1
|
Olsen TC, LaGuardia JS, Chen DR, Lebens RS, Huang KX, Milek D, Noble M, Leckenby JI. Influencing factors and repair advancements in rodent models of peripheral nerve regeneration. Regen Med 2024:1-17. [PMID: 39469920 DOI: 10.1080/17460751.2024.2405318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
Peripheral nerve injuries lead to severe functional impairments, with rodent models essential for studying regeneration. This review examines key factors affecting outcomes. Age-related declines, like reduced nerve fiber density and impaired axonal transport of vesicles, hinder recovery. Hormonal differences influence regeneration, with BDNF/trkB critical for testosterone and nerve growth factor for estrogen signaling pathways. Species and strain selection impact outcomes, with C57BL/6 mice and Sprague-Dawley rats exhibiting varying regenerative capacities. Injury models - crush for early regeneration, chronic constriction for neuropathic pain, stretch for traumatic elongation and transection for severe lacerations - provide insights into clinically relevant scenarios. Repair techniques, such as nerve grafts and conduits, show that autografts are the gold standard for gaps over 3 cm, with success influenced by graft type and diameter. Time course analysis highlights crucial early degeneration and regeneration phases within the first month, with functional recovery stabilizing by three to six months. Early intervention optimizes regeneration by reducing scar tissue formation, while later interventions focus on remyelination. Understanding these factors is vital for designing robust preclinical studies and translating research into effective clinical treatments for peripheral nerve injuries.
Collapse
Affiliation(s)
- Timothy C Olsen
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - Jonnby S LaGuardia
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - David R Chen
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA 90095, USA
| | - Ryan S Lebens
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA 90095, USA
| | - Kelly X Huang
- University of California, 410 Charles E. Young Drive, East Los Angeles, CA 90095, USA
| | - David Milek
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - Mark Noble
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| | - Jonathan I Leckenby
- Division of Plastic & Reconstructive Surgery, University of Rochester Medical Center, 601 Elmwood Avenue Box 661Rochester, NY 14642, USA
| |
Collapse
|
2
|
Hindman BJ, Olinger CR, Woodroffe RW, Zanaty M, Streese CD, Zacharias ZR, Houtman JCD, Wendt LH, Eyck PPT, O’Connell-Moore DJ, Ray EJ, Lee SJ, Waldschmidt DF, Havertape LG, Nguyen LB, Chen PF, Banks MI, Sanders RD, Howard MA. Exploratory Randomised Trial of Tranexamic Acid to Decrease Postoperative Delirium in Adults Undergoing Lumbar Fusion: A trial stopped early. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.16.24315638. [PMID: 39484259 PMCID: PMC11527054 DOI: 10.1101/2024.10.16.24315638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Postoperative delirium may be mediated by perioperative systemic- and neuro-inflammation. By inhibiting the pro-inflammatory actions of plasmin, tranexamic acid (TXA) may decrease postoperative delirium. To explore this hypothesis, we modified an ongoing randomised trial of TXA, adding measures of postoperative delirium, cognitive function, systemic cytokines, and astrocyte activation. Methods Adults undergoing elective posterior lumbar fusion randomly received intraoperative intravenous TXA (n=43: 10 mg kg-1 loading dose, 2 mg kg-1 h-1 infusion) or Placebo (n=40). Blood was collected pre- and at 24 h post-operatively (n=32) for biomarkers of systemic inflammation (cytokines) and astrocyte activation (S100B). Participants had twice daily delirium assessments using the 3-minute diagnostic interview for Confusion Assessment Method (n=65). Participants underwent 4 measures of cognitive function preoperatively and during post-discharge follow-up. Results Delirium incidence in the TXA group (7/32=22%) was not significantly less than in the Placebo group (11/33=33%); P=0.408, absolute difference=11%, relative difference=33%, effect size = -0.258 (95% CI -0.744 to 0.229). In the Placebo group (n=16), delirium severity was associated with the number of instrumented vertebral levels (P=0.001) and with postoperative interleukin -8 and -10 concentrations (P=0.00008 and P=0.005, respectively) and these associations were not significantly modified by TXA. In the Placebo group, delirium severity was associated with S100B concentration (P=0.0009) and the strength of the association was decreased by TXA (P=0.002). Conclusions A potential 33% relative decrease in postoperative delirium incidence justifies an adequately powered clinical trial to determine if intraoperative TXA decreases delirium in adults undergoing lumbar fusion.
Collapse
Affiliation(s)
- Bradley J. Hindman
- Department of Anesthesia, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Catherine R. Olinger
- Department of Orthopedics and Rehabilitation, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Royce W. Woodroffe
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Zeb R. Zacharias
- Human Immunology Core Laboratory, University of Iowa, Iowa City, Iowa, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Jon C. D. Houtman
- Human Immunology Core Laboratory, University of Iowa, Iowa City, Iowa, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Linder H. Wendt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Patrick P. Ten Eyck
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Debra J. O’Connell-Moore
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Emanuel J. Ray
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sarah J. Lee
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Daniel F. Waldschmidt
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Lauren G. Havertape
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Lanchi B. Nguyen
- Institute for Clinical and Translational Science, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Pei-fu Chen
- Department of Anesthesiology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
- Department of Electrical Engineering, Yuan Ze University, Taoyuan City, 320315, Taiwan
| | - Matthew I. Banks
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert D. Sanders
- Central Clinical School and National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, Australia
- Department of Anaesthetics and Institute of Academic Surgery, Royal Prince Alfred Hospital, Sydney, Australia
| | - Matthew A. Howard
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Macheda T, Andres MR, Sanders L, Roberts KN, Shahidehpour RK, Morganti JM, Bachstetter AD. Old Age Exacerbates White Matter Neuroinflammation and Cognitive Deficits Following Closed-Head Injury, Particularly in Female Mice. Neurotrauma Rep 2024; 5:770-786. [PMID: 39184175 PMCID: PMC11342053 DOI: 10.1089/neur.2024.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
The increasing incidence of traumatic brain injury (TBI) among older adults, particularly mild injuries from falls, underscores the need to investigate age-related outcomes and potential sex differences in response to TBI. Although previous research has defined an aging-TBI signature (heightened glial responses and cognitive impairment) in open-skull moderate-to-severe TBI models, it is unknown whether this signature is also present in mild closed-head injuries (CHIs). This study explores the influences of age and sex on recovery in a mouse CHI model induced by an electromagnetic impactor device in 4-month-old and 18-month-old C57BL/6 mice. We assessed the righting reflex, body weight, behavior (radial arm water maze and active avoidance), and inflammation (GFAP, IBA1, CD45) in the neocortex, corpus callosum, and hippocampus. We observed that aged female mice exhibited more severe TBI-induced cognitive deficits. In addition, a more pronounced reactive neuroinflammatory response with age was noted within white matter regions. Conversely, gray matter regions in aged animals either showed no enhanced pathological changes in response to injury or the aged mice displayed hyporesponsive glia and signs of dystrophic glial degeneration that were not evident in their younger counterparts following CHI. These findings suggest that aging influences CHI outcomes, partially reflecting the aging-TBI signature seen in more severe injuries in white matter, while a distinct aging and mild-TBI signature was identified in gray matter. The heightened vulnerability of females to the combined effects of age and mild CHI establishes a foundation for further investigation into the mechanisms underlying the sexually dimorphic response in aging females.
Collapse
Affiliation(s)
- Teresa Macheda
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Margaret R. Andres
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Lydia Sanders
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Kelly N. Roberts
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Ryan K. Shahidehpour
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Josh M. Morganti
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Adam D. Bachstetter
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
4
|
Dooley J, Hughes JG, Needham EJ, Palios KA, Liston A. The potential of gene delivery for the treatment of traumatic brain injury. J Neuroinflammation 2024; 21:183. [PMID: 39069631 DOI: 10.1186/s12974-024-03156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Therapeutics for traumatic brains injuries constitute a global unmet medical need. Despite the advances in neurocritical care, which have dramatically improved the survival rate for the ~ 70 million patients annually, few treatments have been developed to counter the long-term neuroinflammatory processes and accompanying cognitive impairments, frequent among patients. This review looks at gene delivery as a potential therapeutic development avenue for traumatic brain injury. We discuss the capacity of gene delivery to function in traumatic brain injury, by producing beneficial biologics within the brain. Gene delivery modalities, promising vectors and key delivery routes are discussed, along with the pathways that biological cargos could target to improve long-term outcomes for patients. Coupling blood-brain barrier crossing with sustained local production, gene delivery has the potential to convert proteins with useful biological properties, but poor pharmacodynamics, into effective therapeutics. Finally, we review the limitations and health economics of traumatic brain injury, and whether future gene delivery approaches will be viable for patients and health care systems.
Collapse
Affiliation(s)
- James Dooley
- Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Jasmine G Hughes
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | - Edward J Needham
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
5
|
Race NS, Moschonas EH, Kline AE, Bondi CO. Cognition and Behavior in the Aging Brain Following TBI: Surveying the Preclinical Evidence. ADVANCES IN NEUROBIOLOGY 2024; 42:219-240. [PMID: 39432045 DOI: 10.1007/978-3-031-69832-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Elderly individuals (65 years and older) represent the fastest-growing demographic of new clinical traumatic brain injury (TBI) cases, yet there is a paucity of preclinical research in aged animals. The limited preclinical work available aligns with the clinical literature in that there appear to be significant differences in pathophysiology, recovery potential, and response to medications between animals at different points across the age spectrum. The aim of this review is to discuss the limited studies and highlight critical age-related differences in affective, cognitive, and neurobehavioral deficits, to discuss factors that influence functional outcomes, and to identify targets for future research. The consensus is that aged rodents face challenges related to dysregulated inflammation, reduced neuroplasticity, and age-related cellular changes, which hinder their recovery after TBI. The most successful intervention studies in animal models to date, of the limited array available, have explored interventions targeting inflammatory downregulation. Current standards of neuropsychopharmacology for post-TBI neurocognitive recovery have not been investigated in a significant capacity. In addition, currently available animal models do not sufficiently account for important age-related comorbidities, dual insults, or differences in TBI mechanism of injury in elderly individuals. TBI in the aged population is more likely to lead to additional neurodegenerative diseases that further complicate recovery. The findings underscore the need for tailored therapeutic interventions to improve outcomes in both adult and elderly populations.
Collapse
Affiliation(s)
- Nicholas S Race
- Department of Physical Medicine & Rehabilitation and Safar Center for Resuscitation Research, Association of Academic Physiatrists Rehabilitation Medicine Scientist Training Program,University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleni H Moschonas
- Department of Physical Medicine & Rehabilitation, Center for Neuroscience, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony E Kline
- Departments of Physical Medicine & Rehabilitation, Critical Care Medicine, and Psychology, Center for Neuroscience, Center for the Neural Basis of Cognition, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Corina O Bondi
- Departments of Physical Medicine & Rehabilitation and Neurobiology, Center for Neuroscience, and Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Rasouli HR, Mohammadian Salim M, Talebi S, Eslamian M, Ahmadpour F. The efficacy of buprenorphine on moderate traumatic brain injury in the rat model. Neurol Res 2023; 45:1055-1062. [PMID: 37695813 DOI: 10.1080/01616412.2023.2257447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/03/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is the leading cause of death, disability, and mental health disorders. A wide range of bioactive lipids, cytokines, and chemokines drives the inflammatory response. This study aimed to assess the efficacy of buprenorphine on moderate Trauma Brain Injury (mTBI) in rats. METHODS In this study, 21 Wistar male rats weighing 230 ± 10 g were included. We trained cases by Morris water navigation task and mTBI induced by the pendulum. Then, buprenorphine treatment with 0.05 mg per kilogram of body weight continued from day 8 to 21. Finally, by Micro-Computed Tomography, behavioral evaluation by the Morris aqueous riddle test and biochemical factors of inflammation were assessed. RESULTS Severe subdural inflammation was more in the treatment group than in the control group. The behavior of Rats showed that in the buprenorphine group, the mean duration of finding the platform increased compared to the control and Sham groups. However, the groups had no significant differences (P > 0.05). Biochemically, buprenorphine increased prolactin and decreased cortisol compared to the control and trauma groups (P < 0.05). CONCLUSION These results suggest that buprenorphine causes fewer changes in behavioral functions in rats' models of mTBI and, because of their positive effect changes on inflammation biomarkers, biochemical behavioral tests, and CT scan images, could be ideal analgesic agents for pre-clinical responses after TBI.
Collapse
Affiliation(s)
- Hamid Reza Rasouli
- Trauma Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohammadian Salim
- Trauma Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samira Talebi
- Department of Medicine Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Eslamian
- Trauma Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fathollah Ahmadpour
- Trauma Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Tapp ZM, Ren C, Palmer K, Kumar J, Atluri RR, Fitzgerald J, Velasquez J, Godbout J, Sheridan J, Kokiko-Cochran ON. Divergent Spatial Learning, Enhanced Neuronal Transcription, and Blood-Brain Barrier Disruption Develop During Recovery from Post-Injury Sleep Fragmentation. Neurotrauma Rep 2023; 4:613-626. [PMID: 37752925 PMCID: PMC10518692 DOI: 10.1089/neur.2023.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Traumatic brain injury (TBI) causes pathophysiology that may significantly decrease quality of life over time. A major propagator of this response is chronic, maladaptive neuroinflammation, which can be exacerbated by stressors such as sleep fragmentation (SF). This study determined whether post-TBI SF had lasting behavioral and inflammatory effects even with a period of recovery. To test this, male and female mice received a moderate lateral fluid percussion TBI or sham surgery. Half the mice were left undisturbed, and half were exposed to daily SF for 30 days. All mice were then undisturbed between 30 and 60 days post-injury (DPI), allowing mice to recover from SF (SF-R). SF-R did not impair global Barnes maze performance. Nonetheless, TBI SF-R mice displayed retrogression in latency to reach the goal box within testing days. These nuanced behavioral changes in TBI SF-R mice were associated with enhanced expression of neuronal processing/signaling genes and indicators of blood-brain barrier (BBB) dysfunction. Aquaporin-4 (AQP4) expression, a marker of BBB integrity, was differentially altered by TBI and TBI SF-R. For example, TBI enhanced cortical AQP4 whereas TBI SF-R mice had the lowest cortical expression of perivascular AQP4, dysregulated AQP4 polarization, and the highest number of CD45+ cells in the ipsilateral cortex. Altogether, post-TBI SF caused lasting, divergent behavioral responses associated with enhanced expression of neuronal transcription and BBB disruption even after a period of recovery from SF. Understanding lasting impacts from post-TBI stressors can better inform both acute and chronic post-injury care to improve long-term outcome post-TBI.
Collapse
Affiliation(s)
- Zoe M. Tapp
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Cindy Ren
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Kelsey Palmer
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Julia Kumar
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Ravitej R. Atluri
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Julie Fitzgerald
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - John Velasquez
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan Godbout
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, Neurological Institute, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - John Sheridan
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
- Institute for Behavioral Medicine Research, Neurological Institute, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Meldolesi J. Role of Senescent Astrocytes in Health and Disease. Int J Mol Sci 2023; 24:ijms24108498. [PMID: 37239843 DOI: 10.3390/ijms24108498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
For many decades after their discovery, astrocytes, the abundant glial cells of the brain, were believed to work as a glue, supporting the structure and metabolic functions of neurons. A revolution that started over 30 years ago revealed many additional functions of these cells, including neurogenesis, gliosecretion, glutamate homeostasis, assembly and function of synapses, neuronal metabolism with energy production, and others. These properties have been confirmed, limited however, to proliferating astrocytes. During their aging or following severe brain stress lesions, proliferating astrocytes are converted into their no-longer-proliferating, senescent forms, similar in their morphology but profoundly modified in their functions. The changed specificity of senescent astrocytes is largely due to their altered gene expression. The ensuing effects include downregulation of many properties typical of proliferating astrocytes, and upregulation of many others, concerned with neuroinflammation, release of pro-inflammatory cytokines, dysfunction of synapses, etc., specific to their senescence program. The ensuing decrease in neuronal support and protection by astrocytes induces the development, in vulnerable brain regions, of neuronal toxicity together with cognitive decline. Similar changes, ultimately reinforced by astrocyte aging, are also induced by traumatic events and molecules involved in dynamic processes. Senescent astrocytes play critical roles in the development of many severe brain diseases. The first demonstration, obtained for Alzheimer's disease less than 10 years ago, contributed to the elimination of the previously predominant neuro-centric amyloid hypothesis. The initial astrocyte effects, operating a considerable time before the appearance of known Alzheimer's symptoms evolve with the severity of the disease up to their proliferation during the final outcome. Involvement of astrocytes in other neurodegenerative diseases and cancer is now intensely investigated.
Collapse
Affiliation(s)
- Jacopo Meldolesi
- San Raffaele Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
- CNR Institute of Neuroscience, Milano-Bicocca University, Vedano al Lambro, 20854 Milan, Italy
| |
Collapse
|
10
|
Lee S, Devanney NA, Golden LR, Smith CT, Schwartz JL, Walsh AE, Clarke HA, Goulding DS, Allenger EJ, Morillo-Segovia G, Friday CM, Gorman AA, Hawkinson TR, MacLean SM, Williams HC, Sun RC, Morganti JM, Johnson LA. APOE modulates microglial immunometabolism in response to age, amyloid pathology, and inflammatory challenge. Cell Rep 2023; 42:112196. [PMID: 36871219 PMCID: PMC10117631 DOI: 10.1016/j.celrep.2023.112196] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/29/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
The E4 allele of Apolipoprotein E (APOE) is associated with both metabolic dysfunction and a heightened pro-inflammatory response: two findings that may be intrinsically linked through the concept of immunometabolism. Here, we combined bulk, single-cell, and spatial transcriptomics with cell-specific and spatially resolved metabolic analyses in mice expressing human APOE to systematically address the role of APOE across age, neuroinflammation, and AD pathology. RNA sequencing (RNA-seq) highlighted immunometabolic changes across the APOE4 glial transcriptome, specifically in subsets of metabolically distinct microglia enriched in the E4 brain during aging or following an inflammatory challenge. E4 microglia display increased Hif1α expression and a disrupted tricarboxylic acid (TCA) cycle and are inherently pro-glycolytic, while spatial transcriptomics and mass spectrometry imaging highlight an E4-specific response to amyloid that is characterized by widespread alterations in lipid metabolism. Taken together, our findings emphasize a central role for APOE in regulating microglial immunometabolism and provide valuable, interactive resources for discovery and validation research.
Collapse
Affiliation(s)
- Sangderk Lee
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Nicholas A Devanney
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Lesley R Golden
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Cathryn T Smith
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - James L Schwartz
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Adeline E Walsh
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Harrison A Clarke
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Danielle S Goulding
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | | | | | - Cassi M Friday
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Amy A Gorman
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Tara R Hawkinson
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Steven M MacLean
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Holden C Williams
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ramon C Sun
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA; Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, USA
| | - Josh M Morganti
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA.
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA; Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
11
|
Lawrence JM, Schardien K, Wigdahl B, Nonnemacher MR. Roles of neuropathology-associated reactive astrocytes: a systematic review. Acta Neuropathol Commun 2023; 11:42. [PMID: 36915214 PMCID: PMC10009953 DOI: 10.1186/s40478-023-01526-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023] Open
Abstract
In the contexts of aging, injury, or neuroinflammation, activated microglia signaling with TNF-α, IL-1α, and C1q induces a neurotoxic astrocytic phenotype, classified as A1, A1-like, or neuroinflammatory reactive astrocytes. In contrast to typical astrocytes, which promote neuronal survival, support synapses, and maintain blood-brain barrier integrity, these reactive astrocytes downregulate supportive functions and begin to secrete neurotoxic factors, complement components like C3, and chemokines like CXCL10, which may facilitate recruitment of immune cells across the BBB into the CNS. The proportion of pro-inflammatory reactive astrocytes increases with age through associated microglia activation, and these pro-inflammatory reactive astrocytes are particularly abundant in neurodegenerative disorders. As the identification of astrocyte phenotypes progress, their molecular and cellular effects are characterized in a growing array of neuropathologies.
Collapse
Affiliation(s)
- Jill M Lawrence
- Molecular and Cell Biology and Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kayla Schardien
- Molecular and Cell Biology and Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, PA, USA
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Kang YJ, Xue Y, Shin JH, Cho H. Human mini-brains for reconstituting central nervous system disorders. LAB ON A CHIP 2023; 23:964-981. [PMID: 36644973 DOI: 10.1039/d2lc00897a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neurological disorders in the central nervous system (CNS) are progressive and irreversible diseases leading to devastating impacts on patients' life as they cause cognitive impairment, dementia, and even loss of essential body functions. The development of effective medicines curing CNS disorders is, however, one of the most ambitious challenges due to the extremely complex functions and structures of the human brain. In this regard, there are unmet needs to develop simplified but physiopathologically-relevant brain models. Recent advances in the microfluidic techniques allow multicellular culture forming miniaturized 3D human brains by aligning parts of brain regions with specific cells serving suitable functions. In this review, we overview designs and strategies of microfluidics-based human mini-brains for reconstituting CNS disorders, particularly Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI), vascular dementia (VD), and environmental risk factor-driven dementia (ERFD). Afterward, the applications of the mini-brains in the area of medical science are introduced in terms of the clarification of pathogenic mechanisms and identification of promising biomarkers. We also present expanded model systems ranging from the CNS to CNS-connecting organ axes to study the entry pathways of pathological risk factors into the brain. Lastly, the advantages and potential challenges of current model systems are addressed with future perspectives.
Collapse
Affiliation(s)
- You Jung Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yingqi Xue
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jae Hee Shin
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hansang Cho
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
- Department of Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
13
|
Liu Y, Hong W, Gong P, Qi G, Wang X, Kang S, Tang H, Qin S. Specific knockout of Sox2 in astrocytes reduces reactive astrocyte formation and promotes recovery after early postnatal traumatic brain injury in mouse cortex. Glia 2023; 71:602-615. [PMID: 36353976 DOI: 10.1002/glia.24298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022]
Abstract
In response to central nervous system (CNS) injury, astrocytes go through a series of alterations, referred to as reactive astrogliosis, ranging from changes in gene expression and cell hypertrophy to permanent astrocyte borders around stromal cell scars in CNS lesions. The mechanisms underlying injury-induced reactive astrocytes in the adult CNS have been extensively studied. However, little is known about injury-induced reactive astrocytes during early postnatal development. Astrocytes in the mouse cortex are mainly produced through local proliferation during the first 2 weeks after birth. Here we show that Sox2, a transcription factor critical for stem cells and brain development, is expressed in the early postnatal astrocytes and its expression level was increased in reactive astrocytes after traumatic brain injury (TBI) at postnatal day (P) 7 in the cortex. Using a tamoxifen-induced hGFAP-CreERT2; Sox2flox/flox ; Rosa-tdT mouse model, we found that specific knockout of Sox2 in astrocytes greatly inhibited the proliferation of reactive astrocytes, the formation of glia limitans borders and subsequently promoted the tissue recovery after postnatal TBI at P7 in the cortex. In addition, we found that injury-induced glia limitans borders were still formed at P2 in the wild-type mouse cortex, and knockout of Sox2 in astrocytes inhibited the reactivity of both astrocytes and microglia. Together, these findings provide evidence that Sox2 is essential for the reactivity of astrocytes in response to the cortical TBI during the early postnatal period and suggest that Sox2-dependent astrocyte reactivity is a potential target for therapeutic treatment after TBI.
Collapse
Affiliation(s)
- Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wentong Hong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoxuan Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Siying Kang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Han Tang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Hsieh CT, Yen TL, Chen YH, Jan JS, Teng RD, Yang CH, Sun JM. Aging-Associated Thyroid Dysfunction Contributes to Oxidative Stress and Worsened Functional Outcomes Following Traumatic Brain Injury. Antioxidants (Basel) 2023; 12:antiox12020217. [PMID: 36829776 PMCID: PMC9952686 DOI: 10.3390/antiox12020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
The incidence of traumatic brain injury (TBI) increases dramatically with advanced age and accumulating evidence indicates that age is one of the important predictors of an unfavorable prognosis after brain trauma. Unfortunately, thus far, evidence-based effective therapeutics for geriatric TBI is limited. By using middle-aged animals, we first confirm that there is an age-related change in TBI susceptibility manifested by increased inflammatory events, neuronal death and impaired functional outcomes in motor and cognitive behaviors. Since thyroid hormones function as endogenous regulators of oxidative stress, we postulate that age-related thyroid dysfunction could be a crucial pathology in the increased TBI severity. By surgically removing the thyroid glands, which recapitulates the age-related increase in TBI-susceptible phenotypes, we provide direct evidence showing that endogenous thyroid hormone-dependent compensatory regulation of antioxidant events modulates individual TBI susceptibility, which is abolished in aged or thyroidectomized individuals. The antioxidant capacity of melatonin is well-known, and we found acute melatonin treatment but not liothyronine (T3) supplementation improved the TBI-susceptible phenotypes of oxidative stress, excitotoxic neuronal loss and promotes functional recovery in the aged individuals with thyroid dysfunction. Our study suggests that monitoring thyroid function and acute administration of melatonin could be feasible therapeutics in the management of geriatric-TBI in clinic.
Collapse
Affiliation(s)
- Cheng-Ta Hsieh
- Division of Neurosurgery, Department of Surgery, Sijhih Cathay General Hospital, New Taipei City 22174, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Medicine, School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan
- Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan
| | - Yu-Hao Chen
- Chung-Jen Junior College of Nursing, Health Sciences and Management, Chia-Yi City 62241, Taiwan
- Section of Neurosurgery, Department of Surgery, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City 600, Taiwan
- Department of Biotechnology, Asia University, Taichung City 41354, Taiwan
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan
| | - Ruei-Dun Teng
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan
| | - Jui-Ming Sun
- Section of Neurosurgery, Department of Surgery, Ditmanson Medical Foundation, Chia-Yi Christian Hospital, Chia-Yi City 600, Taiwan
- Department of Biotechnology, Asia University, Taichung City 41354, Taiwan
- Correspondence:
| |
Collapse
|
15
|
Amplified Gliosis and Interferon-Associated Inflammation in the Aging Brain following Diffuse Traumatic Brain Injury. J Neurosci 2022; 42:9082-9096. [PMID: 36257689 PMCID: PMC9732830 DOI: 10.1523/jneurosci.1377-22.2022] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 02/08/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with chronic psychiatric complications and increased risk for development of neurodegenerative pathology. Aged individuals account for most TBI-related hospitalizations and deaths. Nonetheless, neurobiological mechanisms that underlie worsened functional outcomes after TBI in the elderly remain unclear. Therefore, this study aimed to identify pathways that govern differential responses to TBI with age. Here, adult (2 months of age) and aged (16-18 months of age) male C57BL/6 mice were subjected to diffuse brain injury (midline fluid percussion), and cognition, gliosis, and neuroinflammation were determined 7 or 30 d postinjury (dpi). Cognitive impairment was evident 7 dpi, independent of age. There was enhanced morphologic restructuring of microglia and astrocytes 7 dpi in the cortex and hippocampus of aged mice compared with adults. Transcriptional analysis revealed robust age-dependent amplification of cytokine/chemokine, complement, innate immune, and interferon-associated inflammatory gene expression in the cortex 7 dpi. Ingenuity pathway analysis of the transcriptional data showed that type I interferon (IFN) signaling was significantly enhanced in the aged brain after TBI compared with adults. Age prolonged inflammatory signaling and microgliosis 30 dpi with an increased presence of rod microglia. Based on these results, a STING (stimulator of interferon genes) agonist, DMXAA, was used to determine whether augmenting IFN signaling worsened cortical inflammation and gliosis after TBI. DMXAA-treated Adult-TBI mice showed comparable expression of myriad genes that were overexpressed in the cortex of Aged-TBI mice, including Irf7, Clec7a, Cxcl10, and Ccl5 Overall, diffuse TBI promoted amplified IFN signaling in aged mice, resulting in extended inflammation and gliosis.SIGNIFICANCE STATEMENT Elderly individuals are at higher risk of complications following traumatic brain injury (TBI). Individuals >70 years old have the highest rates of TBI-related hospitalization, neurodegenerative pathology, and death. Although inflammation has been linked with poor outcomes in aging, the specific biological pathways driving worsened outcomes after TBI in aging remain undefined. In this study, we identify amplified interferon-associated inflammation and gliosis in aged mice following TBI that was associated with persistent inflammatory gene expression and microglial morphologic diversity 30 dpi. STING (stimulator of interferon genes) agonist DMXAA was used to demonstrate a causal link between augmented interferon signaling and worsened neuroinflammation after TBI. Therefore, interferon signaling may represent a therapeutic target to reduce inflammation-associated complications following TBI.
Collapse
|
16
|
Zhang Z, Zhang X, Wu X, Zhang Y, Lu J, Li D. Sirt1 attenuates astrocyte activation via modulating Dnajb1 and chaperone-mediated autophagy after closed head injury. Cereb Cortex 2022; 32:5191-5205. [PMID: 35106540 DOI: 10.1093/cercor/bhac007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
Our previous study indicates that Silent information regulator 1 (Sirt1) is involved in macroautophagy by upregulating light chain 3 (LC3) expression in astrocyte to exert a neuroprotective effect. Chaperon-mediated autophagy (CMA), another form of autophagy, is also upregulated after brain injury. However, little is known about the role of Sirt1 in regulation of the CMA. In the present study, an in vivo model of closed head injury (CHI) and an in vitro model of primary cortical astrocyte stimulated with interleukin-1β were employed to mimic the astrocyte activation induced by traumatic brain injury. Lentivirus carrying target complementary DNA (cDNA) or short hairpin RNA (shRNA) sequence was used to overexpress Sirt1 or knockdown DnaJ heat shock protein family member B1 (Dnajb1) (a molecular chaperone). We found that Sirt1 overexpression ameliorated neurological deficits, reduced tissue loss, and attenuated astrocyte activation after CHI, which was reversed by Dnajb1-shRNA administration. The upregulation of CMA activity induced by CHI in vivo and in vitro was inhibited after Dnajb1 knockdown. Sirt1 potently promoted CMA activity via upregulating Dnajb1 expression. Mechanically, Sirt1 could interact with Dnajb1 and modulate the deacetylation and ubiquitination of Dnajb1. These findings collectively suggest that Sirt1 plays a protective role against astrocyte activation, which may be associated with the regulation of the CMA activity via modulating the deacetylation and ubiquitination of Dnajb1 after CHI.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
| | - Xu Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
| | - Xin Wu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
| | - Yan Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
| | - Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, Liaoning Province, P.R. China
| |
Collapse
|
17
|
Phillips CL, Fu D, Herring LE, Armao D, Snider NT. Calpain-mediated proteolysis of vimentin filaments is augmented in giant axonal neuropathy fibroblasts exposed to hypotonic stress. Front Cell Dev Biol 2022; 10:1008542. [PMID: 36393840 PMCID: PMC9664965 DOI: 10.3389/fcell.2022.1008542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Giant Axonal Neuropathy (GAN) is a pediatric neurodegenerative disease caused by loss-of-function mutations in the E3 ubiquitin ligase adaptor gigaxonin, which is encoded by the KLHL16 gene. Gigaxonin regulates the degradation of multiple intermediate filament (IF) proteins, including neurofilaments, GFAP, and vimentin, which aggregate in GAN patient cells. Understanding how IFs and their aggregates are processed under stress can reveal new GAN disease mechanisms and potential targets for therapy. Here we tested the hypothesis that hypotonic stress-induced vimentin proteolysis is impaired in GAN. In both GAN and control fibroblasts exposed to hypotonic stress, we observed time-dependent vimentin cleavage that resulted in two prominent ∼40-45 kDa fragments. However, vimentin proteolysis occurred more rapidly and extensively in GAN cells compared to unaffected controls as both fragments were generated earlier and at 4-6-fold higher levels. To test enzymatic involvement, we determined the expression levels and localization of the calcium-sensitive calpain proteases-1 and -2 and their endogenous inhibitor calpastatin. While the latter was not affected, the expression of both calpains was 2-fold higher in GAN cells compared to control cells. Moreover, pharmacologic inhibition of calpains with MDL-28170 or MG-132 attenuated vimentin cleavage. Imaging analysis revealed striking colocalization between large perinuclear vimentin aggregates and calpain-2 in GAN fibroblasts. This colocalization was dramatically altered by hypotonic stress, where selective breakdown of filaments over aggregates occurred rapidly in GAN cells and coincided with calpain-2 cytoplasmic redistribution. Finally, mass spectrometry-based proteomics revealed that phosphorylation at Ser-412, located at the junction between the central "rod" domain and C-terminal "tail" domain on vimentin, is involved in this stress response. Over-expression studies using phospho-deficient and phospho-mimic mutants revealed that Ser-412 is important for filament organization, solubility dynamics, and vimentin cleavage upon hypotonic stress exposure. Collectively, our work reveals that osmotic stress induces calpain- and proteasome-mediated vimentin degradation and IF network breakdown. These effects are significantly augmented in the presence of disease-causing KLHL16 mutations that alter intermediate filament organization. While the specific roles of calpain-generated vimentin IF fragments in GAN cells remain to be defined, this proteolytic pathway is translationally-relevant to GAN because maintaining osmotic homeostasis is critical for nervous system function.
Collapse
Affiliation(s)
- Cassandra L. Phillips
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Diane Armao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Natasha T. Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States,*Correspondence: Natasha T. Snider,
| |
Collapse
|
18
|
Turner AK, Shaw BC, Simpson JF, Estus S. Identification and Quantitation of Novel ABI3 Isoforms Relative to Alzheimer’s Disease Genetics and Neuropathology. Genes (Basel) 2022; 13:genes13091607. [PMID: 36140776 PMCID: PMC9498898 DOI: 10.3390/genes13091607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Elucidating the actions of genetic polymorphisms associated with the risk of Alzheimer’s disease (AD) may provide novel insights into underlying mechanisms. Two polymorphisms have implicated ABI3 as a modulator of AD risk. Here, we sought to identify ABI3 isoforms expressed in human AD and non-AD brain, quantify the more abundant isoforms as a function of AD genetics and neuropathology, and provide an initial in vitro characterization of the proteins produced by these novel isoforms. We report that ABI3 expression is increased with AD neuropathology but not associated with AD genetics. Single-cell RNAseq of APP/PS1 mice showed that Abi3 is primarily expressed by microglia, including disease-associated microglia. In human brain, several novel ABI3 isoforms were identified, including isoforms with partial or complete loss of exon 6. Expression of these isoforms correlated tightly with total ABI3 expression but were not influenced by AD genetics. Lastly, we performed an initial characterization of these isoforms in transfected cells and found that, while full-length ABI3 was expressed in a dispersed punctate fashion within the cytosol, isoforms lacking most or all of exon six tended to form extensive protein aggregates. In summary, ABI3 expression is restricted to microglia, is increased with Alzheimer’s neuropathology, and includes several isoforms that display a variable tendency to aggregate when expressed in vitro.
Collapse
|
19
|
A distinct astrocyte subtype in the aging mouse brain characterized by impaired protein homeostasis. NATURE AGING 2022; 2:726-741. [PMID: 37118130 DOI: 10.1038/s43587-022-00257-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/21/2022] [Indexed: 11/08/2022]
Abstract
The aging brain exhibits a region-specific reduction in synapse number and plasticity. Although astrocytes play central roles in regulating synapses, it is unclear how changes in astrocytes contribute to age-dependent cognitive decline and vulnerability to neurodegenerative diseases. Here, we identified a unique astrocyte subtype that exhibits dysregulated autophagy and morphology in aging hippocampus. In these autophagy-dysregulated astrocytes (APDAs), autophagosomes abnormally accumulate in swollen processes, impairing protein trafficking and secretion. We found that reduced mammalian target of rapamycin (mTOR) and proteasome activities with lysosomal dysfunction generate APDAs in an age-dependent manner. Secretion of synaptogenic molecules and astrocytic synapse elimination were significantly impaired in APDAs, suggesting that APDAs have lost their ability to control synapse number and homeostasis. Indeed, excitatory synapses and dendritic spines associated with APDAs were significantly reduced. Finally, we found that mouse brains with Alzheimer's disease showed a significantly accelerated increase in APDAs, suggesting potential roles for APDAs in age- and Alzheimer's disease-related cognitive decline and synaptic pathology.
Collapse
|
20
|
Schober AL, Wicki-Stordeur LE, Murai KK, Swayne LA. Foundations and implications of astrocyte heterogeneity during brain development and disease. Trends Neurosci 2022; 45:692-703. [PMID: 35879116 DOI: 10.1016/j.tins.2022.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/25/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
Astrocytes play crucial roles in regulating brain circuit formation and physiology. Recent technological advances have revealed unprecedented levels of astrocyte diversity encompassing molecular, morphological, and functional differences. This diversification is initiated during embryonic specification events and (in rodents) continues into the early postnatal period where it overlaps with peak synapse development and circuit refinement. In fact, several lines of evidence suggest astrocyte diversity both influences and is a consequence of molecular crosstalk among developing astrocytes and other cell types, notably neurons and their synapses. Neurological disease states exhibit additional layers of astrocyte heterogeneity, which could help shed light on these cells' key pathological roles. This review highlights recent advances in clarifying astrocyte heterogeneity and molecular/cellular crosstalk and identifies key outstanding questions.
Collapse
Affiliation(s)
- Alexandra L Schober
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | | | - Keith K Murai
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada; Quantitative Life Sciences Graduate Program, McGill University, Montreal, QC, Canada
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Cellular and Physiological Sciences, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Mills WA, Woo AM, Jiang S, Martin J, Surendran D, Bergstresser M, Kimbrough IF, Eyo UB, Sofroniew MV, Sontheimer H. Astrocyte plasticity in mice ensures continued endfoot coverage of cerebral blood vessels following injury and declines with age. Nat Commun 2022; 13:1794. [PMID: 35379828 PMCID: PMC8980042 DOI: 10.1038/s41467-022-29475-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 03/11/2022] [Indexed: 01/30/2023] Open
Abstract
Astrocytes extend endfeet that enwrap the vasculature, and disruptions to this association which may occur in disease coincide with breaches in blood-brain barrier (BBB) integrity. Here we investigate if focal ablation of astrocytes is sufficient to disrupt the BBB in mice. Targeted two-photon chemical apoptotic ablation of astrocytes induced a plasticity response whereby surrounding astrocytes extended processes to cover vascular vacancies. In young animals, replacement processes occur in advance of endfoot retraction, but this is delayed in aged animals. Stimulation of replacement astrocytes results in constriction of pre-capillary arterioles, suggesting that replacement astrocytes are functional. Pharmacological inhibition of pSTAT3, as well as astrocyte specific deletion of pSTAT3, reduces astrocyte replacement post-ablation, without perturbations to BBB integrity. Similar endfoot replacement occurs following astrocyte cell death due to reperfusion in a stroke model. Together, these studies uncover the ability of astrocytes to maintain cerebrovascular coverage via substitution from nearby cells.
Collapse
Affiliation(s)
- William A. Mills
- grid.27755.320000 0000 9136 933XBrain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.27755.320000 0000 9136 933XDepartment of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.27755.320000 0000 9136 933XRobert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.438526.e0000 0001 0694 4940Graduate Program in Translational Biology, Medicine, & Health, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - AnnaLin M. Woo
- grid.27755.320000 0000 9136 933XBrain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.27755.320000 0000 9136 933XDepartment of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Shan Jiang
- grid.168010.e0000000419368956Department of Material Science and Engineering, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA USA
| | - Joelle Martin
- grid.438526.e0000 0001 0694 4940Graduate Program in Translational Biology, Medicine, & Health, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Dayana Surendran
- grid.27755.320000 0000 9136 933XBrain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.27755.320000 0000 9136 933XDepartment of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Matthew Bergstresser
- grid.438526.e0000 0001 0694 4940School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Ian F. Kimbrough
- grid.27755.320000 0000 9136 933XBrain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.27755.320000 0000 9136 933XDepartment of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Ukpong B. Eyo
- grid.27755.320000 0000 9136 933XBrain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.27755.320000 0000 9136 933XDepartment of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.27755.320000 0000 9136 933XRobert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Michael V. Sofroniew
- grid.19006.3e0000 0000 9632 6718Department of Neurobiology, University of California, Los Angeles, CA USA
| | - Harald Sontheimer
- grid.27755.320000 0000 9136 933XBrain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA USA ,grid.27755.320000 0000 9136 933XDepartment of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA USA
| |
Collapse
|
22
|
Stewart A, Glaser E, Bailey WM, Gensel J. Immunoglobulin G is Increased in the Injured Spinal Cord in a Sex and Age Dependent Manner. J Neurotrauma 2022; 39:1090-1098. [PMID: 35373588 PMCID: PMC9347383 DOI: 10.1089/neu.2022.0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
There are limited studies examining age and sex as biological variables in the pathophysiology of spinal cord injury (SCI). The use of older animals and sex-balanced groups in SCI models is increasingly prioritized to better match clinical demographics. Including older animals in SCI studies is technically challenging, and outcomes are unpredictable with respect to biological and treatment responses. Incidental discoveries that are unrelated to the question under investigation often emerge while including age and sex as biological variables. When probing tissue homogenates on Western blots of 4- and 14-month-old (MO) mice, we identified a sex- and age-dependent increase in immunoglobulin G (IgG) within the spinal cords of older, 14-MO mice acutely after SCI, with females having more IgG compared with males. We further probed to determine whether differences in hemorrhage exist between sexes or ages by evaluating hemoglobin within spinal homogenates. Differences in hemoglobin between sexes and ages were not consistently observed. Because IgG was elevated in an age- and sex-dependent manner without of evidence of differences in hemorrhage, our findings point to potential pre-existing differences in IgG within mouse plasma in an age- and sex-dependent manner. This report has identified age- and sex-dependent differences in infiltrating IgG into the injured spinal cord environment that may affect injury and recovery processes. Our findings highlight that systemic contributions to SCI can be sex- and age-dependent and illustrate the value of reporting incidental discoveries.
Collapse
Affiliation(s)
- Andrew Stewart
- University of Kentucky, Physiology, 741 S. Limestone Street, BBSRB B483, Lexington, Kentucky, United States, 40536-0509,
| | - Ethan Glaser
- University of Kentucky, Physiology, Lexington, Kentucky, United States,
| | - William M Bailey
- University of Kentucky, Spinal Cord and Brain Injury Research Center, Physiology, Lexington, Kentucky, United States
| | - John Gensel
- University of Kentucky, Physiology, 741 S. Limestone Street, B436 BBSRB, Lexington, Kentucky, United States, 40536-0509
| |
Collapse
|
23
|
Dickerson M, Guilhaume-Corrêa F, Strickler J, VandeVord PJ. Age-relevant in vitro models may lead to improved translational research for traumatic brain injury. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022. [DOI: 10.1016/j.cobme.2022.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Brett BL, Gardner RC, Godbout J, Dams-O’Connor K, Keene CD. Traumatic Brain Injury and Risk of Neurodegenerative Disorder. Biol Psychiatry 2022; 91:498-507. [PMID: 34364650 PMCID: PMC8636548 DOI: 10.1016/j.biopsych.2021.05.025] [Citation(s) in RCA: 113] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI), particularly of greater severity (i.e., moderate to severe), has been identified as a risk factor for all-cause dementia and Parkinson's disease, with risk for specific dementia subtypes being more variable. Among the limited studies involving neuropathological (postmortem) confirmation, the association between TBI and risk for neurodegenerative disease increases in complexity, with polypathology often reported on examination. The heterogeneous clinical and neuropathological outcomes associated with TBI are likely reflective of the multifaceted postinjury acute and chronic processes that may contribute to neurodegeneration. Acutely in TBI, axonal injury and disrupted transport influences molecular mechanisms fundamental to the formation of pathological proteins, such as amyloid-β peptide and hyperphosphorylated tau. These protein deposits may develop into amyloid-β plaques, hyperphosphorylated tau-positive neurofibrillary tangles, and dystrophic neurites. These and other characteristic neurodegenerative disease pathologies may then spread across brain regions. The acute immune and neuroinflammatory response involves alteration of microglia, astrocytes, oligodendrocytes, and endothelial cells; release of downstream pro- and anti-inflammatory cytokines and chemokines; and recruitment of peripheral immune cells. Although thought to be neuroprotective and reparative initially, prolongation of these processes may promote neurodegeneration. We review the evidence for TBI as a risk factor for neurodegenerative disorders, including Alzheimer's dementia and Parkinson's disease, in clinical and neuropathological studies. Further, we describe the dynamic interactions between acute response to injury and chronic processes that may be involved in TBI-related pathogenesis and progression of neurodegeneration.
Collapse
Affiliation(s)
- Benjamin L. Brett
- Department of Neurosurgery, Medical College of
Wisconsin,Corresponding author: Benjamin L.
Brett, 414-955-7316, , Medical College of
Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226
| | - Raquel C. Gardner
- Department of Neurology, Memory and Aging Center, Weill
Institute for Neurosciences, University of California San Francisco and the San
Francisco Veterans Affairs Medical Center
| | - Jonathan Godbout
- Department of Neuroscience, Chronic Brain Injury Program,
The Ohio State Wexner Medical Center, Columbus, OH
| | - Kristen Dams-O’Connor
- Department of Rehabilitation and Human Performance,
Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University
of Washington School of Medicine, Seattle, WA
| |
Collapse
|
25
|
Yu G, Zhang Y, Ning B. Reactive Astrocytes in Central Nervous System Injury: Subgroup and Potential Therapy. Front Cell Neurosci 2022; 15:792764. [PMID: 35002629 PMCID: PMC8733560 DOI: 10.3389/fncel.2021.792764] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic central nervous system (CNS) injury, which includes both traumatic brain injury (TBI) and spinal cord injury (SCI), is associated with irreversible loss of neurological function and high medical care costs. Currently, no effective treatment exists to improve the prognosis of patients. Astrocytes comprise the largest population of glial cells in the CNS and, with the advancements in the field of neurology, are increasingly recognized as having key functions in both the brain and the spinal cord. When stimulated by disease or injury, astrocytes become activated and undergo a series of changes, including alterations in gene expression, hypertrophy, the loss of inherent functions, and the acquisition of new ones. Studies have shown that astrocytes are highly heterogeneous with respect to their gene expression profiles, and this heterogeneity accounts for their observed context-dependent phenotypic diversity. In the inured CNS, activated astrocytes play a dual role both as regulators of neuroinflammation and in scar formation. Identifying the subpopulations of reactive astrocytes that exert beneficial or harmful effects will aid in deciphering the pathological mechanisms underlying CNS injuries and ultimately provide a theoretical basis for the development of effective strategies for the treatment of associated conditions. Following CNS injury, as the disease progresses, astrocyte phenotypes undergo continuous changes. Although current research methods do not allow a comprehensive and accurate classification of astrocyte subpopulations in complex pathological contexts, they can nonetheless aid in understanding the roles of astrocytes in disease. In this review, after a brief introduction to the pathology of CNS injury, we summarize current knowledge regarding astrocyte activation following CNS injury, including: (a) the regulatory factors involved in this process; (b) the functions of different astrocyte subgroups based on the existing classification of astrocytes; and (c) attempts at astrocyte-targeted therapy.
Collapse
Affiliation(s)
- GuiLian Yu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhang
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Ning
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
26
|
McConnell HL, Mishra A. Cells of the Blood-Brain Barrier: An Overview of the Neurovascular Unit in Health and Disease. Methods Mol Biol 2022; 2492:3-24. [PMID: 35733036 PMCID: PMC9987262 DOI: 10.1007/978-1-0716-2289-6_1] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
The brain is endowed with highly specialized vasculature that is both structurally and functionally unique compared to vasculature supplying peripheral organs. The blood-brain barrier (BBB) is formed by endothelial cells of the cerebral vasculature and prevents extravasation of blood products into the brain to protect neural tissue and maintain a homeostatic environment. The BBB functions as part of the neurovascular unit (NVU), which is composed of neurons, astrocytes, and microglia in addition to the specialized endothelial cells, mural cells, and the basement membrane. Through coordinated intercellular signaling, these cells function as a dynamic unit to tightly regulate brain blood flow, vascular function, neuroimmune responses, and waste clearance. In this chapter, we review the functions of individual NVU components, describe neurovascular coupling as a classic example of NVU function, and discuss archetypal NVU pathophysiology during disease.
Collapse
Affiliation(s)
- Heather L McConnell
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, USA
- Office of Academic Development, Houston Methodist Research Institute, Houston, TX, USA
| | - Anusha Mishra
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, USA.
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
27
|
Moro F, Pischiutta F, Portet A, Needham EJ, Norton EJ, Ferdinand JR, Vegliante G, Sammali E, Pascente R, Caruso E, Micotti E, Tolomeo D, di Marco Barros R, Fraunberger E, Wang KKW, Esser MJ, Menon DK, Clatworthy MR, Zanier ER. Ageing is associated with maladaptive immune response and worse outcome after traumatic brain injury. Brain Commun 2022; 4:fcac036. [PMID: 35350551 PMCID: PMC8947244 DOI: 10.1093/braincomms/fcac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/23/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022] Open
Abstract
Traumatic brain injury is increasingly common in older individuals. Older age is one of the strongest predictors for poor prognosis after brain trauma, a phenomenon driven by the presence of extra-cranial comorbidities as well as pre-existent pathologies associated with cognitive impairment and brain volume loss (such as cerebrovascular disease or age-related neurodegeneration). Furthermore, ageing is associated with a dysregulated immune response, which includes attenuated responses to infection and vaccination, and a failure to resolve inflammation leading to chronic inflammatory states. In traumatic brain injury, where the immune response is imperative for the clearance of cellular debris and survey of the injured milieu, an appropriate self-limiting response is vital to promote recovery. Currently, our understanding of age-related factors that contribute to the outcome is limited; but a more complete understanding is essential for the development of tailored therapeutic strategies to mitigate the consequences of traumatic brain injury. Here we show greater functional deficits, white matter abnormalities and worse long-term outcomes in aged compared with young C57BL/6J mice after either moderate or severe traumatic brain injury. These effects are associated with altered systemic, meningeal and brain tissue immune response. Importantly, the impaired acute systemic immune response in the mice was similar to the findings observed in our clinical cohort. Traumatic brain-injured patient cohort over 70 years of age showed lower monocyte and lymphocyte counts compared with those under 45 years. In mice, traumatic brain injury was associated with alterations in peripheral immune subsets, which differed in aged compared with adult mice. There was a significant increase in transcription of immune and inflammatory genes in the meninges post-traumatic brain injury, including monocyte/leucocyte-recruiting chemokines. Immune cells were recruited to the region of the dural injury, with a significantly higher number of CD11b+ myeloid cells in aged compared with the adult mice. In brain tissue, when compared with the young adult mice, we observed a more pronounced and widespread reactive astrogliosis 1 month after trauma in aged mice, sustained by an early and persistent induction of proinflammatory astrocytic state. These findings provide important insights regarding age-related exacerbation of neurological damage after brain trauma.
Collapse
Affiliation(s)
- Federico Moro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Francesca Pischiutta
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Anaïs Portet
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, UK
| | - Edward J. Needham
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QH, UK
| | - Emma J. Norton
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QH, UK
| | - John R. Ferdinand
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, UK
| | - Gloria Vegliante
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Eliana Sammali
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Rosaria Pascente
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Enrico Caruso
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Edoardo Micotti
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Daniele Tolomeo
- Laboratory of Biology of Neurodegenerative Disorders, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| | - Rafael di Marco Barros
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, UK
| | - Erik Fraunberger
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kevin K. W. Wang
- Program for Neurotrauma, Neuroproteomics and Biomarker Research, Departments of Emergency Medicine, Psychiatry and Neuroscience, University of Florida, Gainesville, FL, USA
| | - Michael J. Esser
- Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - David K. Menon
- Division of Anaesthesia, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QH, UK
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 0QH, UK
| | - Elisa R. Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
- Correspondence to: Elisa R. Zanier Laboratory of Acute Brain Injury and Therapeutic Strategies Department of Neuroscience Istituto di Ricerche Farmacologiche Mario Negri IRCCS 20156 Milan, Italy E-mail:
| |
Collapse
|
28
|
The neuroprotective function of 2-carba-cyclic phosphatidic acid: Implications for tenascin-C via astrocytes in traumatic brain injury. J Neuroimmunol 2021; 361:577749. [PMID: 34688067 DOI: 10.1016/j.jneuroim.2021.577749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 02/06/2023]
Abstract
We examined the mechanism how 2-carba-cyclic phosphatidic acid (2ccPA), a lipid mediator, regulates neuronal apoptosis in traumatic brain injury (TBI). First, we found 2ccPA suppressed neuronal apoptosis after the injury, and increased the immunoreactivity of tenascin-C (TN-C), an extracellular matrix protein by 2ccPA in the vicinity of the wound region. 2ccPA increased the mRNA expression levels of Tnc in primary cultured astrocytes, and the conditioned medium of 2ccPA-treated astrocytes suppressed the apoptosis of cortical neurons. The neuroprotective effect of TN-C was abolished by knockdown of TN-C. These results indicate that 2ccPA contributes to neuroprotection via TN-C from astrocytes in TBI.
Collapse
|
29
|
Traumatic Brain Injury: An Age-Dependent View of Post-Traumatic Neuroinflammation and Its Treatment. Pharmaceutics 2021; 13:pharmaceutics13101624. [PMID: 34683918 PMCID: PMC8537402 DOI: 10.3390/pharmaceutics13101624] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability all over the world. TBI leads to (1) an inflammatory response, (2) white matter injuries and (3) neurodegenerative pathologies in the long term. In humans, TBI occurs most often in children and adolescents or in the elderly, and it is well known that immune responses and the neuroregenerative capacities of the brain, among other factors, vary over a lifetime. Thus, age-at-injury can influence the consequences of TBI. Furthermore, age-at-injury also influences the pharmacological effects of drugs. However, the post-TBI inflammatory, neuronal and functional consequences have been mostly studied in experimental young adult animal models. The specificity and the mechanisms underlying the consequences of TBI and pharmacological responses are poorly understood in extreme ages. In this review, we detail the variations of these age-dependent inflammatory responses and consequences after TBI, from an experimental point of view. We investigate the evolution of microglial, astrocyte and other immune cells responses, and the consequences in terms of neuronal death and functional deficits in neonates, juvenile, adolescent and aged male animals, following a single TBI. We also describe the pharmacological responses to anti-inflammatory or neuroprotective agents, highlighting the need for an age-specific approach to the development of therapies of TBI.
Collapse
|
30
|
Doust YV, Rowe RK, Adelson PD, Lifshitz J, Ziebell JM. Age-at-Injury Determines the Extent of Long-Term Neuropathology and Microgliosis After a Diffuse Brain Injury in Male Rats. Front Neurol 2021; 12:722526. [PMID: 34566867 PMCID: PMC8455817 DOI: 10.3389/fneur.2021.722526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/12/2021] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) can occur at any age, from youth to the elderly, and its contribution to age-related neuropathology remains unknown. Few studies have investigated the relationship between age-at-injury and pathophysiology at a discrete biological age. In this study, we report the immunohistochemical analysis of naïve rat brains compared to those subjected to diffuse TBI by midline fluid percussion injury (mFPI) at post-natal day (PND) 17, PND35, 2-, 4-, or 6-months of age. All brains were collected when rats were 10-months of age (n = 6–7/group). Generalized linear mixed models were fitted to analyze binomial proportion and count data with R Studio. Amyloid precursor protein (APP) and neurofilament (SMI34, SMI32) neuronal pathology were counted in the corpus callosum (CC) and primary sensory barrel field (S1BF). Phosphorylated TAR DNA-binding protein 43 (pTDP-43) neuropathology was counted in the S1BF and hippocampus. There was a significantly greater extent of APP and SMI34 axonal pathology and pTDP-43 neuropathology following a TBI compared with naïves regardless of brain region or age-at-injury. However, age-at-injury did determine the extent of dendritic neurofilament (SMI32) pathology in the CC and S1BF where all brain-injured rats exhibited a greater extent of pathology compared with naïve. No significant differences were detected in the extent of astrocyte activation between brain-injured and naïve rats. Microglia counts were conducted in the S1BF, hippocampus, ventral posteromedial (VPM) nucleus, zona incerta, and posterior hypothalamic nucleus. There was a significantly greater proportion of deramified microglia, regardless of whether the TBI was recent or remote, but this only occurred in the S1BF and hippocampus. The proportion of microglia with colocalized CD68 and TREM2 in the S1BF was greater in all brain-injured rats compared with naïve, regardless of whether the TBI was recent or remote. Only rats with recent TBI exhibited a greater proportion of CD68-positive microglia compared with naive in the hippocampus and posterior hypothalamic nucleus. Whilst, only rats with a remote brain-injury displayed a greater proportion of microglia colocalized with TREM2 in the hippocampus. Thus, chronic alterations in neuronal and microglial characteristics are evident in the injured brain despite the recency of a diffuse brain injury.
Collapse
Affiliation(s)
- Yasmine V Doust
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Rachel K Rowe
- Department of Integrative Physiology at University of Colorado, Boulder, CO, United States.,BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - P David Adelson
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States.,Phoenix Veteran Affairs Health Care System, Phoenix, AZ, United States
| | - Jenna M Ziebell
- Wicking Dementia Research and Education Centre, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.,BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.,Department of Child Health, University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States
| |
Collapse
|
31
|
Farmer BC, Williams HC, Devanney NA, Piron MA, Nation GK, Carter DJ, Walsh AE, Khanal R, Young LEA, Kluemper JC, Hernandez G, Allenger EJ, Mooney R, Golden LR, Smith CT, Brandon JA, Gupta VA, Kern PA, Gentry MS, Morganti JM, Sun RC, Johnson LA. APOΕ4 lowers energy expenditure in females and impairs glucose oxidation by increasing flux through aerobic glycolysis. Mol Neurodegener 2021; 16:62. [PMID: 34488832 PMCID: PMC8420022 DOI: 10.1186/s13024-021-00483-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 08/15/2021] [Indexed: 01/21/2023] Open
Abstract
Background Cerebral glucose hypometabolism is consistently observed in individuals with Alzheimer’s disease (AD), as well as in young cognitively normal carriers of the Ε4 allele of Apolipoprotein E (APOE), the strongest genetic predictor of late-onset AD. While this clinical feature has been described for over two decades, the mechanism underlying these changes in cerebral glucose metabolism remains a critical knowledge gap in the field. Methods Here, we undertook a multi-omic approach by combining single-cell RNA sequencing (scRNAseq) and stable isotope resolved metabolomics (SIRM) to define a metabolic rewiring across astrocytes, brain tissue, mice, and human subjects expressing APOE4. Results Single-cell analysis of brain tissue from mice expressing human APOE revealed E4-associated decreases in genes related to oxidative phosphorylation, particularly in astrocytes. This shift was confirmed on a metabolic level with isotopic tracing of 13C-glucose in E4 mice and astrocytes, which showed decreased pyruvate entry into the TCA cycle and increased lactate synthesis. Metabolic phenotyping of E4 astrocytes showed elevated glycolytic activity, decreased oxygen consumption, blunted oxidative flexibility, and a lower rate of glucose oxidation in the presence of lactate. Together, these cellular findings suggest an E4-associated increase in aerobic glycolysis (i.e. the Warburg effect). To test whether this phenomenon translated to APOE4 humans, we analyzed the plasma metabolome of young and middle-aged human participants with and without the Ε4 allele, and used indirect calorimetry to measure whole body oxygen consumption and energy expenditure. In line with data from E4-expressing female mice, a subgroup analysis revealed that young female E4 carriers showed a striking decrease in energy expenditure compared to non-carriers. This decrease in energy expenditure was primarily driven by a lower rate of oxygen consumption, and was exaggerated following a dietary glucose challenge. Further, the stunted oxygen consumption was accompanied by markedly increased lactate in the plasma of E4 carriers, and a pathway analysis of the plasma metabolome suggested an increase in aerobic glycolysis. Conclusions Together, these results suggest astrocyte, brain and system-level metabolic reprogramming in the presence of APOE4, a ‘Warburg like’ endophenotype that is observable in young females decades prior to clinically manifest AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13024-021-00483-y.
Collapse
Affiliation(s)
- Brandon C Farmer
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Holden C Williams
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA.,Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Nicholas A Devanney
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA.,Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Margaret A Piron
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Grant K Nation
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - David J Carter
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Adeline E Walsh
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Rebika Khanal
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Jude C Kluemper
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Gabriela Hernandez
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Elizabeth J Allenger
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Rachel Mooney
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Lesley R Golden
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Cathryn T Smith
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - J Anthony Brandon
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA
| | - Vedant A Gupta
- Gill Heart and Vascular Institute, University of Kentucky, Lexington, KY, USA
| | - Philip A Kern
- Center for Clinical and Translational Science, University of Kentucky College of Medicine, Lexington, KY, USA.,Department of Internal Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY, USA
| | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Josh M Morganti
- Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA.,Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Ramon C Sun
- Department of Neuroscience, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky College of Medicine, UKMC/MS 609, 800 Rose Street, Lexington, KY, 40536, USA. .,Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA.
| |
Collapse
|
32
|
Yegla B, Joshi S, Strupp J, Parikh V. Dynamic interplay of frontoparietal cholinergic innervation and cortical reorganization in the regulation of attentional capacities in aging. Neurobiol Aging 2021; 105:186-198. [PMID: 34102380 PMCID: PMC8338743 DOI: 10.1016/j.neurobiolaging.2021.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 01/21/2023]
Abstract
Cortical remodeling is linked to age-related cognitive changes in humans; however, the mechanisms underlying cortical reorganization in aging remain unknown. Here we examined the consequences of mild cholinergic thinning of the prefrontal cortex (PFC) and parietal cortex (PC) on attention performance-associated changes in cortical activity in young and aged rats. Prefrontal manipulation produced attentional deficits in aged but not young rats regardless of cholinergic pruning. Stereological assessment of c-fos expression revealed age-related reductions in occipital activity and a corresponding increase in PC activity, but these patterns did not correlate with performance. PC cholinergic deafferentation produced opposite changes in PFC recruitment between young and aged rats. Cholinergic pruning reversed the effects of PFC/PC cholinergic manipulations on the activity of CaMKII- and GAD-positive neurons in aged rats. Our results indicate that cortical shifts depend on multiple factors including chronological age, cholinergic changes, and cortical insult, and that cortical reorganization is not necessarily compensatory. Moreover, the cholinergic system modulates excitation/inhibition homeostasis to improve the efficiency of reorganized cortical circuits and stabilize attentional performance.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Surbhi Joshi
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Jacob Strupp
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Hanslik KL, Marino KM, Ulland TK. Modulation of Glial Function in Health, Aging, and Neurodegenerative Disease. Front Cell Neurosci 2021; 15:718324. [PMID: 34531726 PMCID: PMC8439422 DOI: 10.3389/fncel.2021.718324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 01/15/2023] Open
Abstract
In the central nervous system (CNS), glial cells, such as microglia and astrocytes, are normally associated with support roles including contributions to energy metabolism, synaptic plasticity, and ion homeostasis. In addition to providing support for neurons, microglia and astrocytes function as the resident immune cells in the brain. The glial function is impacted by multiple aspects including aging and local CNS changes caused by neurodegeneration. During aging, microglia and astrocytes display alterations in their homeostatic functions. For example, aged microglia and astrocytes exhibit impairments in the lysosome and mitochondrial function as well as in their regulation of synaptic plasticity. Recent evidence suggests that glia can also alter the pathology associated with many neurodegenerative disorders including Alzheimer's disease (AD) and Parkinson's disease (PD). Shifts in the microbiome can impact glial function as well. Disruptions in the microbiome can lead to aberrant microglial and astrocytic reactivity, which can contribute to an exacerbation of disease and neuronal dysfunction. In this review, we will discuss the normal physiological functions of microglia and astrocytes, summarize novel findings highlighting the role of glia in aging and neurodegenerative diseases, and examine the contribution of microglia and astrocytes to disease progression.
Collapse
Affiliation(s)
- Kendra L. Hanslik
- Neuroscience Training Program, University of Wisconsin, Madison, WI, United States
| | - Kaitlyn M. Marino
- Neuroscience Training Program, University of Wisconsin, Madison, WI, United States
| | - Tyler K. Ulland
- Neuroscience Training Program, University of Wisconsin, Madison, WI, United States
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
34
|
Moulson AJ, Squair JW, Franklin RJM, Tetzlaff W, Assinck P. Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity? Front Cell Neurosci 2021; 15:703810. [PMID: 34381334 PMCID: PMC8349991 DOI: 10.3389/fncel.2021.703810] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Astrocytes are essential for the development and homeostatic maintenance of the central nervous system (CNS). They are also critical players in the CNS injury response during which they undergo a process referred to as "reactive astrogliosis." Diversity in astrocyte morphology and gene expression, as revealed by transcriptional analysis, is well-recognized and has been reported in several CNS pathologies, including ischemic stroke, CNS demyelination, and traumatic injury. This diversity appears unique to the specific pathology, with significant variance across temporal, topographical, age, and sex-specific variables. Despite this, there is limited functional data corroborating this diversity. Furthermore, as reactive astrocytes display significant environmental-dependent plasticity and fate-mapping data on astrocyte subsets in the adult CNS is limited, it remains unclear whether this diversity represents heterogeneity or plasticity. As astrocytes are important for neuronal survival and CNS function post-injury, establishing to what extent this diversity reflects distinct established heterogeneous astrocyte subpopulations vs. environmentally dependent plasticity within established astrocyte subsets will be critical for guiding therapeutic development. To that end, we review the current state of knowledge on astrocyte diversity in the context of three representative CNS pathologies: ischemic stroke, demyelination, and traumatic injury, with the goal of identifying key limitations in our current knowledge and suggesting future areas of research needed to address them. We suggest that the majority of identified astrocyte diversity in CNS pathologies to date represents plasticity in response to dynamically changing post-injury environments as opposed to heterogeneity, an important consideration for the understanding of disease pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Aaron J. Moulson
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Jordan W. Squair
- Department of Clinical Neuroscience, Faculty of Life Sciences, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), NeuroRestore, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Robin J. M. Franklin
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Peggy Assinck
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Abstract
Clasmatodendrosis derives from the Greek for fragment (klasma), tree (dendron), and condition (- osis). Cajal first used the term in 1913: he observed disintegration of the distal cell processes of astrocytes, along with a fragmentation or beading of proximal processes closer to the astrocyte cell body. In contemporary clinical and experimental reports, clasmatodendrosis has been observed in models of cerebral ischemia and seizures (including status epilepticus), in elderly brains, in white matter disease, in hippocampal models and cell cultures associated with amyloid plaques, in head trauma, toxic exposures, demyelinating diseases, encephalitides and infection-associated encephalopathies, and in the treatment of cancer using immune effector cells. We examine evidence to support a claim that clasmatodendrotic astrocyte cell processes overtly bead (truncate) as a morphological sign of ongoing damage premortem. In grey and white matter and often in relationship to vascular lumina, beading becomes apparent with immunohistochemical staining of glial fibrillary acidic protein when specimens are examined at reasonably high magnification, but demonstration of distal astrocytic loss of processes may require additional marker study and imaging. Proposed mechanisms for clasmatodendrotic change have examined hypoxic-ischemic, osmotic-demyelinating, and autophagic models. In these models as well as in neuropathological reports, parenchymal swelling, vessel-wall leakage, or disturbed clearance of toxins can occur in association with clasmatodendrosis. Clasmatodendrotic features may serve as a marker for gliovascular dysregulation either acutely or chronically. We review correlative evidence for blood-brain barrier (BBB) dysfunction associated with astrocytic structural change, with attention to interactions between endothelial cells, pericytes, and astrocytic endfeet.
Collapse
|
36
|
Rehman R, Tar L, Olamide AJ, Li Z, Kassubek J, Böckers T, Weishaupt J, Ludolph A, Wiesner D, Roselli F. Acute TBK1/IKK-ε Inhibition Enhances the Generation of Disease-Associated Microglia-Like Phenotype Upon Cortical Stab-Wound Injury. Front Aging Neurosci 2021; 13:684171. [PMID: 34326766 PMCID: PMC8313992 DOI: 10.3389/fnagi.2021.684171] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury has a poorer prognosis in elderly patients, possibly because of the enhanced inflammatory response characteristic of advanced age, known as “inflammaging.” Recently, reduced activation of the TANK-Binding-Kinase 1 (Tbk1) pathway has been linked to age-associated neurodegeneration and neuroinflammation. Here we investigated how the blockade of Tbk1 and of the closely related IKK-ε by the small molecule Amlexanox could modify the microglial and immune response to cortical stab-wound injury in mice. We demonstrated that Tbk1/IKK-ε inhibition resulted in a massive expansion of microglial cells characterized by the TMEM119+/CD11c+ phenotype, expressing high levels of CD68 and CD317, and with the upregulation of Cst7a, Prgn and Ccl4 and the decrease in the expression levels of Tmem119 itself and P2yr12, thus a profile close to Disease-Associated Microglia (DAM, a subset of reactive microglia abundant in Alzheimer’s Disease and other neurodegenerative conditions). Furthermore, Tbk1/IKK-ε inhibition increased the infiltration of CD3+ lymphocytes, CD169+ macrophages and CD11c+/CD169+ cells. The enhanced immune response was associated with increased expression of Il-33, Ifn-g, Il-17, and Il-19. This upsurge in the response to the stab wound was associated with the expanded astroglial scars and increased deposition of chondroitin-sulfate proteoglycans at 7 days post injury. Thus, Tbk1/IKK-ε blockade results in a massive expansion of microglial cells with a phenotype resembling DAM and with the substantial enhancement of neuroinflammatory responses. In this context, the induction of DAM is associated with a detrimental outcome such as larger injury-related glial scars. Thus, the Tbk1/IKK-ε pathway is critical to repress neuroinflammation upon stab-wound injury and Tbk1/IKK-ε inhibitors may provide an innovative approach to investigate the consequences of DAM induction.
Collapse
Affiliation(s)
- Rida Rehman
- Department of Neurology, Ulm University, Ulm, Germany
| | - Lilla Tar
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
| | - Adeyemi Jubril Olamide
- Department of Neurology, Ulm University, Ulm, Germany.,Master in Translational and Molecular Neuroscience, Ulm University, Ulm, Germany
| | - Zhenghui Li
- Department of Neurology, Ulm University, Ulm, Germany.,Department of Neurosurgery, Kaifeng Central Hospital, Kaifeng, China
| | - Jan Kassubek
- Department of Neurology, Ulm University, Ulm, Germany
| | - Tobias Böckers
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Jochen Weishaupt
- Department of Neurology, Ulm University, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Albert Ludolph
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany.,Neurozentrum Ulm, Ulm, Germany
| |
Collapse
|
37
|
Todd BP, Chimenti MS, Luo Z, Ferguson PJ, Bassuk AG, Newell EA. Traumatic brain injury results in unique microglial and astrocyte transcriptomes enriched for type I interferon response. J Neuroinflammation 2021; 18:151. [PMID: 34225752 PMCID: PMC8259035 DOI: 10.1186/s12974-021-02197-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Background Traumatic brain injury (TBI) is a leading cause of death and disability that lacks neuroprotective therapies. Following a TBI, secondary injury response pathways are activated and contribute to ongoing neurodegeneration. Microglia and astrocytes are critical neuroimmune modulators with early and persistent reactivity following a TBI. Although histologic glial reactivity is well established, a precise understanding of microglia and astrocyte function following trauma remains unknown. Methods Adult male C57BL/6J mice underwent either fluid percussion or sham injury. RNA sequencing of concurrently isolated microglia and astrocytes was conducted 7 days post-injury to evaluate cell-type-specific transcriptional responses to TBI. Dual in situ hybridization and immunofluorescence were used to validate the TBI-induced gene expression changes in microglia and astrocytes and to identify spatial orientation of cells expressing these genes. Comparative analysis was performed between our glial transcriptomes and those from prior reports in mild TBI and other neurologic diseases to determine if severe TBI induces unique states of microglial and astrocyte activation. Results Our findings revealed sustained, lineage-specific transcriptional changes in both microglia and astrocytes, with microglia showing a greater transcriptional response than astrocytes at this subacute time point. Microglia and astrocytes showed overlapping enrichment for genes related to type I interferon signaling and MHC class I antigen presentation. The microglia and astrocyte transcriptional response to severe TBI was distinct from prior reports in mild TBI and other neurodegenerative and neuroinflammatory diseases. Conclusion Concurrent lineage-specific analysis revealed novel TBI-specific transcriptional changes; these findings highlight the importance of cell-type-specific analysis of glial reactivity following TBI and may assist with the identification of novel, targeted therapies.
Collapse
Affiliation(s)
- Brittany P Todd
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa, Iowa City, IA, USA
| | - Zili Luo
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Polly J Ferguson
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
38
|
CDDO-Me Attenuates Astroglial Autophagy via Nrf2-, ERK1/2-SP1- and Src-CK2-PTEN-PI3K/AKT-Mediated Signaling Pathways in the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2021; 10:antiox10050655. [PMID: 33922531 PMCID: PMC8145743 DOI: 10.3390/antiox10050655] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial death showing extensive swollen cell bodies with vacuoles and disintegrated/beaded processes. This astroglial degeneration is closely relevant to the synchronous epileptiform discharges. However, the underlying molecular mechanisms and the roles of clasmatodendrosis in spontaneous seizure activity are still unknown. The 2-cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me; RTA 402) is one of the activators for nuclear factor-erythroid 2-related factor 2 (Nrf2) that is a redox-sensitive transcription factor. In the present study, we explored the effects of CDDO-Me on clasmatodendrosis in chronic epilepsy rats, which could prevent epilepsy-related complications. In the present study, clasmatodendritic astrocytes showed reduced Nrf2 expression and its nuclear accumulation, which were restored by CDDO-Me. CDDO-Me also abrogated heat shock protein 25 (HSP25) upregulation in clasmatodendritic astrocytes by regulating extracellular signal-related kinases 1/2 (ERK1/2)-specificity protein 1 (SP1)- and Src-casein kinase 2 (CK2)-phosphatase and tensin homolog deleted on chromosome 10 (PTEN)-phosphatidylinositol-3-kinase (PI3K)-AKT-glycogen synthase kinase 3β (GSK3β)-bax-interacting factor 1 (Bif-1)-mediated signaling pathways in chronic epilepsy rats. In addition, CDDO-Me ameliorated spontaneous seizure duration, but not seizure frequency and behavioral seizure severity. Therefore, our findings suggest that clasmatodendrosis may affect seizure duration in chronic epilepsy rats, and that CDDO-Me may attenuate autophagic astroglial degeneration by regulating various signaling pathways.
Collapse
|
39
|
Bachstetter AD, Garrett FG, Jicha GA, Nelson PT. Space-occupying brain lesions, trauma-related tau astrogliopathy, and ARTAG: a report of two cases and a literature review. Acta Neuropathol Commun 2021; 9:49. [PMID: 33757579 PMCID: PMC7986305 DOI: 10.1186/s40478-021-01152-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Astrocytes with intracellular accumulations of misfolded phosphorylated tau protein have been observed in advanced-stage chronic traumatic encephalopathy (CTE) and in other neurodegenerative conditions. There is a growing awareness that astrocytic tau inclusions are also relatively common in the brains of persons over 70 years of age-affecting approximately one-third of autopsied individuals. The pathologic hallmarks of aging-related tau astrogliopathy (ARTAG) include phosphorylated tau protein within thorn-shaped astrocytes (TSA) in subpial, subependymal, perivascular, and white matter regions, whereas granular-fuzzy astrocytes are often seen in gray matter. CTE and ARTAG share molecular and histopathologic characteristics, suggesting that trauma-related mechanism(s) may predispose to the development of tau astrogliopathy. There are presently few experimental systems to study the pathobiology of astrocytic-tau aggregation, but human studies have made recent progress. For example, leucotomy (also referred to as lobotomy) is associated with a localized ARTAG-like neuropathology decades after the surgical brain injury, suggesting that chronic brain injury of any type may predispose to later life ARTAG. To examine this idea in a different context, we report clinical and pathologic features of two middle-aged men who came to autopsy with large (> 6 cm in greatest dimension) arachnoid cysts that had physically displaced and injured the subjects' left temporal lobes through chronic mechanical stress. Despite the similarity of the size and location of the arachnoid cysts, these individuals had dissimilar neurologic outcomes and neuropathologic findings. We review the evidence for ARTAG in response to brain injury, and discuss how the location and molecular properties of astroglial tau inclusions might alter the physiology of resident astrocytes. These cases and literature review point toward possible mechanism(s) of tau aggregation in astrocytes in response to chronic brain trauma.
Collapse
Affiliation(s)
- Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, 741 S. Limestone St., Lexington, KY, 40536, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| | - Filip G Garrett
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
40
|
Chowen JA, Garcia-Segura LM. Role of glial cells in the generation of sex differences in neurodegenerative diseases and brain aging. Mech Ageing Dev 2021; 196:111473. [PMID: 33766745 DOI: 10.1016/j.mad.2021.111473] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Diseases and aging-associated alterations of the nervous system often show sex-specific characteristics. Glial cells play a major role in the endogenous homeostatic response of neural tissue, and sex differences in the glial transcriptome and function have been described. Therefore, the possible role of these cells in the generation of sex differences in pathological alterations of the nervous system is reviewed here. Studies have shown that glia react to pathological insults with sex-specific neuroprotective and regenerative effects. At least three factors determine this sex-specific response of glia: sex chromosome genes, gonadal hormones and neuroactive steroid hormone metabolites. The sex chromosome complement determines differences in the transcriptional responses in glia after brain injury, while gonadal hormones and their metabolites activate sex-specific neuroprotective mechanisms in these cells. Since the sex-specific neuroprotective and regenerative activity of glial cells causes sex differences in the pathological alterations of the nervous system, glia may represent a relevant target for sex-specific therapeutic interventions.
Collapse
Affiliation(s)
- Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación la Princesa, Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, and IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain.
| | - Luis M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
41
|
Lana D, Ugolini F, Giovannini MG. Space-Dependent Glia-Neuron Interplay in the Hippocampus of Transgenic Models of β-Amyloid Deposition. Int J Mol Sci 2020; 21:E9441. [PMID: 33322419 PMCID: PMC7763751 DOI: 10.3390/ijms21249441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
This review is focused on the description and discussion of the alterations of astrocytes and microglia interplay in models of Alzheimer's disease (AD). AD is an age-related neurodegenerative pathology with a slowly progressive and irreversible decline of cognitive functions. One of AD's histopathological hallmarks is the deposition of amyloid beta (Aβ) plaques in the brain. Long regarded as a non-specific, mere consequence of AD pathology, activation of microglia and astrocytes is now considered a key factor in both initiation and progression of the disease, and suppression of astrogliosis exacerbates neuropathology. Reactive astrocytes and microglia overexpress many cytokines, chemokines, and signaling molecules that activate or damage neighboring cells and their mutual interplay can result in virtuous/vicious cycles which differ in different brain regions. Heterogeneity of glia, either between or within a particular brain region, is likely to be relevant in healthy conditions and disease processes. Differential crosstalk between astrocytes and microglia in CA1 and CA3 areas of the hippocampus can be responsible for the differential sensitivity of the two areas to insults. Understanding the spatial differences and roles of glia will allow us to assess how these interactions can influence the state and progression of the disease, and will be critical for identifying therapeutic strategies.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Filippo Ugolini
- Department of Health Sciences, Section of Anatomopathology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy;
| |
Collapse
|
42
|
Schartz ND, Tenner AJ. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. J Neuroinflammation 2020; 17:354. [PMID: 33239010 PMCID: PMC7690210 DOI: 10.1186/s12974-020-02024-8] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
The complement cascade is a critical effector mechanism of the innate immune system that contributes to the rapid clearance of pathogens and dead or dying cells, as well as contributing to the extent and limit of the inflammatory immune response. In addition, some of the early components of this cascade have been clearly shown to play a beneficial role in synapse elimination during the development of the nervous system, although excessive complement-mediated synaptic pruning in the adult or injured brain may be detrimental in multiple neurogenerative disorders. While many of these later studies have been in mouse models, observations consistent with this notion have been reported in human postmortem examination of brain tissue. Increasing awareness of distinct roles of C1q, the initial recognition component of the classical complement pathway, that are independent of the rest of the complement cascade, as well as the relationship with other signaling pathways of inflammation (in the periphery as well as the central nervous system), highlights the need for a thorough understanding of these molecular entities and pathways to facilitate successful therapeutic design, including target identification, disease stage for treatment, and delivery in specific neurologic disorders. Here, we review the evidence for both beneficial and detrimental effects of complement components and activation products in multiple neurodegenerative disorders. Evidence for requisite co-factors for the diverse consequences are reviewed, as well as the recent studies that support the possibility of successful pharmacological approaches to suppress excessive and detrimental complement-mediated chronic inflammation, while preserving beneficial effects of complement components, to slow the progression of neurodegenerative disease.
Collapse
Affiliation(s)
- Nicole D. Schartz
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697 USA
| | - Andrea J. Tenner
- Department of Molecular Biology and Biochemistry, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697 USA
- Department of Neurobiology and Behavior, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697 USA
- Department of Pathology and Laboratory Medicine, University of California Irvine, 3205 McGaugh Hall, Irvine, CA 92697 USA
| |
Collapse
|
43
|
Huber-Lang MS, Ignatius A, Köhl J, Mannes M, Braun CK. Complement in trauma-Traumatised complement? Br J Pharmacol 2020; 178:2863-2879. [PMID: 32880897 DOI: 10.1111/bph.15245] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
Physical trauma represents a major global burden. The trauma-induced response, including activation of the innate immune system, strives for regeneration but can also lead to post-traumatic complications. The complement cascade is rapidly activated by damaged tissue, hypoxia, exogenous proteases and others. Activated complement can sense, mark and clear both damaged tissue and pathogens. However, excessive and insufficient activation of complement can result in a dysfunctional immune and organ response. Similar to acute coagulopathy, complementopathy can develop with enhanced anaphylatoxin generation and an impairment of complement effector functions. Various remote organ effects are induced or modulated by complement activation. Frequently, established trauma treatments are double-edged. On one hand, they help stabilising haemodynamics and oxygen supply as well as injured organs and on the other hand, they also drive complement activation. Immunomodulatory approaches aim to reset trauma-induced disbalance of complement activation and thus may change surgical trauma management procedures to improve outcome. LINKED ARTICLES: This article is part of a themed issue on Canonical and non-canonical functions of the complement system in health and disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.14/issuetoc.
Collapse
Affiliation(s)
- Markus S Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institue of Orthopaedic Research and Biomechanics, University Hospital of Ulm, Ulm, Germany
| | - Jörg Köhl
- Institute for Systemic Inflammatory Research, University of Lübeck, Lübeck, Germany.,Division of Immunobiology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Marco Mannes
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Christian Karl Braun
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany.,Department of Paediatrics and Adolescent Medicine, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
44
|
Astrocytes: News about Brain Health and Diseases. Biomedicines 2020; 8:biomedicines8100394. [PMID: 33036256 PMCID: PMC7600952 DOI: 10.3390/biomedicines8100394] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Astrocytes, the most numerous glial cells in the brains of humans and other mammalian animals, have been studied since their discovery over 100 years ago. For many decades, however, astrocytes were believed to operate as a glue, providing only mechanical and metabolic support to adjacent neurons. Starting from a "revolution" initiated about 25 years ago, numerous astrocyte functions have been reconsidered, some previously unknown, others attributed to neurons or other cell types. The knowledge of astrocytes has been continuously growing during the last few years. Based on these considerations, in the present review, different from single or general overviews, focused on six astrocyte functions, chosen due in their relevance in both brain physiology and pathology. Astrocytes, previously believed to be homogeneous, are now recognized to be heterogeneous, composed by types distinct in structure, distribution, and function; their cooperation with microglia is known to govern local neuroinflammation and brain restoration upon traumatic injuries; and astrocyte senescence is relevant for the development of both health and diseases. Knowledge regarding the role of astrocytes in tauopathies and Alzheimer's disease has grow considerably. The multiple properties emphasized here, relevant for the present state of astrocytes, will be further developed by ongoing and future studies.
Collapse
|
45
|
Verkhratsky A, Augusto-Oliveira M, Pivoriūnas A, Popov A, Brazhe A, Semyanov A. Astroglial asthenia and loss of function, rather than reactivity, contribute to the ageing of the brain. Pflugers Arch 2020; 473:753-774. [PMID: 32979108 DOI: 10.1007/s00424-020-02465-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 12/13/2022]
Abstract
Astroglia represent a class of heterogeneous, in form and function, cells known as astrocytes, which provide for homoeostasis and defence of the central nervous system (CNS). Ageing is associated with morphological and functional remodelling of astrocytes with a prevalence of morphological atrophy and loss of function. In particular, ageing is associated with (i) decrease in astroglial synaptic coverage, (ii) deficits in glutamate and potassium clearance, (iii) reduced astroglial synthesis of synaptogenic factors such as cholesterol, (iv) decrease in aquaporin 4 channels in astroglial endfeet with subsequent decline in the glymphatic clearance, (v) decrease in astroglial metabolic support through the lactate shuttle, (vi) dwindling adult neurogenesis resulting from diminished proliferative capacity of radial stem astrocytes, (vii) decline in the astroglial-vascular coupling and deficient blood-brain barrier and (viii) decrease in astroglial ability to mount reactive astrogliosis. Decrease in reactive capabilities of astroglia are associated with rise of age-dependent neurodegenerative diseases. Astroglial morphology and function can be influenced and improved by lifestyle interventions such as intellectual engagement, social interactions, physical exercise, caloric restriction and healthy diet. These modifications of lifestyle are paramount for cognitive longevity.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, 66075-110, Brazil
| | - Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania
| | - Alexander Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997
| | - Alexey Brazhe
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997.,Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya street 16/10, Moscow, Russia, 117997. .,Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
46
|
Salas IH, Burgado J, Allen NJ. Glia: victims or villains of the aging brain? Neurobiol Dis 2020; 143:105008. [PMID: 32622920 DOI: 10.1016/j.nbd.2020.105008] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/14/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is the strongest risk factor for metabolic, vascular and neurodegenerative diseases. Aging alone is associated with a gradual decline of cognitive and motor functions. Considering an increasing elderly population in the last century, understanding the cellular and molecular mechanisms contributing to brain aging is of vital importance. Recent genetic and transcriptomic findings strongly suggest that glia are the first cells changing with aging. Glial cells constitute around 50% of the total cells in the brain and play key roles regulating brain homeostasis in health and disease. Their essential functions include providing nutritional support to neurons, activation of immune responses, and regulation of synaptic transmission and plasticity. In this review we discuss how glia are altered in the aging brain and whether these alterations are protective or contribute to the age-related pathological cascade. We focus on the major morphological, transcriptional and functional changes affecting glia in a range of systems, including human, non-human primates, and rodents. We also highlight future directions for investigating the roles of glia in brain aging.
Collapse
Affiliation(s)
- Isabel H Salas
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jillybeth Burgado
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|