordeaux, France.,Univ. Bordeaux, IMB, UMR 5251, Talence, France
| |
Collapse
|
24
|
Continuous cardiac thermometry via simultaneous catheter tracking and undersampled radial golden angle acquisition for radiofrequency ablation monitoring. Sci Rep 2022; 12:4006. [PMID: 35256627 PMCID: PMC8901729 DOI: 10.1038/s41598-022-06927-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
The complexity of the MRI protocol is one of the factors limiting the clinical adoption of MR temperature mapping for real-time monitoring of cardiac ablation procedures and a push-button solution would ease its use. Continuous gradient echo golden angle radial acquisition combined with intra-scan motion correction and undersampled temperature determination could be a robust and more user-friendly alternative than the ultrafast GRE-EPI sequence which suffers from sensitivity to magnetic field susceptibility artifacts and requires ECG-gating. The goal of this proof-of-concept work is to establish the temperature uncertainty as well as the spatial and temporal resolutions achievable in an Agar-gel phantom and in vivo using this method. GRE radial golden angle acquisitions were used to monitor RF ablations in a phantom and in vivo in two sheep hearts with different slice orientations. In each case, 2D rigid motion correction based on catheter micro-coil signal, tracking its motion, was performed and its impact on the temperature imaging was assessed. The temperature uncertainty was determined for three spatial resolutions (1 × 1 × 3 mm3, 2 × 2 × 3 mm3, and 3 × 3 × 3 mm3) and three temporal resolutions (0.48, 0.72, and 0.97 s) with undersampling acceleration factors ranging from 2 to 17. The combination of radial golden angle GRE acquisition, simultaneous catheter tracking, intra-scan 2D motion correction, and undersampled thermometry enabled temperature monitoring in the myocardium in vivo during RF ablations with high temporal (< 1 s) and high spatial resolution. The temperature uncertainty ranged from 0.2 ± 0.1 to 1.8 ± 0.2 °C for the various temporal and spatial resolutions and, on average, remained superior to the uncertainty of an EPI acquisition while still allowing clinical monitoring of the RF ablation process. The proposed method is a robust and promising alternative to EPI acquisition to monitor in vivo RF cardiac ablations. Further studies remain required to improve the temperature uncertainty and establish its clinical applicability.
Collapse
|
25
|
Ciyamala Kushbu S, Inbamalar TM. Making Semi-Automatic Segmentation Method to be Automatic Using Deep Learning for Biventricular Segmentation. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2022. [DOI: 10.1166/jmihi.2022.3927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ventricular Segmentation or Delineation of Cardiac Magnetic Resonance Imaging (CMRI) is significant in obtaining the cardiac contractile function, which in turn is taken as input for diagnosing Cardio Vascular Diseases (CVD). Many automatic and semi-automatic methods were evolved to
meet the constraints of diagnosing CVDs. Among these, semi-automatic methods require user intervention for delineation of ventricles, which consumes time and leads to intra and inter-observability, as with manual delineation. Thus, the automatic method is suggested by most of the researchers
to address the above-stated problem. We proposed Saliency-based Active contour U-Net (SACU-Net) for automatic bi-ventricular segmentation which is found to surpass the existing highest developed methods regarding closeness to the gold standard. Three schemes are used by our proposed algorithm,
namely 1. Saliency Detection Scheme for Region of Interest (ROI) Localization to concentrate only on Object of Interest, 2. Drop-out embedded U-net for Initial Contour evolution that performs initial segmentation and 3. Local-Global-based Regional active Contour (LGRAC) to fine-tune and avoid
leaking, merging of ventricles during Delineation. We used three datasets namely Automatic Cardiac Diagnosing Challenge (ACDC) of MICCAI 2017, Right Ventricular Segmentation Challenge (RVSC) of MICCAI 2012, and Sunny Brook (SB) of MICCAI 2009 dataset to test the adaptability nature of our
algorithm over different scanner resolutions and protocols. 100 and 50 CMRI Images of ACDC were used for training and testing respectively which obtained average Dice Coefficient (DC) metric of 0.963, 0.934, and 0.948 for Left Ventricular Cavity (LVC), Left Ventricular Myocardium (LVM), and
Right Ventricular Cavity (RVC) respectively. 32 and 16 CMRI Images of RVSC are used for preparing and experimenting respectively, which obtained an average DC metric of 0.95 for RVC.30 and 15 CMRI Images of SB are used for preparing and experimenting respectively, which obtained average DC
metric of 0.96 and 0.97 for LVC and LVM, respectively. Hausdorff Distance (HD) Metrics are also calculated to learn the distance of proposed delineated ventricles to reach the gold standard. The above resultant metrics show the robustness of our proposed SACU-Net in the segmentation of ventricles
of CMRI than previous methods.
Collapse
Affiliation(s)
- S. Ciyamala Kushbu
- Department of Information and Communication Engineering, Anna University, Chennai 25, Tamilnadu, India
| | - T. M. Inbamalar
- Department of Electronics and Communication Engineering, R.M.K. Engineering College, Tiruvallur 601206, Tamilnadu, India
| |
Collapse
|
26
|
Connecting macroscopic diffusion metrics of cardiac diffusion tensor imaging and microscopic myocardial structures based on simulation. Med Image Anal 2022; 77:102325. [DOI: 10.1016/j.media.2021.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022]
|
27
|
Das A, Kelly C, Teh I, Sharrack N, Stoeck CT, Kozerke S, Schneider JE, Plein S, Dall'Armellina E. Detection of Intramyocardial Iron in Patients Following ST-Elevation Myocardial Infarction Using Cardiac Diffusion Tensor Imaging. J Magn Reson Imaging 2022; 56:1171-1181. [PMID: 35019174 PMCID: PMC9544509 DOI: 10.1002/jmri.28063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
Background Intramyocardial hemorrhage (IMH) following ST‐elevation myocardial infarction (STEMI) is associated with poor prognosis. In cardiac magnetic resonance (MR), T2* mapping is the reference standard for detecting IMH while cardiac diffusion tensor imaging (cDTI) can characterize myocardial architecture via fractional anisotropy (FA) and mean diffusivity (MD) of water molecules. The value of cDTI in the detection of IMH is not currently known. Hypothesis cDTI can detect IMH post‐STEMI. Study Type Prospective. Subjects A total of 50 patients (20% female) scanned at 1‐week (V1) and 3‐month (V2) post‐STEMI. Field Strength/Sequence A 3.0 T; inversion‐recovery T1‐weighted‐imaging, multigradient‐echo T2* mapping, spin‐echo cDTI. Assessment T2* maps were analyzed to detect IMH (defined as areas with T2* < 20 msec within areas of infarction). cDTI images were co‐registered to produce averaged diffusion‐weighted‐images (DWIs), MD, and FA maps; hypointense areas were manually planimetered for IMH quantification. Statistics On averaged DWI, the presence of hypointense signal in areas matching IMH on T2* maps constituted to true‐positive detection of iron. Independent samples t‐tests were used to compare regional cDTI values. Results were considered statistically significant at P ≤ 0.05. Results At V1, 24 patients had IMH on T2*. On averaged DWI, all 24 patients had hypointense signal in matching areas. IMH size derived using averaged‐DWI was nonsignificantly greater than from T2* (2.0 ± 1.0 cm2 vs 1.89 ± 0.96 cm2, P = 0.69). Compared to surrounding infarcted myocardium, MD was significantly reduced (1.29 ± 0.20 × 10−3 mm2/sec vs 1.75 ± 0.16 × 10−3 mm2/sec) and FA was significantly increased (0.40 ± 0.07 vs 0.23 ± 0.03) within areas of IMH. By V2, all 24 patients with acute IMH continued to have hypointense signals on averaged‐DWI in the affected area. T2* detected IMH in 96% of these patients. Overall, averaged‐DWI had 100% sensitivity and 96% specificity for the detection of IMH. Data Conclusion This study demonstrates that the parameters MD and FA are susceptible to the paramagnetic properties of iron, enabling cDTI to detect IMH. Evidence Level 1 Technical Efficacy Stage 2
Collapse
Affiliation(s)
- Arka Das
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Christopher Kelly
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Irvin Teh
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Noor Sharrack
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Jürgen E Schneider
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Sven Plein
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Erica Dall'Armellina
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
28
|
Stimm J, Nordsletten DA, Jilberto J, Miller R, Berberoğlu E, Kozerke S, Stoeck CT. Personalization of biomechanical simulations of the left ventricle by in-vivo cardiac DTI data: Impact of fiber interpolation methods. Front Physiol 2022; 13:1042537. [PMID: 36518106 PMCID: PMC9742433 DOI: 10.3389/fphys.2022.1042537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Simulations of cardiac electrophysiology and mechanics have been reported to be sensitive to the microstructural anisotropy of the myocardium. Consequently, a personalized representation of cardiac microstructure is a crucial component of accurate, personalized cardiac biomechanical models. In-vivo cardiac Diffusion Tensor Imaging (cDTI) is a non-invasive magnetic resonance imaging technique capable of probing the heart's microstructure. Being a rather novel technique, issues such as low resolution, signal-to noise ratio, and spatial coverage are currently limiting factors. We outline four interpolation techniques with varying degrees of data fidelity, different amounts of smoothing strength, and varying representation error to bridge the gap between the sparse in-vivo data and the model, requiring a 3D representation of microstructure across the myocardium. We provide a workflow to incorporate in-vivo myofiber orientation into a left ventricular model and demonstrate that personalized modelling based on fiber orientations from in-vivo cDTI data is feasible. The interpolation error is correlated with a trend in personalized parameters and simulated physiological parameters, strains, and ventricular twist. This trend in simulation results is consistent across material parameter settings and therefore corresponds to a bias introduced by the interpolation method. This study suggests that using a tensor interpolation approach to personalize microstructure with in-vivo cDTI data, reduces the fiber uncertainty and thereby the bias in the simulation results.
Collapse
Affiliation(s)
- Johanna Stimm
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - David A Nordsletten
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States.,School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Javiera Jilberto
- Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Renee Miller
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Ezgi Berberoğlu
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland.,Division of Surgical Research, University Hospital Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Zhao X, Ziv O, Mohammadpour R, Crosby B, Hoyt WJ, Jenkins MW, Snyder C, Hendon C, Laurita KR, Rollins AM. Polarization-sensitive optical coherence tomography monitoring of percutaneous radiofrequency ablation in left atrium of living swine. Sci Rep 2021; 11:24330. [PMID: 34934120 PMCID: PMC8692484 DOI: 10.1038/s41598-021-03724-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/06/2021] [Indexed: 11/12/2022] Open
Abstract
Radiofrequency ablation (RFA) is commonly used to treat atrial fibrillation (AF). However, the outcome is often compromised due to the lack of direct real-time feedback to assess lesion transmurality. In this work, we evaluated the ability of polarization-sensitive optical coherence tomography (PSOCT) to measure cardiac wall thickness and assess RF lesion transmurality during left atrium (LA) RFA procedures. Quantitative transmural lesion criteria using PSOCT images were determined ex vivo using an integrated PSOCT-RFA catheter and fresh swine hearts. LA wall thickness of living swine was measured with PSOCT and validated with a micrometer after harvesting the heart. A total of 38 point lesions were created in the LA of 5 living swine with the integrated PSOCT-RFA catheter using standard clinical RFA procedures. For all lesions with analyzable PSOCT images, lesion transmurality was assessed with a sensitivity of 89% (17 of 19 tested positive) and a specificity of 100% (5 of 5 tested negative) using the quantitative transmural criteria. This is the first report of using PSOCT to assess LA RFA lesion transmurality in vivo. The results indicate that PSOCT may potentially provide direct real-time feedback for LA wall thickness and lesion transmurality.
Collapse
Affiliation(s)
- Xiaowei Zhao
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Ohad Ziv
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Heart and Vascular Research Center, MetroHealth Medical Center, Cleveland, OH, USA
| | | | - Benjamin Crosby
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Walter J Hoyt
- Department of Pediatrics, Ochsner Health, New Orleans, LA, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA
| | - Christopher Snyder
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- The Congenital Heart Collaborative, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Christine Hendon
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Kenneth R Laurita
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- Heart and Vascular Research Center, MetroHealth Medical Center, Cleveland, OH, USA
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
30
|
Banerjee A, Camps J, Zacur E, Andrews CM, Rudy Y, Choudhury RP, Rodriguez B, Grau V. A completely automated pipeline for 3D reconstruction of human heart from 2D cine magnetic resonance slices. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200257. [PMID: 34689630 PMCID: PMC8543046 DOI: 10.1098/rsta.2020.0257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 05/05/2023]
Abstract
Cardiac magnetic resonance (CMR) imaging is a valuable modality in the diagnosis and characterization of cardiovascular diseases, since it can identify abnormalities in structure and function of the myocardium non-invasively and without the need for ionizing radiation. However, in clinical practice, it is commonly acquired as a collection of separated and independent 2D image planes, which limits its accuracy in 3D analysis. This paper presents a completely automated pipeline for generating patient-specific 3D biventricular heart models from cine magnetic resonance (MR) slices. Our pipeline automatically selects the relevant cine MR images, segments them using a deep learning-based method to extract the heart contours, and aligns the contours in 3D space correcting possible misalignments due to breathing or subject motion first using the intensity and contours information from the cine data and next with the help of a statistical shape model. Finally, the sparse 3D representation of the contours is used to generate a smooth 3D biventricular mesh. The computational pipeline is applied and evaluated in a CMR dataset of 20 healthy subjects. Our results show an average reduction of misalignment artefacts from 1.82 ± 1.60 mm to 0.72 ± 0.73 mm over 20 subjects, in terms of distance from the final reconstructed mesh. The high-resolution 3D biventricular meshes obtained with our computational pipeline are used for simulations of electrical activation patterns, showing agreement with non-invasive electrocardiographic imaging. The automatic methodologies presented here for patient-specific MR imaging-based 3D biventricular representations contribute to the efficient realization of precision medicine, enabling the enhanced interpretability of clinical data, the digital twin vision through patient-specific image-based modelling and simulation, and augmented reality applications. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.
Collapse
Affiliation(s)
- Abhirup Banerjee
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Julià Camps
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Ernesto Zacur
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Christopher M. Andrews
- Department of Biomedical Engineering, Washington University, St Louis, Missouri, USA
- Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, Missouri, USA
| | - Yoram Rudy
- Department of Biomedical Engineering, Washington University, St Louis, Missouri, USA
- Cardiac Bioelectricity and Arrhythmia Center, Washington University, St Louis, Missouri, USA
| | - Robin P. Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Oxford Acute Vascular Imaging Centre, Oxford, UK
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Vicente Grau
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Moulin K, Croisille P, Viallon M, Verzhbinsky IA, Perotti LE, Ennis DB. Myofiber strain in healthy humans using DENSE and cDTI. Magn Reson Med 2021; 86:277-292. [PMID: 33619807 DOI: 10.1002/mrm.28724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Myofiber strain, Eff , is a mechanistically relevant metric of cardiac cell shortening and is expected to be spatially uniform in healthy populations, making it a prime candidate for the evaluation of local cardiomyocyte contractility. In this study, a new, efficient pipeline was proposed to combine microstructural cDTI and functional DENSE data in order to estimate Eff in vivo. METHODS Thirty healthy volunteers were scanned with three long-axis (LA) and three short-axis (SA) DENSE slices using 2D displacement encoding and one SA slice of cDTI. The total acquisition time was 11 minutes ± 3 minutes across volunteers. The pipeline first generates 3D SA displacements from all DENSE slices which are then combined with cDTI data to generate a cine of myofiber orientations and compute Eff . The precision of the post-processing pipeline was assessed using a computational phantom study. Transmural myofiber strain was compared to circumferential strain, Ecc , in healthy volunteers using a Wilcoxon sign rank test. RESULTS In vivo, computed Eff was found uniform transmurally compared to Ecc (-0.14[-0.15, -0.12] vs -0.18 [-0.20, -0.16], P < .001, -0.14 [-0.16, -0.12] vs -0.16 [-0.17, -0.13], P < .001 and -0.14 [-0.16, -0.12] vs Ecc_C = -0.14 [-0.15, -0.11], P = .002, Eff_C vs Ecc_C in the endo, mid, and epi layers, respectively). CONCLUSION We demonstrate that it is possible to measure in vivo myofiber strain in a healthy human population in 10 minutes per subject. Myofiber strain was observed to be spatially uniform in healthy volunteers making it a potential biomarker for the evaluation of local cardiomyocyte contractility in assessing cardiovascular dysfunction.
Collapse
Affiliation(s)
- Kévin Moulin
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Pierre Croisille
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France.,Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Magalie Viallon
- University of Lyon, UJM-Saint-Etienne, INSA, CNRS UMR 5520, INSERM U1206, CREATIS, Saint-Etienne, France.,Department of Radiology, University Hospital Saint-Etienne, Saint-Etienne, France
| | - Ilya A Verzhbinsky
- Medical Scientist Training Program, University of California - San Diego, La Jolla, CA, USA
| | - Luigi E Perotti
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, CA, USA
| |
Collapse
|
32
|
Das A, Kelly C, Teh I, Stoeck CT, Kozerke S, Chowdhary A, Brown LAE, Saunderson CED, Craven TP, Chew PG, Jex N, Swoboda PP, Levelt E, Greenwood JP, Schneider JE, Plein S, Dall'Armellina E. Acute Microstructural Changes after ST-Segment Elevation Myocardial Infarction Assessed with Diffusion Tensor Imaging. Radiology 2021; 299:86-96. [PMID: 33560187 DOI: 10.1148/radiol.2021203208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Cardiac diffusion tensor imaging (cDTI) allows for in vivo characterization of myocardial microstructure. In cDTI, mean diffusivity and fractional anisotropy (FA)-markers of magnitude and anisotropy of diffusion of water molecules-are known to change after myocardial infarction. However, little is known about regional changes in helix angle (HA) and secondary eigenvector angle (E2A), which reflects orientations of laminar sheetlets, and their association with long-term recovery of left ventricular ejection fraction (LVEF). Purpose To assess serial changes in cDTI biomarkers in participants following ST-segment elevation myocardial infarction (STEMI) and to determine their associations with long-term left ventricular remodeling. Materials and Methods In this prospective study, 30 participants underwent cardiac MRI (3 T) after STEMI at 5 days and 3 months after reperfusion (National Institute of Health Research study no. 33963 and Research Ethics no. REC17/YH/0062). Spin-echo cDTI with second-order motion-compensation (approximate duration, 13 minutes; three sections; 18 noncollinear diffusion-weighted scans with b values of 100 sec/mm2 [three acquisitions], 200 sec/mm2 [three acquisitions], and 500 sec/mm2 [12 acquisitions]), functional images, and late gadolinium enhancement images were obtained. Multiple regression analysis was used to assess associations between acute cDTI parameters and 3-month LVEF. Results Acutely infarcted myocardium had reduced FA, E2A, and myocytes with right-handed orientation (RHM) on HA maps compared with remote myocardium (mean remote FA = 0.36 ± 0.02 [standard deviation], mean infarcted FA = 0.25 ± 0.03, P < .001; mean remote E2A = 55° ± 9, mean infarcted E2A = 49° ± 10, P < .001; mean remote RHM = 16% ± 6, mean infarcted RHM = 9% ± 5, P < .001). All three parameters (FA, E2A, and RHM) correlated with 3-month LVEF (r = 0.68, r = 0.59, and r = 0.53, respectively), with acute FA being independently predictive of 3-month LVEF (standardized β = 0.56, P = .008) after multivariable analysis adjusting for factors, including acute LVEF and infarct size. Conclusion After ST-segment elevation myocardial infarction, diffusion becomes more isotropic in acutely infarcted myocardium as reflected by decreased fractional anisotropy. Reductions in secondary eigenvector angle suggest that the myocardial sheetlets are unable to adopt their usual steep orientations in systole, whereas reductions in myocytes with right-handed orientation on helix angle maps are likely reflective of a loss of organization among subendocardial myocytes. Correlations between these parameters and 3-month left ventricular ejection fraction highlight the potential clinical use of cardiac diffusion tensor imaging after myocardial infarction in predicting long-term remodeling. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Arka Das
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Christopher Kelly
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Irvin Teh
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Christian T Stoeck
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Sebastian Kozerke
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Amrit Chowdhary
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Louise A E Brown
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Christopher E D Saunderson
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Thomas P Craven
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Pei G Chew
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Nicholas Jex
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Peter P Swoboda
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Eylem Levelt
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - John P Greenwood
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Jurgen E Schneider
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Sven Plein
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| | - Erica Dall'Armellina
- From the Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, and Leeds Teaching Hospitals NHS Trust, Clarendon, Way, Leeds LS2 9JT, England (A.D., C.K., I.T., A.C., L.A.E.B., C.E.D.S., T.P.C., P.G.C., N.J., P.P.S., E.L., J.P.G., J.E.S., S.P., E.D.); and Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland (C.T.S., S.K.)
| |
Collapse
|
33
|
Probing cardiomyocyte mobility with multi-phase cardiac diffusion tensor MRI. PLoS One 2020; 15:e0241996. [PMID: 33180823 PMCID: PMC7660468 DOI: 10.1371/journal.pone.0241996] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/24/2020] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Cardiomyocyte organization and performance underlie cardiac function, but the in vivo mobility of these cells during contraction and filling remains difficult to probe. Herein, a novel trigger delay (TD) scout sequence was used to acquire high in-plane resolution (1.6 mm) Spin-Echo (SE) cardiac diffusion tensor imaging (cDTI) at three distinct cardiac phases. The objective was to characterize cardiomyocyte organization and mobility throughout the cardiac cycle in healthy volunteers. MATERIALS AND METHODS Nine healthy volunteers were imaged with cDTI at three distinct cardiac phases (early systole, late systole, and diastasis). The sequence used a free-breathing Spin-Echo (SE) cDTI protocol (b-values = 350s/mm2, twelve diffusion encoding directions, eight repetitions) to acquire high-resolution images (1.6x1.6x8mm3) at 3T in ~7 minutes/cardiac phase. Helix Angle (HA), Helix Angle Range (HAR), E2 angle (E2A), Transverse Angle (TA), Mean Diffusivity (MD), diffusion tensor eigenvalues (λ1-2-3), and Fractional Anisotropy (FA) in the left ventricle (LV) were characterized. RESULTS Images from the patient-specific TD scout sequence demonstrated that SE cDTI acquisition was possible at early systole, late systole, and diastasis in 78%, 100% and 67% of the cases, respectively. At the mid-ventricular level, mobility (reported as median [IQR]) was observed in HAR between early systole and late systole (76.9 [72.6, 80.5]° vs 96.6 [85.9, 100.3]°, p<0.001). E2A also changed significantly between early systole, late systole, and diastasis (27.7 [20.8, 35.1]° vs 45.2 [42.1, 49]° vs 20.7 [16.6, 26.4]°, p<0.001). CONCLUSION We demonstrate that it is possible to probe cardiomyocyte mobility using multi-phase and high resolution cDTI. In healthy volunteers, aggregate cardiomyocytes re-orient themselves more longitudinally during contraction, while cardiomyocyte sheetlets tilt radially during wall thickening. These observations provide new insights into the three-dimensional mobility of myocardial microstructure during systolic contraction.
Collapse
|
34
|
Abstract
Advances in technology have made it possible to image the microstructure of the heart with diffusion-weighted magnetic resonance. The technique provides unique insights into the cellular architecture of the myocardium and how this is perturbed in a range of disease contexts. In this review, the physical basis of diffusion MRI and the challenges of implementing it in the beating heart are discussed. Cutting edge acquisition and analysis techniques, as well as the results of initial clinical studies, are reported.
Collapse
Affiliation(s)
- David E Sosnovik
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Division of Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
35
|
Kato Y, Ambale-Venkatesh B, Kassai Y, Kasuboski L, Schuijf J, Kapoor K, Caruthers S, Lima JAC. Non-contrast coronary magnetic resonance angiography: current frontiers and future horizons. MAGMA (NEW YORK, N.Y.) 2020; 33:591-612. [PMID: 32242282 PMCID: PMC7502041 DOI: 10.1007/s10334-020-00834-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/22/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023]
Abstract
Coronary magnetic resonance angiography (coronary MRA) is advantageous in its ability to assess coronary artery morphology and function without ionizing radiation or contrast media. However, technical limitations including reduced spatial resolution, long acquisition times, and low signal-to-noise ratios prevent it from clinical routine utilization. Nonetheless, each of these limitations can be specifically addressed by a combination of novel technologies including super-resolution imaging, compressed sensing, and deep-learning reconstruction. In this paper, we first review the current clinical use and motivations for non-contrast coronary MRA, discuss currently available coronary MRA techniques, and highlight current technical developments that hold unique potential to optimize coronary MRA image acquisition and post-processing. In the final section, we examine the various research-based coronary MRA methods and metrics that can be leveraged to assess coronary stenosis severity, physiological function, and atherosclerotic plaque characterization. We specifically discuss how such technologies may contribute to the clinical translation of coronary MRA into a robust modality for routine clinical use.
Collapse
Affiliation(s)
- Yoko Kato
- Division of Cardiology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Blalock 524, Baltimore, MD, 21287-0409, USA
| | | | | | | | | | - Karan Kapoor
- Division of Cardiology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Blalock 524, Baltimore, MD, 21287-0409, USA
| | | | - Joao A C Lima
- Division of Cardiology, Johns Hopkins University School of Medicine, 600 N Wolfe St, Blalock 524, Baltimore, MD, 21287-0409, USA.
| |
Collapse
|
36
|
Zhang XS, Sang XQ, Kuai ZX, Zhang HX, Lou J, Lu Q, Zhu YM. Investigation of intravoxel incoherent motion tensor imaging for the characterization of the in vivo human heart. Magn Reson Med 2020; 85:1414-1426. [PMID: 32989786 DOI: 10.1002/mrm.28523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate intravoxel incoherent motion (IVIM) tensor imaging of the in vivo human heart and elucidate whether the estimation of IVIM tensors is affected by the complexity of pseudo-diffusion components in myocardium. METHODS The cardiac IVIM data of 10 healthy subjects were acquired using a diffusion weighted spin-echo echo-planar imaging sequence along 6 gradient directions with 10 b values (0~400 s/mm2 ). The IVIM data of left ventricle myocardium were fitted to the IVIM tensor model. The complexity of myocardial pseudo-diffusion components was reduced through exclusion of low b values (0 and 5 s/mm2 ) from the IVIM curve-fitting analysis. The fractional anisotropy, mean fraction/mean diffusivity, and Westin measurements of pseudo-diffusion tensors (fp and D*) and self-diffusion tensor (D), as well as the angle between the main eigenvector of fp (or D*) and that of D, were computed and compared before and after excluding low b values. RESULTS The fractional anisotropy values of fp and D* without low b value participation were significantly higher (P < .001) than those with low b value participation, but an opposite trend was found for the mean fraction/diffusivity values. Besides, after removing low b values, the angle between the main eigenvector of fp (or D*) and that of D became small, and both fp and D* tensors presented significant decrease of spherical components and significant increase of linear components. CONCLUSION The presence of multiple pseudo-diffusion components in myocardium indeed influences the estimation of IVIM tensors. The IVIM tensor model needs to be further improved to account for the complexity of myocardial microcirculatory network and blood flow.
Collapse
Affiliation(s)
- Xiu-Shi Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Xi-Qiao Sang
- Division of Respiratory Disease, The Fourth Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Zi-Xiang Kuai
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Hong-Xia Zhang
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Jie Lou
- Imaging Center, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China
| | - Qing Lu
- Department of Radiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yue-Min Zhu
- Univ Lyon, INSA Lyon, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69621, Lyon, France
| |
Collapse
|
37
|
Campanale CM, Scherrer B, Afacan O, Majeed A, Warfield SK, Sanders SP. Myofiber organization in the failing systemic right ventricle. J Cardiovasc Magn Reson 2020; 22:49. [PMID: 32600420 PMCID: PMC7322876 DOI: 10.1186/s12968-020-00637-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/13/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The right ventricle (RV) often fails when functioning as the systemic ventricle, but the cause is not understood. We tested the hypothesis that myofiber organization is abnormal in the failing systemic right ventricle. METHODS We used diffusion-weighted cardiovascular magnetic resonance imaging to examine 3 failing hearts explanted from young patients with a systemic RV and one structurally normal heart with postnatally acquired RV hypertrophy for comparison. Diffusion compartment imaging was computed to separate the free diffusive component representing free water from an anisotropic component characterizing the orientation and diffusion characteristics of myofibers. The orientation of each anisotropic compartment was displayed in glyph format and used for qualitative description of myofibers and for construction of tractograms. The helix angle was calculated across the ventricular walls in 5 locations and displayed graphically. Scalar parameters (fractional anisotropy and mean diffusivity) were compared among specimens. RESULTS The hypertrophied systemic RV has an inner layer, comprising about 2/3 of the wall, composed of hypertrophied trabeculae and an epicardial layer of circumferential myofibers. Myofibers within smaller trabeculae are aligned and organized with parallel fibers while larger, composite bundles show marked disarray, largely between component trabeculae. We observed a narrow range of helix angles in the outer, compact part of the wall consistent with aligned, approximately circumferential fibers. However, there was marked variation of helix angle in the inner, trabecular part of the wall consistent with marked variation in fiber orientation. The apical whorl was disrupted or incomplete and we observed myocardial whorls or vortices at other locations. Fractional anisotropy was lower in abnormal hearts while mean diffusivity was more variable, being higher in 2 but lower in 1 heart, compared to the structurally normal heart. CONCLUSIONS Myofiber organization is abnormal in the failing systemic RV and might be an important substrate for heart failure and arrhythmia. It is unclear if myofiber disorganization is due to hemodynamic factors, developmental problems, or both.
Collapse
MESH Headings
- Adolescent
- Child, Preschool
- Diffusion Magnetic Resonance Imaging
- Female
- Heart Defects, Congenital/diagnostic imaging
- Heart Defects, Congenital/pathology
- Heart Defects, Congenital/physiopathology
- Heart Defects, Congenital/surgery
- Heart Failure/diagnostic imaging
- Heart Failure/pathology
- Heart Failure/physiopathology
- Heart Failure/surgery
- Heart Transplantation
- Heart Ventricles/diagnostic imaging
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Heart Ventricles/surgery
- Humans
- Male
- Myocardium/pathology
- Myofibrils/pathology
- Predictive Value of Tests
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/surgery
- Ventricular Function, Right
- Young Adult
Collapse
Affiliation(s)
- Cosimo M. Campanale
- Unit of Perinatal Cardiology, Department of Neonatology, Ospedale Pediatrico Bambino Gesù di Roma, Rome, Italy
| | - Benoit Scherrer
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA USA
| | - Onur Afacan
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA USA
| | - Amara Majeed
- Department of Cardiology, Boston Children’s Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA USA
| | - Simon K. Warfield
- Department of Radiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA USA
| | - Stephen P. Sanders
- Cardiac Registry, Departments of Cardiology, Pathology and Cardiac Surgery, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115, USA. and Department of Pediatrics, Harvard Medical School, Boston, MA USA
| |
Collapse
|
38
|
Analysis and correction of off‐resonance artifacts in echo‐planar cardiac diffusion tensor imaging. Magn Reson Med 2020; 84:2561-2576. [DOI: 10.1002/mrm.28318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 01/19/2023]
|
39
|
Khalique Z, Ferreira PF, Scott AD, Nielles-Vallespin S, Firmin DN, Pennell DJ. Diffusion Tensor Cardiovascular Magnetic Resonance Imaging. JACC Cardiovasc Imaging 2020; 13:1235-1255. [DOI: 10.1016/j.jcmg.2019.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
|
40
|
Ferreira PF, Martin RR, Scott AD, Khalique Z, Yang G, Nielles‐Vallespin S, Pennell DJ, Firmin DN. Automating in vivo cardiac diffusion tensor postprocessing with deep learning–based segmentation. Magn Reson Med 2020; 84:2801-2814. [DOI: 10.1002/mrm.28294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Pedro F. Ferreira
- Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital London United Kingdom
- National Heart and Lung Institute Imperial College London United Kingdom
| | - Raquel R. Martin
- Department of Bioengineering Imperial College London United Kingdom
| | - Andrew D. Scott
- Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital London United Kingdom
- National Heart and Lung Institute Imperial College London United Kingdom
| | - Zohya Khalique
- Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital London United Kingdom
- National Heart and Lung Institute Imperial College London United Kingdom
| | - Guang Yang
- Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital London United Kingdom
- National Heart and Lung Institute Imperial College London United Kingdom
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital London United Kingdom
- National Heart and Lung Institute Imperial College London United Kingdom
| | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital London United Kingdom
- National Heart and Lung Institute Imperial College London United Kingdom
| | - David N. Firmin
- Cardiovascular Magnetic Resonance Unit Royal Brompton Hospital London United Kingdom
- National Heart and Lung Institute Imperial College London United Kingdom
| |
Collapse
|
41
|
Lasič S, Szczepankiewicz F, Dall'Armellina E, Das A, Kelly C, Plein S, Schneider JE, Nilsson M, Teh I. Motion-compensated b-tensor encoding for in vivo cardiac diffusion-weighted imaging. NMR IN BIOMEDICINE 2020; 33:e4213. [PMID: 31765063 PMCID: PMC6980347 DOI: 10.1002/nbm.4213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 05/30/2023]
Abstract
Motion is a major confound in diffusion-weighted imaging (DWI) in the body, and it is a common cause of image artefacts. The effects are particularly severe in cardiac applications, due to the nonrigid cyclical deformation of the myocardium. Spin echo-based DWI commonly employs gradient moment-nulling techniques to desensitise the acquisition to velocity and acceleration, ie, nulling gradient moments up to the 2nd order (M2-nulled). However, current M2-nulled DWI scans are limited to encode diffusion along a single direction at a time. We propose a method for designing b-tensors of arbitrary shapes, including planar, spherical, prolate and oblate tensors, while nulling gradient moments up to the 2nd order and beyond. The design strategy comprises initialising the diffusion encoding gradients in two encoding blocks about the refocusing pulse, followed by appropriate scaling and rotation, which further enables nulling undesired effects of concomitant gradients. Proof-of-concept assessment of in vivo mean diffusivity (MD) was performed using linear and spherical tensor encoding (LTE and STE, respectively) in the hearts of five healthy volunteers. The results of the M2-nulled STE showed that (a) the sequence was robust to cardiac motion, and (b) MD was higher than that acquired using standard M2-nulled LTE, where diffusion-weighting was applied in three orthogonal directions, which may be attributed to the presence of restricted diffusion and microscopic diffusion anisotropy. Provided adequate signal-to-noise ratio, STE could significantly shorten estimation of MD compared with the conventional LTE approach. Importantly, our theoretical analysis and the proposed gradient waveform design may be useful in microstructure imaging beyond diffusion tensor imaging where the effects of motion must be suppressed.
Collapse
Affiliation(s)
| | - Filip Szczepankiewicz
- Clinical SciencesLund UniversityLundSweden
- Harvard Medical SchoolBostonMassachusettsUSA
- Brigham and Women's HospitalBostonMassachusettsUSA
| | - Erica Dall'Armellina
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Arka Das
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Christopher Kelly
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Jürgen E. Schneider
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | | | - Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
42
|
Manning WJ. Journal of Cardiovascular Magnetic Resonance: 2017/2018 in review. J Cardiovasc Magn Reson 2019; 21:79. [PMID: 31884956 PMCID: PMC6936125 DOI: 10.1186/s12968-019-0594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
There were 89 articles published in the Journal of Cardiovascular Magnetic Resonance (JCMR) in 2017, including 76 original research papers, 4 reviews, 5 technical notes, 1 guideline, and 3 corrections. The volume was down slightly from 2017 with a corresponding 15% decrease in manuscript submissions from 405 to 346 and thus reflects a slight increase in the acceptance rate from 25 to 26%. The decrease in submissions for the year followed the initiation of the increased author processing charge (APC) for Society for Cardiovascular Magnetic Resonance (SCMR) members for manuscripts submitted after June 30, 2018. The quality of the submissions continues to be high. The 2018 JCMR Impact Factor (which is published in June 2019) was slightly lower at 5.1 (vs. 5.46 for 2017; as published in June 2018. The 2018 impact factor means that on average, each JCMR published in 2016 and 2017 was cited 5.1 times in 2018. Our 5 year impact factor was 5.82.In accordance with Open-Access publishing guidelines of BMC, the JCMR articles are published on-line in a continuus fashion in the chronologic order of acceptance, with no collating of the articles into sections or special thematic issues. For this reason, over the years, the Editors have felt that it is useful for the JCMR audience to annually summarize the publications into broad areas of interest or themes, so that readers can view areas of interest in a single article in relation to each other and contemporaneous JCMR publications. In this publication, the manuscripts are presented in broad themes and set in context with related literature and previously published JCMR papers to guide continuity of thought within the journal. In addition, as in the past two years, I have used this publication to also convey information regarding the editorial process and as a "State of our JCMR."This is the 12th year of JCMR as an open-access publication with BMC (formerly known as Biomed Central). The timing of the JCMR transition to the open access platform was "ahead of the curve" and a tribute to the vision of Dr. Matthias Friedrich, the SCMR Publications Committee Chair and Dr. Dudley Pennell, the JCMR editor-in-chief at the time. The open-access system has dramatically increased the reading and citation of JCMR publications and I hope that you, our authors, will continue to send your very best, high quality manuscripts to JCMR for consideration. It takes a village to run a journal and I thank our very dedicated Associate Editors, Guest Editors, Reviewers for their efforts to ensure that the review process occurs in a timely and responsible manner. These efforts have allowed the JCMR to continue as the premier journal of our field. This entire process would also not be possible without the dedication and efforts of our managing editor, Diana Gethers. Finally, I thank you for entrusting me with the editorship of the JCMR as I begin my 4th year as your editor-in-chief. It has been a tremendous experience for me and the opportunity to review manuscripts that reflect the best in our field remains a great joy and highlight of my week!
Collapse
Affiliation(s)
- Warren J Manning
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
43
|
Stoeck CT, von Deuster C, van Gorkum RJH, Kozerke S. Motion and eddy current-induced signal dephasing in in vivo cardiac DTI. Magn Reson Med 2019; 84:277-288. [PMID: 31868257 DOI: 10.1002/mrm.28132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE To address motion in cardiac DWI, stimulated-echo acquisition mode (STEAM) and second-order motion-compensated spin-echo (SE) sequences have been proposed. Despite applying motion-compensation strategies, residual motion can cause misleading signal attenuation. The purpose of this study is to estimate the motion-induced error in both sequences by analysis of image phase. METHODS Diffusion-weighted motion-compensated SE sequences and STEAM imaging was applied in vivo with diffusion encoding along 3 orthogonal directions. A b-value range of 100 to 600 s/mm2 and trigger delays of 25%, 50%, and 75% of end systole and middiastole were used. Eddy-current contributions were obtained from phantom measurements. After computation of motion-induced phase maps, the amount of signal dephasing was computed from phase gradients, and the resulting errors in diffusion tensor parameters were calculated. RESULTS Motion-induced dephasing from the STEAM sequence showed less dependency on the b-value and no dependency on the heart phase, whereas SE imaging performed best at 75% end systole followed by 50% end systole and middiastole. For a typical experimental setting, errors of 3.3%/3.0% mean diffusivity, 4.9%/4.8% fractional anisotropy, 2.9º/3.2º helix angulation, 0.8º/0.7º transverse angulation, and 9.9º/10.0º sheet angulation (SE/STEAM) were calculated. CONCLUSION Image phase contains valuable information regarding uncompensated motion and eddy currents in cardiac DTI. Although the trigger delay window for SE is narrower compared with the STEAM-based approach, imaging in both systole and diastole is feasible and both sequences perform similarly if the trigger delays are selected carefully with SE.
Collapse
Affiliation(s)
- Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | | | | | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Diffusion tensor cardiovascular magnetic resonance in hypertrophic cardiomyopathy: a comparison of motion-compensated spin echo and stimulated echo techniques. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:331-342. [PMID: 31758419 PMCID: PMC7230046 DOI: 10.1007/s10334-019-00799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022]
Abstract
Objectives Diffusion tensor cardiovascular magnetic resonance (DT-CMR) interrogates myocardial microstructure. Two frequently used in vivo DT-CMR techniques are motion-compensated spin echo (M2-SE) and stimulated echo acquisition mode (STEAM). Whilst M2-SE is strain-insensitive and signal to noise ratio efficient, STEAM has a longer diffusion time and motion compensation is unnecessary. Here we compare STEAM and M2-SE DT-CMR in patients. Materials and methods Biphasic DT-CMR using STEAM and M2-SE, late gadolinium imaging and pre/post gadolinium T1-mapping were performed in a mid-ventricular short-axis slice, in ten hypertrophic cardiomyopathy (HCM) patients at 3 T. Results Adequate quality data were obtained from all STEAM, but only 7/10 (systole) and 4/10 (diastole) M2-SE acquisitions. Compared with STEAM, M2-SE yielded higher systolic mean diffusivity (MD) (p = 0.02) and lower fractional anisotropy (FA) (p = 0.02, systole). Compared with segments with neither hypertrophy nor late gadolinium, segments with both had lower systolic FA using M2-SE (p = 0.02) and trend toward higher MD (p = 0.1). The negative correlation between FA and extracellular volume fraction was stronger with STEAM than M2-SE (r2 = 0.29, p < 0.001 STEAM vs. r2 = 0.10, p = 0.003 M2-SE). Discussion In HCM, only STEAM reliably assesses biphasic myocardial microstructure. Higher MD and lower FA from M2-SE reflect the shorter diffusion times. Further work will relate DT-CMR parameters and microstructural changes in disease. Electronic supplementary material The online version of this article (10.1007/s10334-019-00799-3) contains supplementary material, which is available to authorized users.
Collapse
|
45
|
Bertelsen L, Alarcón F, Andreasen L, Benito E, Olesen MS, Vejlstrup N, Mont L, Svendsen JH. Verification of threshold for image intensity ratio analyses of late gadolinium enhancement magnetic resonance imaging of left atrial fibrosis in 1.5T scans. Int J Cardiovasc Imaging 2019; 36:513-520. [PMID: 31748945 PMCID: PMC7080681 DOI: 10.1007/s10554-019-01728-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/03/2019] [Indexed: 11/25/2022]
Abstract
The use of cardiovascular magnetic resonance imaging left atrial late gadolinium enhancement (LA LGE) is increasing for fibrosis evaluation though the use is still limited to specialized centres due to complex image acquisition and lack of consensus on image analyses. Analysis of LA LGE with image intensity ratio (IIR) (pixel intensity of atrial wall normalized by blood pool intensity) provides an objective method to obtain quantitative data on atrial fibrosis. A threshold between healthy myocardium and fibrosis of 1.2 has previously been established in 3T scans. The aim of the study was to reaffirm this threshold in 1.5T scans. LA LGE was performed using a 1.5T magnetic resonance scanner on: 11 lone-AF patients, 11 age-matched healthy volunteers (aged 27-44) and 11 elderly patients without known history of AF but varying degrees of comorbidities. Mean values of IIR for all healthy volunteers +2SD were set as upper limit of normality and was reproduced to 1.21 and the original IIR-threshold of 1.20 was maintained. The degree of fibrosis in lone-AF patients [median 9.0% (IQR 3.9-12.0)] was higher than in healthy volunteers [2.8% (1.3-8.3)] and even higher in elderly non-AF [20.1% (10.2-35.8), p = 0.001]. The previously established IIR-threshold of 1.2 was reaffirmed in 1.5T LA LGE scans. Patients with lone AF presented with increased degrees of atrial fibrosis compared to healthy volunteers in the same age-range. Elderly patients with no history of AF showed significantly higher degrees of fibrosis compared to both groups with younger individuals.
Collapse
Affiliation(s)
- Litten Bertelsen
- Department of Cardiology, Centre for Cardiac-, Vascular-, Pulmonary and Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Francisco Alarcón
- Department of Cardiology, Unitat de Fibril.lació Auricular (UFA) Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Andreasen
- Department of Cardiology, Centre for Cardiac-, Vascular-, Pulmonary and Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eva Benito
- Department of Cardiology, Unitat de Fibril.lació Auricular (UFA) Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Niels Vejlstrup
- Department of Cardiology, Centre for Cardiac-, Vascular-, Pulmonary and Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lluis Mont
- Department of Cardiology, Unitat de Fibril.lació Auricular (UFA) Hospital Clinic, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Centre for Cardiac-, Vascular-, Pulmonary and Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
46
|
Nielles-Vallespin S, Scott A, Ferreira P, Khalique Z, Pennell D, Firmin D. Cardiac Diffusion: Technique and Practical Applications. J Magn Reson Imaging 2019; 52:348-368. [PMID: 31482620 DOI: 10.1002/jmri.26912] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
The 3D microarchitecture of the cardiac muscle underlies the mechanical and electrical properties of the heart. Cardiomyocytes are arranged helically through the depth of the wall, and their shortening leads to macroscopic torsion, twist, and shortening during cardiac contraction. Furthermore, cardiomyocytes are organized in sheetlets separated by shear layers, which reorientate, slip, and shear during macroscopic left ventricle (LV) wall thickening. Cardiac diffusion provides a means for noninvasive interrogation of the 3D microarchitecture of the myocardium. The fundamental principle of MR diffusion is that an MRI signal is attenuated by the self-diffusion of water in the presence of large diffusion-encoding gradients. Since water molecules are constrained by the boundaries in biological tissue (cell membranes, collagen layers, etc.), depicting their diffusion behavior elucidates the shape of the myocardial microarchitecture they are embedded in. Cardiac diffusion therefore provides a noninvasive means to understand not only the dynamic changes in cardiac microstructure of healthy myocardium during cardiac contraction but also the pathophysiological changes in the presence of disease. This unique and innovative technology offers tremendous potential to enable improved clinical diagnosis through novel microstructural and functional assessment. in vivo cardiac diffusion methods are immediately translatable to patients, opening new avenues for diagnostic investigation and treatment evaluation in a range of clinically important cardiac pathologies. This review article describes the 3D microstructure of the LV, explains in vivo and ex vivo cardiac MR diffusion acquisition and postprocessing techniques, as well as clinical applications to date. Level of Evidence: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:348-368.
Collapse
Affiliation(s)
- Sonia Nielles-Vallespin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Andrew Scott
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Pedro Ferreira
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Zohya Khalique
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - Dudley Pennell
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| | - David Firmin
- Cardiovascular MR Unit, Royal Brompton And Harefield NHS Foundation Trust, London, UK.,NHLI, Imperial College of Science, Technology and Medicine, London, UK
| |
Collapse
|
47
|
Kunisch K, Neic A, Plank G, Trautmann P. Inverse localization of earliest cardiac activation sites from activation maps based on the viscous Eikonal equation. J Math Biol 2019; 79:2033-2068. [PMID: 31473798 PMCID: PMC6858910 DOI: 10.1007/s00285-019-01419-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 05/30/2019] [Indexed: 01/25/2023]
Abstract
In this study we propose a novel method for identifying the locations of earliest activation in the human left ventricle from activation maps measured at the epicardial surface. Electrical activation is modeled based on the viscous Eikonal equation. The sites of earliest activation are identified by solving a minimization problem. Arbitrary initial locations are assumed, which are then modified based on a shape derivative based perturbation field until a minimal mismatch between the computed and the given activation maps on the epicardial surface is achieved. The proposed method is tested in two numerical benchmarks, a generic 2D unit-square benchmark, and an anatomically accurate MRI-derived 3D human left ventricle benchmark to demonstrate potential utility in a clinical context. For unperturbed input data, our localization method is able to accurately reconstruct the earliest activation sites in both benchmarks with deviations of only a fraction of the used spatial discretization size. Further, with the quality of the input data reduced by spatial undersampling and addition of noise, we demonstrate that an accurate identification of the sites of earliest activation is still feasible.
Collapse
Affiliation(s)
| | - Aurel Neic
- , Auenbruggerplatz 2, 8036, Graz, Austria
| | | | | |
Collapse
|
48
|
Khalique Z, Pennell D. Diffusion tensor cardiovascular magnetic resonance. Postgrad Med J 2019; 95:433-438. [DOI: 10.1136/postgradmedj-2019-136429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/16/2019] [Accepted: 04/28/2019] [Indexed: 11/03/2022]
Abstract
Cardiac structure and function are complex and inter-related. Current in vivo techniques assess the heart on a macroscopic scale, but a novel technique called diffusion tensor cardiovascular magnetic resonance (DT-CMR) can now assess the cardiac microstructure non-invasively. It provides information on the helical arrangement of cardiomyocytes that drives torsion and offers dynamic assessment of the sheetlets (aggregated cardiomyocytes) that rotate through the cardiac cycle to facilitate wall thickening. Through diffusion biomarkers, the expansion and organisation of the underlying myocardium can be described. DT-CMR has already identified novel microstructural abnormalities in cardiomyopathy, and ischaemic and congenital heart disease. This new knowledge supports the potential of DT-CMR to improve diagnostics and prognostication in various cardiac diseases.
Collapse
|
49
|
Stoeck CT, Scott AD, Ferreira PF, Tunnicliffe EM, Teh I, Nielles-Vallespin S, Moulin K, Sosnovik DE, Viallon M, Croisille P, Kozerke S, Firmin DN, Ennis DB, Schneider JE. Motion-Induced Signal Loss in In Vivo Cardiac Diffusion-Weighted Imaging. J Magn Reson Imaging 2019; 51:319-320. [PMID: 31034705 DOI: 10.1002/jmri.26767] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 01/07/2023] Open
Abstract
LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;51:319-320.
Collapse
Affiliation(s)
- Christian T Stoeck
- Institute for Biomedical Engineering, University and ETH, Zurich, Switzerland
| | - Andrew D Scott
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Pedro F Ferreira
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Elizabeth M Tunnicliffe
- University of Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Irvin Teh
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Sonia Nielles-Vallespin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Kevin Moulin
- Department of Radiology, Stanford University, Stanford, California, USA
| | - David E Sosnovik
- Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Magalie Viallon
- Department of Radiology, University Hospital of Saint-Etienne, Saint-Etienne, France.,CREATIS UMR CNRS5220 INSERM U1206, University of Lyon, Lyon, France
| | - Pierre Croisille
- Department of Radiology, University Hospital of Saint-Etienne, Saint-Etienne, France.,CREATIS UMR CNRS5220 INSERM U1206, University of Lyon, Lyon, France
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University and ETH, Zurich, Switzerland
| | - David N Firmin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, London, UK.,National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel B Ennis
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Jurgen E Schneider
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK.,Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Spinner GR, Stoeck CT, Mathez L, von Deuster C, Federau C, Kozerke S. On probing intravoxel incoherent motion in the heart‐spin‐echo versus stimulated‐echo DWI. Magn Reson Med 2019; 82:1150-1163. [DOI: 10.1002/mrm.27777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Georg R. Spinner
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | - Christian T. Stoeck
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | - Linda Mathez
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | | | - Christian Federau
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering University and ETH Zurich Zurich Switzerland
| |
Collapse
|