1
|
Dannesboe J, Bastrup JA, Nielsen KH, Munck P, Thomsen MB, Hawkins CL, Jepps TA. Paracetamol metabolism by endothelial cells - Potential mechanism underlying intravenous paracetamol-induced hypotension. Pharmacol Res 2025; 211:107540. [PMID: 39653302 DOI: 10.1016/j.phrs.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/24/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
It was shown previously that a metabolite of acetaminophen (APAP), N-acetyl-p-benzoquinone imine (NAPQI), is a potent vasodilator, which could underlie the hypotension observed when APAP is administered intravenously. However, it is unknown whether APAP metabolism to NAPQI is possible in the vasculature. In this study, we examine the hypothesis that APAP is metabolized by cytochrome P450 enzymes within the endothelium, which may be accelerated in critically ill patients by the presence of elevated myeloperoxidase (MPO). Exposure of human coronary artery endothelial cells (HCAECs) to APAP resulted in the formation of protein-bound APAP adducts. Proteomic analysis of HCAECs exposed to APAP showed upregulation of CYP20A1, together with proteins involved in the pentose phosphate pathway and maintaining redox homeostasis. Proteomic analyses of mesenteric arteries from rats administered intravenous APAP are consistent with a key role of the vascular wall in APAP metabolism, with similar proteomic pathway changes identified in HCAECs. These changes occurred over a short timeframe and were not seen in the corresponding proteomic analyses of liver tissue. Intracellular thiols were depleted in HCAECs upon APAP treatment, which was partially attenuated by ketoconazole, consistent with the involvement of cytochrome P450 enzymes in the metabolism of APAP to a thiol-reactive metabolite such as NAPQI. Evidence was also obtained for the metabolism of APAP to a thiol-reactive intermediate by MPO in the absence of chloride ions, consistent with NAPQI formation. Taken together, these data provide a putative mechanism to explain the presentation of hypotension in critically ill patients following IV APAP administration.
Collapse
Affiliation(s)
- Johs Dannesboe
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Joakim A Bastrup
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Kathrine Holm Nielsen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Pelle Munck
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Morten B Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark
| | - Thomas A Jepps
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N 2200, Denmark.
| |
Collapse
|
2
|
Yun M, Regen ND, Anchondo Y, Eddinger K, Malkmus S, Roberts SW, Donati E, Leonardi A, Yaksh TL. Acetaminophen effects upon formalin-evoked flinching, postformalin, and postincisional allodynia and conditioned place preference. Pain Rep 2024; 9:e1168. [PMID: 39139364 PMCID: PMC11321755 DOI: 10.1097/pr9.0000000000001168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 05/09/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction We explored in mice, the analgesic, tolerance, dependency, and rewarding effects of systemic acetaminophen (APAP). Methods Studies employed adult mice (C57Bl6). (1) Intraplantar formalin flinching + post formalin allodynia. Mice were given intraperitoneal APAP in a DMSO (5%)/Tween 80 (5%) or a water-based formulation before formalin flinching on day 1 and tactile thresholds assessed before and after APAP at day 12. (2) Paw incision. At 24 hours and 8 days after hind paw incision in male mice, effects of intraperitoneal APAP on tactile allodynia were assessed. (3) Repeated delivery. Mice received daily (4 days) analgesic doses of APAP or vehicle and tested upon formalin flinching on day 5. (4) Conditioned place preference. For 3 consecutive days, vehicle was given in the morning in either of 2 chambers and in each afternoon, an analgesic dose of morphine or APAP in the other chamber. On days 5 and 10, animals were allowed to select a "preferred" chamber. Results Formalin in male mice resulted in biphasic flinching and an enduring postformalin tactile allodynia. Acetaminophen dose dependently decreased phase 2 flinching, and reversed allodynia was observed postflinching. At a comparable APAP dose, female mice showed similarly reduced phase 2 flinching. Incision allodynia was transiently reversed by APAP. Repeated APAP delivery showed no loss of effect after sequential injections or signs of withdrawal. Morphine, but not APAP or vehicle, resulted in robust place preference. Conclusions APAP decreased flinching and allodynia observed following formalin and paw incision and an absence of tolerance, dependence, or rewarding properties.
Collapse
Affiliation(s)
- Mijung Yun
- Department of Anesthesiology, University of California, San Diego, CA, USA
- Pain Clinic, Department of Anesthesiology and Pain Medicine, National Medical Center, Jung-gu, Seoul, Korea
| | | | - Yuvicza Anchondo
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Kelly Eddinger
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Shelle Malkmus
- Department of Anesthesiology, University of California, San Diego, CA, USA
| | - Steven W. Roberts
- Mechanical and Aerospace Engineering, University of California San Diego, San Diego, CA, USA
| | | | | | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, CA, USA
| |
Collapse
|
3
|
Sun L, Wilke Saliba S, Apweiler M, Akmermer K, Herlan C, Grathwol C, de Oliveira ACP, Normann C, Jung N, Bräse S, Fiebich BL. Anti-Neuroinflammatory Effects of a Macrocyclic Peptide-Peptoid Hybrid in Lipopolysaccharide-Stimulated BV2 Microglial Cells. Int J Mol Sci 2024; 25:4462. [PMID: 38674048 PMCID: PMC11049839 DOI: 10.3390/ijms25084462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Inflammation processes of the central nervous system (CNS) play a vital role in the pathogenesis of several neurological and psychiatric disorders like depression. These processes are characterized by the activation of glia cells, such as microglia. Clinical studies showed a decrease in symptoms associated with the mentioned diseases after the treatment with anti-inflammatory drugs. Therefore, the investigation of novel anti-inflammatory drugs could hold substantial potential in the treatment of disorders with a neuroinflammatory background. In this in vitro study, we report the anti-inflammatory effects of a novel hexacyclic peptide-peptoid hybrid in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The macrocyclic compound X15856 significantly suppressed Interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α), c-c motif chemokine ligand 2 (CCL2), CCL3, C-X-C motif chemokine ligand 2 (CXCL2), and CXCL10 expression and release in LPS-treated BV2 microglial cells. The anti-inflammatory effects of the compound are partially explained by the modulation of the phosphorylation of p38 mitogen-activated protein kinases (MAPK), p42/44 MAPK (ERK 1/2), protein kinase C (PKC), and the nuclear factor (NF)-κB, respectively. Due to its remarkable anti-inflammatory properties, this compound emerges as an encouraging option for additional research and potential utilization in disorders influenced by inflammation, such as depression.
Collapse
Affiliation(s)
- Lu Sun
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Kamil Akmermer
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
| | - Claudine Herlan
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Christoph Grathwol
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | | | - Claus Normann
- Mechanisms of Depression Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nicole Jung
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (K.A.); (C.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, D-76131 Karlsruhe, Germany
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
4
|
Huang Y, Qiu F, Dziegielewska KM, Koehn LM, Habgood MD, Saunders NR. Effects of paracetamol/acetaminophen on the expression of solute carriers (SLCs) in late-gestation fetal rat brain, choroid plexus and the placenta. Exp Physiol 2024; 109:427-444. [PMID: 38059686 PMCID: PMC10988763 DOI: 10.1113/ep091442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Solute carriers (SLCs) regulate transfer of a wide range of molecules across cell membranes using facilitative or secondary active transport. In pregnancy, these transporters, expressed at the placental barrier, are important for delivery of nutrients to the fetus, whilst also limiting entry of potentially harmful substances, such as drugs. In the present study, RNA-sequencing analysis was used to investigate expression of SLCs in the fetal (embryonic day 19) rat brain, choroid plexus and placenta in untreated control animals and following maternal paracetamol treatment. In the treated group, paracetamol (15 mg/kg) was administered to dams twice daily for 5 days (from embryonic day 15 to 19). In untreated animals, overall expression of SLCs was highest in the placenta. In the paracetamol treatment group, expression of several SLCs was significantly different compared with control animals, with ion, amino acid, neurotransmitter and sugar transporters most affected. The number of SLC transcripts that changed significantly following treatment was the highest in the choroid plexus and lowest in the brain. All SLC transcripts that changed in the placenta following paracetamol treatment were downregulated. These results suggest that administration of paracetamol during pregnancy could potentially disrupt fetal nutrient homeostasis and affect brain development, resulting in major consequences for the neonate and extending into childhood.
Collapse
Affiliation(s)
- Yifan Huang
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | - Fiona Qiu
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | | | - Liam M. Koehn
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical SciencesMonash UniversityParkvilleVictoriaAustralia
| | - Mark D. Habgood
- Department of NeuroscienceMonash UniversityMelbourneVictoriaAustralia
| | | |
Collapse
|
5
|
Bai JQ, Li PB, Li CM, Li HH. N-arachidonoylphenolamine alleviates ischaemia/reperfusion-induced cardiomyocyte necroptosis by restoring proteasomal activity. Eur J Pharmacol 2024; 963:176235. [PMID: 38096967 DOI: 10.1016/j.ejphar.2023.176235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Necroptosis and apoptosis contribute to the pathogenesis of myocardial ischaemia/reperfusion (I/R) injury and subsequent heart failure. N-arachidonoylphenolamine (AM404) is a paracetamol lipid metabolite that has pleiotropic activity to modulate the endocannabinoid system. However, the protective role of AM404 in modulating I/R-mediated myocardial damage and the underlying mechanism remain largely unknown. A murine I/R model was generated by occlusion of the left anterior descending artery. AM404 (20 mg/kg) was injected intraperitoneally into mice at 2 and 24 h before the I/R operation. Our data revealed that AM404 administration to mice greatly ameliorated I/R-triggered impairment of myocardial performance and reduced infarct area, myocyte apoptosis, oxidative stress and inflammatory response accompanied by the reduction of receptor interacting protein kinase (RIPK)1/3- mixed lineage kinase domain-like (MLKL)-mediated necroptosis and upregulation of the immunosubunits (β2i and β5i). In contrast, administration of epoxomicin (a proteasome inhibitor) dramatically abolished AM404-dependent protection against myocardial I/R damage. Mechanistically, AM404 treatment increases β5i expression, which interacts with Pellino-1 (Peli1), an E3 ligase, to form a complex with RIPK1/3, thereby promoting their degradation, which leads to inhibition of cardiomyocyte necroptosis in the I/R heart. In conclusion, these findings demonstrate that AM404 could prevent cardiac I/R damage and may be a promising drug for the treatment of ischaemic heart disease.
Collapse
Affiliation(s)
- Jun-Qin Bai
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Pang-Bo Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chun-Min Li
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
6
|
Zhou Y, Yuan P, Xing Q, Jin W, Shi C. Efficacy of postoperative analgesia with intravenous paracetamol and mannitol injection, combined with thoracic paravertebral nerve block in post video-assisted thoracoscopic surgery pain: a prospective, randomized, double-blind controlled trial. BMC Anesthesiol 2024; 24:14. [PMID: 38172686 PMCID: PMC10765788 DOI: 10.1186/s12871-023-02386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Although video-assisted thoracoscopic surgery (VATS) has advantages of reduced injury and faster healing, patients still endure moderate and severe postoperative pain. Paracetamol and mannitol injection, the first acetaminophen injection in China, has the advantages of convenient administration, rapid onset of action, and no first-pass effect. This aim of this study was to investigate the efficacy of postoperative analgesia with paracetamol and mannitol injection, combined with thoracic paravertebral nerve block (TPVB) in post VATS pain. METHODS This study was a single-center, prospective, randomized, double-blind controlled clinical trial. Patients scheduled for VATS were randomly divided into three groups, general anesthesia group (Group C), TPVB group (Group T) and TPVB + paracetamol and mannitol injection group (Group TP). In this study, the primary outcome was determined as visual analog scale (VAS) scores at rest and coughing, the secondary observation outcomes were the first time to use analgesic pump, the total consumption of oxycodone in the analgesic pump, number of effective and total analgesic pump compressions at first 48 h postoperatively, the perioperative consumption of sufentanil, time to extubation, hospital length of stay, urine volume, and the incidence of adverse events. RESULTS In a state of rest and cough, patients in the Group TP showed significantly lower VAS pain scores at 1, 12, 24, and 48 postoperative-hour compared with Group C and Group T. Intraoperative sufentanil and postoperative oxycodone consumption, the first time to press analgesic pump, the times of effective and total compressions of patient- controlled analgesia (PCA) were lower than those of the Group C and Group T. Interestingly, urine output was higher in Group TP. There were no differences between the three groups in terms of extubation time, length of hospital stay and adverse effects, indicating that intravenous paracetamol and mannitol injection is an effective and safe perioperative analgesia method. CONCLUSIONS Paracetamol and mannitol injection, combined with TPVB may provide important beneficial effects on acute pain control and reduce the consumption of opioid in patients undergoing VATS. TRIAL REGISTRATION The trial was registered on Jun 19, 2023 in the Chinese Clinical Trial Registry ( https://www.chictr.org.cn/showproj.html?proj=199315 ), registration number ChiCTR2300072623 (19/06/2023).
Collapse
Affiliation(s)
- Yin Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Peng Yuan
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Qi Xing
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wenjie Jin
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Chonglong Shi
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
7
|
Rodrigues K, Hussain R, Cooke S, Zhang G, Zhang D, Yin L, Tong X. Fructose as a novel nutraceutical for acetaminophen (APAP)-induced hepatotoxicity. METABOLISM AND TARGET ORGAN DAMAGE 2023; 3:20. [PMID: 39193224 PMCID: PMC11349303 DOI: 10.20517/mtod.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Acetaminophen (APAP) is the most widely used analgesic in the world. APAP overdose can cause severe hepatotoxicity and therefore is the most common cause of drug-induced liver injury. The only approved treatment for APAP overdose is N-acetyl-cysteine (NAC) supplementation. However, the narrow efficacy window of the drug severely limits its clinical use, prompting the search for other therapeutic options to counteract APAP toxicity. Recent research has pointed to fructose as a novel nutraceutical for APAP-induced liver injury. This review summarizes the current understanding of the molecular mechanisms underlying APAP-induced liver injury, introduces how fructose supplementation could prevent and treat APAP liver toxicity with a focus on the ChREBPα-FGF21 pathway, and proposes possible future directions of study.
Collapse
Affiliation(s)
- Kyle Rodrigues
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Rawdat Hussain
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Sarah Cooke
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Gary Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Deqiang Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | - Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
- Caswell Diabetes Institute, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
8
|
Mallet C, Desmeules J, Pegahi R, Eschalier A. An Updated Review on the Metabolite (AM404)-Mediated Central Mechanism of Action of Paracetamol (Acetaminophen): Experimental Evidence and Potential Clinical Impact. J Pain Res 2023; 16:1081-1094. [PMID: 37016715 PMCID: PMC10066900 DOI: 10.2147/jpr.s393809] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Paracetamol remains the recommended first-line option for mild-to-moderate acute pain in general population and particularly in vulnerable populations. Despite its wide use, debate exists regarding the analgesic mechanism of action (MoA) of paracetamol. A growing body of evidence challenged the notion that paracetamol exerts its analgesic effect through cyclooxygenase (COX)-dependent inhibitory effect. It is now more evident that paracetamol analgesia has multiple pathways and is mediated by the formation of the bioactive AM404 metabolite in the central nervous system (CNS). AM404 is a potent activator of TRPV1, a major contributor to neuronal response to pain in the brain and dorsal horn. In the periaqueductal grey, the bioactive metabolite AM404 activated the TRPV1 channel-mGlu5 receptor-PLC-DAGL-CB1 receptor signaling cascade. The present article provides a comprehensive literature review of the centrally located, COX-independent, analgesic MoA of paracetamol and relates how the current experimental evidence can be translated into clinical practice. The evidence discussed in this review established paracetamol as a central, COX-independent, antinociceptive medication that has a distinct MoA from non-steroidal anti-inflammatory drugs (NSAIDs) and a more tolerable safety profile. With the establishment of the central MoA of paracetamol, we believe that paracetamol remains the preferred first-line option for mild-to-moderate acute pain for healthy adults, children, and patients with health concerns. However, safety concerns remain with the high dose of paracetamol due to the NAPQI-mediated liver necrosis. Centrally acting paracetamol/p-aminophenol derivatives could potentiate the analgesic effect of paracetamol without increasing the risk of hepatoxicity. Moreover, the specific central MoA of paracetamol allows its combination with other analgesics, including NSAIDs, with a different MoA. Future experiments to better explain the central actions of paracetamol could pave the way for discovering new central analgesics with a better benefit-to-risk ratio.
Collapse
Affiliation(s)
- Christophe Mallet
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
| | - Jules Desmeules
- Faculty of Medicine and The School of Pharmaceutical Sciences, Faculty of Sciences, Geneva University, Geneva, Switzerland
| | | | - Alain Eschalier
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, Clermont-Ferrand, France
- Correspondence: Alain Eschalier, Faculté de Médecine, UMR Neuro-Dol, 49 Bd François Mitterrand, Clermont-Ferrand, 63000, France, Email
| |
Collapse
|
9
|
Licochalcone A Inhibits Prostaglandin E 2 by Targeting the MAPK Pathway in LPS Activated Primary Microglia. Molecules 2023; 28:molecules28041927. [PMID: 36838914 PMCID: PMC9965579 DOI: 10.3390/molecules28041927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Neuroinflammation and oxidative stress are conditions leading to neurological and neuropsychiatric disorders. Natural compounds exerting anti-inflammatory and anti-oxidative effects, such as Licochalcone A, a bioactive flavonoid present in a traditional Chinese herb (licorice), might be beneficial for the treatment of those disorders. Therefore, this study aimed to investigate the anti-inflammatory and anti-oxidative effects of Licochalcone A in LPS-activated primary rat microglia. Licochalcone A dose-dependently prevented LPS-induced PGE2 release by inhibiting the arachidonic acid (AA)/cylcooxygenase (COX) pathway decreasing phospholipase A2, COX-1, and COX-2 protein levels. Furthermore, LPS-induced levels of the cytokines IL-6 and TNFα were reduced by Licochalcone A, which also inhibited the phosphorylation and, thus, activation of the mitogen-activated protein kinases (MAPK) p38 MAPK and Erk 1/2. With the reduction of 8-iso-PGF2α, a sensitive marker for oxidative stress, anti-oxidative effects of Licochalcone A were demonstrated. Our data demonstrate that Licochalcone A can affect microglial activation by interfering in important inflammatory pathways. These in vitro findings further demonstrate the potential value of Licochalcone A as a therapeutic option for the prevention of microglial dysfunction related to neuroinflammatory diseases. Future research should continue to investigate the effects of Licochalcone A in different disease models with a focus on its anti-oxidative and anti-neuroinflammatory properties.
Collapse
|
10
|
Thibault C, Pelletier É, Nguyen C, Trottier ED, Doré-Bergeron MJ, DeKoven K, Roy AM, Piché N, Delisle JF, Morin C, Paquette J, Kleiber N. The Three W's of Acetaminophen In Children: Who, Why, and Which Administration Mode. J Pediatr Pharmacol Ther 2023; 28:20-28. [PMID: 36777982 PMCID: PMC9901322 DOI: 10.5863/1551-6776-28.1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023]
Abstract
Acetaminophen is one of the oldest medications commonly administered in children. Its efficacy in treating fever and pain is well accepted among clinicians. However, the available evidence supporting the use of acetaminophen's different modes of administration remains relatively scarce and poorly known. This short report summarizes the available evidence and provides a framework to guide clinicians regarding a rational use of acetaminophen in children.
Collapse
Affiliation(s)
- Céline Thibault
- Department of Pharmacology and Physiology (CT, NK), Université de Montreal, Montreal, QC, Canada,Research Center (CT, NK), CHU Sainte-Justine, Université de Montreal, Montreal, QC, Canada,Department of Pediatrics (CT, MJDB, NK), CHU Sainte-Justine, Montreal, QC, Canada,Groupe de Gouvernance des Analgésiques (CT, EP, CN, EDT, MJDB, KD, AMR, NP, JFD, CM, JP, NK), Pharmacology Committee, CHU Sainte-Justine, Montreal, QC, Canada
| | - Élaine Pelletier
- Department of Pharmacology and Physiology (CT, NK), Université de Montreal, Montreal, QC, Canada,Groupe de Gouvernance des Analgésiques (CT, EP, CN, EDT, MJDB, KD, AMR, NP, JFD, CM, JP, NK), Pharmacology Committee, CHU Sainte-Justine, Montreal, QC, Canada,Department of Pharmacy (EP, CN, JFD, CM), CHU Sainte-Justine, Montreal, QC, Canada
| | - Christina Nguyen
- Groupe de Gouvernance des Analgésiques (CT, EP, CN, EDT, MJDB, KD, AMR, NP, JFD, CM, JP, NK), Pharmacology Committee, CHU Sainte-Justine, Montreal, QC, Canada,Department of Pharmacy (EP, CN, JFD, CM), CHU Sainte-Justine, Montreal, QC, Canada
| | - Evelyne D. Trottier
- Groupe de Gouvernance des Analgésiques (CT, EP, CN, EDT, MJDB, KD, AMR, NP, JFD, CM, JP, NK), Pharmacology Committee, CHU Sainte-Justine, Montreal, QC, Canada,Department of Pediatric Emergency Medicine (EDT), CHU Sainte Justine, Montreal, QC, Canada
| | - Marie-Joëlle Doré-Bergeron
- Department of Pediatrics (CT, MJDB, NK), CHU Sainte-Justine, Montreal, QC, Canada,Groupe de Gouvernance des Analgésiques (CT, EP, CN, EDT, MJDB, KD, AMR, NP, JFD, CM, JP, NK), Pharmacology Committee, CHU Sainte-Justine, Montreal, QC, Canada
| | - Kathryn DeKoven
- Groupe de Gouvernance des Analgésiques (CT, EP, CN, EDT, MJDB, KD, AMR, NP, JFD, CM, JP, NK), Pharmacology Committee, CHU Sainte-Justine, Montreal, QC, Canada,Department of Anesthesiology (KD), CHU Sainte-Justine, Montreal, QC, Canada
| | - Anne-Marie Roy
- Groupe de Gouvernance des Analgésiques (CT, EP, CN, EDT, MJDB, KD, AMR, NP, JFD, CM, JP, NK), Pharmacology Committee, CHU Sainte-Justine, Montreal, QC, Canada,Department of Nursing (AMR, JP), CHU Sainte-Justine, Montreal, QC, Canada
| | - Nelson Piché
- Groupe de Gouvernance des Analgésiques (CT, EP, CN, EDT, MJDB, KD, AMR, NP, JFD, CM, JP, NK), Pharmacology Committee, CHU Sainte-Justine, Montreal, QC, Canada
| | - Jean-Francois Delisle
- Groupe de Gouvernance des Analgésiques (CT, EP, CN, EDT, MJDB, KD, AMR, NP, JFD, CM, JP, NK), Pharmacology Committee, CHU Sainte-Justine, Montreal, QC, Canada,Department of Pharmacy (EP, CN, JFD, CM), CHU Sainte-Justine, Montreal, QC, Canada
| | - Caroline Morin
- Groupe de Gouvernance des Analgésiques (CT, EP, CN, EDT, MJDB, KD, AMR, NP, JFD, CM, JP, NK), Pharmacology Committee, CHU Sainte-Justine, Montreal, QC, Canada,Department of Pharmacy (EP, CN, JFD, CM), CHU Sainte-Justine, Montreal, QC, Canada
| | - Julie Paquette
- Groupe de Gouvernance des Analgésiques (CT, EP, CN, EDT, MJDB, KD, AMR, NP, JFD, CM, JP, NK), Pharmacology Committee, CHU Sainte-Justine, Montreal, QC, Canada,Department of Nursing (AMR, JP), CHU Sainte-Justine, Montreal, QC, Canada
| | - Niina Kleiber
- Department of Pharmacology and Physiology (CT, NK), Université de Montreal, Montreal, QC, Canada,Research Center (CT, NK), CHU Sainte-Justine, Université de Montreal, Montreal, QC, Canada,Groupe de Gouvernance des Analgésiques (CT, EP, CN, EDT, MJDB, KD, AMR, NP, JFD, CM, JP, NK), Pharmacology Committee, CHU Sainte-Justine, Montreal, QC, Canada,Department of Surgery (NP), CHU Sainte-Justine, Montreal, QC, Canada
| |
Collapse
|
11
|
Hasan T, Jahan E, Ahmed KS, Hossain H, Siam SMM, Nahid N, Mazumder T, Shuvo MSR, Daula AFMSU. Rutin hydrate and extract from Castanopsis tribuloides reduces pyrexia via inhibiting microsomal prostaglandin E synthase-1. Biomed Pharmacother 2022; 148:112774. [PMID: 35240529 DOI: 10.1016/j.biopha.2022.112774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/18/2022] [Accepted: 02/27/2022] [Indexed: 11/19/2022] Open
Abstract
Castanopsis tribuloides belongs to the oak species (Fagaceae) and it is commonly distributed in evergreen forests of Bangladesh, India, Myanmar, Nepal, China, and Thailand. Our present study aimed at uncovering the antipyretic potential of methanol extract of C. tribuloides bark (CTB) in the mice models. Baker's yeast pyrexia model was employed to determine the antipyretic potentials of the extract. Besides, molecular docking and dynamics simulation of CTB phenolic compounds were explored to validate the experimental results and gain insight into the possible antipyretic mechanism of action that can lead to the design and discovery of novel drugs against mPGES-1. The results revealed that CTB (400 mg/kg) significantly inhibited (P < 0.001) the elevated body temperature of mice since 0.5 h, which is more prominent than the standard. At dose 200 mg/kg, the bark extract also produced significant (P < 0.05) antipyretic activity since 2 h. HPLC-DAD analysis identified and quantified nine polyphenolic compounds from the extract, including rutin hydrate, (-) epicatechin, caffeic acid, catechin hydrate, catechol, trans-ferulic acid, p-coumaric acid, vanillic acid, and rosmarinic acid. Molecular docking study suggested probable competition of these phenolic compounds with glutathione, an essential cofactor for microsomal prostaglandin E synthase-1 (mPGES-1) activity. Additionally, RMSF, RMSD, Rg, and hydrogen bonds performed during MD simulations revealed that rutin hydrate (rich in CTB) bound to the mPGES-1 active site in a stable manner and thus inactivating mPGES-1. Therefore, it can be concluded that rutin hydrate reduces pyrexia in mice via downregulating PGE2 synthesis by inhibiting mPGES-1 activity.
Collapse
Affiliation(s)
- Tarek Hasan
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh.
| | - Esrat Jahan
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh.
| | - Khondoker Shahin Ahmed
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh.
| | - Hemayet Hossain
- Chemical Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh.
| | - Syed Mumtahin Mannan Siam
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh.
| | - Nusrat Nahid
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh.
| | - Tanoy Mazumder
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh.
| | - Md Sadikur Rahman Shuvo
- Department of Microbiology, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh.
| | - A F M Shahid Ud Daula
- Department of Pharmacy, Noakhali Science and Technology University, Sonapur, Noakhali 3814, Bangladesh.
| |
Collapse
|
12
|
Paracetamol-Induced Hypothermia in Rodents: A Review on Pharmacodynamics. Processes (Basel) 2022. [DOI: 10.3390/pr10040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Paracetamol can induce hypothermia in humans and rodents. The study’s aim is to review the mechanisms of paracetamol-induced hypothermia in rodents or the results issued from in vitro studies on the same species’ tissues (in doses that do not produce hepatic impairment) using the latest developments published in scientific journals over the last 15 years. Available human studies are also analysed. An extensive search in PubMed databases exploring the hypothermic response to paracetamol was conducted. 4669 articles about paracetamol’s effects on body temperature in mice or rats were found. After applying additional filters, 20 articles were selected for review, with 9 of them presented in tabular forms. The analysis of these articles found that the hypothermic effect of paracetamol is due to the inhibition of a cyclooxygenase-1 variant, is potentiated by endothelin receptor antagonists, and can be mediated through GABAA receptors and possibly through transient receptor potential cation channel subfamily A member 1 via N-acetyl-p-benzoquinone imine in the central nervous system. Human studies confirm the in vivo and in vitro experiments in rodents regarding the presence of a hypothermic effect after high, non-toxic doses of paracetamol. Further research is required to understand the mechanisms behind paracetamol’s hypothermic effect in humans.
Collapse
|
13
|
Long-Term Safety of Prenatal and Neonatal Exposure to Paracetamol: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042128. [PMID: 35206317 PMCID: PMC8871754 DOI: 10.3390/ijerph19042128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022]
Abstract
Introduction: Paracetamol is the most commonly used antipyretic and analgesic in pregnancy. It is also increasingly used off-label in the neonatal intensive care unit. Despite the frequent use of paracetamol, concerns have been raised regarding the high variability in neonatal dosing regimens and the long-term safety of early life exposure. Objective: To investigate the available evidence on the long-term safety of prenatal and neonatal paracetamol exposure. Methods: We conducted a systematic search of the electronic databases Ovid Medline, Ovid Embase and Web of Science from inception to August 2021 for original research studies of any design that described the use of paracetamol in the prenatal or neonatal (within the first four weeks of life) periods and examined the occurrence of neurodevelopmental, atopic or reproductive adverse outcomes at or beyond birth. Results: We identified 1313 unique articles and included 30 studies in the final review. Of all studies, 27 (90%), two (7%) and one (3%) were on the long-term safety of prenatal, neonatal and both prenatal and neonatal exposure, respectively. Thirteen (46%), 11 (39%) and four (15%) studies examined neurodevelopmental, atopic and reproductive outcomes. Eleven (100%), 11 (100%), and three (27%) studies on prenatal exposure reported adverse neurodevelopmental, atopic and reproductive outcomes. Only one study found a possible correlation between neonatal paracetamol exposure and long-term adverse outcomes. Conclusions: The available evidence, although limited, suggests a possible association between prenatal paracetamol exposure and an increased risk of neurodevelopmental, atopic and reproductive adverse outcomes. There is an immediate need for robust data on the long-term safety of paracetamol exposure in the prenatal and neonatal periods.
Collapse
|
14
|
Functional Selectivity of Coumarin Derivates Acting via GPR55 in Neuroinflammation. Int J Mol Sci 2022; 23:ijms23020959. [PMID: 35055142 PMCID: PMC8779649 DOI: 10.3390/ijms23020959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 12/22/2022] Open
Abstract
Anti-neuroinflammatory treatment has gained importance in the search for pharmacological treatments of different neurological and psychiatric diseases, such as depression, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Clinical studies demonstrate a reduction of the mentioned diseases’ symptoms after the administration of anti-inflammatory drugs. Novel coumarin derivates have been shown to elicit anti-neuroinflammatory effects via G-protein coupled receptor GPR55, with possibly reduced side-effects compared to the known anti-inflammatory drugs. In this study, we, therefore, evaluated the anti-inflammatory capacities of the two novel coumarin-based compounds, KIT C and KIT H, in human neuroblastoma cells and primary murine microglia. Both compounds reduced PGE2-concentrations likely via the inhibition of COX-2 synthesis in SK-N-SH cells but only KIT C decreased PGE2-levels in primary microglia. The examination of other pro- and anti-inflammatory parameters showed varying effects of both compounds. Therefore, the differences in the effects of KIT C and KIT H might be explained by functional selectivity as well as tissue- or cell-dependent expression and signal pathways coupled to GPR55. Understanding the role of chemical residues in functional selectivity and specific cell- and tissue-targeting might open new therapeutic options in pharmacological drug development and might improve the treatment of the mentioned diseases by intervening in an early step of their pathogenesis.
Collapse
|
15
|
Apweiler M, Streyczek J, Saliba SW, Ditrich J, Muñoz E, Fiebich BL. Anti-Inflammatory and Anti-Oxidative Effects of AM404 in IL-1β-Stimulated SK-N-SH Neuroblastoma Cells. Front Pharmacol 2021; 12:789074. [PMID: 34867421 PMCID: PMC8635764 DOI: 10.3389/fphar.2021.789074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022] Open
Abstract
An emerging number of studies address the involvement of neuroinflammation and oxidative stress in the pathophysiology of central nervous system (CNS) disorders such as depression, schizophrenia, anxiety, and neurodegenerative diseases. Different cytokines and molecules, such as prostaglandin (PG) E2, are associated with neuroinflammatory processes. The active acetaminophen metabolite AM404 has been shown to prevent inflammation and neuroinflammation in primary microglia and organotypic hippocampal slice cultures. However, its effects on pathophysiological conditions in the CNS and especially on neurons are still poorly understood. In this study, we therefore evaluated the effects of AM404 and acetaminophen on the arachidonic acid cascade and oxidative stress induced by interleukin (IL)-1β in human SK-N-SH neuronal cells. We observed that AM404 and acetaminophen significantly and concentration-dependent inhibited IL-1β-induced release of PGE2, independent of cyclooxygenases (COX)-1 and COX-2 enzymatic activity as well as COX-2 mRNA and protein levels in SK-N-SH-cells. The reduction of IL-1β-induced PGE2-release by AM404 and acetaminophen treatment might be mediated by the 8-iso-PGF2α pathway since IL-1β-induced synthesis of this free radical marker is dose-dependently reduced by both compounds, respectively. Therefore, understanding of the potential therapeutic properties of AM404 in neuroinflammation and oxidative stress might lead to future treatment options of different neurological disorders.
Collapse
Affiliation(s)
- Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jana Streyczek
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Eduardo Muñoz
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain.,Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Hoshijima H, Hunt M, Nagasaka H, Yaksh T. Systematic Review of Systemic and Neuraxial Effects of Acetaminophen in Preclinical Models of Nociceptive Processing. J Pain Res 2021; 14:3521-3552. [PMID: 34795520 PMCID: PMC8594782 DOI: 10.2147/jpr.s308028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/11/2021] [Indexed: 12/29/2022] Open
Abstract
Acetaminophen (APAP) in humans has robust effects with a high therapeutic index in altering postoperative and inflammatory pain states in clinical and experimental pain paradigms with no known abuse potential. This review considers the literature reflecting the preclinical actions of acetaminophen in a variety of pain models. Significant observations arising from this review are as follows: 1) acetaminophen has little effect upon acute nociceptive thresholds; 2) acetaminophen robustly reduces facilitated states as generated by mechanical and thermal hyperalgesic end points in mouse and rat models of carrageenan and complete Freund’s adjuvant evoked inflammation; 3) an antihyperalgesic effect is observed in models of facilitated processing with minimal inflammation (eg, phase II intraplantar formalin); and 4) potent anti-hyperpathic effects on the thermal hyperalgesia, mechanical and cold allodynia, allodynic thresholds in rat and mouse models of polyneuropathy and mononeuropathies and bone cancer pain. These results reflect a surprisingly robust drug effect upon a variety of facilitated states that clearly translate into a wide range of efficacy in preclinical models and to important end points in human therapy. The specific systems upon which acetaminophen may act based on targeted delivery suggest both a spinal and a supraspinal action. Review of current targets for this molecule excludes a role of cyclooxygenase inhibitor but includes effects that may be mediated through metabolites acting on the TRPV1 channel, or by effect upon cannabinoid and serotonin signaling. These findings suggest that the mode of action of acetaminophen, a drug with a long therapeutic history of utilization, has surprisingly robust effects on a variety of pain states in clinical patients and in preclinical models with a good therapeutic index, but in spite of its extensive use, its mechanisms of action are yet poorly understood.
Collapse
Affiliation(s)
- Hiroshi Hoshijima
- Department of Anesthesiology, Saitama Medical University Hospital, Saitama, Japan
| | - Matthew Hunt
- Departments of Anesthesiology and Pharmacology, University of California, San Diego Anesthesia Research Laboratory, La Jolla, CA, USA
| | - Hiroshi Nagasaka
- Department of Anesthesiology, Saitama Medical University Hospital, Saitama, Japan
| | - Tony Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego Anesthesia Research Laboratory, La Jolla, CA, USA
| |
Collapse
|
17
|
Apweiler M, Saliba SW, Streyczek J, Hurrle T, Gräßle S, Bräse S, Fiebich BL. Targeting Oxidative Stress: Novel Coumarin-Based Inverse Agonists of GPR55. Int J Mol Sci 2021; 22:ijms222111665. [PMID: 34769094 PMCID: PMC8584154 DOI: 10.3390/ijms222111665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/14/2021] [Accepted: 10/24/2021] [Indexed: 12/30/2022] Open
Abstract
Oxidative stress is associated with different neurological and psychiatric diseases. Therefore, development of new pharmaceuticals targeting oxidative dysregulation might be a promising approach to treat these diseases. The G-protein coupled receptor 55 (GPR55) is broadly expressed in central nervous tissues and cells and is involved in the regulation of inflammatory and oxidative cell homeostasis. We have recently shown that coumarin-based compounds enfold inverse agonistic activities at GPR55 resulting in the inhibition of prostaglandin E2. However, the antioxidative effects mediated by GPR55 were not evaluated yet. Therefore, we investigated the antioxidative effects of two novel synthesized coumarin-based compounds, KIT C and KIT H, in primary mouse microglial and human neuronal SK-N-SK cells. KIT C and KIT H show antioxidative properties in SK-N-SH cells as well as in primary microglia. In GPR55-knockout SK-N-SH cells, the antioxidative effects are abolished, suggesting a GPR55-dependent antioxidative mechanism. Since inverse agonistic GPR55 activation in the brain seems to be associated with decreased oxidative stress, KIT C and KIT H possibly act as inverse agonists of GPR55 eliciting promising therapeutic options for oxidative stress related diseases.
Collapse
Affiliation(s)
- Matthias Apweiler
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (M.A.); (S.W.S.); (J.S.)
| | - Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (M.A.); (S.W.S.); (J.S.)
| | - Jana Streyczek
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (M.A.); (S.W.S.); (J.S.)
| | - Thomas Hurrle
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (T.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany;
| | - Simone Gräßle
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany;
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany; (T.H.); (S.B.)
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany;
| | - Bernd L. Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany; (M.A.); (S.W.S.); (J.S.)
- Correspondence:
| |
Collapse
|
18
|
Martínez-Gopar PE, Pérez-Rodríguez MJ, Rodríguez-Manzo G, Garduño-Gutierrez R, Tristán-López L, Angeles-López QD, González-Espinosa C, Pérez-Severiano F. Mast cells and histamine are involved in the neuronal damage observed in a quinolinic acid-induced model of Huntington's disease. J Neurochem 2021; 160:256-270. [PMID: 34665461 DOI: 10.1111/jnc.15527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
Huntington´s disease (HD) is a pathological condition that can be studied in mice by the administration of quinolinic acid (QUIN), an agonist of the N-methyl-d-aspartate receptor (NMDAR) that induces NMDAR-mediated cytotoxicity and neuroinflammation. Mast cells (MCs) participate in numerous inflammatory processes through the release of important amounts of histamine (HA). In this study, we aimed to characterize the participation of MCs and HA in the establishment of neural and oxidative damage in the QUIN-induced model of HD. C57BL6/J mice (WT), MC-deficient c-KitW-sh/W-sh (Wsh) mice and Wsh mice reconstituted by intracerebroventricular (i.c.v.) injection of 5 × 105 bone marrow-derived mast cells (BMMCs), or i.c.v. administered with HA (5 µg) were used. All groups of animals were intrastriatally injected with 1 µL QUIN (30 nmol/µL) and 3 days later, apomorphine-induced circling behavior, striatal GABA levels and the number of Fluoro-Jade positive cells, as indicators of neuronal damage, were determined. Also, lipid peroxidation (LP) and reactive oxygen species production (ROS), as markers of oxidative damage, were analyzed. Wsh mice showed less QUIN-induced neuronal and oxidative damage than WT and Wsh-MC reconstituted animals. Histamine administration restored the QUIN-induced neuronal and oxidative damage in the non-reconstituted Wsh mice to levels equivalent or superior to those observed in WT mice. Our results demonstrate that MCs and HA participate in the neuronal and oxidative damages observed in mice subjected to the QUIN -induced model of Huntington's disease.
Collapse
Affiliation(s)
- Pablo Eliasib Martínez-Gopar
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Sede Sur, Ciudad de Mexico, Mexico.,Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Marian Jesabel Pérez-Rodríguez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Sede Sur, Ciudad de Mexico, Mexico.,Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Sede Sur, Ciudad de Mexico, Mexico
| | - René Garduño-Gutierrez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Sede Sur, Ciudad de Mexico, Mexico
| | - Luis Tristán-López
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de Mexico, Mexico
| | - Quetzalli Denisse Angeles-López
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav), Unidad Sede Sur, Ciudad de Mexico, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City, Mexico
| |
Collapse
|
19
|
Inflammatory biomarkers in very preterm infants during early intravenous paracetamol administration. Early Hum Dev 2021; 161:105464. [PMID: 34536795 DOI: 10.1016/j.earlhumdev.2021.105464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/26/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Paracetamol promotes early closure of patent ductus arteriosus (PDA), and it may affect inflammation after preterm birth. OBJECTIVE The aim of this study was to evaluate the association between paracetamol treatment and serum inflammatory biomarkers in very preterm infants with respiratory distress. STUDY DESIGN The infants were randomly assigned to intravenous paracetamol or placebo during the first 4 days of life, and others received a lower dose of paracetamol unblinded. Serum samples were used for the analysis of 10 cytokines, C-reactive protein (CRP) and malondialdehyde (MDA). The impact of paracetamol on the biomarkers was evaluated, based on the levels during the early (<60 h) and the later (60-120 h) postnatal age. RESULTS Altogether, 296 serum samples from 31 paracetamol and 25 placebo group infants were analysed. Paracetamol had no effect on cytokine levels during the first 60 h when most induced PDA contractions took place. Later paracetamol treatment was associated with lower serum levels of several cytokines, including interleukin (IL-) 10, interferon gamma-induced protein (IP-) 10, and monocyte chemoattractant protein-1. CRP levels were lower in the paracetamol group during the early treatment. Amongst the infants who had severe morbidities, MDA was higher (p = .045), regardless of paracetamol treatment. CONCLUSION No significant differences in the cytokine levels were evident between the treatment and placebo groups. However, during early treatment, CRP levels were lower in the paracetamol group. To clarify whether this was due to a decrease in cardiopulmonary distress, or a distinct anti-inflammatory effect, requires further studies.
Collapse
|
20
|
Gellner AK, Reis J, Fiebich BL, Fritsch B. Electrified microglia: Impact of direct current stimulation on diverse properties of the most versatile brain cell. Brain Stimul 2021; 14:1248-1258. [PMID: 34411753 DOI: 10.1016/j.brs.2021.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation [(t)DCS], modulates cortical excitability and promotes neuroplasticity. Microglia has been identified to respond to electrical currents as well as neuronal activity, but its response to DCS is mostly unknown. OBJECTIVE This study addresses effects of DCS applied in vivo to the sensorimotor cortex on physiological microglia properties and neuron-microglia communication. METHODS Time lapse in vivo 2-photon microscopy in anaesthetized mice was timely coupled with DCS of the sensorimotor cortex to observe microglia dynamics on a population-based and single cell level. Neuron-microglia communication during DCS was investigated in mice with a functional knock out of the fractalkine receptor CX3CR1. Moreover, the role of voltage gated microglial channels and DCS effects on phagocytosis were studied. RESULTS DCS promoted several physiological microglia properties, depending on the glial activation state and stimulation intensity. On a single cell level, process motility was predominantly enhanced in ramified cells whereas horizontal soma movement and galvanotaxis was pronounced in reactive microglia. Blockage of voltage sensitive microglial channels suppressed DCS effects in vivo and in vitro. Microglial motility changes were partially driven by the fractalkine signaling pathway. Moreover, phagocytosis increased after DCS in vitro. CONCLUSION Microglia dynamics are rapidly influenced by DCS. This is the first in vivo demonstration of a direct effect of electrical currents on microglia and indirect effects potentially driven by neuronal activity via the fractalkine pathway.
Collapse
Affiliation(s)
- Anne-Kathrin Gellner
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany; Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Janine Reis
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany
| | - Brita Fritsch
- Department of Neurology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
| |
Collapse
|
21
|
de Munter J, Pavlov D, Gorlova A, Sicker M, Proshin A, Kalueff AV, Svistunov A, Kiselev D, Nedorubov A, Morozov S, Umriukhin A, Lesch KP, Strekalova T, Schroeter CA. Increased Oxidative Stress in the Prefrontal Cortex as a Shared Feature of Depressive- and PTSD-Like Syndromes: Effects of a Standardized Herbal Antioxidant. Front Nutr 2021; 8:661455. [PMID: 33937310 PMCID: PMC8086427 DOI: 10.3389/fnut.2021.661455] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Major depression (MD) and posttraumatic stress disorder (PTSD) share common brain mechanisms and treatment strategies. Nowadays, the dramatically developing COVID-19 situation unavoidably results in stress, psychological trauma, and high incidence of MD and PTSD. Hence, the importance of the development of new treatments for these disorders cannot be overstated. Herbal medicine appears to be an effective and safe treatment with fewer side effects than classic pharmaca and that is affordable in low-income countries. Currently, oxidative stress and neuroinflammation attract increasing attention as important mechanisms of MD and PTSD. We investigated the effects of a standardized herbal cocktail (SHC), an extract of clove, bell pepper, basil, pomegranate, nettle, and other plants, that was designed as an antioxidant treatment in mouse models of MD and PTSD. In the MD model of “emotional” ultrasound stress (US), mice were subjected to ultrasound frequencies of 16–20 kHz, mimicking rodent sounds of anxiety/despair and “neutral” frequencies of 25–45 kHz, for three weeks and concomitantly treated with SHC. US-exposed mice showed elevated concentrations of oxidative stress markers malondialdehyde and protein carbonyl, increased gene and protein expression of pro-inflammatory cytokines interleukin (IL)-1β and IL-6 and other molecular changes in the prefrontal cortex as well as weight loss, helplessness, anxiety-like behavior, and neophobia that were ameliorated by the SHC treatment. In the PTSD model of the modified forced swim test (modFST), in which a 2-day swim is followed by an additional swim on day 5, mice were pretreated with SHC for 16 days. Increases in the floating behavior and oxidative stress markers malondialdehyde and protein carbonyl in the prefrontal cortex of modFST-mice were prevented by the administration of SHC. Chromatography mass spectrometry revealed bioactive constituents of SHC, including D-ribofuranose, beta-D-lactose, malic, glyceric, and citric acids that can modulate oxidative stress, immunity, and gut and microbiome functions and, thus, are likely to be active antistress elements underlying the beneficial effects of SHC. Significant correlations of malondialdehyde concentration in the prefrontal cortex with altered measures of behavioral despair and anxiety-like behavior suggest that the accumulation of oxidative stress markers are a common biological feature of MD and PTSD that can be equally effectively targeted therapeutically with antioxidant therapy, such as the SHC investigated here.
Collapse
Affiliation(s)
- Johannes de Munter
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dmitrii Pavlov
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anna Gorlova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Michael Sicker
- Rehabilitation Research Unit of Clinic of Bad Kreuzbach, Bad Kreuzbach, Germany
| | - Andrey Proshin
- PK Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - Allan V Kalueff
- Ural Federal University, Yekaterinburg, Russia.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.,Neuroscience Program, Sirius University, Sochi, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Andrey Svistunov
- Institute for Translational Medicine and Biotechnology, Preclinical Research Center of Sechenov First Moscow State Medical University, Moscow, Russia
| | - Daniel Kiselev
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Institute for Translational Medicine and Biotechnology, Preclinical Research Center of Sechenov First Moscow State Medical University, Moscow, Russia.,Federal Budgetary Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Andrey Nedorubov
- Institute for Translational Medicine and Biotechnology, Preclinical Research Center of Sechenov First Moscow State Medical University, Moscow, Russia
| | - Sergey Morozov
- Federal Budgetary Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Aleksei Umriukhin
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Klaus-Peter Lesch
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, Moscow, Russia.,Federal Budgetary Institute of General Pathology and Pathophysiology, Moscow, Russia.,Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Careen A Schroeter
- Department of Preventive Medicine, Maastricht Medical Center Annadal, Maastricht, Netherlands
| |
Collapse
|
22
|
Inhibitory effect of intrathecally administered AM404, an endocannabinoid reuptake inhibitor, on neuropathic pain in a rat chronic constriction injury model. Pharmacol Rep 2021; 73:820-827. [PMID: 33783763 DOI: 10.1007/s43440-021-00250-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND The endocannabinoid system modulates a wide variety of pain conditions. Systemically administered AM404, an endocannabinoid reuptake inhibitor, exerts antinociceptive effects via activation of the endocannabinoid system. However, the mechanism and site of AM404 action are not fully understood. Here, we explored the effect of AM404 on neuropathic pain at the site of the spinal cord. METHODS Male Sprague-Dawley rats were subjected to chronic constriction injury (CCI) of the sciatic nerve. The effects of intrathecal administration of AM404 on mechanical and cold hyperalgesia were examined using the electronic von Frey test and cold plate test, respectively. Motor coordination was assessed using the rotarod test. To understand the mechanisms underlying the action of AM404, we tested the effects of pretreatment with the cannabinoid type 1 (CB1) receptor antagonist AM251, CB2 receptor antagonist AM630, and transient receptor potential vanilloid type 1 (TRPV1) antagonist capsazepine. RESULTS AM404 attenuated mechanical and cold hyperalgesia with minimal effects on motor coordination. AM251 significantly inhibited the antihyperalgesic action of AM404, whereas capsazepine showed a potentiating effect. CONCLUSIONS These results indicate that AM404 exerts antihyperalgesic effects primarily via CB1, but not CB2, receptor activation at the site of the spinal cord. TRPV1 receptors appear to play a pronociceptive role in CCI rats. The endocannabinoid reuptake inhibitor may be a promising candidate treatment for neuropathic pain.
Collapse
|
23
|
Ayoub SS. Paracetamol (acetaminophen): A familiar drug with an unexplained mechanism of action. Temperature (Austin) 2021; 8:351-371. [PMID: 34901318 PMCID: PMC8654482 DOI: 10.1080/23328940.2021.1886392] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 02/02/2023] Open
Abstract
Paracetamol (acetaminophen) is undoubtedly one of the most widely used drugs worldwide. As an over-the-counter medication, paracetamol is the standard and first-line treatment for fever and acute pain and is believed to remain so for many years to come. Despite being in clinical use for over a century, the precise mechanism of action of this familiar drug remains a mystery. The oldest and most prevailing theory on the mechanism of analgesic and antipyretic actions of paracetamol relates to the inhibition of CNS cyclooxygenase (COX) enzyme activities, with conflicting views on the COX isoenzyme/variant targeted by paracetamol and on the nature of the molecular interactions with these enzymes. Paracetamol has been proposed to selectively inhibit COX-2 by working as a reducing agent, despite the fact that in vitro screens demonstrate low potency on the inhibition of COX-1 and COX-2. In vivo data from COX-1 transgenic mice suggest that paracetamol works through inhibition of a COX-1 variant enzyme to mediate its analgesic and particularly thermoregulatory actions (antipyresis and hypothermia). A separate line of research provides evidence on potentiation of the descending inhibitory serotonergic pathway to mediate the analgesic action of paracetamol, but with no evidence of binding to serotonergic molecules. AM404 as a metabolite for paracetamol has been proposed to activate the endocannabinoid and the transient receptor potential vanilloid-1 (TRPV1) systems. The current review gives an update and in some cases challenges the different theories on the pharmacology of paracetamol and raises questions on some of the inadequately explored actions of paracetamol. List of Abbreviations: AM404, N-(4-hydroxyphenyl)-arachidonamide; CB1R, Cannabinoid receptor-1; Cmax, Maximum concentration; CNS, Central nervous system; COX, Cyclooxygenase; CSF, Cerebrospinal fluid; ED50, 50% of maximal effective dose; FAAH, Fatty acid amidohydrolase; IC50, 50% of the maximal inhibitor concentration; LPS, Lipopolysaccharide; NSAIDs, Non-steroidal anti-inflammatory drugs; PGE2, Prostaglandin E2; TRPV1, Transient receptor potential vanilloid-1.
Collapse
Affiliation(s)
- Samir S Ayoub
- School of Health, Sport and Bioscience, Medicines Research Group, University of East London, London, UK
| |
Collapse
|
24
|
Å Nilsson JL, Mallet C, Shionoya K, Blomgren A, Sundin AP, Grundemar L, Boudieu L, Blomqvist A, Eschalier A, Nilsson UJ, Zygmunt PM. Paracetamol analogues conjugated by FAAH induce TRPV1-mediated antinociception without causing acute liver toxicity. Eur J Med Chem 2021; 213:113042. [PMID: 33257173 DOI: 10.1016/j.ejmech.2020.113042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Paracetamol, one of the most widely used pain-relieving drugs, is deacetylated to 4-aminophenol (4-AP) that undergoes fatty acid amide hydrolase (FAAH)-dependent biotransformation into N-arachidonoylphenolamine (AM404), which mediates TRPV1-dependent antinociception in the brain of rodents. However, paracetamol is also converted to the liver-toxic metabolite N-acetyl-p-benzoquinone imine already at therapeutic doses, urging for safer paracetamol analogues. Primary amine analogues with chemical structures similar to paracetamol were evaluated for their propensity to undergo FAAH-dependent N-arachidonoyl conjugation into TRPV1 activators both in vitro and in vivo in rodents. The antinociceptive and antipyretic activity of paracetamol and primary amine analogues was examined with regard to FAAH and TRPV1 as well as if these analogues produced acute liver toxicity. 5-Amino-2-methoxyphenol (2) and 5-aminoindazole (3) displayed efficient target protein interactions with a dose-dependent antinociceptive effect in the mice formalin test, which in the second phase was dependent on FAAH and TRPV1. No hepatotoxicity of the FAAH substrates transformed into TRPV1 activators was observed. While paracetamol attenuates pyrexia via inhibition of brain cyclooxygenase, its antinociceptive FAAH substrate 4-AP was not antipyretic, suggesting separate mechanisms for the antipyretic and antinociceptive effect of paracetamol. Furthermore, compound 3 reduced fever without a brain cyclooxygenase inhibitory action. The data support our view that analgesics and antipyretics without liver toxicity can be derived from paracetamol. Thus, research into the molecular actions of paracetamol could pave the way for the discovery of analgesics and antipyretics with a better benefit-to-risk ratio.
Collapse
Affiliation(s)
- Johan L Å Nilsson
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Box 117, SE-221 00, Lund, Sweden
| | - Christophe Mallet
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, F-63000, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, F-63000, Clermont-Ferrand, France
| | - Kiseko Shionoya
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Anders Blomgren
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Box 117, SE-221 00, Lund, Sweden
| | - Anders P Sundin
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, 221 00, Lund, Sweden
| | - Lars Grundemar
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, Box 117, SE-221 00, Lund, Sweden
| | - Ludivine Boudieu
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, F-63000, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, F-63000, Clermont-Ferrand, France
| | - Anders Blomqvist
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Alain Eschalier
- Université Clermont Auvergne, INSERM, NEURO-DOL Basics & Clinical Pharmacology of Pain, F-63000, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, F-63000, Clermont-Ferrand, France
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, 221 00, Lund, Sweden
| | - Peter M Zygmunt
- Department of Clinical Sciences Malmö, Lund University, SE-214 28, Malmö, Sweden.
| |
Collapse
|
25
|
Effects of a Novel GPR55 Antagonist on the Arachidonic Acid Cascade in LPS-Activated Primary Microglial Cells. Int J Mol Sci 2021; 22:ijms22052503. [PMID: 33801492 PMCID: PMC7958845 DOI: 10.3390/ijms22052503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022] Open
Abstract
Neuroinflammation is a crucial process to maintain homeostasis in the central nervous system (CNS). However, chronic neuroinflammation is detrimental, and it is described in the pathogenesis of CNS disorders, including Alzheimer’s disease (AD) and depression. This process is characterized by the activation of immune cells, mainly microglia. The role of the orphan G-protein-coupled receptor 55 (GPR55) in inflammation has been reported in different models. However, its role in neuroinflammation in respect to the arachidonic acid (AA) cascade in activated microglia is still lacking of comprehension. Therefore, we synthesized a novel GPR55 antagonist (KIT 10, 0.1–25 µM) and tested its effects on the AA cascade in lipopolysaccharide (LPS, 10 ng / mL)-treated primary rat microglia using Western blot and EIAs. We show here that KIT 10 potently prevented the release of prostaglandin E2 (PGE2), reduced microsomal PGE2 synthase (mPGES-1) and cyclooxygenase-2 (COX-2) synthesis, and inhibited the phosphorylation of Ikappa B-alpha (IκB-α), a crucial upstream step of the inflammation-related nuclear factor-kappaB (NF-κB) signaling pathway. However, no effects were observed on COX-1 and -2 activities and mitogen-activated kinases (MAPK). In summary, the novel GPR55 receptor antagonist KIT 10 reduces neuroinflammatory parameters in microglia by inhibiting the COX-2/PGE2 pathway. Further experiments are necessary to better elucidate its effects and mechanisms. Nevertheless, the modulation of inflammation by GPR55 might be a new therapeutic option to treat CNS disorders with a neuroinflammatory background such as AD or depression.
Collapse
|
26
|
Juujärvi S, Saarela T, Pokka T, Hallman M, Aikio O. Intravenous paracetamol for neonates: long-term diseases not escalated during 5 years of follow-up. Arch Dis Child Fetal Neonatal Ed 2021; 106:178-183. [PMID: 32943529 DOI: 10.1136/archdischild-2020-319069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the long-term adverse reactions of paracetamol in children who required intensive care shortly after birth. Paracetamol is a widely used analgesic in neonates, but the long-term studies are lacking. Previous epidemiological studies have reported associations between early paracetamol intake and diseases in childhood. DESIGN Five-year follow-up cohort of children who required intensive care shortly after birth. SETTING Single tertiary care hospital; neonatal and paediatric intensive care units. INTERVENTIONS Intravenous paracetamol was administered for pain and discomfort to the neonates during their intensive care, while for the control infants, it was not available. MAIN OUTCOME MEASURES The primary outcome was the incidence of asthma; secondary outcomes were neonatal diseases and long-term morbidities (atopic dermatitis, inflammatory bowel disease, autism, speech disorders, cerebral palsy). Long-term morbidities were adjusted based on antenatal and neonatal risk factors. RESULTS We screened all neonates admitted to the intensive care units soon after birth in Oulu University Hospital, Oulu, Finland, during 1 October 2007 to 31 December 2013. Altogether, 1552 infants needed intensive care. Of them, 735 (47%) were treated with intravenous paracetamol. We obtained their long-term data from the Finnish National Institute for Health and Welfare, including all physician-made diagnoses from all primary healthcare units and hospitals in Finland. We found no difference in the asthma incidence or in other long-term morbidities between paracetamol-treated and non-exposed infants. CONCLUSIONS Intravenous paracetamol given to neonates did not associate with childhood disorders compared with the non-exposed infants during the 5-year follow-up. The previous hypothesis that early paracetamol use causes childhood morbidities was not confirmed.
Collapse
Affiliation(s)
- Sanna Juujärvi
- PEDEGO Research Unit and MRC Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Timo Saarela
- PEDEGO Research Unit and MRC Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Tytti Pokka
- PEDEGO Research Unit and MRC Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mikko Hallman
- PEDEGO Research Unit and MRC Oulu, University of Oulu, Oulu, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Outi Aikio
- PEDEGO Research Unit and MRC Oulu, University of Oulu, Oulu, Finland .,Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
27
|
Dai G, Li B, Xu Y, Li Z, Mo F, Wei C. Synergistic interaction between matrine and paracetamol in the acetic acid writhing test in mice. Eur J Pharmacol 2021; 895:173869. [PMID: 33454375 DOI: 10.1016/j.ejphar.2021.173869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 12/21/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
The purpose of this study was to investigate the analgesic interaction between matrine and paracetamol in an acetic acid-induced writhing model in mice. Fifty percent effective dose (ED50) values of the individual drugs were determined, and the different proportions of matrine and paracetamol were assayed using the isobolographic method. Our study demonstrated that both of matrine and paracetamol dose-dependently inhibited the writhing response evoked by acetic acid, and the ED50 values and their 95% confidence intervals against these tonic pain were 21.10 (17.86-24.92) mg/kg and 61.30 (50.71-74.10) mg/kg for matrine and paracetamol, respectively. At the fixed ratios of 1:1, 1:3 and 3:1, the experimental ED50 values of matrine and paracetamol combinations and their 95% confidence intervals were 10.52 (5.14-21.55) mg/kg, 9.13 (4.46-18.70) mg/kg and 4.98 (4.17-5.95) mg/kg, respectively, their theoretical ED50 values and 95% confidence intervals were 41.20 (36.31-46.74) mg/kg, 51.25 (44.19-59.44) mg/kg and 31.15 (27.25-35.60) mg/kg, and the experimental ED50 values of matrine and paracetamol combination were significantly lower than their calculated theoretical ED50 values (all P < 0.01), as revealed by isobolographic analysis. Furthermore, the experimental regression line was also significantly different from the calculated additive equal-effect line over the range of the tested doses (all P < 0.01). Our results suggest that the combination of matrine with paracetamol exerts analgesic synergistic interactions in a mouse acetic acid-induced writhing model, thereby offering a possible therapeutic alternative for the clinical management of inflammatory pain.
Collapse
Affiliation(s)
- Guidong Dai
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Qiandongnan Traditional Medicine Research & Development Center, Kaili University, 3 Kaiyuan Road, Kaili, Guizhou, 556011, People's Republic of China.
| | - Benpeng Li
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Qiandongnan Traditional Medicine Research & Development Center, Kaili University, 3 Kaiyuan Road, Kaili, Guizhou, 556011, People's Republic of China
| | - Yuping Xu
- Qiandongnan Engineering and Technology Research Centre for Comprehensive Utilization of National Medicine, Qiandongnan Traditional Medicine Research & Development Center, Kaili University, 3 Kaiyuan Road, Kaili, Guizhou, 556011, People's Republic of China
| | - Zhiji Li
- School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Kaili, Guizhou, 556011, People's Republic of China
| | - Fuchun Mo
- School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Kaili, Guizhou, 556011, People's Republic of China
| | - Chaoqian Wei
- School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Kaili, Guizhou, 556011, People's Republic of China
| |
Collapse
|
28
|
Przybyła GW, Szychowski KA, Gmiński J. Paracetamol - An old drug with new mechanisms of action. Clin Exp Pharmacol Physiol 2021; 48:3-19. [PMID: 32767405 DOI: 10.1111/1440-1681.13392] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/09/2020] [Accepted: 08/02/2020] [Indexed: 12/26/2022]
Abstract
Paracetamol (acetaminophen) is the most commonly used over-the-counter (OTC) drug in the world. Despite its popularity and use for many years, the safety of its application and its mechanism of action are still unclear. Currently, it is believed that paracetamol is a multidirectional drug and at least several metabolic pathways are involved in its analgesic and antipyretic action. The mechanism of paracetamol action consists in inhibition of cyclooxygenases (COX-1, COX-2, and COX-3) and involvement in the endocannabinoid system and serotonergic pathways. Additionally, paracetamol influences transient receptor potential (TRP) channels and voltage-gated Kv7 potassium channels and inhibits T-type Cav3.2 calcium channels. It also exerts an impact on L-arginine in the nitric oxide (NO) synthesis pathway. However, not all of these effects have been clearly confirmed. Therefore, the aim of our paper was to summarize the current state of knowledge of the mechanism of paracetamol action with special attention to its safety concerns.
Collapse
Affiliation(s)
| | - Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Rzeszow, Poland
| |
Collapse
|
29
|
Delbridge ARD, Huh D, Brickelmaier M, Burns JC, Roberts C, Challa R, Raymond N, Cullen P, Carlile TM, Ennis KA, Liu M, Sun C, Allaire NE, Foos M, Tsai HH, Franchimont N, Ransohoff RM, Butts C, Mingueneau M. Organotypic Brain Slice Culture Microglia Exhibit Molecular Similarity to Acutely-Isolated Adult Microglia and Provide a Platform to Study Neuroinflammation. Front Cell Neurosci 2020; 14:592005. [PMID: 33473245 PMCID: PMC7812919 DOI: 10.3389/fncel.2020.592005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Microglia are central nervous system (CNS) resident immune cells that have been implicated in neuroinflammatory pathogenesis of a variety of neurological conditions. Their manifold context-dependent contributions to neuroinflammation are only beginning to be elucidated, which can be attributed in part to the challenges of studying microglia in vivo and the lack of tractable in vitro systems to study microglia function. Organotypic brain slice cultures offer a tissue-relevant context that enables the study of CNS resident cells and the analysis of brain slice microglial phenotypes has provided important insights, in particular into neuroprotective functions. Here we use RNA sequencing, direct digital quantification of gene expression with nCounter® technology and targeted analysis of individual microglial signature genes, to characterize brain slice microglia relative to acutely-isolated counterparts and 2-dimensional (2D) primary microglia cultures, a widely used in vitro surrogate. Analysis using single cell and population-based methods found brain slice microglia exhibited better preservation of canonical microglia markers and overall gene expression with stronger fidelity to acutely-isolated adult microglia, relative to in vitro cells. We characterized the dynamic phenotypic changes of brain slice microglia over time, after plating in culture. Mechanical damage associated with slice preparation prompted an initial period of inflammation, which resolved over time. Based on flow cytometry and gene expression profiling we identified the 2-week timepoint as optimal for investigation of microglia responses to exogenously-applied stimuli as exemplified by treatment-induced neuroinflammatory changes observed in microglia following LPS, TNF and GM-CSF addition to the culture medium. Altogether these findings indicate that brain slice cultures provide an experimental system superior to in vitro culture of microglia as a surrogate to investigate microglia functions, and the impact of soluble factors and cellular context on their physiology.
Collapse
Affiliation(s)
- Alex R D Delbridge
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States.,Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, United States
| | - Dann Huh
- Translational Biology, Biogen, Cambridge, MA, United States
| | - Margot Brickelmaier
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States
| | - Jeremy C Burns
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States
| | - Chris Roberts
- Translational Biology, Biogen, Cambridge, MA, United States
| | - Ravi Challa
- Translational Biology, Biogen, Cambridge, MA, United States
| | - Naideline Raymond
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States
| | - Patrick Cullen
- Translational Biology, Biogen, Cambridge, MA, United States
| | | | - Katelin A Ennis
- Genetic and Neurodevelopmental Disorders, Biogen, Cambridge, MA, United States
| | - Mei Liu
- Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, United States
| | - Chao Sun
- Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, United States
| | - Normand E Allaire
- Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, United States
| | - Marianna Foos
- Biogen Postdoctoral Scientist Program, Biogen, Cambridge, MA, United States
| | - Hui-Hsin Tsai
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States
| | | | - Richard M Ransohoff
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States
| | - Cherie Butts
- Digital & Quantitative Medicine, Biogen, Cambridge, MA, United States
| | - Michael Mingueneau
- Multiple Sclerosis and Neuroimmunology Research Unit, Biogen, Cambridge, MA, United States
| |
Collapse
|
30
|
Metryka E, Kupnicka P, Kapczuk P, Simińska D, Tarnowski M, Goschorska M, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Lead (Pb) as a Factor Initiating and Potentiating Inflammation in Human THP-1 Macrophages. Int J Mol Sci 2020; 21:ijms21062254. [PMID: 32214022 PMCID: PMC7139839 DOI: 10.3390/ijms21062254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 01/03/2023] Open
Abstract
The aim of this study was to assess the influence of lead (Pb) at low concentrations (imitating Pb levels in human blood in chronic environmental exposure to this metal) on interleukin 1β (IL-1β) and interleukin 6 (IL-6) concentrations and the activity and expression of COX-1 and COX-2 in THP-1 macrophages. Macrophages were cultured in vitro in the presence of Pb at concentrations of: 1.25 μg/dL; 2.5 μg/dL; 5 μg/dL; 10 μg/dL. The first two concentrations of Pb were selected on the basis of our earlier study, which showed that Pb concentration in whole blood (PbB) of young women living in the northern regions of Poland and in the cord blood of their newborn children was within this range (a dose imitating environmental exposure). Concentrations of 5 μg/dL and 10 μg/dL correspond to the previously permissible PbB concentrations in children or pregnant women, and adults. Our results indicate that even low concentrations of Pb cause an increase in production of inflammatory interleukins (IL-1β and IL-6), increases expression of COX-1 and COX-2, and increases thromboxane B2 and prostaglandin E2 concentration in macrophages. This clearly suggests that the development of inflammation is associated not only with COX-2 but also with COX-1, which, until recently, had only been attributed constitutive expression. It can be concluded that environmental Pb concentrations are able to activate the monocytes/macrophages similarly to the manner observed during inflammation.
Collapse
Affiliation(s)
- Emilia Metryka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Patrycja Kapczuk
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Donata Simińska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland;
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72 Str., 70-111 Szczecin, Poland; (E.M.); (P.K.); (P.K.); (D.S.); (M.G.); (D.C.)
- Correspondence:
| |
Collapse
|
31
|
Repurposing Antibacterial AM404 as a Potential Anticancer Drug for Targeting Colorectal Cancer Stem-Like Cells. Cancers (Basel) 2019; 12:cancers12010106. [PMID: 31906201 PMCID: PMC7017077 DOI: 10.3390/cancers12010106] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
Tumour-promoting inflammation is involved in colorectal cancer (CRC) development and therapeutic resistance. However, the antibiotics and antibacterial drugs and signalling that regulate the potency of anticancer treatment upon forced differentiation of cancer stem-like cell (CSC) are not fully defined yet. We screened an NIH-clinical collection of the small-molecule compound library of antibacterial/anti-inflammatory agents that identified potential candidate drugs targeting CRC-SC for differentiation. Selected compounds were validated in both in vitro organoids and ex vivo colon explant models for their differentiation induction, impediment on neoplastic cell growth, and to elucidate the mechanism of their anticancer activity. We initially focused on AM404, an anandamide uptake inhibitor. AM404 is a metabolite of acetaminophen with antibacterial activity, which showed high potential in preventing CRC-SC features, such as stemness/de-differentiation, migration and drug-resistance. Furthermore, AM404 suppressed the expression of FBXL5 E3-ligase, where AM404 sensitivity was mimicked by FBXL5-knockout. This study uncovers a new molecular mechanism for AM404-altering FBXL5 oncogene which mediates chemo-resistance and CRC invasion, thereby proposes to repurpose antibacterial AM404 as an anticancer agent.
Collapse
|
32
|
Saliba SW, Bonifacino T, Serchov T, Bonanno G, de Oliveira ACP, Fiebich BL. Neuroprotective Effect of AM404 Against NMDA-Induced Hippocampal Excitotoxicity. Front Cell Neurosci 2019; 13:566. [PMID: 31920563 PMCID: PMC6932953 DOI: 10.3389/fncel.2019.00566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/06/2019] [Indexed: 11/13/2022] Open
Abstract
Different studies have demonstrated that inflammation and alterations in glutamate neurotransmission are two events contributing to the pathophysiology of neurodegenerative or neurological disorders. There are evidences that N-arachidonoylphenolamine (AM404), a cannabinoid system modulator and paracetamol metabolite, modulates inflammation and exerts neuroprotective effects on Huntington's (HD) and Parkinson's diseases (PD), and ischemia. However, the effects of AM404 on the production of inflammatory mediators and excitotoxicity in brain tissue stimulated with N-methyl-D-aspartic acid (NMDA) are not elucidated. In this present study, we investigated the effects of AM404 on the production of inflammatory mediators and neuronal cell death induced by NMDA in organotypic hippocampal slices cultures (OHSC) using qPCR, western blot (WB), and immunohistochemistry. Moreover, to comprehend the mechanism of excitotoxicity, we evaluated the effects of AM404 on glutamate release in hippocampal synaptosomes and the NMDA-induced calcium responses in acute hippocampal slices. Our results showed that AM404 led to a significant decrease in cell death induced by NMDA, through a mechanism possibly involving the reduction of glutamate release and the calcium ions responses. Furthermore, it decreased the expression of the interleukin (IL)-1β. This study provides new significant insights about the anti-inflammatory and neuroprotection effects of AM404 on NMDA-induced excitotoxicity. To understand the effects of AM404 in these processes might contribute to the therapeutic potential of AM404 in diseases with involvement of neuroinflammation and neurodegeneration and might lead to a possible future treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tiziana Bonifacino
- Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy
| | - Tsvetan Serchov
- Laboratory of Stereotaxy and Interventional Neuroscience, Department of Stereotactic and Functional Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Giambattista Bonanno
- Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, Department of Pharmacy, School of Medical and Pharmaceutical Sciences, University of Genoa, Genoa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
33
|
N, N'-Diacetyl- p-phenylenediamine restores microglial phagocytosis and improves cognitive defects in Alzheimer's disease transgenic mice. Proc Natl Acad Sci U S A 2019; 116:23426-23436. [PMID: 31685616 DOI: 10.1073/pnas.1916318116] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
As a central feature of neuroinflammation, microglial dysfunction has been increasingly considered a causative factor of neurodegeneration implicating an intertwined pathology with amyloidogenic proteins. Herein, we report the smallest synthetic molecule (N,N'-diacetyl-p-phenylenediamine [DAPPD]), simply composed of a benzene ring with 2 acetamide groups at the para position, known to date as a chemical reagent that is able to promote the phagocytic aptitude of microglia and subsequently ameliorate cognitive defects. Based on our mechanistic investigations in vitro and in vivo, 1) the capability of DAPPD to restore microglial phagocytosis is responsible for diminishing the accumulation of amyloid-β (Aβ) species and significantly improving cognitive function in the brains of 2 types of Alzheimer's disease (AD) transgenic mice, and 2) the rectification of microglial function by DAPPD is a result of its ability to suppress the expression of NLRP3 inflammasome-associated proteins through its impact on the NF-κB pathway. Overall, our in vitro and in vivo investigations on efficacies and molecular-level mechanisms demonstrate the ability of DAPPD to regulate microglial function, suppress neuroinflammation, foster cerebral Aβ clearance, and attenuate cognitive deficits in AD transgenic mouse models. Discovery of such antineuroinflammatory compounds signifies the potential in discovering effective therapeutic molecules against AD-associated neurodegeneration.
Collapse
|
34
|
The Endocannabinoid System of Animals. Animals (Basel) 2019; 9:ani9090686. [PMID: 31527410 PMCID: PMC6770351 DOI: 10.3390/ani9090686] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Our understanding of the Endocannabinoid System of animals, and its ubiquitous presence in nearly all members of Animalia, has opened the door to novel approaches targeting pain management, cancer therapeutics, modulation of neurologic disorders, stress reduction, anxiety management, and inflammatory diseases. Both endogenous and exogenous endocannabinoid-related molecules are able to function as direct ligands or, otherwise, influence the EndoCannabinoid System (ECS). This review article introduces the reader to the ECS in animals, and documents its potential as a source for emerging therapeutics. Abstract The endocannabinoid system has been found to be pervasive in mammalian species. It has also been described in invertebrate species as primitive as the Hydra. Insects, apparently, are devoid of this, otherwise, ubiquitous system that provides homeostatic balance to the nervous and immune systems, as well as many other organ systems. The endocannabinoid system (ECS) has been defined to consist of three parts, which include (1) endogenous ligands, (2) G-protein coupled receptors (GPCRs), and (3) enzymes to degrade and recycle the ligands. Two endogenous molecules have been identified as ligands in the ECS to date. The endocannabinoids are anandamide (arachidonoyl ethanolamide) and 2-AG (2-arachidonoyl glycerol). Two G-coupled protein receptors (GPCR) have been described as part of this system, with other putative GPC being considered. Coincidentally, the phytochemicals produced in large quantities by the Cannabis sativa L plant, and in lesser amounts by other plants, can interact with this system as ligands. These plant-based cannabinoids are termed phytocannabinoids. The precise determination of the distribution of cannabinoid receptors in animal species is an ongoing project, with the canine cannabinoid receptor distribution currently receiving the most interest in non-human animals.
Collapse
|
35
|
Yakoub KM, Lazzarino G, Amorini AM, Caruso G, Scazzone C, Ciaccio M, Tavazzi B, Lazzarino G, Belli A, Di Pietro V. Fructose-1,6-Bisphosphate Protects Hippocampal Rat Slices from NMDA Excitotoxicity. Int J Mol Sci 2019; 20:ijms20092239. [PMID: 31067671 PMCID: PMC6540300 DOI: 10.3390/ijms20092239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/18/2022] Open
Abstract
Effects of fructose 1,6-bisphosphate (F-1,6-P2) towards N-methyl-d-aspartate NMDA excitotoxicity were evaluated in rat organotypic hippocampal brain slice cultures (OHSC) challenged for 3 h with 30 μM NMDA, followed by incubations (24, 48, and 72 h) without (controls) and with F-1,6-P2 (0.5, 1 or 1.5 mM). At each time, cell necrosis was determined by measuring LDH in the medium. Energy metabolism was evaluated by measuring ATP, GTP, ADP, AMP, and ATP catabolites (nucleosides and oxypurines) in deproteinized OHSC extracts. Gene expressions of phosphofructokinase, aldolase, and glyceraldehyde-3-phosphate dehydrogenase were also measured. F-1,6-P2 dose-dependently decreased NMDA excitotoxicity, abolishing cell necrosis at the highest concentration tested (1.5 mM). Additionally, F-1,6-P2 attenuated cell energy imbalance caused by NMDA, ameliorating the mitochondrial phosphorylating capacity (increase in ATP/ADP ratio) Metabolism normalization occurred when using 1.5 mM F-1,6-P2. Remarkable increase in expressions of phosphofructokinase, aldolase and glyceraldehyde-3-phosphate dehydrogenase (up to 25 times over the values of controls) was also observed. Since this phenomenon was recorded even in OHSC treated with F-1,6-P2 with no prior challenge with NMDA, it is highly conceivable that F-1,6-P2 can enter into intact cerebral cells producing significant benefits on energy metabolism. These effects are possibly mediated by changes occurring at the gene level, thus opening new perspectives for F-1,6-P2 application as a useful adjuvant to rescue mitochondrial metabolism of cerebral cells under stressing conditions.
Collapse
Affiliation(s)
- Kamal M Yakoub
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK.
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
| | - Angela M Amorini
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Giuseppe Caruso
- Oasi Research Institute⁻IRCCS, Via Conte Ruggero 73, 94018 Troina (EN), Italy.
| | - Concetta Scazzone
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Via del Vespro 129, 90127 Palermo, Italy.
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Via del Vespro 129, 90127 Palermo, Italy.
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Largo F. Vito 1, 00168 Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli 8, 00168 Rome, Italy.
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Viale A. Doria 6, 95125 Catania, Italy.
| | - Antonio Belli
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK.
| | - Valentina Di Pietro
- Neurotrauma and Ophthalmology Research Group, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH, UK.
| |
Collapse
|
36
|
Pavlov D, Bettendorff L, Gorlova A, Olkhovik A, Kalueff AV, Ponomarev ED, Inozemtsev A, Chekhonin V, Lesсh KP, Anthony DC, Strekalova T. Neuroinflammation and aberrant hippocampal plasticity in a mouse model of emotional stress evoked by exposure to ultrasound of alternating frequencies. Prog Neuropsychopharmacol Biol Psychiatry 2019; 90:104-116. [PMID: 30472146 DOI: 10.1016/j.pnpbp.2018.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 11/08/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Emotional stress is a form of stress evoked by processing negative mental experience rather than an organic or physical disturbance and is a frequent cause of neuropsychiatric pathologies, including depression. Susceptibility to emotional stress is commonly regarded as a human-specific trait that is challenging to model in other species. Recently, we showed that a 3-week-long exposure to ultrasound of unpredictable alternating frequencies within the ranges of 20-25 kHz and 25-45 kHz can induce depression-like characteristics in laboratory mice and rats. In an anti-depressant sensitive manner, exposure decreases sucrose preference, elevates behavioural despair, increases aggression, and alters serotonin-related gene expression. To further investigate this paradigm, we studied depression/distress-associated markers of neuroinflammation, neuroplasticity, oxidative stress and the activity of glycogen synthase kinase-3 (GSK-3) isoforms in the hippocampus of male mice. Stressed mice exhibited a decreased density of Ki67-positive and DCX-positive cells in the subgranular zone of hippocampus, and altered expression of brain-derived neurotrophic factor (BDNF), its receptor TrkB, and anti-apoptotic protein kinase B phosphorylated at serine 473 (AktpSer473). The mice also exhibited increased densities of Iba-1-positive cells, increased oxidative stress, increased levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) in the hippocampus and plasma, and elevated activity of GSK-3 isoforms. Together, the results of our investigation have revealed that unpredictable alternating ultrasound evokes behavioural and molecular changes that are characteristic of the depressive syndrome and validates this new and simple method of modeling emotional stress in rodents.
Collapse
Affiliation(s)
- Dmitrii Pavlov
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, Moscow 119991, Russia; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, Liège 4000, Belgium; Institute of General Pathology and Pathophysiology, Baltiiskaya str, 8, Moscow 125315, Russia
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, Liège 4000, Belgium
| | - Anna Gorlova
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, Moscow 119991, Russia; Laboratory of Neurophysiology, GIGA-Neurosciences, University of Liège, Av. Hippocrate 15, Liège 4000, Belgium; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Trubetskaya street 8-2, 119991, Moscow, Russia
| | - Andrey Olkhovik
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, Moscow 119991, Russia
| | - Allan V Kalueff
- Institute of Translational Biomedicine, St.Petersburg State University, Universitetskaya nab. 7-9, St.-Petersburg 199034, Russia
| | - Eugene D Ponomarev
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Anatoly Inozemtsev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory1-12, Moscow 119991, Russia
| | - Vladimir Chekhonin
- Department of Basic and Applied Neurobiology, Serbsky Federal Medical Research Center for Psychiatry and Narcology, Kropotkinsky per 23, Moscow 119034, Russia
| | - Klaus-Peter Lesсh
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Trubetskaya street 8-2, 119991, Moscow, Russia; Division of Molecular Psychiatry, Center of Mental Health University of Wuerzburg, Josef-Schneider-Straße 2, Wuerzburg 97080, Germany
| | - Daniel C Anthony
- Department of Pharmacology, Oxford University, Mansfield Road, Oxford OX1 3QT, UK.
| | - Tatyana Strekalova
- Department of Neuroscience, Maastricht University, Universiteitssingel 40, NL 6229ER, Maastricht, Netherlands; Institute of General Pathology and Pathophysiology, Baltiiskaya str, 8, Moscow 125315, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Laboratory of Psychiatric Neurobiology and Department of Normal Physiology, Trubetskaya street 8-2, 119991, Moscow, Russia.
| |
Collapse
|
37
|
Coleman RA, Muli CS, Zhao Y, Bhardwaj A, Newhouse TR, Trader DJ. Analysis of chain length, substitution patterns, and unsaturation of AM-404 derivatives as 20S proteasome stimulators. Bioorg Med Chem Lett 2019; 29:420-423. [PMID: 30587447 PMCID: PMC6348054 DOI: 10.1016/j.bmcl.2018.12.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 11/30/2022]
Abstract
Proteasome-mediated degradation of proteins is a vital cellular process and is performed by the ubiquitin-dependent proteasome system (UPS) and the ubiquitin-independent proteasome system (UIPS). While both systems are necessary to maintain healthy cell function, many disease states are characterized by reduced activity of the UPS, and the UIPS cannot by itself maintain proper protein levels. It has been suggested that the 20S core particle (20S CP), the isoform of the proteasome in the UIPS that can degrade proteins without a ubiquitin tag, can be stimulated with a small molecule to assist the 20S CP to accept and hydrolyze substrates more rapidly. Several small molecule stimulators of the 20S CP have since been discovered, including AM-404, an arachidonic acid derivative. AM-404 has previously been shown to inhibit fatty acid amide hydrolase activity. We wished to evaluate what structural components of AM-404 are required to stimulate the 20S CP with the long-term goal of using this information to design a stimulator with better drug-like qualities. We synthesized numerous derivatives of AM-404, varying the chain length, substitutions, and degree of unsaturation. Through this endeavor, we obtained several molecules capable of stimulating the 20S CP to various degrees. We discovered that though chain length is important, the presence of a cis-alkene in a specific location in the aliphatic chain has the greatest impact on the ability to stimulate the 20S CP. Two of the derivatives maintain modest stimulatory activity, and have improved toxicity over AM-404.
Collapse
Affiliation(s)
- Rachel A Coleman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Ave, West Lafayette, IN 47907, United States
| | - Christine S Muli
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Ave, West Lafayette, IN 47907, United States
| | - Yizhou Zhao
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, United States
| | - Atul Bhardwaj
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Ave, West Lafayette, IN 47907, United States
| | - Timothy R Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 W. Stadium Ave, West Lafayette, IN 47907, United States.
| |
Collapse
|
38
|
Daniel D, Dionísio R, de Alkimin GD, Nunes B. Acute and chronic effects of paracetamol exposure on Daphnia magna: how oxidative effects may modulate responses at distinct levels of organization in a model species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3320-3329. [PMID: 30506442 DOI: 10.1007/s11356-018-3788-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
The modern usage of pharmaceutical drugs has led to a progressive increase in their presence and environment concentrations, particularly in the aquatic compartment which is the most common final dumping location for this specific class of chemicals. These substances, due to their chemical and biological properties, can exert mostly uncharacterized toxic effects to non-target aquatic species, given the diverse pathways they activate, and the large number of putative targets in the wild. Among drugs in the environment, paracetamol assumes a leading role, considering its widespread therapeutic use and consequently, environmental presence. The present study aimed to assess the acute and chronic effects of paracetamol, in ecologically relevant levels, in the freshwater cladoceran Daphnia magna, namely focusing on biochemical and reproductive parameters. Considering the pro-oxidant effects of paracetamol, already described for a large set of aquatic organisms, specific enzymes involved in the anti-oxidant and metabolic responses were quantified, namely catalase (CAT) and glutathione S-transferases (GSTs) activities. Cholinesterases (ChEs) activity was quantified to evaluate the capacity of paracetamol to induce neurotoxicity, an indirect outcome of oxidative effects by paracetamol, that may affect feeding behavior and reproductive outcomes of this crustacean. Paracetamol in the tested levels showed no effect on reproductive traits of D. magna. Results obtained for organisms acutely exposed included significant increases in the activities of both GSTs and CAT, demonstrating a short-term pro-oxidative effect by paracetamol. On the contrary, ChEs activity was significantly decreased in organisms exposed to this drug, showing a possible interference with neurotransmission. On the contrary, no noteworthy effects were reported for organisms chronically exposed to ecologically realistic concentrations, evidencing the transient nature of the obtained biological response. These results demonstrate the responsiveness of D. magna to paracetamol, especially for high levels of exposure that, despite not being environmentally relevant, are able to trigger significant antioxidant responses. No population effects were likely to be caused by realistic levels of paracetamol, and the absence of biochemical changes after chronic exposure suggests that this specific organism may not be deleteriously affected by low levels of paracetamol, under real scenarios of contamination.
Collapse
Affiliation(s)
- David Daniel
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Ricardo Dionísio
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Gilberto Dias de Alkimin
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
39
|
Huang HJ, Chen SL, Huang HY, Sun YC, Lee GC, Lee-Chen GJ, Hsieh-Li HM, Su MT. Chronic low dose of AM404 ameliorates the cognitive impairment and pathological features in hyperglycemic 3xTg-AD mice. Psychopharmacology (Berl) 2019; 236:763-773. [PMID: 30426182 PMCID: PMC6469654 DOI: 10.1007/s00213-018-5108-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022]
Abstract
RATIONALE Hyperglycemia accelerates the progression of Alzheimer's disease (AD), and GSK3β plays a potential link between AD and hyperglycemia. Therefore, a direct or indirect GSK3β inhibition may have potential to delay the progression of AD. Our previous biochemical assay identified AM404 as a GSK3β inhibitor at high dose (IC50 = 5.353 μM); however, other study suggests that AM404 impaired synaptic plasticity of hippocampus at high dose (10 mg/kg; i.p.). Therefore, the dose and duration of treatment are crucial for the effects of AM404. OBJECTIVE The effects and molecular mechanisms of AM404 at low dose were evaluated from in vitro to in vivo models. METHODS AM404 (0.1-0.5 μM) was tested on tau hyperphosphorylated mouse hippocampal primary cultures treated with Wortmannin (WT) and GF109203X (GFX). Hyperglycemic triple transgenic AD (3×Tg-AD) mice at 6 months old were intraperitoneally injected with AM404 (0.25 mg/kg) for 4 weeks. The spatial learning and memory of mice were measured using the Morris water maze. Mouse brain and serum samples were collected for pathological analyses. RESULTS AM404 (0.5 μM) exhibited significantly augmented neuroprotection toward tau hyperphosphorylation in primary cultures. The chronic systemic administration of AM404 (0.25 mg/kg) attenuated cognitive deficits in hyperglycemic 3×Tg-AD mice. Moreover, chronic low dose of AM404 significantly attenuated Aβ production, tau protein phosphorylation, and inflammation associated with an increase of pS473Akt and pS9-GSK3β. Therefore, AM404 at low dose, not only increased neuroprotection, but also ameliorated cognitive deficit, could be partly by regulating the Akt/GSK3β signaling, which may contribute to downregulation of Aβ, tau hyperphosphorylation, and inflammation in hyperglycemic 3×Tg-AD mice. CONCLUSIONS These results highlight that chronic administration of AM404 at low dose may be through the Akt/GSK3β pathway to ameliorate the impairment in hyperglycemic 3×Tg-AD mice.
Collapse
Affiliation(s)
- Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing and Management, Taipei, 11260 Taiwan
| | - Shu-Ling Chen
- 0000 0001 2158 7670grid.412090.eDepartment of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Hsin-Yu Huang
- 0000 0001 2158 7670grid.412090.eDepartment of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Ying-Chieh Sun
- 0000 0001 2158 7670grid.412090.eDepartment of Chemistry, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Guan-Chiun Lee
- 0000 0001 2158 7670grid.412090.eDepartment of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Guey-Jen Lee-Chen
- 0000 0001 2158 7670grid.412090.eDepartment of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Ming-Tsan Su
- Department of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
40
|
Saliba SW, Jauch H, Gargouri B, Keil A, Hurrle T, Volz N, Mohr F, van der Stelt M, Bräse S, Fiebich BL. Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells. J Neuroinflammation 2018; 15:322. [PMID: 30453998 PMCID: PMC6240959 DOI: 10.1186/s12974-018-1362-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Neuroinflammation plays a vital role in Alzheimer's disease and other neurodegenerative conditions. Microglia are the resident mononuclear immune cells of the central nervous system, and they play essential roles in the maintenance of homeostasis and responses to neuroinflammation. The orphan G-protein-coupled receptor 55 (GPR55) has been reported to modulate inflammation and is expressed in immune cells such as monocytes and microglia. However, its effects on neuroinflammation, mainly on the production of members of the arachidonic acid pathway in activated microglia, have not been elucidated in detail. METHODS In this present study, a series of coumarin derivatives, that exhibit GPR55 antagonism properties, were designed. The effects of these compounds on members of the arachidonic acid cascade were studied in lipopolysaccharide (LPS)-treated primary rat microglia using Western blot, qPCR, and ELISA. RESULTS We demonstrate here that the various compounds with GPR55 antagonistic activities significantly inhibited the release of PGE2 in primary microglia. The inhibition of LPS-induced PGE2 release by the most potent candidate KIT 17 was partially dependent on reduced protein synthesis of mPGES-1 and COX-2. KIT 17 did not affect any key enzyme involved on the endocannabinoid system. We furthermore show that microglia expressed GPR55 and that a synthetic antagonist of the GPR receptor (ML193) demonstrated the same effect of the KIT 17 on the inhibition of PGE2. CONCLUSIONS Our results suggest that KIT 17 is acting as an inverse agonist on GPR55 independent of the endocannabinoid system. Targeting GPR55 might be a new therapeutic option to treat neurodegenerative diseases with a neuroinflammatory background such as Alzheimer's disease, Parkinson, and multiple sclerosis (MS).
Collapse
Affiliation(s)
- Soraya Wilke Saliba
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hannah Jauch
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brahim Gargouri
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Albrecht Keil
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Hurrle
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Nicole Volz
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Florian Mohr
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Bernd L Fiebich
- Neuroimmunology and Neurochemistry Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Department of Psychiatry and Psychotherapy, Laboratory of Translational Psychiatry, University Hospital Freiburg, Hauptstr. 5, 79104, Freiburg, Germany.
| |
Collapse
|
41
|
Gargouri B, Yousif NM, Attaai A, Bouchard M, Chtourou Y, Fiebich BL, Fetoui H. Pyrethroid bifenthrin induces oxidative stress, neuroinflammation, and neuronal damage, associated with cognitive and memory impairment in murine hippocampus. Neurochem Int 2018; 120:121-133. [PMID: 30102949 DOI: 10.1016/j.neuint.2018.08.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 12/22/2022]
Abstract
Exposure to synthetic pyrethroid (SPs) pesticides such as bifenthrin (BF) has been associated with adverse neurodevelopmental outcomes and cognitive impairments, but the underlying neurobiological mechanism is poorly understood so far. The present study has been designed to evaluate changes in behavior and in biomarkers of oxidative stress and neuroinflammation in the hippocampus of rats subchronically treated with BF. Rats exposed daily to BF at doses of 0.6 and 2.1 mg/kg b. w. for 60 days exhibited spatial and cognitive impairments as well as memory dysfunction after 60 days. This repeated BF treatment also significantly increased mRNA expression of pro-inflammatory cytokines tumor necrosis factor (TNF-α), interleukin (IL-1β), (IL-6), nuclear factor erythroid-2 (Nrf2), cyclooxygenase-2 (COX-2), nuclear factor-kappaB pathway (NF-kappaB), and prostaglandin E2 (PGE2) in the hippocampus. It further resulted in a significant increase in protein levels of Nrf2, COX-2, microsomal prostaglandin synthase-1 (mPGES-1) and NF-kappaB. This was accompanied by oxidative/nitrosative stress in the hippocampus of treated rats, as shown by increased levels of malondialdehyde (MDA), protein carbonyls (PCO), and nitric oxide (NO), and reduced levels of enzymatic (catalase, superoxide dismutase, and glutathione peroxidase) and non-enzymatic (reduced glutathione) antioxidants. The data are in line with those obtained in organotypic hippocampal slice cultures (OHSCs) isolated from mouse brain and exposed to BF for 72 h, showing neuronal death only at the high dose of 20 μM when compared to controls. These findings suggest that exposure to BF induces neuronal damage, alters redox state, and causes neuroinflammation in the hippocampus, which might lead to cognitive and memory impairment.
Collapse
Affiliation(s)
- Brahim Gargouri
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Nizar M Yousif
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Abdelraheim Attaai
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Albert-Ludwigs-University Freiburg, Albertstraße 17, 79104, Freiburg Germany; Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt.
| | - Michèle Bouchard
- Department of Environmental and Occupational Health, Chair in Toxicological Risk Assessment and Management, University of Montreal, Roger-Gaudry Building, U424, P.O. Box 6128, Main Station, Montreal, Quebec, H3C 3J7, Canada.
| | - Yassine Chtourou
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| | - Bernd L Fiebich
- Neurochemistry and Neuroimmunology Research Group, Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hauptstrasse 5, 79104, Freiburg, Germany.
| | - Hamadi Fetoui
- Laboratory of Toxicology-Microbiology and Environmental Health (17ES06), Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia.
| |
Collapse
|
42
|
The potential role of pharmacogenomics and biotransformation in hypersensitivity reactions to paracetamol. Curr Opin Allergy Clin Immunol 2018; 18:302-309. [DOI: 10.1097/aci.0000000000000452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Saliba SW, Marcotegui AR, Fortwängler E, Ditrich J, Perazzo JC, Muñoz E, de Oliveira ACP, Fiebich BL. Correction to: AM404, paracetamol metabolite, prevents prostaglandin synthesis in activated microglia by inhibiting COX activity. J Neuroinflammation 2018; 15:34. [PMID: 29409515 PMCID: PMC5801836 DOI: 10.1186/s12974-018-1072-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023] Open
Affiliation(s)
- Soraya Wilke Saliba
- Department of Psychiatry and Psychotherapy, Laboratory of Translational Psychiatry, Faculty of Medicine, Medical Center, University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Ariel R Marcotegui
- Laboratory of Hepatic Encephalopathy and Portal Hypertension, Center of Applied and Experimental Pathology, University of Buenos Aires, Buenos Aires, Argentina
| | - Ellen Fortwängler
- Department of Psychiatry and Psychotherapy, Laboratory of Translational Psychiatry, Faculty of Medicine, Medical Center, University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany
| | - Johannes Ditrich
- Department of Psychiatry and Psychotherapy, Laboratory of Translational Psychiatry, Faculty of Medicine, Medical Center, University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany
| | - Juan Carlos Perazzo
- Laboratory of Hepatic Encephalopathy and Portal Hypertension, Center of Applied and Experimental Pathology, University of Buenos Aires, Buenos Aires, Argentina
| | - Eduardo Muñoz
- Departamento de Biología Celular, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
| | | | - Bernd L Fiebich
- Department of Psychiatry and Psychotherapy, Laboratory of Translational Psychiatry, Faculty of Medicine, Medical Center, University of Freiburg, Hauptstr. 5, 79104, Freiburg, Germany
| |
Collapse
|