1
|
Bennstein SB, Uhrberg M. Circulating innate lymphoid cells (cILCs): Unconventional lymphocytes with hidden talents. J Allergy Clin Immunol 2024; 154:523-536. [PMID: 39046403 DOI: 10.1016/j.jaci.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
Innate lymphoid cells (ILCs) are a group of lymphocytes that are devoid of antigen-specific receptors and are mainly found in tissues. The subtypes ILC1, 2, and 3 mirror T-cell functionality in terms of cytokine production and expression of key transcription factors. Although the majority of ILCs are found in tissue (tILCs), they have also been described within the circulation (cILCs). As a result of their better accessibility and putative prognostic value, human cILCs are getting more and more attention in clinical research. However, cILCs are in many aspects functionally distinct from their tILC counterparts. In fact, from the 3 ILC subsets found within the circulation, only for cILC2s could a clear functional correspondence to their tissue counterparts be established. Indeed, cILC2s are emerging as a major driver of allergic reactions with a particular role in asthma. In contrast, recent studies revealed that cILC1s and cILC3s are predominantly in an immature state and constitute progenitors for natural killer cells and ILCs, respectively. We provide an overview about the phenotype and function of the different cILC subtypes compared to tILCs in health and disease, including transcriptomic signatures, frequency dynamics, and potential clinical value. Furthermore, we will highlight the dynamics of the NKp44+ ILC3 subset, which emerges as prognostic marker in peripheral blood for inflammatory bowel disease and leukemia.
Collapse
Affiliation(s)
- Sabrina B Bennstein
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Obeagu EI, Obeagu GU. Utilization of immunological ratios in HIV: Implications for monitoring and therapeutic strategies. Medicine (Baltimore) 2024; 103:e37354. [PMID: 38428854 PMCID: PMC10906605 DOI: 10.1097/md.0000000000037354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection remains a significant global health concern, necessitating ongoing research and innovation in the quest for improved disease management. Traditional markers for monitoring HIV progression and the effectiveness of antiretroviral therapy have limitations in capturing the intricate immune responses and inflammatory dynamics in people with HIV. In recent years, the concept of inflammation ratios has gained prominence as a valuable tool for assessing and understanding the complex interplay between inflammation, immune function, and HIV. In this abstract, we provide an overview of the emerging field of utilizing inflammation ratios in the context of HIV and its implications for disease monitoring and therapeutic strategies. These ratios, such as the CD4/CD8 ratio, neutrophil-to-lymphocyte ratio, and monocyte-to-lymphocyte ratio, offer a more comprehensive assessment of an individual's immune status and inflammatory state. By exploring the clinical implications of inflammation ratios, including their potential to predict disease complications and guide personalized treatment approaches, this publication sheds light on the potential benefits of incorporating inflammation ratios into routine HIV care. Furthermore, we emphasize the importance of ongoing research in this field to further refine our understanding of the utility and significance of inflammation ratios in improving the lives of people with HIV.
Collapse
|
3
|
Nabatanzi R, Ssekamatte P, Castelnuovo B, Kambugu A, Nakanjako D. Increased Levels of Caspase-1 and IL-1β Among Adults With Persistent Immune Activation After 12 Years of Suppressive Antiretroviral Therapy in the Infectious Diseases Institute HIV Treatment Cohort. Open Forum Infect Dis 2023; 10:ofad539. [PMID: 37953818 PMCID: PMC10638490 DOI: 10.1093/ofid/ofad539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 11/14/2023] Open
Abstract
Background We sought evidence of activated pyroptosis and the inflammasome pathways among human immunodeficiency virus (HIV)-infected adults after 12 years of suppressive antiretroviral therapy (ART) and persistent immune activation in the Infectious Diseases Institute HIV treatment cohort in Uganda. Methods In a cross-sectional study, using peripheral blood mononuclear cells of HIV-infected individuals with high and low immune activation (CD4/CD8+CD38+HLA-DR+ cells) relative to HIV-negative reference group, caspase-1 expression was measured using flow cytometry and plasma interleukin 18 and interleukin 1β (IL-1β) levels using enzyme-linked immunosorbent assay. Results There was higher expression of caspase-1 by CD4 T cells of ART-treated individuals with high immune activation relative to those with lower immune activation (P = .04). Similarly, plasma levels of IL-1β were higher among ART-treated individuals with high immune activation levels relative to those with low immune activation levels (P = .009). We observed a low positive correlation between caspase-1 expression by CD4/CD8 T cells and immune activation levels (r= 0.497 and r= 0.329, respectively). Conclusions Caspase-1 and IL-1β were high among individuals with high immune activation despite 12 years of suppressive ART. There is a need to further understand the role of persistent abortive infection and the latent HIV reservoir characteristics as drivers of persistent activation and inflammation and to subsequently intervene to prevent the complications of chronic immune activation during long-term ART.
Collapse
Affiliation(s)
- Rose Nabatanzi
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Phillip Ssekamatte
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Barbara Castelnuovo
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Andrew Kambugu
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Damalie Nakanjako
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
4
|
Widiyanti M, Adiningsih S, Kridaningsih TN, Fitrianingtyas R. Viral Load and CD4 + Markers as Determinants of Tuberculosis Coinfection Among People Living with HIV/AIDS in Papua Indonesia. Asia Pac J Public Health 2023; 35:510-515. [PMID: 37727963 DOI: 10.1177/10105395231199570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Tuberculosis (TB) infection causes mortality among People Living with HIV (PLHIV), so the treatment of TB-HIV coinfection is crucial. The study aimed to identify the determinants contributing to TB coinfection among PLHIV in Papua. It is a descriptive-analytic study with a cross-sectional design involving 188 PLHIV at the four hospitals in Papua. CD4+ was carried out using CD4+ counter and viral load using the qPCR technique. A logistic regression test and R statistic with a significance level of 0.05 were used to analyze the determinants of TB coinfection among PLHIV. PLHIV having CD4+ count of fewer than 350 cells/mm3 had a 17.8 times higher risk for TB-HIV coinfection, P-value = 0.0. In addition, a viral load of more than 10 000 copies/ml will be 12.1 times more likely to be co-infected with TB-HIV compared to those who have a viral load of fewer than 10 000 copies/ml, P-value = 0.0. CD4+ markers and viral load are factors that play a role in TB coinfection among PLHIV in Papua Province.
Collapse
Affiliation(s)
- Mirna Widiyanti
- Research Center for Public Health and Nutrition, National Research and Innovation Agency, Bogor, Indonesia
| | - Setyo Adiningsih
- Center for Biomedical Research, National Research and Innovation Agency, Bogor, Indonesia
| | | | | |
Collapse
|
5
|
Astorga-Gamaza A, Perea D, Sanchez-Gaona N, Calvet-Mirabent M, Gallego-Cortés A, Grau-Expósito J, Sanchez-Cerrillo I, Rey J, Castellví J, Curran A, Burgos J, Navarro J, Suanzes P, Falcó V, Genescà M, Martín-Gayo E, Buzon MJ. KLRG1 expression on natural killer cells is associated with HIV persistence, and its targeting promotes the reduction of the viral reservoir. Cell Rep Med 2023; 4:101202. [PMID: 37741278 PMCID: PMC10591043 DOI: 10.1016/j.xcrm.2023.101202] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/25/2023] [Accepted: 08/29/2023] [Indexed: 09/25/2023]
Abstract
Human immunodeficiency virus (HIV) infection induces immunological dysfunction, which limits the elimination of HIV-infected cells during treated infection. Identifying and targeting dysfunctional immune cells might help accelerate the purging of the persistent viral reservoir. Here, we show that chronic HIV infection increases natural killer (NK) cell populations expressing the negative immune regulator KLRG1, both in peripheral blood and lymph nodes. Antiretroviral treatment (ART) does not reestablish these functionally impaired NK populations, and the expression of KLRG1 correlates with active HIV transcription. Targeting KLRG1 with specific antibodies significantly restores the capacity of NK cells to kill HIV-infected cells, reactivates latent HIV present in CD4+ T cells co-expressing KLRG1, and reduces the intact HIV genomes in samples from ART-treated individuals. Our data support the potential use of immunotherapy against the KLRG1 receptor to impact the viral reservoir during HIV persistence.
Collapse
Affiliation(s)
- Antonio Astorga-Gamaza
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - David Perea
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Nerea Sanchez-Gaona
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Marta Calvet-Mirabent
- Universidad Autónoma de Madrid, 28049 Madrid, Spain; Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain
| | - Ana Gallego-Cortés
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Judith Grau-Expósito
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Ildefonso Sanchez-Cerrillo
- Universidad Autónoma de Madrid, 28049 Madrid, Spain; Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain
| | - Joan Rey
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Castellví
- Department of Pathology, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Adrian Curran
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Joaquin Burgos
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jordi Navarro
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Paula Suanzes
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Enrique Martín-Gayo
- Universidad Autónoma de Madrid, 28049 Madrid, Spain; Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, 28006 Madrid, Spain; Infectious Diseases CIBER (CIBERINFECC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria J Buzon
- Infectious Diseases Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
| |
Collapse
|
6
|
Pean P, Madec Y, Nerrienet E, Borand L, Laureillard D, Fernandez M, Marcy O, Scott-Algara D. Natural Killer Repertoire Restoration in TB/HIV Co-Infected Individuals Experienced an Immune Reconstitution Syndrome (CAMELIA Trial, ANRS 12153). Pathogens 2023; 12:1241. [PMID: 37887757 PMCID: PMC10610037 DOI: 10.3390/pathogens12101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
IRIS is a common complication in HIV-infected patients treated for tuberculosis (TB) and cART. Our aim was to evaluate NK cell reconstitution in HIV-infected patients with TB-IRIS compared to those without IRIS. 147 HIV-infected patients with TB from the CAMELIA trial were enrolled. HIV+TB+ patients were followed for 32 weeks. The NK cell repertoire was assessed in whole blood at different time points. As CAMELIA has two arms (early and late cART initiation), we analysed them separately. At enrolment, individuals had low CD4 cell counts (27 cells/mm3) and high plasma viral loads (5.76 and 5.50 log/mL for IRIS and non-IRIS individuals, respectively). Thirty-seven people developed IRIS (in the early and late arms). In the early and late arms, we observed similar proportions of total NK and NK cell subsets in TB-IRIS and non-IRIS individuals during follow-up, except for the CD56dimCD16pos (both arms) and CD56dimCD16neg (late arm only) subsets, which were higher in TB-IRIS and non-IRIS individuals, respectively, after cART. Regarding the repertoire and markers of NK cells, significant differences (lower expression of NKp30, NKG2A (CD159a), NKG2D (CD314) were observed in TB-IRIS compared to non-IRIS individuals after the start of cART. In the late arm, some changes (increased expression of CD69, NKG2C, CD158i) were observed in TB-IRIS compared to non-IRIS individuals, but only before cART initiation (during TB treatment). KIR expression by NK cells (CD158a and CD158i) was similar in both groups. CD69 expression by NK cells decreased in all groups. Expression of the NCR repertoire (NKp30, NKp44, NKp46) has similar kinetics in TB-IRIS subjects compared to non-IRIS subjects regardless of the arm analysed. NK cell reconstitution appeared to be better in TB-IRIS subjects. Although NK cell reconstitution is impaired in HIV infection after cART, as previously reported, it does not appear to be affected by the development of IRIS in HIV and TB-infected individuals.
Collapse
Affiliation(s)
- Polidy Pean
- Immunology Unit, Institute Pasteur du Cambodge, Phnom Pen 12000, Cambodia
| | - Yoann Madec
- Epidemiology of Emerging Diseases, Institut Pasteur, Université de Paris, 75000 Paris, France;
| | | | - Laurence Borand
- Clinical Research Team, Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phom Penh 12000, Cambodia;
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 20600, USA
| | - Didier Laureillard
- Infectious and Tropical Diseases Department, University Hospital, 30900 Nimes, France;
| | | | - Olivier Marcy
- Research Institute for Sustainable Development (IRD) EMR 271, National Institute for Health and Medical Research (INSERM) UMR 1219, University of Bordeaux, 33000 Bordeaux, France;
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire et Lymphocytes, Institut Pasteur, 75000 Paris, France;
| |
Collapse
|
7
|
Rincón DS, Flórez-Álvarez L, Taborda NA, Hernandez JC, Rugeles MT, Zapata-Builes W. NK cells from Men Who Have Sex with Men at high risk for HIV-1 infection exhibit higher effector capacity. Sci Rep 2023; 13:16766. [PMID: 37798386 PMCID: PMC10556081 DOI: 10.1038/s41598-023-44054-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Despite being under constant exposure to HIV-1, some individuals do not show serological or clinical evidence of infection and are known as HESN (HIV-Exposed Seronegative). Multiple studies in different HESN cohorts have linked the NK cells as a correlate of resistance; however, little is known about the role of these cells in Men Who Have Sex with Men (MSM) with high risk sexual behaviors. We evaluated a general overview of activation and effector features of NK cells of MSM co-cultured with LT CD4+ HIV+ in which MSM at high risk of HIV-1 infection (HR-MSM) exhibit higher capacity to eliminate infected cells, reduced percentages of CD69+ cells when compared to MSM at low risk of infection (LR-MSM). In addition, we found that, despite the lower levels of CD69+ NK cells on HR-MSM group, within this population, higher percentages of CD69+ IFN-γ+ and CD69+ NKG2D+ NK cells were found together with higher levels of RANTES and Granzyme B production with higher antiviral capacity, resulting in a lower concentration of p24 protein and p24+ CD4+ T cells. Altogether, this information suggests that NK cells of MSM could impact the capacity to face the viral infection.
Collapse
Affiliation(s)
- Daniel S Rincón
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, 050010, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, 050016, Colombia
| | - Lizdany Flórez-Álvarez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, 050010, Colombia
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, 050016, Colombia
| | | | - Juan C Hernandez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, 050016, Colombia
| | - María T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, 050010, Colombia
| | - Wildeman Zapata-Builes
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Medellín, 050010, Colombia.
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, 050016, Colombia.
| |
Collapse
|
8
|
de Almeida SM, Beltrame MP, Tang B, Rotta I, Justus JLP, Schluga Y, da Rocha MT, Martins E, Liao A, Abramson I, Vaida F, Schrier R, Ellis RJ. CD3 +CD56 + and CD3 -CD56 + lymphocytes in the cerebrospinal fluid of persons with HIV-1 subtypes B and C. J Neuroimmunol 2023; 377:578067. [PMID: 36965365 PMCID: PMC10817703 DOI: 10.1016/j.jneuroim.2023.578067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/19/2023]
Abstract
The transactivator of transcription (Tat) is a HIV regulatory protein which promotes viral replication and chemotaxis. HIV-1 shows extensive genetic diversity, HIV-1 subtype C being the most dominant subtype in the world. Our hypothesis is the frequency of CSF CD3+CD56+ and CD3-CD56dim is reduced in HIV-1C compared to HIV-1B due to the Tat C30S31 substitution in HIV-1C. 34 CSF and paired blood samples (PWH, n = 20; PWoH, n = 14) were studied. In PWH, the percentage of CD3+CD56+ was higher in CSF than in blood (p < 0.001), comparable in both compartments in PWoH (p = 0.20). The proportion of CD3-CD56dim in CSF in PWH was higher than PWoH (p = 0.008). There was no subtype differences. These results showed CNS compartmentalization of NKT cell response in PWH.
Collapse
Affiliation(s)
- Sergio M de Almeida
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | - Bin Tang
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Indianara Rotta
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Julie Lilian P Justus
- Immunophenotyping Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Yara Schluga
- Immunophenotyping Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Maria Tadeu da Rocha
- Immunophenotyping Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Edna Martins
- Immunophenotyping Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Antony Liao
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Ian Abramson
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Florin Vaida
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Rachel Schrier
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| | - Ronald J Ellis
- HIV Neurobehavioral Research Center (HNRC), UCSD, San Diego, CA, USA
| |
Collapse
|
9
|
Diakite M, Shaw-Saliba K, Lau CY. Malignancy and viral infections in Sub-Saharan Africa: A review. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1103737. [PMID: 37476029 PMCID: PMC10358275 DOI: 10.3389/fviro.2023.1103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The burden of malignancy related to viral infection is increasing in Sub-Saharan Africa (SSA). In 2018, approximately 2 million new cancer cases worldwide were attributable to infection. Prevention or treatment of these infections could reduce cancer cases by 23% in less developed regions and about 7% in developed regions. Contemporaneous increases in longevity and changes in lifestyle have contributed to the cancer burden in SSA. African hospitals are reporting more cases of cancer related to infection (e.g., cervical cancer in women and stomach and liver cancer in men). SSA populations also have elevated underlying prevalence of viral infections compared to other regions. Of 10 infectious agents identified as carcinogenic by the International Agency for Research on Cancer, six are viruses: hepatitis B and C viruses (HBV and HCV, respectively), Epstein-Barr virus (EBV), high-risk types of human papillomavirus (HPV), Human T-cell lymphotropic virus type 1 (HTLV-1), and Kaposi's sarcoma herpesvirus (KSHV, also known as human herpesvirus type 8, HHV-8). Human immunodeficiency virus type 1 (HIV) also facilitates oncogenesis. EBV is associated with lymphomas and nasopharyngeal carcinoma; HBV and HCV are associated with hepatocellular carcinoma; KSHV causes Kaposi's sarcoma; HTLV-1 causes T-cell leukemia and lymphoma; HPV causes carcinoma of the oropharynx and anogenital squamous cell cancer. HIV-1, for which SSA has the greatest global burden, has been linked to increasing risk of malignancy through immunologic dysregulation and clonal hematopoiesis. Public health approaches to prevent infection, such as vaccination, safer injection techniques, screening of blood products, antimicrobial treatments and safer sexual practices could reduce the burden of cancer in Africa. In SSA, inequalities in access to cancer screening and treatment are exacerbated by the perception of cancer as taboo. National level cancer registries, new screening strategies for detection of viral infection and public health messaging should be prioritized in SSA's battle against malignancy. In this review, we discuss the impact of carcinogenic viruses in SSA with a focus on regional epidemiology.
Collapse
Affiliation(s)
- Mahamadou Diakite
- University Clinical Research Center, University of Sciences, Techniques, and Technologies, Bamako, Mali
| | - Kathryn Shaw-Saliba
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
10
|
Yan L, Xu K, Xiao Q, Tuo L, Luo T, Wang S, Yang R, Zhang F, Yang X. Cellular and molecular insights into incomplete immune recovery in HIV/AIDS patients. Front Immunol 2023; 14:1152951. [PMID: 37205108 PMCID: PMC10185893 DOI: 10.3389/fimmu.2023.1152951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/18/2023] [Indexed: 05/21/2023] Open
Abstract
Highly active antiretroviral therapy (ART) can effectively inhibit virus replication and restore immune function in most people living with human immunodeficiency virus (HIV). However, an important proportion of patients fail to achieve a satisfactory increase in CD4+ T cell counts. This state is called incomplete immune reconstitution or immunological nonresponse (INR). Patients with INR have an increased risk of clinical progression and higher rates of mortality. Despite widespread attention to INR, the precise mechanisms remain unclear. In this review, we will discuss the alterations in the quantity and quality of CD4+ T as well as multiple immunocytes, changes in soluble molecules and cytokines, and their relationship with INR, aimed to provide cellular and molecular insights into incomplete immune reconstitution.
Collapse
Affiliation(s)
- Liting Yan
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Kaiju Xu
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qing Xiao
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
| | - Lin Tuo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Tingting Luo
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Shuqiang Wang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Renguo Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Fujie Zhang
- Clinical and Research Center for Infectious Diseases, Beijing Ditan Hospital, Beijing, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| | - Xingxiang Yang
- Department of Infectious Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Xingxiang Yang, ; Fujie Zhang, ; Liting Yan,
| |
Collapse
|
11
|
Perier C, Nasinghe E, Charles I, Ssetaba LJ, Ahyong V, Bangs D, Beatty PR, Czudnochowski N, Diallo A, Dugan E, Fabius JM, Fong Baker H, Gardner J, Isaacs S, Joanah B, Kalantar K, Kateete D, Knight M, Krasilnikov M, Krogan NJ, Langelier C, Lee E, Li LM, Licht D, Lien K, Lyons Z, Mboowa G, Mwebaza I, Mwesigwa S, Nalwadda G, Nichols R, Penaranda ME, Petnic S, Phelps M, Popper SJ, Rape M, Reingold A, Robbins R, Rosenberg OS, Savage DF, Schildhauer S, Settles ML, Sserwadda I, Stanley S, Tato CM, Tsitsiklis A, Van Dis E, Vanaerschot M, Vinden J, Cox JS, Joloba ML, Schaletzky J. Workshop-based learning and networking: a scalable model for research capacity strengthening in low- and middle-income countries. Glob Health Action 2022; 15:2062175. [PMID: 35730550 PMCID: PMC9225690 DOI: 10.1080/16549716.2022.2062175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Science education and research have the potential to drive profound change in low- and middle-income countries (LMICs) through encouraging innovation, attracting industry, and creating job opportunities. However, in LMICs, research capacity is often limited, and acquisition of funding and access to state-of-the-art technologies is challenging. The Alliance for Global Health and Science (the Alliance) was founded as a partnership between the University of California, Berkeley (USA) and Makerere University (Uganda), with the goal of strengthening Makerere University’s capacity for bioscience research. The flagship program of the Alliance partnership is the MU/UCB Biosciences Training Program, an in-country, hands-on workshop model that trains a large number of students from Makerere University in infectious disease and molecular biology research. This approach nucleates training of larger and more diverse groups of students, development of mentoring and bi-directional research partnerships, and support of the local economy. Here, we describe the project, its conception, implementation, challenges, and outcomes of bioscience research workshops. We aim to provide a blueprint for workshop implementation, and create a valuable resource for bioscience research capacity strengthening in LMICs.
Collapse
Affiliation(s)
- Celine Perier
- H. Wheeler Center for Emerging & Neglected Diseases (CEND), University of California, Berkeley, CA, USA
| | | | - Isabelle Charles
- H. Wheeler Center for Emerging & Neglected Diseases (CEND), University of California, Berkeley, CA, USA
| | | | - Vida Ahyong
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Derek Bangs
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - P Robert Beatty
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Amy Diallo
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Eli Dugan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Jacqueline M Fabius
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
| | - Hildy Fong Baker
- School of Public Health, Center for Global Public Health (CGPH), University of California, Berkeley, CA, USA
| | - Jackson Gardner
- Department of Medicine, University of California, San Francisco, CA, USA
| | | | - Birungi Joanah
- School of Biomedical Sciences, Makerere University, Kampala, Uganda
| | | | - David Kateete
- School of Biomedical Sciences, Makerere University, Kampala, Uganda
| | - Matt Knight
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Maria Krasilnikov
- Department of Molecular Biology and Microbiology, Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA.,Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | | | - Eric Lee
- Graduate Group in Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA, USA
| | - Lucy M Li
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Daniel Licht
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Katie Lien
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Zilose Lyons
- California China Climate Institute, University of California, Berkeley, CA, USA
| | - Gerald Mboowa
- School of Biomedical Sciences, Makerere University, Kampala, Uganda
| | - Ivan Mwebaza
- School of Biomedical Sciences, Makerere University, Kampala, Uganda
| | | | | | - Robert Nichols
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | - Sarah Petnic
- Quality and Clinical Excellence Department, Providence Queen of the Valley Medical Center, Napa, CA, USA
| | | | - Stephen J Popper
- Sustainable Sciences Institute, San Francisco, CA, USA.,School of Public Health, Department of Infectious Disease and Vaccinology, University of California, Berkeley, CA, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Arthur Reingold
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
| | | | - Oren S Rosenberg
- Department of Medicine, University of California, San Francisco, CA, USA
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | | | | | - Ivan Sserwadda
- School of Biomedical Sciences, Makerere University, Kampala, Uganda
| | - Sarah Stanley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA, USA
| | | | | | - Erik Van Dis
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Joanna Vinden
- Division of Infectious Diseases and Immunity, School of Public Health, University of California, Berkeley, CA, USA
| | - Jeffery S Cox
- H. Wheeler Center for Emerging & Neglected Diseases (CEND), University of California, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Moses L Joloba
- School of Biomedical Sciences, Makerere University, Kampala, Uganda
| | - Julia Schaletzky
- H. Wheeler Center for Emerging & Neglected Diseases (CEND), University of California, Berkeley, CA, USA
| |
Collapse
|
12
|
Dean LS, Chow DC, Ndhlovu LC, Boisvert WA, Chang SP, Shikuma CM, Park J. Characterization of Circulating Fibrocytes in People Living with HIV on Stable Antiretroviral Therapy. Immunohorizons 2022; 6:760-767. [PMID: 36445359 PMCID: PMC10402248 DOI: 10.4049/immunohorizons.2200085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 01/04/2023] Open
Abstract
Highly effective combination antiretroviral therapy has reduced HIV infection to a manageable chronic disease, shifting the clinical landscape toward management of noninfectious comorbidities in people living with HIV (PLWH). These comorbidities are diverse, generally associated with accelerated aging, and present within multiple organ systems. Mechanistically, immune dysregulation and chronic inflammation, both of which persist in PLWH with well-controlled virally suppressive HIV infection, are suggested to create and exacerbate noninfectious comorbidity development. Persistent inflammation often leads to fibrosis, which is the common end point pathologic feature associated with most comorbidities. Fibrocytes are bone marrow-derived fibroblast-like cells, which emerged as key effector cells in tissue repair and pathologic fibrotic diseases. Despite their relevance to fibrosis, the circulating fibrocyte concentration in PLWH remains poorly characterized, and an understanding of their functional role in chronic HIV is limited. In this study, utilizing PBMCs from a cross-sectional adult HIV cohort study with matched uninfected controls (HIV-), we aimed to identify and compare circulating fibrocytes in blood. Both the percentage and number of fibrocytes and α-smooth muscle actin+ fibrocytes in circulation did not differ between the HIV+ and HIV- groups. However, circulating fibrocyte levels were significantly associated with increasing age in both the HIV+ and HIV- groups (the percentage and number; r = 0.575, p ≤ 0.0001 and r = 0.558, p ≤ 0.0001, respectively). Our study demonstrates that circulating fibrocyte levels and their fibroblast-like phenotype defined as collagen I and α-smooth muscle actin+ expression are comparable between, and strongly associated with, age irrespective of HIV status.
Collapse
Affiliation(s)
- Logan S. Dean
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
- Hawaii Center for AIDS, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI
| | - Dominic C. Chow
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
- Hawaii Center for AIDS, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI
| | - Lishomwa C. Ndhlovu
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
| | - William A. Boisvert
- Center for Cardiovascular Research, University of Hawaii at Manoa, Honolulu, HI
| | - Sandra P. Chang
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
| | - Cecilia M. Shikuma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
- Hawaii Center for AIDS, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI
| | - Juwon Park
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawaii at Manoa, Honolulu, HI
- Hawaii Center for AIDS, John A. Burns School Medicine, University of Hawaii at Manoa, Honolulu, HI
| |
Collapse
|
13
|
Kroll KW, Shah SV, Lucar OA, Premeaux TA, Shikuma CM, Corley MJ, Mosher M, Woolley G, Bowler S, Ndhlovu LC, Reeves RK. Mucosal-homing natural killer cells are associated with aging in persons living with HIV. Cell Rep Med 2022; 3:100773. [PMID: 36208628 PMCID: PMC9589002 DOI: 10.1016/j.xcrm.2022.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/29/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022]
Abstract
Natural killer (NK) cells are critical modulators of HIV transmission and disease. Recent evidence suggests a loss of NK cell cytotoxicity during aging, yet analysis of NK cell biology and aging in people with HIV (PWH) is lacking. Herein, we perform comprehensive analyses of people aging with and without HIV to determine age-related NK phenotypic changes. Utilizing high-dimensional flow cytometry, we analyze 30 immune-related proteins on peripheral NK cells from healthy donors, PWH with viral suppression, and viremic PWH. NK cell phenotypes are dynamic across aging but change significantly in HIV and on antiretroviral drug therapy (ART). NK cells in healthy aging show increasing ⍺4β7 and decreasing CCR7 expression and a reverse phenomenon in PWH. These HIV-associated trafficking patterns could be due to NK cell recruitment to HIV reservoir formation in lymphoid tissue or failed mucosal signaling in the HIV-infected gut but appear to be tight delineators of age-related NK cell changes.
Collapse
Affiliation(s)
- Kyle W Kroll
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA
| | - Spandan V Shah
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Olivier A Lucar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Thomas A Premeaux
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA
| | | | - Michael J Corley
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA
| | - Matthew Mosher
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA
| | - Griffin Woolley
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA
| | - Scott Bowler
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA
| | - Lishomwa C Ndhlovu
- Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York City, NY, USA
| | - R Keith Reeves
- Division of Innate and Comparative Immunology, Center for Human Systems Immunology, Duke University, Durham, NC, USA; Department of Surgery, Duke University, Durham, NC, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
14
|
Pace M, Ogbe A, Hurst J, Robinson N, Meyerowitz J, Olejniczak N, Thornhill JP, Jones M, Waters A, Lwanga J, Kuldanek K, Hall R, Zacharopoulou P, Martin GE, Brown H, Nwokolo N, Peppa D, Fox J, Fidler S, Frater J. Impact of antiretroviral therapy in primary HIV infection on natural killer cell function and the association with viral rebound and HIV DNA following treatment interruption. Front Immunol 2022; 13:878743. [PMID: 36110857 PMCID: PMC9468877 DOI: 10.3389/fimmu.2022.878743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/29/2022] [Indexed: 11/25/2022] Open
Abstract
Natural Killer (NK) cells play a key role in controlling HIV replication, with potential downstream impact on the size of the HIV reservoir and likelihood of viral rebound after antiretroviral therapy (ART) cessation. It is therefore important to understand how primary HIV infection (PHI) disrupts NK cell function, and how these functions are restored by early ART. We examined the impact of commencing ART during PHI on phenotypic and functional NK cell markers at treatment initiation (baseline), 3 months, 1 year, and 2 years in seven well-characterised participants in comparison to HIV seronegative volunteers. We then examined how those NK cell properties differentially impacted by ART related to time to viral rebound and HIV DNA levels in 44 individuals from the SPARTAC trial who stopped ART after 48 weeks treatment, started during PHI. NK cell markers that were significantly different between the seven people with HIV (PWH) treated for 2 years and HIV uninfected individuals included NKG2C levels in CD56dim NK cells, Tim-3 expression in CD56bright NK cells, IFN-γ expressed by CD56dim NK cells after IL-12/IL-18 stimulation and the fraction of Eomes-/T-bet+ in CD56dim and CD56bright NK cells. When exploring time to viral rebound after stopping ART among the 44 SPARTAC participants, no single NK phenotypic marker correlated with control. Higher levels of IL-12/IL-18 mediated NK cell degranulation at baseline were associated with longer times to viral rebound after treatment interruption (P=0.028). Additionally, we found higher fractions of CD56dim NK cells in individuals with lower levels of HIV DNA (P=0.048). NKG2A and NKp30 levels in CD56neg NK cells were higher in patients with lower HIV DNA levels (p=0.00174, r=-0.49 and p=0.03, r= -0.327, respectively) while CD27 levels were higher in those with higher levels of HIV DNA (p=0.026). These data show NK cell functions are heterogeneously impacted by HIV infection with a mixed picture of resolution on ART, and that while NK cells may affect HIV DNA levels and time to viral rebound, no single NK cell marker defined delayed viral rebound.
Collapse
Affiliation(s)
- Matthew Pace
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ane Ogbe
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jacob Hurst
- Etcembly Ltd, Harwell Campus, Didcot, United Kingdom
| | - Nicola Robinson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jodi Meyerowitz
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Natalia Olejniczak
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John P. Thornhill
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Mathew Jones
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Anele Waters
- Department of Infection, Guys and St Thomas’ National Health Service (NHS) Trust, London, United Kingdom
| | - Julianne Lwanga
- Department of Infection, Guys and St Thomas’ National Health Service (NHS) Trust, London, United Kingdom
| | - Kristen Kuldanek
- Department of HIV Medicine, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | - Rebecca Hall
- Department of HIV Medicine, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
| | | | - Genevieve E. Martin
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases, Monash University, Melbourne, VIC, Australia
| | - Helen Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nneka Nwokolo
- Department of HIV/GUM, Chelsea and Westminster Hospital, London, United Kingdom
| | - Dimitra Peppa
- Division of Infection and Immunity, University College, London, United Kingdom
| | - Julie Fox
- Department of Infection, Guys and St Thomas’ National Health Service (NHS) Trust, London, United Kingdom
| | - Sarah Fidler
- Department of HIV Medicine, St Mary’s Hospital, Imperial College Healthcare National Health Service (NHS) Trust, London, United Kingdom
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
- National Institute for Health and Care Research (NIHR) Imperial College Biomedical Research Centre, London, United Kingdom
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research (NIHR) Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
15
|
Hove-Skovsgaard M, Møller DL, Hald A, Gerstoft J, Lundgren J, Ostrowski SR, Nielsen SD. Improved induced innate immune response after cART initiation in people with HIV. Front Immunol 2022; 13:974767. [PMID: 36059528 PMCID: PMC9428745 DOI: 10.3389/fimmu.2022.974767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Impairment of the innate immune function may contribute to the increased risk of bacterial and viral infections in people with HIV (PWH). In this study we aimed to investigate the induced innate immune responses in PWH prior to and after initiation of combinational antiretroviral therapy (cART). Furthermore, we aimed to investigate if the induced innate immune responses before initiation of cART were associated with CD4+ T-cell recovery one year after initiating cART. Material and method The induced innate immune response was assessed by the TruCulture® whole blood technique in 32 PWH before cART initiation and after 1, 6 and 12 months. To mimic bacterial and viral infections we used a panel of three stimuli (lipopolysaccharide (LPS), resiquimod (R848), and polyinosinic:polycytidylic acid (Poly I:C)) to stimulate the extracellular Toll-like receptor (TLR) 4 and the intracellular TLR7/8 and TLR3, respectively. The following cytokine responses were analyzed by Luminex 200: Tumor Necrosis Factor (TNF)-α, Interleukin (IL)-1b, IL-6, IL-8, IL-10, IL-12p40, IL17A, Interferon (IFN)-α, and IFN-γ. Results At baseline PWH with nadir CD4+ T-cell count <350 cell/µL had lower levels of LPS-, R848-, and Poly I:C-induced IL-6 and IFN-γ, LPS- and R848-induced TNF-α and IL-12, LPS induced IL-1b, and R848-induced IL-10 than PWH with nadir CD4+ T-cell count >350 cells/µL. The majority (>50%) had induced cytokine concentrations below the reference intervals at baseline which was most pronounced for the LPS- and Poly I:C-induced responses. The induced responses in the whole population improved after 12 months of cART, and more PWH had induced cytokine concentrations within the reference intervals after 12 months. However, the majority of PWH still had LPS-induced INF-α, INF-γ and Poly I:C-induced TNF-α and IL-6 below the reference interval. The induced innate immune responses before cART initiation were not associated with the CD4+ T-cell recovery after 12 months of cART. Conclusion The innate immune response was impaired in PWH, with a more pronounced impairment in PWH with low nadir CD4+ T-cell count. Initiation of cART improved the innate immune response, but compared to the reference intervals, some impairment remained in PWH without viral replication.
Collapse
Affiliation(s)
- Malene Hove-Skovsgaard
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dina Leth Møller
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Annemette Hald
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jan Gerstoft
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jens Lundgren
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Health, Immunity, and Infections, Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Susanne Dam Nielsen
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Navas A, Van de Wijer L, Jacobs-Cleophas M, Schimmel-Naber AM, van Cranenbroek B, van der Heijden WA, van der Lei RJ, Vergara Z, Netea MG, van der Ven AJAM, Kapinsky M, Koenen HJPM, Joosten LAB. Comprehensive phenotyping of circulating immune cell subsets in people living with HIV. J Immunol Methods 2022; 507:113307. [PMID: 35760096 DOI: 10.1016/j.jim.2022.113307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022]
Abstract
Systemic chronic inflammation and immune dysfunction are recognized as drivers of the development of non-AIDS related comorbidities (NARCs) in people living with HIV (PLHIV). In order to lower the risk of NARCs, it is critical to elucidate what is the contribution of alterations in the composition and function of circulating immune cells to NARCs-related pathogenesis. Findings from previous immunophenotyping studies in PLHIV are highly heterogeneous and it is not fully understood to what extent phenotypic changes on immune cells play a role in the dysregulated inflammatory response observed. In this study, three flow cytometry panels were designed and standardized to phenotypically and functionally identify the main circulating immune cell subsets in PLHIV. To reduce variability, up to 10 markers out of the approximately 20 markers in each panel were used in a custom dry format DURA Innovations (LUCID product line). Intra-assay precision tests performed for the selected cell subsets showed that the three panels had a %CV below 18% for percent of positive cells and the MFI (mean fluorescent intensity) of lineage markers. Our reported pipeline for immunophenotypic analysis facilitated the discrimination of 1153 cell populations, providing an integrated overview of circulating innate and adaptative immune cells as well as the cells' functional status in terms of activation, exhaustion, and maturation. When combined with unsupervised computational techniques, this standardized immunophenotyping approach may support the discovery of novel phenotypes with clinical relevance in NARCs and demonstrate future utility in other immune-mediated diseases.
Collapse
Affiliation(s)
- Adriana Navas
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud university medical center, Nijmegen, the Netherlands.
| | - Lisa Van de Wijer
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud university medical center, Nijmegen, the Netherlands
| | - Maartje Jacobs-Cleophas
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud university medical center, Nijmegen, the Netherlands
| | - A Marlies Schimmel-Naber
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud university medical center, Nijmegen, the Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud university medical center, Nijmegen, the Netherlands
| | - Wouter A van der Heijden
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud university medical center, Nijmegen, the Netherlands
| | - Roelof J van der Lei
- Beckman Coulter Life Sciences, 5350 Lakeview Pkwy S Drive Indianapolis, Indiana 46268, United States
| | - Zaida Vergara
- Beckman Coulter Life Sciences, 5350 Lakeview Pkwy S Drive Indianapolis, Indiana 46268, United States
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud university medical center, Nijmegen, the Netherlands; Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Germany
| | - André J A M van der Ven
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud university medical center, Nijmegen, the Netherlands
| | - Michael Kapinsky
- Beckman Coulter Life Sciences, 5350 Lakeview Pkwy S Drive Indianapolis, Indiana 46268, United States
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Laboratory for Medical Immunology, Radboud university medical center, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud university medical center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
| |
Collapse
|
17
|
Sharan R, Ganatra SR, Bucsan AN, Cole J, Singh DK, Alvarez X, Gough M, Alvarez C, Blakley A, Ferdin J, Thippeshappa R, Singh B, Escobedo R, Shivanna V, Dick EJ, Hall-Ursone S, Khader SA, Mehra S, Rengarajan J, Kaushal D. Antiretroviral therapy timing impacts latent tuberculosis infection reactivation in a tuberculosis/simian immunodeficiency virus coinfection model. J Clin Invest 2021; 132:153090. [PMID: 34855621 PMCID: PMC8803324 DOI: 10.1172/jci153090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Studies using the nonhuman primate model of Mycobacteriumtuberculosis/simian immunodeficiency virus coinfection have revealed protective CD4+ T cell–independent immune responses that suppress latent tuberculosis infection (LTBI) reactivation. In particular, chronic immune activation rather than the mere depletion of CD4+ T cells correlates with reactivation due to SIV coinfection. Here, we administered combinatorial antiretroviral therapy (cART) 2 weeks after SIV coinfection to study whether restoration of CD4+ T cell immunity occurred more broadly, and whether this prevented reactivation of LTBI compared to cART initiated 4 weeks after SIV. Earlier initiation of cART enhanced survival, led to better control of viral replication, and reduced immune activation in the periphery and lung vasculature, thereby reducing the rate of SIV-induced reactivation. We observed robust CD8+ T effector memory responses and significantly reduced macrophage turnover in the lung tissue. However, skewed CD4+ T effector memory responses persisted and new TB lesions formed after SIV coinfection. Thus, reactivation of LTBI is governed by very early events of SIV infection. Timing of cART is critical in mitigating chronic immune activation. The potential novelty of these findings mainly relates to the development of a robust animal model of human M. tuberculosis/HIV coinfection that allows the testing of underlying mechanisms.
Collapse
Affiliation(s)
- Riti Sharan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Shashank R Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Allison N Bucsan
- Department of Molecular Microbiology, Washington University, St. Louis, St. Louis, United States of America
| | - Journey Cole
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Dhiraj K Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Xavier Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Maya Gough
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Cynthia Alvarez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Alyssa Blakley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Justin Ferdin
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Rajesh Thippeshappa
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Bindu Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Ruby Escobedo
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Vinay Shivanna
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Edward J Dick
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Shannan Hall-Ursone
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University, St. Louis, St. Louis, United States of America
| | - Smriti Mehra
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, United States of America
| | - Jyothi Rengarajan
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, United States of America
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, United States of America
| |
Collapse
|
18
|
Carrasco I, Tarancon-Diez L, Vázquez-Alejo E, Jiménez de Ory S, Sainz T, Apilanez M, Epalza C, Guillén S, Tomás Ramos J, Díez C, Bernardino JI, Iribarren JA, Zamora A, Muñoz-Fernández MÁ, Navarro ML. Innate and adaptive abnormalities in youth with vertically acquired HIV through a multicentre cohort in Spain. J Int AIDS Soc 2021; 24:e25804. [PMID: 34672108 PMCID: PMC8528666 DOI: 10.1002/jia2.25804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction Immune abnormalities have been described among youth with vertically acquired HIV (YWVH) despite antiretroviral treatment (ART). The CD4/CD8 ratio could be a useful prognostic marker. We assess immune activation and senescence in a cohort of YWVH in comparison to youth without vertically acquired HIV. Methods YWVH under suppressive ART were included and compared to a group of HIV‐negative donors (HD) matched by age and sex, from September 2019 to September 2020. Subset distribution and expression of activation, maturation, senescence and exhaustion markers on T and NK cells were studied on peripheral blood mononuclear cells by multiparametric flow cytometry. Results Thirty‐two YWVH (median age: 24.4 years (interquartile range: 22.5 to 28.3 years)) were included. Among YWVH, CD4‐ and CD8‐T cells showed high levels of activation (HLA‐DR/CD38), IL‐7 receptor expression (CD127) and exhaustion (TIM‐3). Regarding NK cells, YWVH showed increased levels of activation and exhaustion markers compared to HD. Strong inverted correlations were observed between T‐cell activation (HLA‐DR/CD38), senescence (CD57) and exhaustion (TIGIT, PD‐1) levels with the CD4/CD8 ratio among YWVH. HLA‐DR, CD69, NKG2D and NKG2A expression levels on NK cells also correlated with the CD4/CD8 ratio. Age at ART initiation was directly associated with higher frequency of CD16high NK‐cell subsets, exhaustion T‐cell levels (CD57, TIM3) and NK cells activation levels. Conclusions Immunological changes associated with vertically acquired HIV, characterized by increased activation and exhaustion levels in innate and adaptive immune components, are only partially restored by ART. The CD4/CD8 ratio can be a useful marker of disease progression for routine clinical practice.
Collapse
Affiliation(s)
- Itzíar Carrasco
- Infectious Diseases in Paediatric Population, Gregorio Marañón Research Institute (IiSGM) and University Hospital, Madrid, Spain.,Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Tarancon-Diez
- Immunology Section, Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
| | - Elena Vázquez-Alejo
- Immunology Section, Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
| | - Santiago Jiménez de Ory
- Infectious Diseases in Paediatric Population, Gregorio Marañón Research Institute (IiSGM) and University Hospital, Madrid, Spain
| | - Talía Sainz
- Department of Paediatrics, La Paz Research Institute (IdiPAZ) and University Hospital, Madrid, Spain
| | - Miren Apilanez
- Department of Paediatrics, Donostia University Hospital, País Vasco, Spain
| | - Cristina Epalza
- Department of Paediatrics, 12 de Octubre University Hospital, Madrid, Spain
| | - Sara Guillén
- Department of Paediatrics, Getafe University Hospital, Madrid, Spain
| | - José Tomás Ramos
- Department of Paediatrics, Clínico San Carlos University Hospital, Madrid, Spain
| | - Cristina Díez
- Department Infectious Diseases, Gregorio Marañón Research Institute and University Hospital, Madrid, Spain
| | - Jose Ignacio Bernardino
- Department of Infectious Diseases, La Paz Research Institute (IdiPAZ) and University Hospital, Madrid, Spain
| | | | - Angielys Zamora
- Biochemistry Section, Gregorio Marañón University Hospital, Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Inmuno-Biology Molecular Laboratory, Gregorio Marañón University General Hospital (HGUGM), Gregorio Marañón Health Research Institute (IiSGM), Spanish HIV HGM BioBank, Madrid, Spain
| | - María Luisa Navarro
- Infectious Diseases in Paediatric Population, Gregorio Marañón Research Institute (IiSGM) and University Hospital, Madrid, Spain.,Universidad Complutense de Madrid, Madrid, Spain
| | -
- Infectious Diseases in Paediatric Population, Gregorio Marañón Research Institute (IiSGM) and University Hospital, Madrid, Spain
| |
Collapse
|
19
|
Nabatanzi R, Bayigga L, Cose S, Canderan G, Rowland Jones S, Joloba M, Nakanjako D. Innate lymphoid cell dysfunction during long-term suppressive antiretroviral therapy in an African cohort. BMC Immunol 2021; 22:59. [PMID: 34445953 PMCID: PMC8390268 DOI: 10.1186/s12865-021-00450-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 08/09/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Innate lymphoid cells (ILC) are lymphoid lineage innate immune cells that do not mount antigen-specific responses due to their lack of B and T-cell receptors. ILCs are predominantly found at mucosal surfaces, as gatekeepers against invading infectious agents through rapid secretion of immune regulatory cytokines. HIV associated destruction of mucosal lymphoid tissue depletes ILCs, among other immune dysfunctions. Studies have described limited restoration of ILCs during the first three years of combined antiretroviral therapy (cART). Little is known about restoration of ILCs during long-term cART, particularly in sub-Saharan Africa which hosts increasing numbers of adults with at least a decade of cART. RESULTS We examined phenotypes and function of ILCs from peripheral blood mononuclear cells after 12 years of suppressive cART. We report that ILC1 frequencies (T-BET + CD127 + and CD161 +) were higher in cART-treated HIV-infected relative to age-matched health HIV-negative adults; P = 0.04 whereas ILC precursors (ILCP) were comparable in the two groups (P = 0.56). Interferon gamma (IFN-γ) secretion by ILC1 was higher among cART-treated HIV-infected relative to HIV-negative adults (P = 0.03). CONCLUSION HIV associated alteration of ILC persisted during cART and may likely affect the quality of host innate and adaptive immune responses during long-term cART.
Collapse
Affiliation(s)
- Rose Nabatanzi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Lois Bayigga
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Stephen Cose
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Glenda Canderan
- Department of Pathology, Case Western Reserve University, Cleveland, OH USA
| | | | - Moses Joloba
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, Makerere University College of Health Sciences, Kampala, Uganda
| | - Damalie Nakanjako
- Department of Medicine, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
- Infectious Diseases Institute, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
20
|
Isaguliants M, Nosik M, Karlsen A, Petrakova N, Enaeva M, Lebedeva N, Podchufarova D, Laga V, Gromov K, Nazarov A, Chowdhury S, Sinitsyn M, Sobkin A, Chistyakova N, Aleshina S, Grabarnik A, Palefsky JM. Prevalence and Risk Factors of Infection with High Risk Human Papilloma Viruses among HIV-Positive Women with Clinical Manifestations of Tuberculosis in a Middle-Income Country. Biomedicines 2021; 9:biomedicines9060683. [PMID: 34208764 PMCID: PMC8234035 DOI: 10.3390/biomedicines9060683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Women living with HIV-1 are at high risk of infection with human papillomavirus of high carcinogenic risk (HR HPVs). M. tuberculosis (TB) promotes HPV infection and increases the risk to develop HPV-associated cancer. Our knowledge of persisting HR HPVs genotypes, and of the factors promoting HR HPV infection in people living with HIV-1 with clinical TB manifestations is sparse. Here, we analyzed 58 women living with HIV-1 with clinical TB manifestations (WLWH with TB) followed up in specialized centers in Russia, a middle income country endemic for HIV-1 and TB, for the presence in cervical smears of DNA of twelve HR HPV genotypes. DNA encoding HPV16 E5, E6/E7 was sequenced. Sociodemographic data of patients was collected by questionnaire. All women were at C2-C3 stages of HIV-infection (by CDC). The majority were over 30 years old, had secondary education, were unemployed, had sexual partners, experienced 2–3 pregnancies and at least one abortion, and were smokers. The most prevalent was HPV16 detected in the cervical smears of 38% of study participants. Altogether 34.5% of study participants were positive for HR HPV types other than HPV16; however, but none of these types was seen in more than 7% of tested samples. Altogether, 20.7% of study participants were positive for several HR HPV types. Infections with HPVs other than HPV16 were common among WLWH with generalized TB receiving combined ART/TB-therapy, and associated with their ability to work, indirectly reflecting both their health and lifestyle. The overall prevalence of HR HPVs was associated with sexual activity of women reflected by the number of pregnancies, and of HPV 16, with young age; none was associated to CD4+-counts, route of HIV-infection, duration of life with HIV, forms of TB-infection, or duration of ART, characterizing the immune status. Thus, WLWH with TB—especially young—were predisposed to infection with HPV16, advancing it as a basis for a therapeutic HPV vaccine. Phylogenetic analysis of HPV16 E5, E6/E7 DNA revealed no common ancestry; sequences were similar to those of the European and American HPV16 strains, indicating that HPV vaccine for WLWH could be the same as HPV16 vaccines developed for the general population. Sociodemographic and health correlates of HR HPV prevalence in WLWH deserve further analysis to develop criteria/recommendations for prophylactic catch-up and therapeutic HPV vaccination of this highly susceptible and vulnerable population group.
Collapse
Affiliation(s)
- Maria Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
- Institute of Microbiology and Virology, Riga Stradins University, LV-1007 Riga, Latvia
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (A.K.); (N.P.); (V.L.); (K.G.)
- Correspondence: or
| | - Marina Nosik
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia;
| | - Anastasia Karlsen
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (A.K.); (N.P.); (V.L.); (K.G.)
- I.I. Mechnikov Institute of Vaccine and Sera, 105064 Moscow, Russia;
- Medical Academy for Continuous Professional Education, 125993 Moscow, Russia
| | - Natalia Petrakova
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (A.K.); (N.P.); (V.L.); (K.G.)
| | - Marina Enaeva
- Moscow Clinical Scientific Center Named after A.S. Loginov, 111123 Moscow, Russia;
| | - Natalia Lebedeva
- Moscow Regional Center for Prevention and Control of AIDS and Infectious Diseases, 129110 Moscow, Russia; (N.L.); (D.P.)
| | - Daria Podchufarova
- Moscow Regional Center for Prevention and Control of AIDS and Infectious Diseases, 129110 Moscow, Russia; (N.L.); (D.P.)
| | - Vita Laga
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (A.K.); (N.P.); (V.L.); (K.G.)
| | - Konstantin Gromov
- N.F. Gamaleya National Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (A.K.); (N.P.); (V.L.); (K.G.)
| | | | - Sona Chowdhury
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; (S.C.); (J.M.P.)
| | - Mikhail Sinitsyn
- Moscow Scientific and Clinical Center for TB Control, 107076 Moscow, Russia; (M.S.); (S.A.); (A.G.)
| | - Alexander Sobkin
- G.A. Zaharyan Moscow Tuberculosis Clinic, Department for Treatment of TB Patients with HIV Infection, 125466 Moscow, Russia; (A.S.); (N.C.)
| | - Natalya Chistyakova
- G.A. Zaharyan Moscow Tuberculosis Clinic, Department for Treatment of TB Patients with HIV Infection, 125466 Moscow, Russia; (A.S.); (N.C.)
| | - Svetlana Aleshina
- Moscow Scientific and Clinical Center for TB Control, 107076 Moscow, Russia; (M.S.); (S.A.); (A.G.)
| | - Alexei Grabarnik
- Moscow Scientific and Clinical Center for TB Control, 107076 Moscow, Russia; (M.S.); (S.A.); (A.G.)
| | - Joel M. Palefsky
- Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA; (S.C.); (J.M.P.)
| |
Collapse
|
21
|
Isaguliants M, Bayurova E, Avdoshina D, Kondrashova A, Chiodi F, Palefsky JM. Oncogenic Effects of HIV-1 Proteins, Mechanisms Behind. Cancers (Basel) 2021; 13:305. [PMID: 33467638 PMCID: PMC7830613 DOI: 10.3390/cancers13020305] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
People living with human immunodeficiency virus (HIV-1) are at increased risk of developing cancer, such as Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), cervical cancer, and other cancers associated with chronic viral infections. Traditionally, this is linked to HIV-1-induced immune suppression with depletion of CD4+ T-helper cells, exhaustion of lymphopoiesis and lymphocyte dysfunction. However, the long-term successful implementation of antiretroviral therapy (ART) with an early start did not preclude the oncological complications, implying that HIV-1 and its antigens are directly involved in carcinogenesis and may exert their effects on the background of restored immune system even when present at extremely low levels. Experimental data indicate that HIV-1 virions and single viral antigens can enter a wide variety of cells, including epithelial. This review is focused on the effects of five viral proteins: envelope protein gp120, accessory protein negative factor Nef, matrix protein p17, transactivator of transcription Tat and reverse transcriptase RT. Gp120, Nef, p17, Tat, and RT cause oxidative stress, can be released from HIV-1-infected cells and are oncogenic. All five are in a position to affect "innocent" bystander cells, specifically, to cause the propagation of (pre)existing malignant and malignant transformation of normal epithelial cells, giving grounds to the direct carcinogenic effects of HIV-1.
Collapse
Affiliation(s)
- Maria Isaguliants
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ekaterina Bayurova
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Darya Avdoshina
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Alla Kondrashova
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Joel M. Palefsky
- Department of Medicine, University of California, San Francisco, CA 94117, USA;
| |
Collapse
|
22
|
TLR agonists enhance responsiveness of inflammatory innate immune cells in HLA-B*57-positive HIV patients. J Mol Med (Berl) 2020; 99:147-158. [PMID: 33278000 PMCID: PMC7782382 DOI: 10.1007/s00109-020-01996-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Abstract HLA-B*57 affects the course of HIV infection. Under antiretroviral therapy, its effects cannot be explained by outstandingly efficient T cell responses alone but may also involve cells of innate immunity. Studying in vitro stimulation with Pam3CSK4, E. coli LPS-B5 and CpG-ODN-2216, we observed greater induction of IL-6/IL-1beta double-positive CD14+CD16++ monocytes as well as IFN-gamma-positive cytotoxic CD56highCD16neg NK cells in HLA-B*57- versus HLA-B*44-positive HIV patients, while TNF-alpha induction remained unchanged. Differences were not seen in the other monocyte and NK cell subsets or in HLA-matched healthy controls. Our findings show that, in virally suppressed HIV infection, HLA-B*57 is associated with enhanced responsiveness of inflammatory innate immune cells to TLR ligands, possibly contributing to increased vulnerability in sepsis. Key messages • HLA-B*57 is a host factor affecting clinical outcomes of HIV infection. • HLA-B*57 modifies inflammatory subsets of NK cells and monocytes in HIV infection. • In HLA-B*57-positive HIV patients TLR agonists induce enhanced IL-6/IL-1beta in monocytes. • NK cells from HLA-B*57 HIV patients release more IFN-gamma upon TLR costimulation. • HLA-B*57 is linked to enhanced inflammatory responsiveness to TLR ligands. Supplementary Information The online version contains supplementary material available at 10.1007/s00109-020-01996-7.
Collapse
|
23
|
The Impact of microRNA Regulation on Immune Recovery in HIV-1-Infected Patients Treated during Acute Infection: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5782927. [PMID: 33354568 PMCID: PMC7735831 DOI: 10.1155/2020/5782927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/29/2020] [Accepted: 11/15/2020] [Indexed: 12/02/2022]
Abstract
microRNAs (miRNAs) are small noncoding RNAs involved in a large range of cellular activities and can be used as biomarkers and indicators for diagnosis. We investigated the alterations in miRNA profiles in immune reconstituted vs. nonimmune reconstituted HIV-1-infected individuals to assess the association between miRNAs and the occurrence of immunological nonresponses, with the aim of searching for miRNA-based biomarkers for these HIV-1-infected individuals. Thirteen immunological responders (IRs) and 12 immunological nonresponders (INRs) were recruited, and RNA was collected from the plasma samples of the 25 HIV-1-infected individuals at both baseline and after 24 months of maintaining virological suppression (VS). Next-generation sequencing was used to detect miRNAs and evaluate the expression differences in miRNAs between IR and INR patients and between baseline and after 24 months of maintaining VS. Samples from 13 IRs and 11 INRs were successfully sequenced. The horizontal comparison of differentially expressed miRNAs between the groups and the longitudinal comparison of differentially expressed miRNAs between baseline and after 24 months of maintaining VS showed that a large proportion of miRNAs in INRs are downregulated compared to the levels in IRs. We also found that the miRNA let-7d-5p was downregulated in 9 INRs but only in 2 IRs by more than 2-fold. The difference was significant. In summary, these results demonstrate for the first time that a large proportion of miRNAs are downregulated in INRs compared with IRs, and the miRNA let-7d-5p is a potential biomarker for INRs.
Collapse
|
24
|
Weinberg A, Tugizov S, Pandiyan P, Jin G, Rakshit S, Vyakarnam A, Naglik JR. Innate immune mechanisms to oral pathogens in oral mucosa of HIV-infected individuals. Oral Dis 2020; 26 Suppl 1:69-79. [PMID: 32862519 PMCID: PMC7570967 DOI: 10.1111/odi.13470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A crucial aspect of mucosal HIV transmission is the interaction between HIV, the local environmental milieu and immune cells. The oral mucosa comprises many host cell types including epithelial cells, CD4 + T cells, dendritic cells and monocytes/macrophages, as well as a diverse microbiome predominantly comprising bacterial species. While the oral epithelium is one of the first sites exposed to HIV through oral-genital contact and nursing infants, it is largely thought to be resistant to HIV transmission via mechanisms that are still unclear. HIV-1 infection is also associated with predisposition to secondary infections, such as tuberculosis, and other diseases including cancer. This review addresses the following questions that were discussed at the 8th World Workshop on Oral Health and Disease in AIDS held in Bali, Indonesia, 13 September –15 September 2019: (a) How does HIV infection affect epithelial cell signalling? (b) How does HIV infection affect the production of cytokines and other innate antimicrobial factors, (c) How is the mucosal distribution and function of immune cells altered in HIV infection? (d) How do T cells affect HIV (oral) pathogenesis and cancer? (e) How does HIV infection lead to susceptibility to TB infections?
Collapse
Affiliation(s)
- Aaron Weinberg
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sharof Tugizov
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ge Jin
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Srabanti Rakshit
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Annapurna Vyakarnam
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
25
|
Cao Y, Wang X, Jin T, Tian Y, Dai C, Widarma C, Song R, Xu F. Immune checkpoint molecules in natural killer cells as potential targets for cancer immunotherapy. Signal Transduct Target Ther 2020; 5:250. [PMID: 33122640 PMCID: PMC7596531 DOI: 10.1038/s41392-020-00348-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/13/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated the potential of natural killer (NK) cells in immunotherapy to treat multiple types of cancer. NK cells are innate lymphoid cells that play essential roles in tumor surveillance and control that efficiently kill the tumor and do not require the major histocompatibility complex. The discovery of the NK's potential as a promising therapeutic target for cancer is a relief to oncologists as they face the challenge of increased chemo-resistant cancers. NK cells show great potential against solid and hematologic tumors and have progressively shown promise as a therapeutic target for cancer immunotherapy. The effector role of these cells is reliant on the balance of inhibitory and activating signals. Understanding the role of various immune checkpoint molecules in the exhaustion and impairment of NK cells when their inhibitory receptors are excessively expressed is particularly important in cancer immunotherapy studies and clinical implementation. Emerging immune checkpoint receptors and molecules have been found to mediate NK cell dysfunction in the tumor microenvironment; this has brought up the need to explore further additional NK cell-related immune checkpoints that may be exploited to enhance the immune response to refractory cancers. Accordingly, this review will focus on the recent findings concerning the roles of immune checkpoint molecules and receptors in the regulation of NK cell function, as well as their potential application in tumor immunotherapy.
Collapse
Affiliation(s)
- Yuqing Cao
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Xiaoyu Wang
- College of Life and Health Science, Northeastern University, 110819, Shenyang, China
| | - Tianqiang Jin
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China
| | - Crystal Widarma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, 110004, Shenyang, China.
| |
Collapse
|
26
|
Nakanjako D, Zalwango F, Wairagala P, Luboga F, Andia Biraro I, Bukirwa VD, Mboowa MG, Cose S, Seeley J, Elliott A. Career development for infection and immunity research in Uganda: a decade of experience from the Makerere University - Uganda Virus Research Institute research and training programme. AAS Open Res 2020; 3:26. [PMID: 32734140 PMCID: PMC7372530 DOI: 10.12688/aasopenres.13066.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
Background: The Makerere University/Uganda Virus Research Institute (UVRI) Centre of Excellence for Infection & Immunity Research and Training (MUII) is a collaborative programme supporting excellence in Infection and Immunity (I&I) research in Uganda. Set up in 2008, MUII aims to produce internationally competitive Ugandan and East African I&I research leaders, and develop human and infrastructural resources to support research and training excellence. We undertook an internal evaluation of MUII’s achievements, challenges and lessons learned between 08-2008 and 12-2019, to inform programmes seeking to build Africa’s health research expertise. Methods: Quantitative data were abstracted from programme annual reports. Qualitative data were obtained in 03-04/2019: a cross-sectional evaluation was undertaken among a purposefully selected representative sample of 27 trainees and two programme staff. Qualitative data was analysed according to pre-determined themes of achievements, challenges, lessons learned and recommendations for improvement. Results: By 12-2019, MUII had supported 68 fellowships at master’s-level and above (50% female: 23 Masters, 27 PhD, 15 post-doctoral, three group-leaders) and over 1,000 internships. Fellows reported career advancement, mentorship by experts, and improved research skills and outputs. Fellows have published over 300 papers, secured grants worth over £20m, established over 40 international collaborations, and taken on research and academic leadership positions in the country. Key lessons were: i) Efficient administration provides a conducive environment for high quality research; ii) Institutions need supportive policies for procurement, including provisions for purchases of specific biological research reagents from international manufacturers; iii) Strong international and multi-disciplinary collaboration provides a critical mass of expertise to mentor researchers in development; and iv) Mentorship catalyses young scientists to progress from graduate trainees to productive academic researchers, relevant to society’s most pressing health challenges. Conclusions: Sustainable academic productivity can be achieved through efficient operational support, global collaboration and mentorship to provide solutions to Africa’s health challenges.
Collapse
Affiliation(s)
- Damalie Nakanjako
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda.,Department of Medicine, School of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Flavia Zalwango
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit,, Uganda Virus Research Institute, Entebbe, Uganda
| | - Pamela Wairagala
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit,, Uganda Virus Research Institute, Entebbe, Uganda
| | - Fiona Luboga
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda
| | - Irene Andia Biraro
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda.,Department of Medicine, School of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Victoria Diana Bukirwa
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda
| | - Mary Gorrethy Mboowa
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda
| | - Steve Cose
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda.,Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit,, Uganda Virus Research Institute, Entebbe, Uganda
| | - Janet Seeley
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit,, Uganda Virus Research Institute, Entebbe, Uganda.,Global Health and Development Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Alison Elliott
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda.,Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit,, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
27
|
Nakanjako D, Zalwango F, Wairagala P, Luboga F, Andia Biraro I, Bukirwa VD, Mboowa MG, Cose S, Seeley J, Elliott A. Career development for infection and immunity research in Uganda: a decade of experience from the Makerere University – Uganda Virus Research Institute research and training programme. AAS Open Res 2020; 3:26. [DOI: 10.12688/aasopenres.13066.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The Makerere University/Uganda Virus Research Institute (UVRI) Centre of Excellence for Infection & Immunity Research and Training (MUII) is a collaborative programme supporting excellence in Infection and Immunity (I&I) research in Uganda. Set up in 2008, MUII aims to produce internationally competitive Ugandan and East African I&I research leaders, and develop human and infrastructural resources to support research and training excellence. We undertook an internal evaluation of MUII’s achievements, challenges and lessons learned between August 2008 and December 2019, to inform programmes seeking to build Africa’s health research expertise. Methods: Quantitative data were abstracted from programme annual reports. Qualitative data were obtained in March and April 2019: a cross-sectional evaluation was undertaken among a purposefully selected representative sample of 27 trainees and two programme staff. Qualitative data was analysed according to pre-determined themes of achievements, challenges, lessons learned and recommendations for improvement. Results: By December 2019, MUII had supported 68 fellowships at master’s-level and above (50% female: 23 Masters, 27 PhD, 15 post-doctoral, three group-leader fellows) and over 1,000 internships. Fellows reported career advancement, mentorship by experts, and improved research skills and outputs. Fellows have published over 300 papers, secured grants worth over £20m, established over 40 international collaborations, and taken on research and academic leadership positions in the country. Key lessons for success include the following: efficient administration provides an enabling environment; institutions need supportive policies for procurement, including provisions for purchases of specific biological research reagents from international manufacturers; strong international, multi-disciplinary collaboration provides a critical mass of expertise to mentor researchers in development; and mentorship catalyses young scientists to progress from graduate trainees to productive academic researchers, relevant to society’s most pressing health challenges. Conclusions: Sustainable academic productivity can be achieved through efficient operational support, global collaboration and mentorship to provide solutions to Africa’s health challenges.
Collapse
|
28
|
Nabatanzi R, Bayigga L, Cose S, Rowland Jones S, Joloba M, Canderan G, Nakanjako D. Monocyte Dysfunction, Activation, and Inflammation After Long-Term Antiretroviral Therapy in an African Cohort. J Infect Dis 2020; 220:1414-1419. [PMID: 31323092 PMCID: PMC6761975 DOI: 10.1093/infdis/jiz320] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/03/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Monocyte dysfunction may persist during antiretroviral therapy (ART). METHODS Frozen peripheral blood mononuclear cells of 30 human immunodeficiency virus (HIV)-infected ART-treated adults with sustained viral suppression and CD4 counts ≥500 cells/µL were consecutively analyzed for monocyte phenotypes and function. RESULTS Nonclassical monocytes (CD14+, CD16++), interleukin (IL)-1β production, and expression of CD40 and CD86 were lower among ART-treated HIV-infected adults relative to age-matched HIV-negative adults (P = .01, P = .01, and P = .02, respectively). Intestinal fatty acid-binding protein, IL6, and soluble CD14 were higher among HIV-infected adults relative to HIV-negative adults (P = .0002, P = .04, and P = .0017, respectively). CONCLUSIONS Further investigation is required to understand drivers of persistent monocyte activation and dysfunction.
Collapse
Affiliation(s)
- Rose Nabatanzi
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Lois Bayigga
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Stephen Cose
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, Entebbe, Uganda
| | | | - Moses Joloba
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, Kampala, Uganda
| | - Glenda Canderan
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Damalie Nakanjako
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda.,Infectious Diseases Institute, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
29
|
Utay NS, Vigil KJ, Somasunderam A, Aulicino PC, Smulevitz B, Chiadika S, Wolf DS, Kimata JT, Arduino RC. Timing of Antiretroviral Therapy Initiation Determines Rectal Natural Killer Cell Populations. AIDS Res Hum Retroviruses 2020; 36:314-323. [PMID: 31838858 DOI: 10.1089/aid.2019.0225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Despite antiretroviral therapy (ART), innate and adaptive immunologic damage persists in the periphery and gut. T memory stem cells (Tscm) and natural killer (NK) cells are pivotal for host defense. Tscm are memory cells capable of antigen response and self-renewal, and circulating and gut NK cell populations may facilitate HIV control. The impact of early ART on circulating and gut Tscm and NK cells is unknown. We enrolled participants who initiated ART during acute versus chronic HIV-1 infection versus no ART in chronic infection. We performed flow cytometry to identify NK and Tscm cells in the blood and rectum and polymerase chain reaction to quantify the HIV-1 reservoir in both sites. We used the Mann-Whitney U-test and Spearman correlation coefficients for analysis. Participants who started ART in acute infection had lower rectal CD56brightCD16dim cell frequencies than participants who started ART in chronic HIV-1 infection and lower CD56bright and CD56brightCD16- cell frequencies than participants with chronic infection without ART. Higher circulating NK cell, CD56-CD16bright, CD56dim, and CD56dimCD16bright frequencies correlated with higher HIV-1 DNA levels in rectal CD4+ T cells, whereas higher circulating CD4+ T cell counts correlated with higher rectal NK, CD56brightCD16dim, and CD56dimCD16bright frequencies. Peripheral CD56brightCD16- cells were inversely associated with rectal CD56-CD16bright cells. Rectal CD8+ Tscm frequencies were higher in participants without ART than participants with chronic infection on ART. Timing of ART initiation determines rectal NK cell populations, and ART may influence rectal Tscm populations. Whether the gut reservoir contributes to NK cell activation requires further study.
Collapse
Affiliation(s)
- Netanya S. Utay
- Division of General Medicine, Department of Internal Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas
| | - Karen J. Vigil
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas
| | - Anoma Somasunderam
- Division of General Medicine, Department of Internal Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas
| | - Paula C. Aulicino
- Laboratorio de Biología Celular y Retrovirus, Hospital de Pediatría “Juan P. Garrahan”-CONICET, Buenos Aires, Argentina
| | - Beverly Smulevitz
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas
| | - Simbo Chiadika
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas
| | | | - Jason T. Kimata
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Roberto C. Arduino
- Division of Infectious Diseases, Department of Internal Medicine, McGovern Medical School, UT Health Science Center at Houston, Houston, Texas
| |
Collapse
|
30
|
CD300a inhibits CD16-mediated NK cell effector functions in HIV-1-infected patients. Cell Mol Immunol 2019; 16:940-942. [PMID: 31467415 PMCID: PMC6884514 DOI: 10.1038/s41423-019-0275-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
|
31
|
Casetti R, Sacchi A, Bordoni V, Grassi G, Cimini E, Besi F, Pinnetti C, Mondi A, Antinori A, Agrati C. In Human Immunodeficiency Virus primary infection, early combined antiretroviral therapy reduced γδ T-cell activation but failed to restore their polyfunctionality. Immunology 2019; 157:322-330. [PMID: 31206171 DOI: 10.1111/imm.13089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/24/2019] [Accepted: 06/06/2019] [Indexed: 12/28/2022] Open
Abstract
Primary and chronic human immunodeficiency virus (HIV) infection alters γδ T-cell features. However, there is no evidence about early combined antiretroviral therapy (cART) and γδ T-cell dynamics. In the present study, HIV-positive individuals were divided into those with early primary infection (EPI) and those with late primary infection (LPI). The analysis of γδ T cells was performed by flow cytometry before and after therapy. Polyfunctional profile was assessed after in vitro peripheral blood mononuclear cell (PBMC) exposure to specific antigens. The results show that primary infection induced an expansion of Vδ1 T cells in LPI. Before treatment, a massive activation of γδ T-cell subsets was observed in both groups of patients, that correlated with disease progression and was significantly reduced after cART introduction. Despite this, CD107A-expressing Vδ1 T cells in both groups were significantly fewer than in healthy donors, but were restored by therapy introduction. Polyfunctional analysis of Vδ1 T cells from HIV-positive individuals revealed a lower frequency of CD107A+ CCL-4+ Vδ1 T-cell subsets than healthy donors that persists after therapy. Functional profile of Vδ2 was similar to that in healthy donors before therapy but, at 6 months, a lower frequency of CD107A, interferon-γ- or tumor necrosis factor-α-producing Vδ2 T cells was observed in the EPI group. Finally, individuals with LPI showed a lower frequency of quadruple-functional Vδ2 T-cell subset. In conclusion, during primary HIV infection, the baseline Vδ1 T-cell activation is correlated with immune reconstitution potential. Moreover, an altered γδ polyfunctional profile occurred, persisting after cART. Further studies are needed to understand whether a longer treatment of primary infection may increase γδ T-cell functionality.
Collapse
Affiliation(s)
- Rita Casetti
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Alessandra Sacchi
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Veronica Bordoni
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Germana Grassi
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Francesca Besi
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Carmela Pinnetti
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Annalisa Mondi
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Andrea Antinori
- Clinical Department, National Institute for Infectious Diseases "Lazzaro Spallanzani", Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| |
Collapse
|
32
|
Stegelmeier AA, van Vloten JP, Mould RC, Klafuric EM, Minott JA, Wootton SK, Bridle BW, Karimi K. Myeloid Cells during Viral Infections and Inflammation. Viruses 2019; 11:E168. [PMID: 30791481 PMCID: PMC6410039 DOI: 10.3390/v11020168] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloid cells represent a diverse range of innate leukocytes that are crucial for mounting successful immune responses against viruses. These cells are responsible for detecting pathogen-associated molecular patterns, thereby initiating a signaling cascade that results in the production of cytokines such as interferons to mitigate infections. The aim of this review is to outline recent advances in our knowledge of the roles that neutrophils and inflammatory monocytes play in initiating and coordinating host responses against viral infections. A focus is placed on myeloid cell development, trafficking and antiviral mechanisms. Although known for promoting inflammation, there is a growing body of literature which demonstrates that myeloid cells can also play critical regulatory or immunosuppressive roles, especially following the elimination of viruses. Additionally, the ability of myeloid cells to control other innate and adaptive leukocytes during viral infections situates these cells as key, yet under-appreciated mediators of pathogenic inflammation that can sometimes trigger cytokine storms. The information presented here should assist researchers in integrating myeloid cell biology into the design of novel and more effective virus-targeted therapies.
Collapse
Affiliation(s)
- Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Elaine M Klafuric
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
33
|
Silveira-Mattos PS, Narendran G, Akrami K, Fukutani KF, Anbalagan S, Nayak K, Subramanyam S, Subramani R, Vinhaes CL, Souza DOD, Antonelli LR, Satagopan K, Porter BO, Sher A, Swaminathan S, Sereti I, Andrade BB. Differential expression of CXCR3 and CCR6 on CD4 + T-lymphocytes with distinct memory phenotypes characterizes tuberculosis-associated immune reconstitution inflammatory syndrome. Sci Rep 2019; 9:1502. [PMID: 30728405 PMCID: PMC6365576 DOI: 10.1038/s41598-018-37846-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/12/2018] [Indexed: 11/09/2022] Open
Abstract
Immune reconstitution inflammatory syndrome (IRIS) occurs in up to 40% of individuals co-infected with pulmonary tuberculosis (PTB) and HIV, primarily upon antiretroviral therapy (ART) initiation. Phenotypic changes in T-cells during TB-IRIS and their relationship with systemic inflammation are not fully understood. In this prospective cohort study, we followed 48 HIV-positive patients with PTB from South India before and after ART initiation, examining T-lymphocyte subsets and inflammatory biomarkers in peripheral blood. Quantification of naïve (CD27+CD45RO-) as well as effector memory CD4+ T cells (CD27-CD45RO+) at weeks 2-6 after ART initiation could distinguish TB-IRIS from non-IRIS individuals. Additional analyses revealed that ART reconstituted different quantities of CD4+ T lymphocyte subsets with preferential expansion of CXCR3+ CCR6- cells in TB-IRIS patients. Moreover, there was an expansion and functional restoration of central memory (CD27+CD45RO+) CXCR3+CCR6- CD4+ lymphocytes and corresponding cytokines, with reduction in CXCR3-CCR6+ cells after ART initiation only in those who developed TB-IRIS. Together, these observations trace a detailed picture of CD4+ T cell subsets tightly associated with IRIS, which may serve as targets for prophylactic and/or therapeutic interventions in the future.
Collapse
Affiliation(s)
- Paulo S Silveira-Mattos
- Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia, Brazil
| | | | - Kevan Akrami
- Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, United States of America
| | - Kiyoshi F Fukutani
- Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia, Brazil
| | | | - Kaustuv Nayak
- National Institute for Research in Tuberculosis, Chennai, India
| | | | | | - Caian L Vinhaes
- Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia, Brazil
| | - Deivide Oliveira-de Souza
- Instituto Gonçalo Moniz, Salvador, Bahia, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia, Brazil
| | - Lis R Antonelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Kumar Satagopan
- Government Hospital of Thoracic Medicine, Tambaram, Chennai, India
| | - Brian O Porter
- Clinical HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Irini Sereti
- Clinical HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bruno B Andrade
- Instituto Gonçalo Moniz, Salvador, Bahia, Brazil. .,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Fundação José Silveira, Salvador, Bahia, Brazil. .,Wellcome Trust Centre for Infectious Disease Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, Republic of South Africa. .,Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Bahia, Brazil. .,Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Bahia, Brazil. .,Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.
| |
Collapse
|
34
|
Ng SS, Engwerda CR. Innate Lymphocytes and Malaria - Players or Spectators? Trends Parasitol 2018; 35:154-162. [PMID: 30579700 DOI: 10.1016/j.pt.2018.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Malaria remains an important global disease. Despite significant advances over the past decade in reducing disease morbidity and mortality, new measures are needed if malaria is to be eliminated. Significant advances in our understanding about host immune responses during malaria have been made, opening up opportunities to generate long-lasting antiparasitic immunity through vaccination or immune therapy. However, there is still much debate over which immune cell populations contribute to immunity to malaria, including innate lymphocytes that comprise recently identified innate lymphoid cells (ILCs) and better known innate-like T cell subsets. Here, we review research on these immune cell subsets and discuss whether they have any important roles in immunity to malaria or if they are redundant.
Collapse
Affiliation(s)
- Susanna S Ng
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia; School of Environment and Science, Griffith University, QLD, Australia
| | - Christian R Engwerda
- Immunology and Infection Laboratory, QIMR Berghofer Medical Research Institute, QLD, Australia.
| |
Collapse
|