1
|
Liu S, Zheng Y, Chen H, Li X, Yan Q, Mu W, Fu Y, Chen H, Hou H, Liu L, Tian C. Structural basis for allosteric agonism of human α7 nicotinic acetylcholine receptors. Cell Discov 2025; 11:35. [PMID: 40195322 PMCID: PMC11977206 DOI: 10.1038/s41421-025-00788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
The α7 nicotinic acetylcholine receptor (nAChR), a pentameric ligand-gated ion channel, plays important roles in cognition, neuroprotection, and anti-inflammation. As a potential drug target, α7 nAChR has different binding sites for different ligands, particularly agonists and positive allosteric modulators (PAMs). Ago-PAMs can both directly activate and allosterically modulate α7 nAChR. However, the mechanism underlying α7 nAChR modulation by ago-PAM has yet to be fully elucidated. Here, we present cryo-EM structures of α7 nAChR in complex with the ago-PAM GAT107 and Ca2+ in the open and desensitized states, respectively. Our results from both structural comparisons and functional assays suggest an allosteric mechanism underlying GAT107 modulation and calcium potentiation of α7 nAChR, involving local conformational changes in the ECD-TMD coupling region and a global structural rearrangement in the transmembrane domain. This work provides a new mechanism of α7 nAChR gating distinct from that of conventional agonist binding. These findings would aid in drug design and enrich our biophysical understanding of pentameric ligand-gated ion channels.
Collapse
Affiliation(s)
- Sanling Liu
- Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, University of Science and Technology of China, Hefei, Anhui, China.
- Beijing Life Science Academy, Beijing, China.
| | - Yining Zheng
- Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, University of Science and Technology of China, Hefei, Anhui, China
| | - Haopeng Chen
- Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, University of Science and Technology of China, Hefei, Anhui, China
| | - Xin Li
- Beijing Life Science Academy, Beijing, China
| | - Qipeng Yan
- Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, University of Science and Technology of China, Hefei, Anhui, China
| | - Wenjun Mu
- Beijing Life Science Academy, Beijing, China
| | - Yaning Fu
- Beijing Life Science Academy, Beijing, China
| | - Huan Chen
- Beijing Life Science Academy, Beijing, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing, China.
| | - Lei Liu
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Changlin Tian
- Division of Life Sciences and Medicine, Joint Center for Biological Analytical Chemistry, Anhui Engineering Laboratory of Peptide Drug, University of Science and Technology of China, Hefei, Anhui, China.
- Beijing Life Science Academy, Beijing, China.
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
- School of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Zhou S, Yin D, He H, Li M, Zhang Y, Xiao J, Wang X, Li L, Yang D. Differences in symptom clusters based on multidimensional symptom experience and symptom burden in stroke patients. Sci Rep 2025; 15:11733. [PMID: 40188267 PMCID: PMC11972335 DOI: 10.1038/s41598-025-96189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
In the study of stroke symptoms, a significant unresolved issue remains: What are the similarities and differences in the use of three symptom dimensions-occurrence, severity, and distress-and symptom burden to identify symptom clusters, and which level is recommended for constructing symptom clusters? This study aimed to identify the number and types of symptom clusters in stroke patients on the basis of these dimensions and to determine the most suitable dimension for extracting symptom clusters. Data were collected from 656 stroke patients via a convenience sampling method at a tertiary-level hospital in Wuhan, China, between August 2023 and March 2024. Exploratory factor analysis was conducted to extract symptom clusters on the basis of the three dimensions of the symptom experience scale and symptom burden. Four similar symptom clusters were identified: the mood disturbance symptom cluster, the physical symptom cluster, the cognitive dysfunction symptom cluster, and the slurred speech and choking cough symptom cluster. The symptom of "fatigue" within the physical symptom cluster was not identified only in the dimension of distress (with a percentage agreement of 83.3%), whereas the symptom composition of other clusters remained consistent across all three symptom dimensions (with a percentage agreement of 100%). Moreover, all four symptom clusters exhibited high consistency in terms of both occurrence and symptom burden, regardless of whether the symptom with the highest factor loading or the overall symptom composition was considered. The use of symptom occurrence and symptom burden is recommended for identifying symptom clusters in stroke patients. Subsequently, trajectory studies of symptom clusters and symptom network analyses should be conducted on the basis of these two dimensions to establish a solid theoretical foundation for future clinical interventions and related scientific research.
Collapse
Affiliation(s)
- Siyu Zhou
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Dan Yin
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Huijuan He
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
- Hubei Shizhen Laboratory, Wuhan, Hubei, China.
| | - Mengying Li
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China.
| | - Yuan Zhang
- Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jie Xiao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, Hubei, China
| | - Xiangrong Wang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Lin Li
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Dan Yang
- School of Nursing, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| |
Collapse
|
3
|
Li Y, Ding S, Wang Y. Targeting the cholinergic anti-inflammatory pathway: an innovative strategy for treating diseases. Mol Biol Rep 2025; 52:199. [PMID: 39903351 DOI: 10.1007/s11033-025-10288-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
The cholinergic anti-inflammatory pathway (CAP) is comprised of the vagus nerve, acetylcholine, nicotinic acetylcholine receptors, the spleen, and the splenic nerve. It represents a sophisticated neuroimmune axis that critically regulates the crosstalk between the nervous system and the immune response via the vagus nerve. Here, we provided a nuanced exploration of the CAP's role in curbing inflammatory processes and its broad therapeutic potential across a spectrum of diseases. We meticulously dissect the intricate mechanisms by which the CAP modulates key signaling cascades, including the NF-κB, JAK2/STAT3, MAPK/ERK, PI3K/AKT, COX2/PGE2, and NRF2/HO-1 pathways, which are quintessential in the pathogenesis of various conditions. Additionally, we also summarized the CAP's profound implications in the management of inflammatory diseases, neurodegenerative disorders, metabolic syndromes, and oncological malignancies, elucidating its capacity to mitigate disease severity and progression through sophisticated immune modulation. The modulation of the CAP is suggested as a novel strategy that could potentially transform treatment approaches for a variety of conditions. However, the precise cellular and molecular underpinnings of the CAP's effects, as well as its translatability to clinical settings, remain subjects of ongoing investigation. The review calls for further research to demystify the mechanisms of the CAP and to harness its therapeutic potential fully, with the aim of developing innovative and efficacious treatment modalities that exploit the pathway's unique attributes.
Collapse
Affiliation(s)
- Yifan Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- School of Medicine, Hangzhou Normal University, Hangzhou, 311121, China
| | - Shufan Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
4
|
Ma L, Wang HB, Hashimoto K. The vagus nerve: An old but new player in brain-body communication. Brain Behav Immun 2025; 124:28-39. [PMID: 39566667 DOI: 10.1016/j.bbi.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/02/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
The vagus nerve is a crucial component of the parasympathetic nervous system, facilitating communication between the brain and various organs, including the ears, heart, lungs, pancreas, spleen, and gastrointestinal tract. The caudal nucleus of the solitary tract in the brainstem is the initial site regulated by the vagus nerve in brain-body communication, including the interactions with immune system. Increasing evidence suggests that the gut-brain axis, via the vagus nerve, may play a role in the development and progression of psychiatric, neurologic, and inflammation-related disorders. Population-based cohort studies indicate that truncal vagotomy may reduce the risk of neurological disorders such as Parkinson's disease and Alzheimer's disease, underscoring the vagus nerve's significance in these conditions. Given its role in the cholinergic anti-inflammatory pathway, α7 nicotinic acetylcholine receptors present a potential therapeutic target. Additionally, noninvasive transcutaneous auricular vagus nerve stimulation (taVNS) shows promise as a therapeutic tool for these disorders. This article provides a historical review of the vagus nerve and explores its role in brain-body communication. Finally, we discuss future directions, including the potential of noninvasive taVNS as a therapeutic approach.
Collapse
Affiliation(s)
- Li Ma
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, PR China
| | - Han-Bing Wang
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, Guangdong Province, PR China.
| | - Kenji Hashimoto
- Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
5
|
Alzarea S, Rahman S. The Alpha-7 Nicotinic Receptor Positive Allosteric Modulator PNU120596 Attenuates Lipopolysaccharide-Induced Depressive-Like Behaviors and Cognitive Impairment by Regulating the PPAR-α Signaling Pathway in Mice. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2025; 24:234-244. [PMID: 39350553 DOI: 10.2174/0118715273311527240916050749] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 02/25/2025]
Abstract
BACKGROUND AND OBJECTIVE The brain α7 nicotinic acetylcholine receptor (α7 nAChR) has a critical role in the pathophysiology of Major Depressive Disorder (MDD) involving neuroinflammation. The α7 nAChR stimulation has been shown to modulate the anti-inflammatory effects of nuclear peroxisome proliferator-activated receptor-α (PPAR-α) via its endogenous ligands in the brain. The present study determined the effects of α7 nAChR modulator PNU120596 on PPAR-α, an inhibitor of κB (IκB) and nuclear factor-κB (NF-κB) expression and interleukin-1β (IL-1β) level in the hippocampus and prefrontal cortex (PFC) in an inflammatory mouse model of MDD induced by lipopolysaccharide (LPS). We also evaluated the combined effects of PNU120596 and GW6471, a PPAR-α antagonist, on depressive-like and cognitive deficit-like behaviors in mice. MATERIALS AND METHODS Male C57BL/6J mice were treated with PNU120596, followed by systemic LPS (1 mg/kg, i.p.) administration. The effects of PNU120596 on the mRNA expression of PPAR-α and IκB were assessed in the hippocampus and PFC using qRT-PCR following LPS administration. Similarly, the effects of PNU120596 on the immunoreactivity of PPAR-α and NF-κB were measured in the hippocampus and PFC using an immunofluorescence assay. Furthermore, the effects of PNU120596 on pro-inflammatory cytokine IL-1β levels were measured in the hippocampus and PFC using ELISA. The combined effects of PNU120596 and GW6471 were also assessed against LPS-induced depressive-like and cognitive deficit-like behaviors using the Tail Suspension Test (TST), Forced Swim Test (FST), and Y-maze test. RESULTS PNU120596 (4 mg/kg) significantly prevented LPS-induced dysregulation of PPAR-α, IκB, p-NF-κB p65, and IL-1β in the hippocampus and PFC. Pretreatment with PNU120596 showed significant antidepressant-like effects by reducing immobility time in the TST and FST. Similarly, pretreatment with PNU120596 significantly reduced cognitive deficit-like behavior in the Y-maze test. The antidepressant and pro-cognitive-like effects of PNU120596 were reversed by PPAR-α antagonist GW6471 (2 mg/kg). CONCLUSION These results suggest that PNU120596 prevented LPS-induced MDD and cognitivelike behavior by regulating α7 nAChR/PPAR-α signaling pathway in the hippocampus and PFC.
Collapse
Affiliation(s)
- Sami Alzarea
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, 57007, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
6
|
Tao Y, Sun Y, Jiang X, Tao J, Zhang Y. The Role of Alpha-7 Nicotinic Acetylcholine Receptors in Pain: Potential Therapeutic Implications. Curr Neuropharmacol 2025; 23:129-144. [PMID: 38808717 PMCID: PMC11793049 DOI: 10.2174/1570159x22666240528161117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 05/30/2024] Open
Abstract
Chronic pain represents a prevalent and costly medical challenge globally. Nicotinic acetylcholine receptors (nAChRs), one type of ligand-gated ion channels found extensively in both the central and peripheral nervous systems, have emerged as promising therapeutic targets for chronic pain. Although there are currently no FDA-approved analgesics specifically targeting nAChRs, accumulating preclinical and clinical evidence suggest that selective ligands for alpha 7 (α7) nAChRs show potential for treating chronic pain, boasting a reduced incidence of side effects compared with other nicotinic receptor types. The recent structural resolution of human α7 nAChRs has confirmed their negative association with heightened pain, providing a valuable foundation for the development of targeted medications. This review presents a comprehensive overview, encompassing insights into the roles of α7 nAChRs derived from structural and functional studies, recent advancements in pharmacology, and investigations into their involvement in the pathophysiology of chronic pain. Moreover, the review addresses the variability in analgesic effects based on the type of receptor agonist and highlights the current research limitations. As such, this review offers potential therapeutic approaches for the development of innovative strategies for chronic pain management.
Collapse
Affiliation(s)
- Yu Tao
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P.R. China
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Yufang Sun
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, P.R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, P.R. China
| | - Xinghong Jiang
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, P.R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, P.R. China
| | - Jin Tao
- Department of Physiology and Neurobiology, Centre for Ion Channelopathy, Medical College of Soochow University, Suzhou 215123, P.R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, P.R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, P.R. China
| | - Yuan Zhang
- Clinical Research Center of Neurological Disease, Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P.R. China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou 215123, P.R. China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, P.R. China
| |
Collapse
|
7
|
Chen Z, Duan S, Li J, Su J, Lei H. T-2 toxin triggers depression-like behaviors via upregulation of dopamine transporter in nucleus accumbens of male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117392. [PMID: 39616663 DOI: 10.1016/j.ecoenv.2024.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/26/2025]
Abstract
The T-2 toxin is a frequent contaminant in the global environment and agricultural production. Existing evidence suggests that the ingested T-2 toxin can enter the brain and exhibit neurotoxicity. However, it is still unknown whether T-2 toxin causes the depression-like behaviors. In this study, the mice were orally administrated with 1.5 mg/kg T-2 toxin daily for 14 d, and the depression-like behaviors were assessed by the tail suspension test (TST) and sucrose preference test (SPT). Here, the results showed that T-2 toxin exposure induced depression-like behaviors, manifested as behavioral despair and anhedonia, without anxiety-like behaviors. In addition, the reduced dopamine (DA) level and elevated dopamine transporter (DAT) level were found in reward center nucleus accumbens (NAc) receiving DAergic projection from ventral tegmental area (VTA) in brain after T-2 toxin administration, while there was no significant alteration in DA synthesis-related tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) in VTA and DA storage-related vesicle monoamine transporter 2 (VMAT2) in NAc. The local administration of DAT inhibitor AHN 1-055 hydrochloride into NAc alleviated T-2 toxin caused the depression-like behaviors. Importantly, the chemogenetic activation of the VTADA-NAc circuit increased the DA content in NAc and reversed the T-2 toxin-produced behavioral despair and anhedonia. Thus, our study for the first time illustrates DA dysregulation by upregulated DAT in NAc mediates T-2 toxin-triggered depression-like symptoms in mice. Meanwhile, this study establishes a novel causal relation between the neurotoxicant T-2 toxin exposure and the etiology of depression-like behaviors, and provides reference for the prevention and treatment for mycotoxin-induced depression-like symptoms.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Shaoyi Duan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jialu Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jianming Su
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Hongyu Lei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China.
| |
Collapse
|
8
|
Xingjun F, Ruijiao Z, Peihua Y, Shiyin W, Liqin C, Liangchao Q, Qinghua P. Left T7 paravertebral nerve blockade activate the α7nAChR-Dependent CAP in patients undergoing thoracoscopic lobectomy: a prospective controlled study. BMC Anesthesiol 2024; 24:475. [PMID: 39722047 DOI: 10.1186/s12871-024-02857-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
OBJECTIVE This study aimed to observe the impact of Tthoracic paravertebral nerve blockade(TPVB) at left T7 level on the α7nAChR-dependent cholinergic anti-inflammatory pathway in patients undergoing thoracoscopic lobectomy. METHODS Scheduled thoracoscopic lung surgery patients at the First Affiliated Hospital of Nanchang University from August to September 2023 were divided into two groups according to the surgical site. The experimental group underwent left T7 paravertebral nerve blockade (LTPVB group), while the control group underwent right T7 paravertebral nerve blockade (RTPVB group). Relevant clinical data were collected, and Doppler ultrasound was used to measure the resistive index (RI) of the splenic artery before and after blockade. Additionally, perioperative α7nAChR levels and the expression levels of the inflammatory factors IL-1β, IL-6, and TNF-α were determined. RESULTS There were no significant differences in general conditions, perioperative blood pressure, heart rate, or pain VAS scores between the two groups (p > 0.05). Splenic Doppler ultrasound showed that compared to before blockade, the RI of the splenic artery in the LTPVB group significantly decreased (p < 0.05). The α7nAChR levels at 12 h and 24 h postoperatively were significantly increased (p < 0.05) in both groups, and the levels of IL-1β, IL-6, and TNF-α gradually increased over time in both groups. However, the levels were significantly lower in the LTPVB group compared to the RTPVB group at 12 h and 24 h postoperatively (p < 0.05). CONCLUSION TPVB at left T7 can activate the α7nAChR-dependent cholinergic anti-inflammatory pathway, thereby alleviating the postoperative inflammatory response in patients undergoing thoracoscopic lobectomy.
Collapse
Affiliation(s)
- Fang Xingjun
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China
- People's Hospital of Chizhou, Chizhou, 247000, Anhui, China
| | - Zhang Ruijiao
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China
| | - Yuan Peihua
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China
| | - Wu Shiyin
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China
| | - Cheng Liqin
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China
| | - Qu Liangchao
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China.
- Ganjiang New Area People's Hospital, 330029, Nanchang, Jiangxi, China.
| | - Peng Qinghua
- Department of Anesthesiology and Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330001, China.
| |
Collapse
|
9
|
Ortega MA, Fraile-Martinez O, García-Montero C, Diaz-Pedrero R, Lopez-Gonzalez L, Monserrat J, Barrena-Blázquez S, Alvarez-Mon MA, Lahera G, Alvarez-Mon M. Understanding immune system dysfunction and its context in mood disorders: psychoneuroimmunoendocrinology and clinical interventions. Mil Med Res 2024; 11:80. [PMID: 39681901 DOI: 10.1186/s40779-024-00577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2024] [Indexed: 12/18/2024] Open
Abstract
Mood disorders include a set of psychiatric manifestations of increasing prevalence in our society, being mainly represented by major depressive disorder (MDD) and bipolar disorder (BD). The etiopathogenesis of mood disorders is extremely complex, with a wide spectrum of biological, psychological, and sociocultural factors being responsible for their appearance and development. In this sense, immune system dysfunction represents a key mechanism in the onset and pathophysiology of mood disorders, worsening mainly the central nervous system (neuroinflammation) and the periphery of the body (systemic inflammation). However, these alterations cannot be understood separately, but as part of a complex picture in which different factors and systems interact with each other. Psychoneuroimmunoendocrinology (PNIE) is the area responsible for studying the relationship between these elements and the impact of mind-body integration, placing the immune system as part of a whole. Thus, the dysfunction of the immune system is capable of influencing and activating different mechanisms that promote disruption of the psyche, damage to the nervous system, alterations to the endocrine and metabolic systems, and disruption of the microbiota and intestinal ecosystem, as well as of other organs and, in turn, all these mechanisms are responsible for inducing and enhancing the immune dysfunction. Similarly, the clinical approach to these patients is usually multidisciplinary, and the therapeutic arsenal includes different pharmacological (for example, antidepressants, antipsychotics, and lithium) and non-pharmacological (i.e., psychotherapy, lifestyle, and electroconvulsive therapy) treatments. These interventions also modulate the immune system and other elements of the PNIE in these patients, which may be interesting to understand the therapeutic success or failure of these approaches. In this sense, this review aims to delve into the relationship between immune dysfunction and mood disorders and their integration in the complex context of PNIE. Likewise, an attempt will be made to explore the effects on the immune system of different strategies available in the clinical approach to these patients, in order to identify the mechanisms described and their possible uses as biomarkers.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain.
| | - Raul Diaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Laura Lopez-Gonzalez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcala de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031, Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806, Alcalá de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research IRYCIS, 28034, Madrid, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806, Alcalá de Henares, Spain
| |
Collapse
|
10
|
Frost ED, Shi SX, Byroju VV, Pitton Rissardo J, Donlon J, Vigilante N, Murray BP, Walker IM, McGarry A, Ferraro TN, Hanafy KA, Echeverria V, Mitrev L, Kling MA, Krishnaiah B, Lovejoy DB, Rahman S, Stone TW, Koola MM. Galantamine-Memantine Combination in the Treatment of Parkinson's Disease Dementia. Brain Sci 2024; 14:1163. [PMID: 39766362 PMCID: PMC11674513 DOI: 10.3390/brainsci14121163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that affects over 1% of population over age 60. It is defined by motor and nonmotor symptoms including a spectrum of cognitive impairments known as Parkinson's disease dementia (PDD). Currently, the only US Food and Drug Administration-approved treatment for PDD is rivastigmine, which inhibits acetylcholinesterase and butyrylcholinesterase increasing the level of acetylcholine in the brain. Due to its limited efficacy and side effect profile, rivastigmine is often not prescribed, leaving patients with no treatment options. PD has several derangements in neurotransmitter pathways (dopaminergic neurons in the nigrostriatal pathway, kynurenine pathway (KP), acetylcholine, α7 nicotinic receptor, and N-methyl-D-aspartate (NMDA) receptors) and rivastigmine is only partially effective as it only targets one pathway. Kynurenic acid (KYNA), a metabolite of tryptophan metabolism, affects the pathophysiology of PDD in multiple ways. Both galantamine (α7 nicotinic receptor) and memantine (antagonist of the NMDA subtype of the glutamate receptor) are KYNA modulators. When used in combination, they target multiple pathways. While randomized controlled trials (RCTs) with each drug alone for PD have failed, the combination of galantamine and memantine has demonstrated a synergistic effect on cognitive enhancement in animal models. It has therapeutic potential that has not been adequately assessed, warranting future randomized controlled trials. In this review, we summarize the KYNA-centric model for PD pathophysiology and discuss how this treatment combination is promising in improving cognitive function in patients with PDD through its action on KYNA.
Collapse
Affiliation(s)
- Emma D. Frost
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
| | - Swanny X. Shi
- Department of Neurology, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Vishnu V. Byroju
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
| | | | - Jack Donlon
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | | | | | - Ian M. Walker
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Andrew McGarry
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Thomas N. Ferraro
- Department of Biomedical Sciences, Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Khalid A. Hanafy
- Cooper Neurological Institute, Cooper University Health Care, Camden, NJ 08103, USA
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Valentina Echeverria
- Research and Development Department, Bay Pines VAHCS, Bay Pines, FL 33744, USA
- Medicine Department, Universidad San Sebastián, Concepción 4081339, Bío Bío, Chile
| | - Ludmil Mitrev
- Cooper Medical School, Rowan University, Camden, NJ 08103, USA
| | - Mitchel A. Kling
- Department of Geriatrics and Gerontology, New Jersey Institute for Successful Aging, Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Balaji Krishnaiah
- Department of Neurology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - David B. Lovejoy
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2113, Australia
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX3 7LD, UK
| | - Maju Mathew Koola
- Department of Public Safety and Correctional Services, Baltimore, MD 21215, USA
| |
Collapse
|
11
|
Su J, Chen K, Sang X, Feng Z, Zhou F, Zhao H, Wu S, Deng X, Lin C, Lin X, Xie L, Ye H, Chen Q. Huperzine a ameliorates sepsis-induced acute lung injury by suppressing inflammation and oxidative stress via α7 nicotinic acetylcholine receptor. Int Immunopharmacol 2024; 141:112907. [PMID: 39159557 DOI: 10.1016/j.intimp.2024.112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
Sepsis, characterized by high mortality rates, causes over 50 % of acute lung injury (ALI) cases, primarily due to the heightened susceptibility of the lungs during this condition. Suppression of the excessive inflammatory response is critical for improving the survival of patients with sepsis; nevertheless, no specific anti-sepsis drugs exist. Huperzine A (HupA) exhibits neuroprotective and anti-inflammatory properties; however, its underlying mechanisms and effects on sepsis-induced ALI have yet to be elucidated. In this study, we demonstrated the potential of HupA for treating sepsis and explored its mechanism of action. To investigate the in vivo impacts of HupA, a murine model of sepsis was induced through cecal ligation and puncture (CLP) in both wild-type (WT) and α7 nicotinic acetylcholine receptor (α7nAChR) knockout mice. Our results showed that HupA ameliorates sepsis-induced acute lung injury by activating the α7nAChR. We used the CLP sepsis model in wild-type and α7nAChR -/- mice and found that HupA significantly increased the survival rate through α7nAChR, reduced the pro-inflammatory cytokine levels and oxidative stress, ameliorated histopathological lung injury, altered the circulating immune cell composition, regulated gut microbiota, and promoted short-chain fatty acid production through α7nAChR in vivo. Additionally, HupA inhibited Toll-like receptor NF-κB signaling by upregulating the α7nAChR/protein kinase B/glycogen synthase kinase-3 pathways. Our data elucidate HupA's mechanism of action and support a "new use for an old drug" in treating sepsis. Our findings serve as a basis for further in vivo studies of this drug, followed by application to humans. Therefore, the findings have the potential to benefit patients with sepsis.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiao Sang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| |
Collapse
|
12
|
Cartereau A, Bouchouireb Z, Kaaki S, Héricourt F, Taillebois E, Le Questel JY, Thany SH. Pharmacology and molecular modeling studies of sulfoxaflor, flupyradifurone and neonicotinoids on the human neuronal α7 nicotinic acetylcholine receptor. Toxicol Appl Pharmacol 2024; 492:117123. [PMID: 39393466 DOI: 10.1016/j.taap.2024.117123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
We conducted electrophysiological and molecular docking studies using a heterologous expression system (Xenopus oocytes) to compare the effects of four neonicotinoids (acetamiprid, imidacloprid, clothianidin and thiamethoxam), one sulfoximine, (sulfoxaflor), and one butenolide (flupyradifurone), on human α7 neuronal nicotinic acetylcholine receptors (nAChRs). All neonicotinoids (except thiamethoxam), as well as the recently introduced nAChR competitive modulators, flupyradifurone and sulfoxaflor, appear to be weaker agonists than acetylcholine. Two mutations in loop C (E211N and E211P) and one mutation in loop D (Q79K), known to be involved in the binding properties of neonicotinoids were introduced to the α7 wild type. Interestingly, the acetylcholine and nicotine-evoked activation was not modified in human α7 mutated receptors, but the net charge was enhanced for clothianidin and imidacloprid, respectively. Flupyradifurone responses strongly increased under the Q79K mutation. The molecular docking investigations demonstrated that the orientations and interactions of the ligands considered were in accordance with those observed experimentally. Specifically, the charged fragments of acetylcholine and nicotine, used as reference ligands, and their neonicotinoid homologs were found to be surrounded by aromatic residues, with key interactions with Trp171 and Y210. Furthermore, the molecular docking investigations predicted the water-mediated interaction between the carbonyl oxygen of acetylcholine and the Nsp2 nitrogen of the pyridine ring for nicotine (as well as for the majority of the corresponding neonicotinoid fragments) and main chain NH of L141. The docking scores, extending over a significant range of 6 kcal/mol, showed that most neonicotinoids were poorly stabilized in the α7 nAChR compared to acetylcholine, except sulfoxaflor.
Collapse
Affiliation(s)
- Alison Cartereau
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | | | - Sara Kaaki
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | - François Héricourt
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | - Emiliane Taillebois
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France
| | | | - Steeve H Thany
- Université d'Orléans, USC INRAE 1328, Laboratoire Physiologie, Ecologie et Environnement (P2E), 1 rue de Chartres, 45067 Orléans, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France.
| |
Collapse
|
13
|
Khodadadi H, Salles ÉL, Naeini SE, Bhandari B, Rogers HM, Gouron J, Meeks W, Terry AV, Pillai A, Yu JC, Morgan JC, Vaibhav K, Hess DC, Dhandapani KM, Wang LP, Baban B. Boosting Acetylcholine Signaling by Cannabidiol in a Murine Model of Alzheimer's Disease. Int J Mol Sci 2024; 25:11764. [PMID: 39519315 PMCID: PMC11546302 DOI: 10.3390/ijms252111764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is a challenging medical issue that requires efficacious treatment options to improve long-term quality of life. Cannabidiol (CBD) is a cannabis-derived phytocannabinoid with potential health benefits, including reports from our laboratory and others showing a therapeutic role in the pre-clinical treatment of AD; however, the mechanisms whereby CBD affects AD progression remain undefined. Innate lymphoid cells (ILCs) are recently discovered immune cells that initiate and orchestrate inflammatory responses. ILC2, a sub-class of ILCs, is proposed to have a role in cognitive function via unknown mechanisms. In this present study, we explored whether CBD ameliorates AD symptoms via the enhancement of acetylcholine (ACh), a cholinergic neurotransmitter involved in cognition that may regulate ILC2. 5xFAD mice were chronically treated by inhalation of a formulation of broad-spectrum CBD for seven months. ACh production, ILC2s profile, brain histopathology, and long-term behavior were assessed. Together, our studies showed that long-term inhalation of CBD improved cognitive function and reduced senile plaques in a murine AD model, effects that were associated with enhanced ACh production and altered ILC2s distribution within the CNS. These findings indicate that inhaled CBD could offer a cost-effective, non-invasive, and effective treatment for managing AD. The beneficial effects of CBD inhalation may be linked to increased ACh production and an altered distribution of ILC2s, highlighting the need for further research in this area.
Collapse
Affiliation(s)
- Hesam Khodadadi
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Bidhan Bhandari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Hannah M. Rogers
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Jules Gouron
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - William Meeks
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alvin V. Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Anilkumar Pillai
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA;
| | - Jack C. Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - John C. Morgan
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.V.); (K.M.D.)
| | - David C. Hess
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Krishnan M. Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.V.); (K.M.D.)
| | - Lei P. Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Babak Baban
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (H.K.); (J.C.M.); (D.C.H.)
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA; (É.L.S.); (S.E.N.); (B.B.); (H.M.R.); (J.G.); (L.P.W.)
- Center for Excellence in Research, Scholarship and Innovation (CERSI), Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| |
Collapse
|
14
|
Yang Y, Eguchi A, Mori C, Hashimoto K. Splenic nerve denervation attenuates depression-like behaviors in Chrna7 knock-out mice via the spleen-gut-brain axis. J Affect Disord 2024; 362:114-125. [PMID: 38944290 DOI: 10.1016/j.jad.2024.06.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Growing evidence highlights the role of the spleen-brain axis in inflammation-associated depression. The α7-subtype of nicotinic acetylcholine receptor (α7 nAChR, encoded by the Chrna7 gene) is implicated in systemic inflammation, with Chrna7 knock-out (KO) mice displaying depression-like behaviors. Yet, the influence of spleen nerve on depression-like behaviors in these KO mice remains to be elucidated. METHODS We investigated the effects of the splenic nerve denervation (SND) on depression-like behaviors, the protein expression in the prefrontal cortex (PFC), and the gut microbiota composition in Chrna7 KO mice. RESULTS SND markedly alleviated depression-like behaviors and the reduced expression of GluA1 and postsynaptic density protein-95 (PSD-95) in the PFC of Chrna7 KO mice. No changes in α-diversity of gut microbiota were noted among the control, KO + sham, and KO + SND groups. However, significant differences in β-diversity of gut microbiota were noted among the groups. Notable alterations in various microbiota (e.g., Fluviimonas_pallidilutea, Maribacter_arcticus, Parvibacter_caecicola) and plasma metabolites (e.g., helicide, N-acetyl-L-aspartic acid, α-D-galactose 1-phosphate, choline, creatine) were observed between KO + sham and KO + SND groups. Interestingly, correlations were found between the relative abundance of specific microbiota and other outcomes, including synaptic proteins, metabolites and behavioral data. LIMITATIONS The underlying mechanisms remain to be fully understood. CONCLUSIONS Our findings indicate that the splenic nerve contributes to depression-like phenotypes in Chrna7 KO mice via the spleen-gut-brain axis.
Collapse
Affiliation(s)
- Yong Yang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan; Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8677, Japan.
| |
Collapse
|
15
|
Chen H, Shi X, Liu N, Jiang Z, Ma C, Luo G, Liu S, Wei X, Liu Y, Ming D. Photobiomodulation therapy mitigates depressive-like behaviors by remodeling synaptic links and mitochondrial function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112998. [PMID: 39096719 DOI: 10.1016/j.jphotobiol.2024.112998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Depression, a multifactorial mental disorder, characterized by cognitive slowing, anxiety, and impaired cognitive function, imposes a significant burden on public health. Photobiomodulation (PBM), involving exposure to sunlight or artificial light at a specific intensity and wavelength for a determined duration, influences brain activity, functional connectivity, and plasticity. It is recognized for its therapeutic efficacy in treating depression, yet its molecular and cellular underpinnings remain obscure. Here, we investigated the impact of PBM with 468 nm light on depression-like behavior and neuronal damage in the chronic unpredictable mild stress (CUMS) murine model, a commonly employed animal model for studying depression. Our results demonstrate that PBM treatment ameliorated behavioral deficits, inhibited neuroinflammation and apoptosis, and notably rejuvenates the hippocampal synaptic function in depressed mice, which may be mainly attributed to the up-regulation of brain-derived neurotrophic factor signaling pathways. In addition, in vitro experiments with a corticosterone-induced hippocampal neuron injury model demonstrate reduced oxidative stress and improved mitochondrial function, further validating the therapeutic potential of PBM. In summary, these findings suggest PBM as a promising, non-invasive treatment for depression, offering insights into its biological mechanisms and potential for clinical application.
Collapse
Affiliation(s)
- Hongli Chen
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China; Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Xinyu Shi
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Na Liu
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Zhongdi Jiang
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Chunyan Ma
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Guoshuai Luo
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China.
| | - Xunbin Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Cancer Hospital & Institute, International Cancer Institute, Institute of Medical Technology, Peking University Health Science Center, Biomedical Engineering Department, Peking University, Beijing 100191, China.
| | - Yi Liu
- State Key Laboratry of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Optoelectronic Detection Technology and Systems, School of Life Sciences, Tiangong University, Tianjin 300387, China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| |
Collapse
|
16
|
Yu J, Xie J, Ma Y, Wei P, Zhang P, Tang Z, Zhu X, Zhangsun D, Luo S. Single Amino Acid Substitution in Loop1 Switches the Selectivity of α-Conotoxin RegIIA towards the α7 Nicotinic Acetylcholine Receptor. Mar Drugs 2024; 22:390. [PMID: 39330271 PMCID: PMC11433573 DOI: 10.3390/md22090390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
α-Conotoxins are disulfide-rich peptides obtained from the venom of cone snails, which are considered potential molecular probes and drug leads for nAChR-related disorders. However, low specificity towards different nAChR subtypes restricts the further application of many α-conotoxins. In this work, a series of loop1 amino acid-substituted mutants of α-conotoxin RegIIA were synthesized, whose potency and selectivity were evaluated by an electrophysiological approach. The results showed that loop1 alanine scanning mutants [H5A]RegIIA and [P6A]RegIIA blocked rα7 nAChR with IC50s of 446 nM and 459 nM, respectively, while their inhibition against rα3β2 and rα3β4 subtypes was negligible, indicating the importance of the fifth and sixth amino acid residues for RegIIA's potency and selectivity. Then, second-generation mutants were designed and synthesized, among which the analogues [H5V]RegIIA and [H5S]RegIIA showed significantly improved selectivity and comparable potency towards rα7 nAChR compared with the native RegIIA. Overall, these findings provide deep insights into the structure-activity relationship of RegIIA, as well as revealing a unique perspective for the further modification and optimization of α-conotoxins and other active peptides.
Collapse
Affiliation(s)
- Jinpeng Yu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Junjie Xie
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Yuting Ma
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Zhang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Zepei Tang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Xiaopeng Zhu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - Sulan Luo
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Bastawy EM, Eraslan IM, Voglsanger L, Suphioglu C, Walker AJ, Dean OM, Read JL, Ziemann M, Smith CM. Novel Insights into Changes in Gene Expression within the Hypothalamus in Two Asthma Mouse Models: A Transcriptomic Lung-Brain Axis Study. Int J Mol Sci 2024; 25:7391. [PMID: 39000495 PMCID: PMC11242700 DOI: 10.3390/ijms25137391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Patients with asthma experience elevated rates of mental illness. However, the molecular links underlying such lung-brain crosstalk remain ambiguous. Hypothalamic dysfunction is observed in many psychiatric disorders, particularly those with an inflammatory component due to many hypothalamic regions being unprotected by the blood-brain barrier. To gain a better insight into such neuropsychiatric sequelae, this study investigated gene expression differences in the hypothalamus following lung inflammation (asthma) induction in mice, using RNA transcriptome profiling. BALB/c mice were challenged with either bacterial lipopolysaccharide (LPS, E. coli) or ovalbumin (OVA) allergens or saline control (n = 7 per group), and lung inflammation was confirmed via histological examination of postmortem lung tissue. The majority of the hypothalamus was micro-dissected, and total RNA was extracted for sequencing. Differential expression analysis identified 31 statistically significant single genes (false discovery rate FDR5%) altered in expression following LPS exposure compared to controls; however, none were significantly changed following OVA treatment, suggesting a milder hypothalamic response. When gene sets were examined, 48 were upregulated and 8 were downregulated in both asthma groups relative to controls. REACTOME enrichment analysis suggests these gene sets are involved in signal transduction metabolism, immune response and neuroplasticity. Interestingly, we identified five altered gene sets directly associated with neurotransmitter signaling. Intriguingly, many of these altered gene sets can influence mental health and or/neuroinflammation in humans. These findings help characterize the links between asthma-induced lung inflammation and the brain and may assist in identifying relevant pathways and therapeutic targets for future intervention.
Collapse
Affiliation(s)
- Eslam M Bastawy
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Izel M Eraslan
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Lara Voglsanger
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Cenk Suphioglu
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Geelong 3216, Australia
| | - Adam J Walker
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Olivia M Dean
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne 3052, Australia
| | - Justin L Read
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| | - Mark Ziemann
- Faculty of Science, Engineering and Built Environment, School of Life and Environmental Sciences, Deakin University, Geelong 3216, Australia
- Burnet Institute, Melbourne 3004, Australia
| | - Craig M Smith
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong 3216, Australia
| |
Collapse
|
18
|
Luo F, Huang C. New Insight into Neuropathic Pain: The Relationship between α7nAChR, Ferroptosis, and Neuroinflammation. Int J Mol Sci 2024; 25:6716. [PMID: 38928421 PMCID: PMC11203537 DOI: 10.3390/ijms25126716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Neuropathic pain, which refers to pain caused by a lesion or disease of the somatosensory system, represents a wide variety of peripheral or central disorders. Treating neuropathic pain is quite demanding, primarily because of its intricate underlying etiological mechanisms. The central nervous system relies on microglia to maintain balance, as they are associated with serving primary immune responses in the brain next to cell communication. Ferroptosis, driven by phospholipid peroxidation and regulated by iron, is a vital mechanism of cell death regulation. Neuroinflammation can be triggered by ferroptosis in microglia, which contributes to the release of inflammatory cytokines. Conversely, neuroinflammation can induce iron accumulation in microglia, resulting in microglial ferroptosis. Accumulating evidence suggests that neuroinflammation, characterized by glial cell activation and the release of inflammatory substances, significantly exacerbates the development of neuropathic pain. By inhibiting microglial ferroptosis, it may be possible to prevent neuroinflammation and subsequently alleviate neuropathic pain. The activation of the homopentameric α7 subtype of the neuronal nicotinic acetylcholine receptor (α7nAChR) has the potential to suppress microglial activation, transitioning M1 microglia to an M2 phenotype, facilitating the release of anti-inflammatory factors, and ultimately reducing neuropathic pain. Recent years have witnessed a growing recognition of the regulatory role of α7nAChR in ferroptosis, which could be a potential target for treating neuropathic pain. This review summarizes the mechanisms related to α7nAChR and the progress of ferroptosis in neuropathic pain according to recent research. Such an exploration will help to elucidate the relationship between α7nAChR, ferroptosis, and neuroinflammation and provide new insights into neuropathic pain management.
Collapse
Affiliation(s)
- Fangting Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China;
| | - Cheng Huang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China;
- Department of Physiology, School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
- Pain Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
19
|
Dong Y, Wang L, Yang M, Zhou X, Li G, Xu K, Ma Y, Chen J, Wang Z, Zhou J, Li H, Zhu Z. Effect of icariin on depressive behaviour in rat pups. Evidences for its mechanism of action by integrating network pharmacology, metabolomics and gut microbiota composition. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155422. [PMID: 38422651 DOI: 10.1016/j.phymed.2024.155422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/11/2024] [Accepted: 02/04/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Prenatal stress (PS) can cause cognitive disorder and a range of psychological illnesses, including anxiety and depression. Icariin (ICA) has shown promising effects in improving PS-induced depressive behaviour. However, its mechanism of action remains unclear. PURPOSE This study was performed to reveal the key targets, metabolites and gut microbiota for ICA in improving depressive behaviour in PS rat pups. METHODS A prenatal restraint stress animal model was established for Sprague-Dawley (SD) rats in late pregnancy. Male pups were randomly divided into six groups: no stress group (NS), PS group, PS + saline group (PS_S), PS + high-dose ICA group (ICAH, 80 mg/kg*day), PS + low-dose ICA group (ICAL, 40 mg/kg*day) and PS + fluoxetine group (FLU, 10 mg/kg*day). The depressive behaviour of each group of rat pups was evaluated using open field test, forced swimming test and sucrose preference test. Different metabolites were identified using untargeted metabolomics of serum and faeces, and metabolic pathways were analyzed through MetaboAnalyst. Targets for ICA acting on depression were determined after network pharmacology was applied. An integrated network of network pharmacology and metabolomics were constructed using Cytoscape software, and molecular docking were performed to verify the interactions between ICA and key targets. Finally, gut microbiota of rat pups in each group were analyzed after 16S rDNA sequencing. RESULTS PS could cause rat pups to exhibit depressive behaviour, and ICA could significantly improve this depressive behaviour. A total of 49 differential metabolites were found in serum and 23 differential metabolites were found in faeces, and 24 metabolites in serum and 6 metabolites in faeces could be reversed following ICA administration. Integrated analysis focused on five key targets (i.e. adenosyl homocysteinase; medium-chain specific acyl-CoA dehydrogenase, mitochondrial; thymidine phosphorylase; cGMP-specific 3',5'-cyclic phosphodiesterase and xanthine dehydrogenase/oxidase) and three metabolites (i.e. palmitoylcarnitine, methionine and hypoxanthine). Molecular docking indicated that ICA combined well with key targets. Gut microbiota analysis showed that g_Bacteroides, f_Bacteroidaceae and s_Lactobacillus reuteri were required for ICA to improve depressive behaviour. CONCLUSION In this study, the antidepressant mechanism of ICA was clarified with a strategy of integrating metabolomics, network pharmacology and gut microbiota. ICA has a good effect on improving metabolism and increasing the abundance of probiotics in the intestine. The present research provided new insights into the anti-depressant mechanism of ICA.
Collapse
Affiliation(s)
- Yankai Dong
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Lawen Wang
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Mingge Yang
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Xin Zhou
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Ge Li
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Kaixuan Xu
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Yao Ma
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Jinfeng Chen
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Zhifei Wang
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Jiahao Zhou
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, Shaanxi, China.
| | - Zhongliang Zhu
- Institute of Maternal and Infant Health, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, China.
| |
Collapse
|
20
|
包 汉, 王 苏, 吕 穆, 王 永, 姜 萍, 李 晓. [Activation of α7 nAChR improves white fat homeostasis and promotes beige adipogenesis and thermogenesis in obese mice]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:499-506. [PMID: 38597441 PMCID: PMC11006706 DOI: 10.12122/j.issn.1673-4254.2024.03.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To investigate the effects of α7 nicotinic acetylcholine receptor (nAChR) agonist on β3-adrenoceptor agonist-induced impairment of white fat homeostasis and beige adipose formation and heat production in obese mice. METHODS Forty obese C57BL/6J mice were randomized into high-fat feeding group, β3-adrenoceptor agonist-treated model group, α7 nAChR agonist group, and α7 nAChR inhibitor group (n=10), with another 10 mice with normal feeding as the blank control group. White adipose tissue from the epididymis of the mice were sampled for HE staining of the adipocytes. The expression levels of TNF-α, IL-1β, IL-10 and TGF-β in the white adipose tissue were determined by ELISA, and the mRNA levels of iNOS, Arg1, UCP-1, PRDM-16 and PGC-1α were detected using RT-qPCR. Western blotting was performed to detect the expression levels of NF-κB P65, p-JAK2, p-STAT3 in the white adipose tissue. RESULTS Compared with those in the blank control group, the mice with high-fat feeding showed significantly increased body weight, more fat vacuoles in the white adipose tissue, increased volume of lipid droplets in the adipocytes, upregulated iNOS mRNA expression and protein expression of TNF-α and IL-1β, and lowered expression of Arg-1 mRNA and IL-10 and TGF-β proteins (P < 0.01). Treatment with α7 nAChR significantly reduced mRNA levels of PRDM-16, PGC-1α and UCP-1, lowered TNF-α and IL-1β expressions, increased IL-10 and TGF-β expressions, and reduced M1/M2 macrophage ratio in the white adipose tissues (P < 0.05 or 0.01). CONCLUSION Activation of α7 nAchR improves white adipose tissue homeostasis impairment induced by β3 agonist, promotes transformation of M1 to M2 macrophages, reduces inflammatory response in white adipose tissue, and promote beige adipogenesis and thermogenesis in obese mice.
Collapse
Affiliation(s)
- 汉生 包
- 山东中医药大学,山东 济南 250355Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - 苏童 王
- 山东中医药大学,山东 济南 250355Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - 穆杰 吕
- 山东中医药大学,山东 济南 250355Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - 永成 王
- 山东中医药大学附属医院,山东 济南 250014Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - 萍 姜
- 山东中医药大学,山东 济南 250355Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - 晓 李
- 山东中医药大学附属医院,山东 济南 250014Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
21
|
Borkar NA, Thompson MA, Bartman CM, Khalfaoui L, Sine S, Sathish V, Prakash YS, Pabelick CM. Nicotinic receptors in airway disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L149-L163. [PMID: 38084408 PMCID: PMC11280694 DOI: 10.1152/ajplung.00268.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024] Open
Abstract
With continued smoking of tobacco products and expanded use of nicotine delivery devices worldwide, understanding the impact of smoking and vaping on respiratory health remains a major global unmet need. Although multiple studies have shown a strong association between smoking and asthma, there is a relative paucity of mechanistic understanding of how elements in cigarette smoke impact the airway. Recognizing that nicotine is a major component in both smoking and vaping products, it is critical to understand the mechanisms by which nicotine impacts airways and promotes lung diseases such as asthma. There is now increasing evidence that α7 nicotinic acetylcholine receptors (α7nAChRs) are critical players in nicotine effects on airways, but the mechanisms by which α7nAChR influences different airway cell types have not been widely explored. In this review, we highlight and integrate the current state of knowledge regarding nicotine and α7nAChR in the context of asthma and identify potential approaches to alleviate the impact of smoking and vaping on the lungs.
Collapse
Affiliation(s)
- Niyati A Borkar
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Michael A Thompson
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Latifa Khalfaoui
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
| | - Steven Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, North Dakota State University, Fargo, North Dakota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
22
|
Abdel-Magid AF. Positive Allosteric Modulators of alpha7 Nicotinic Acetylcholine Receptor for the Treatment of Several Central Nervous System Diseases. ACS Med Chem Lett 2024; 15:6-8. [PMID: 38229741 PMCID: PMC10788935 DOI: 10.1021/acsmedchemlett.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 01/18/2024] Open
Abstract
The invention in this patent application relates to spirocyclopropane-2-carboxamide derivatives represented generally by formula 1. These compounds are positive allosteric modulators of α7 nAChR and may be useful in preventing, treating, or ameliorating central nervous system diseases and disorders such as cognitive impairments in Alzheimer's disease, Parkinson's disease, schizophrenia, and L-DOPA-induced dyskinesia as well as inflammation and cough.
Collapse
Affiliation(s)
- Ahmed F. Abdel-Magid
- Therachem Research Medilab, LLC, 100 Jade Park, Chelsea, Alabama 35043, United States
| |
Collapse
|
23
|
Colita D, Burdusel D, Glavan D, Hermann DM, Colită CI, Colita E, Udristoiu I, Popa-Wagner A. Molecular mechanisms underlying major depressive disorder and post-stroke affective disorders. J Affect Disord 2024; 344:149-158. [PMID: 37827260 DOI: 10.1016/j.jad.2023.10.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Two of the most common and incapacitating mental health disorders around the world are major depressive disorder (MDD) and post-stroke depression (PSD). MDD is thought to result from abnormal connectivity between the monoaminergic, glutamatergic, GABAergic, and/or cholinergic pathways. Additional factors include the roles of hormonal, immune, ageing, as well as the influence of cellular, molecular, and epigenetics in the development of mood disorders. This complexity of factors has been anticipated by the Swiss psychiatrists Paul Kielholz and Jules Angst who introduced a multimodal treatment of MDD. Depression is the predominant mood disorder, impacting around one-third of individuals who have experienced a stroke. MDD and PSD share common underlying biological mechanisms related to the disruption of monoaminergic pathways. The major contributor to PSD is the stroke lesion location, which can involve the disruption of the serotoninergic, dopaminergic, glutamatergic, GABAergic, or cholinergic pathways. Additionally, various other disorders such as mania, bipolar disorder, anxiety disorder, and apathy might occur post-stroke, although their prevalence is considerably lower. However, there are differences in the onset of MDD among mood disorders. Some mood disorders develop gradually and can persist for a lifetime, potentially culminating in suicide. In contrast, PSD has a rapid onset because of the severe disruption of neural pathways essential for mood behavior caused by the lesion. However, PSD might also spontaneously resolve several months after a stroke, though it is associated with higher mortality. This review also provides a brief overview of the treatments currently available in medical practice.
Collapse
Affiliation(s)
- Daniela Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Daiana Burdusel
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania; Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania; Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Dirk M Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Cezar-Ivan Colită
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Eugen Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania
| | - Ion Udristoiu
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania.
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
24
|
Gusev E, Sarapultsev A. Interplay of G-proteins and Serotonin in the Neuroimmunoinflammatory Model of Chronic Stress and Depression: A Narrative Review. Curr Pharm Des 2024; 30:180-214. [PMID: 38151838 DOI: 10.2174/0113816128285578231218102020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION This narrative review addresses the clinical challenges in stress-related disorders such as depression, focusing on the interplay between neuron-specific and pro-inflammatory mechanisms at the cellular, cerebral, and systemic levels. OBJECTIVE We aim to elucidate the molecular mechanisms linking chronic psychological stress with low-grade neuroinflammation in key brain regions, particularly focusing on the roles of G proteins and serotonin (5-HT) receptors. METHODS This comprehensive review of the literature employs systematic, narrative, and scoping review methodologies, combined with systemic approaches to general pathology. It synthesizes current research on shared signaling pathways involved in stress responses and neuroinflammation, including calcium-dependent mechanisms, mitogen-activated protein kinases, and key transcription factors like NF-κB and p53. The review also focuses on the role of G protein-coupled neurotransmitter receptors (GPCRs) in immune and pro-inflammatory responses, with a detailed analysis of how 13 of 14 types of human 5-HT receptors contribute to depression and neuroinflammation. RESULTS The review reveals a complex interaction between neurotransmitter signals and immunoinflammatory responses in stress-related pathologies. It highlights the role of GPCRs and canonical inflammatory mediators in influencing both pathological and physiological processes in nervous tissue. CONCLUSION The proposed Neuroimmunoinflammatory Stress Model (NIIS Model) suggests that proinflammatory signaling pathways, mediated by metabotropic and ionotropic neurotransmitter receptors, are crucial for maintaining neuronal homeostasis. Chronic mental stress can disrupt this balance, leading to increased pro-inflammatory states in the brain and contributing to neuropsychiatric and psychosomatic disorders, including depression. This model integrates traditional theories on depression pathogenesis, offering a comprehensive understanding of the multifaceted nature of the condition.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Inflammation Immunology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
| | - Alexey Sarapultsev
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, Chelyabinsk 454080, Russia
- Laboratory of Immunopathophysiology, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg 620049, Russia
| |
Collapse
|
25
|
Yi W, Xuan L, Zakaly HMH, Markovic V, Miszczyk J, Guan H, Zhou PK, Huang R. Association between per- and polyfluoroalkyl substances (PFAS) and depression in U.S. adults: A cross-sectional study of NHANES from 2005 to 2018. ENVIRONMENTAL RESEARCH 2023; 238:117188. [PMID: 37775007 DOI: 10.1016/j.envres.2023.117188] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are widespread persistent organic pollutants (POPs) associated with diseases including osteoporosis, altered immune function and cancer. However, few studies have investigated the association between PFAS mixture exposure and Depression in general populations. METHODS Nationally representative data from the National Health and Nutrition Examination Survey (NHANES) (2005-2018) were used to analyze the association between PFAS and Depression in U.S. adults. Total 12,239 adults aged 20 years or older who had serum PFAS measured and answered Patient Health Questionnaire-9 (PHQ-9) were enrolled in this study. PFAS monomers detected in all 7 investigation cycles were included in the study. Generalized additive model (GAM) was used to fit smooth curves and threshold effect analysis was carried out to find the turning point of smooth curves. Generalized linear model (GLM) was used to describe the non-linear relationship between PFAS and depression and unconditioned logistic regression was used to risk analysis. RESULTS The median of total serum PFAS concentration was 14.54 ng/mL. The curve fitting results indicated a U-shaped relationship between total serum PFAS and depression: PFAS< 39.66 ng/mL, A negative correlation between PHQ-9 score and serum PFAS concentration was observed (β 0.047,95%CI -0.059, -0.036). The depression PHQ-9 score decreased with the increase of serum PFAS concentration. PFAS ≥ 39.66 ng/mL, A positive correlation was observed between PFAS and PHQ-9 score (β 0.010,95% CI 0.003, 0.017). The depression PHQ-9 score increased with the increase of serum PFAS concentration. CONCLUSIONS Our study provides new clues to the association of PFAS with depression, and large population-based cohort studies that can validate the causal association as well as toxicological mechanism studies are needed for validation.
Collapse
Affiliation(s)
- Wensen Yi
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Lihui Xuan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| | - Hesham M H Zakaly
- Experimental Physics Department, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russia.
| | | | - Justyna Miszczyk
- Department of Medical Physics, Cyclotron Centre Bronowice, Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| | - Hua Guan
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province, 410078, China.
| |
Collapse
|
26
|
Hussain R, Rahim F, Rehman W, Khan S, Rasheed L, Maalik A, Taha M, Alanazi MM, Alanazi AS, Khan I, Shah SAA. Synthesis, in vitro analysis and molecular docking study of novel benzoxazole-based oxazole derivatives for the treatment of Alzheimer’s disease. ARAB J CHEM 2023; 16:105244. [DOI: 10.1016/j.arabjc.2023.105244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
27
|
Akwu NA, Lekhooa M, Deqiang D, Aremu AO. Antidepressant effects of coumarins and their derivatives: A critical analysis of research advances. Eur J Pharmacol 2023; 956:175958. [PMID: 37543158 DOI: 10.1016/j.ejphar.2023.175958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Coumarins and their derivatives are non-flavonoids polyphenols with diverse pharmacological activities including anti-depressant effects. This study systematically examines the antidepressant effects of coumarins and their derivatives in relation to time series of research progress in the pharmacological pathways, association with other diseases, toxicity and bibliometric analysis. The review was approached using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) coupled with R package involving Biblioshiny, a web interface for Bibliometrix analysis and VOSviewer software analytic tools. Literature searches were conducted in Scopus, Web of Science, and PubMed from the inception through January 21, 2023. Coumarins, depression, coumarin derivatives and treatment were the main search terms used which resulted in the inclusion of 46 eligible publications. Scopoletin, psoralen, 7-hydroxycoumarin, meranzin hydrate, osthole, esculetin/umbelliferone were the most studied coumarins with antidepressant effects. Coumarins and their derivatives exerted antidepressant effects with a stronger affinity for monoamine oxidase-B (MAO-B) inhibition and, their inhibitory effect via neurotransmitter pathway on MAO is well-studied. However, epigenetic modification, neuroendocrine, neurotrophic pathways are understudied. Recent research focuses on their antidepressant effects which targeted cytokines and fibromyalgia. There is a link between the gut microbiome, the brain, and depression; meranzin hydrate exerts an antidepressant activity by remodelling the gastrointestinal system. We established that empirical data on some coumarins and their derivatives to support their antidepressant effects are limited. Likewise, the safe dose range for several coumarins and their derivatives is yet to be fully determined.
Collapse
Affiliation(s)
- Nneka Augustina Akwu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2790, South Africa; Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Makhotso Lekhooa
- Preclinical Drug Development Platform, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Dou Deqiang
- Liaoning University of Traditional Chinese Medicine, 77 Life one Road, DD port, Dalian Economic and Technical Development Zone, Dalian, 116600, China
| | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2790, South Africa; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
| |
Collapse
|
28
|
Chen N, Wu X, Tu M, Xiong S, Jin J, Qu S, Pei S, Fang J, Shao X. Optimizing Treatment for Major Depressive Disorder in Adolescents: The Impact of Intradermal Acupuncture - A Randomized Controlled Trial Protocol. Neuropsychiatr Dis Treat 2023; 19:1819-1832. [PMID: 37641586 PMCID: PMC10460602 DOI: 10.2147/ndt.s420489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023] Open
Abstract
Background Major depressive disorder (MDD) exhibits a pronounced occurrence among adolescents, aligning closely with the lifetime prevalence rate of 16.6% observed in adults. It is difficult to treat and prone to recurrence. Acupuncture has shown potential in enhancing treatment effectiveness. Nonetheless, there is a lack of research on the use of intradermal acupuncture (IA) in treating adolescent MDD. Methods This study is a double-blind, randomized controlled trial. A cohort of 120 participants will be assigned randomly to three distinct groups, namely a Selective Serotonin Reuptake Inhibitors (SSRIs)-only group, a sham intradermal acupuncture combined with SSRIs (SIA) group, and an active intradermal acupuncture combined with SSRIs (AIA) group. Hamilton Depression Rating Scale will serve as the primary outcome, while Patient Health Questionnaire-9, Self-Rating Depression Scale, Pittsburgh Sleep Quality Index, and Short Form 36 Questionnaire will serve as secondary outcomes in assessing the amelioration of depressive symptoms in patients. These data will be analyzed using SPSS26.0 software. Results We will assess the efficacy and safety of IA for MDD using commonly employed clinical psychiatric scales. Conclusion The efficacy of IA in treating adolescent MDD may be demonstrated in this study, suggesting its potential for optimizing MDD treatment schemes. Trial Registration ClinicalTrials.gov Identifier: NCT05832619 (April 27, 2023).
Collapse
Affiliation(s)
- Nisang Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiaoting Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Mingqi Tu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Sangsang Xiong
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Junyan Jin
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Siying Qu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Shuangyi Pei
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Jianqiao Fang
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiaomei Shao
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
- Key Laboratory for Research of Acupuncture Treatment and Transformation of Emotional Diseases, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
29
|
Dehhaghi M, Heng B, Guillemin GJ. The kynurenine pathway in traumatic brain injuries and concussion. Front Neurol 2023; 14:1210453. [PMID: 37360356 PMCID: PMC10289013 DOI: 10.3389/fneur.2023.1210453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Up to 10 million people per annum experience traumatic brain injury (TBI), 80-90% of which are categorized as mild. A hit to the brain can cause TBI, which can lead to secondary brain injuries within minutes to weeks after the initial injury through unknown mechanisms. However, it is assumed that neurochemical changes due to inflammation, excitotoxicity, reactive oxygen species, etc., that are triggered by TBI are associated with the emergence of secondary brain injuries. The kynurenine pathway (KP) is an important pathway that gets significantly overactivated during inflammation. Some KP metabolites such as QUIN have neurotoxic effects suggesting a possible mechanism through which TBI can cause secondary brain injury. That said, this review scrutinizes the potential association between KP and TBI. A more detailed understanding of the changes in KP metabolites during TBI is essential to prevent the onset or at least attenuate the severity of secondary brain injuries. Moreover, this information is crucial for the development of biomarker/s to probe the severity of TBI and predict the risk of secondary brain injuries. Overall, this review tries to fill the knowledge gap about the role of the KP in TBI and highlights the areas that need to be studied.
Collapse
|