1
|
Sabt A, Khaleel EF, Shaldam MA, Ebaid MS, Mustafa Badi R, Allayeh AK, Eldehna WM, Dziadek J. Discovery of new quinoline derivatives bearing 1-aryl-1,2,3-triazole motif as influenza H1N1 virus neuraminidase inhibitors. Bioorg Chem 2024; 151:107703. [PMID: 39137601 DOI: 10.1016/j.bioorg.2024.107703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Sporadically and periodically, influenza outbreaks threaten global health and the economy. Antigen drift-induced influenza virus mutations hamper antiviral drug development. Thus, a novel antiviral agent is urgently needed to address medication inefficacy issues. Herein, sixteen new quinoline-triazole hybrids 6a-h and 9a-h were prepared and evaluated in vitro against the H1N1 virus. In particular, 6d, 6e, and 9b showed promising H1N1 antiviral activity with selective index (SI) CC50/IC50 values of 15.8, 37, and 29.15. After that, the inhibition rates for various mechanisms of action (virus replication, adsorption, and virucidal activity) were investigated for the most efficient candidates 6d, 6e, and 9b. Additionally, their ability to inhibit neuraminidase was evaluated. With an IC50 value of 0.30 µM, hybrid 6d demonstrated effective and comparable inhibitory activity to Oseltamivir. Ultimately, molecular modeling investigations, encompassing molecular docking and molecular dynamic simulations, were conducted to provide a scientific basis for the observed antiviral results.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo 12622, Egypt.
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Manal S Ebaid
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo 12622, Egypt; Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Abdou K Allayeh
- Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Jaroslaw Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
2
|
Stokes R, Kohlbrand AJ, Seo H, Sankaran B, Karges J, Cohen SM. Carboxylic Acid Isostere Derivatives of Hydroxypyridinones as Core Scaffolds for Influenza Endonuclease Inhibitors. ACS Med Chem Lett 2022; 14:75-82. [PMID: 36655124 PMCID: PMC9841593 DOI: 10.1021/acsmedchemlett.2c00434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Among the most important influenza virus targets is the RNA-dependent RNA polymerase acidic N-terminal (PAN) endonuclease, which is a critical component of the viral replication machinery. To inhibit the activity of this metalloenzyme, small-molecule inhibitors employ metal-binding pharmacophores (MBPs) that coordinate to the dinuclear Mn2+ active site. In this study, several metal-binding isosteres (MBIs) were examined where the carboxylic acid moiety of a hydroxypyridinone MBP is replaced with other groups to modulate the physicochemical properties of the compound. MBIs were evaluated for their ability to inhibit PAN using a FRET-based enzymatic assay, and their mode of binding in PAN was determined using X-ray crystallography.
Collapse
Affiliation(s)
- Ryjul
W. Stokes
- Department
of Chemistry and Biochemistry, University
of California, La Jolla, California 92093, United States
| | - Alysia J. Kohlbrand
- Department
of Chemistry and Biochemistry, University
of California, La Jolla, California 92093, United States
| | - Hyeonglim Seo
- Department
of Chemistry and Biochemistry, University
of California, La Jolla, California 92093, United States
| | - Banumathi Sankaran
- The
Berkeley Center for Structural Biology, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Johannes Karges
- Department
of Chemistry and Biochemistry, University
of California, La Jolla, California 92093, United States
| | - Seth M. Cohen
- Department
of Chemistry and Biochemistry, University
of California, La Jolla, California 92093, United States,
| |
Collapse
|
3
|
Morimoto R, Matsubara C, Hanada A, Omoe Y, Ogata T, Isegawa Y. Effect of Structural Differences in Naringenin, Prenylated Naringenin, and Their Derivatives on the Anti-Influenza Virus Activity and Cellular Uptake of Their Flavanones. Pharmaceuticals (Basel) 2022; 15:ph15121480. [PMID: 36558931 PMCID: PMC9785311 DOI: 10.3390/ph15121480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines and antiviral drugs are widely used to treat influenza infection. However, they cannot rapidly respond to drug-resistant viruses. Therefore, new anti-influenza virus strategies are required. Naringenin is a flavonoid with potential for new antiviral strategies. In this study, we evaluated the antiviral effects of naringenin derivatives and examined the relationship between their cellular uptake and antiviral effects. Madin-Darby canine kidney (MDCK) cells were infected with the A/PR/8/34 strain and exposed to the compound-containing medium for 24 h. The amount of virus in the supernatant was calculated using focus-forming reduction assay. Antiviral activity was evaluated using IC50 and CC50 values. Cells were exposed to a constant concentration of naringenin or prenylated naringenin, and intracellular uptake and distribution were evaluated using a fluorescence microscope. Prenylated naringenin showed strong anti-influenza virus effects, and the amount of intracellular uptake was revealed by the strong intracellular fluorescence. In addition, intracellular distribution differed depending on the position of the prenyl group. The steric factor of naringenin is deeply involved in influenza A virus activity, and prenyl groups are desirable. Furthermore, the prenyl group affects cellular affinity, and the uptake mechanism differs depending on its position. These results provide important information on antiviral strategies.
Collapse
Affiliation(s)
- Ryosuke Morimoto
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Hyogo, Japan
| | - Chiaki Matsubara
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Hyogo, Japan
| | - Akari Hanada
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Hyogo, Japan
| | - Yuta Omoe
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, 920-1181, Ishikawa, Japan
| | - Tokutaro Ogata
- Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, 920-1181, Ishikawa, Japan
| | - Yuji Isegawa
- Department of Food Sciences and Nutrition, Mukogawa Women’s University, Nishinomiya 663-8558, Hyogo, Japan
- Correspondence:
| |
Collapse
|
4
|
Cáceres CJ, Hu Y, Cárdenas-García S, Wu X, Tan H, Carnaccini S, Gay LC, Geiger G, Ma C, Zhang QY, Rajao D, Perez DR, Wang J. Rational design of a deuterium-containing M2-S31N channel blocker UAWJ280 with in vivo antiviral efficacy against both oseltamivir sensitive and -resistant influenza A viruses. Emerg Microbes Infect 2021; 10:1832-1848. [PMID: 34427541 PMCID: PMC8451667 DOI: 10.1080/22221751.2021.1972769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 10/28/2022]
Abstract
Seasonal influenza A virus (IAV) infections are among the most important global health problems. FDA-approved antiviral therapies against IAV include neuraminidase inhibitors, M2 inhibitors, and polymerase inhibitor baloxavir. Resistance against adamantanes (amantadine and rimantadine) is widespread as virtually all IAV strains currently circulating in the human population are resistant to adamantanes through the acquisition of the S31N mutation. The neuraminidase inhibitor-resistant strains also contain the M2-S31N mutant, suggesting M2-S31N is a high-profile antiviral drug target. Here we report the development of a novel deuterium-containing M2-S31N inhibitor UAWJ280. UAWJ280 had broad-spectrum antiviral activity against both oseltamivir sensitive and -resistant influenza A strains and had a synergistic antiviral effect in combination with oseltamivir in cell culture. In vivo pharmacokinetic (PK) studies demonstrated that UAWJ280 had favourable PK properties. The in vivo mouse model study showed that UAWJ280 was effective alone or in combination with oseltamivir in improving clinical signs and survival after lethal challenge with an oseltamivir sensitive IAV H1N1 strain. Furthermore, UAWJ280 was also able to ameliorate clinical signs and increase survival when mice were challenged with an oseltamivir-resistant IAV H1N1 strain. In conclusion, we show for the first time that the M2-S31N channel blocker UAWJ280 has in vivo antiviral efficacy in mice that are infected with either oseltamivir sensitive or -resistant IAVs, and it has a synergistic antiviral effect with oseltamivir.
Collapse
Affiliation(s)
- C. Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Stivalis Cárdenas-García
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Haozhou Tan
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Silvia Carnaccini
- Tifton diagnostic laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA, USA
| | - L. Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Daniela Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Kim Y, Lee S, Kim Y, Jang IJ, Lee S. Pharmacokinetics and safety of a novel influenza treatment (baloxavir marboxil) in Korean subjects compared with Japanese subjects. Clin Transl Sci 2021; 15:422-432. [PMID: 34664769 PMCID: PMC8841484 DOI: 10.1111/cts.13160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/25/2022] Open
Abstract
Baloxavir marboxil, a novel influenza therapeutic agent, is a prodrug rapidly metabolized into its active form, baloxavir acid, which inhibits cap‐dependent endonuclease. This study evaluated the pharmacokinetics (PKs) and safety of baloxavir acid in healthy Korean subjects and compared them with published data in Japanese subjects. This open‐label and single‐ascending dose study was conducted in 30 Korean male subjects, with a single oral dose of baloxavir marboxil (20, 40, or 80 mg) administered to eight subjects each; additionally, 80 mg was administered to six subjects (body weight >80 kg). Noncompartmental and population PK analyses were performed, and results were compared with those of Japanese subjects. Appropriateness of the body weight‐based dosing regimen was evaluated by simulation. PK profiles of baloxavir acid revealed multicompartment behavior with a long half‐life (80.8–98.3 h), demonstrating a dose‐proportional increase. Baloxavir acid reached peak plasma concentration from 3.5 to 4.0 h postdosing. Body weight was identified as a significant covariate of apparent oral clearance and apparent volume of distribution, which was similar to that observed in Japanese subjects. Body weight‐adjusted analysis revealed that exposure to baloxavir acid did not significantly differ between Korean and Japanese subjects. Simulated exposures to baloxavir acid demonstrated that the body weight‐based dosing regimen for baloxavir marboxil was appropriate. Based on a PK study, clinical data including dosing regimen developed in Japan were adequately extrapolated to Korea, supporting the approval of baloxavir marboxil in Korean as a new treatment option for influenza.
Collapse
Affiliation(s)
- Yun Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - Sangwon Lee
- Department of Clinical Pharmacology and Therapeutics, Hanyang University Hospital, Seoul, Korea
| | | | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| |
Collapse
|
6
|
Park JH, Kim B, Antigua KJC, Jeong JH, Kim CI, Choi WS, Oh S, Kim CH, Kim EG, Choi YK, Baek YH, Song MS. Baloxavir-oseltamivir combination therapy inhibits the emergence of resistant substitutions in influenza A virus PA gene in a mouse model. Antiviral Res 2021; 193:105126. [PMID: 34217753 DOI: 10.1016/j.antiviral.2021.105126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022]
Abstract
Baloxavir marboxil (BXM) treatment-emergent polymerase acid (PA) I38X amino acid substitution (AAS) in the resistant variants of influenza viruses raise concerns regarding their emergence and spread. This study investigated the impact of 1 or 5 mg/kg BXM and 25 mg/kg oseltamivir phosphate (OS) (single or combination therapy) on the occurrence of resistance-related substitutions during the sequential lung-to-lung passages of AH1N1)pdm09 virus in mice. Deep sequencing analysis revealed that 67% (n = 4/6) of the population treated with BXM single therapy (1 or 5 mg/kg) possessed the treatment-emergent PA-I38X AAS variants (I38T, I38S, and I38V). Notably, BXM-OS combination therapy impeded PA-I38X AAS emergence. Although the doses utilized in the mouse model may not be directly translated into the clinically equivalent doses of each drugs, these findings offer insights toward alternative therapies to mitigate the emergence of influenza antiviral resistance.
Collapse
Affiliation(s)
- Ji-Hyun Park
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Beomkyu Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Khristine Joy C Antigua
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Chang Il Kim
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Sol Oh
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Chan Hyung Kim
- Department of Pharmacology, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea.
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea.
| |
Collapse
|
7
|
Boonnak K, Mansanguan C, Schuerch D, Boonyuen U, Lerdsamran H, Jiamsomboon K, Sae Wang F, Huntrup A, Prasertsopon J, Kosoltanapiwat N, Puthavathana P. Molecular Characterization of Seasonal Influenza A and B from Hospitalized Patients in Thailand in 2018-2019. Viruses 2021; 13:977. [PMID: 34070388 PMCID: PMC8228477 DOI: 10.3390/v13060977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
Influenza viruses continue to be a major public health threat due to the possible emergence of more virulent influenza virus strains resulting from dynamic changes in virus adaptability, consequent of functional mutations and antigenic drift in surface proteins, especially hemagglutinin (HA) and neuraminidase (NA). In this study, we describe the genetic and evolutionary characteristics of H1N1, H3N2, and influenza B strains detected in severe cases of seasonal influenza in Thailand from 2018 to 2019. We genetically characterized seven A/H1N1 isolates, seven A/H3N2 isolates, and six influenza B isolates. Five of the seven A/H1N1 viruses were found to belong to clade 6B.1 and were antigenically similar to A/Switzerland/3330/2017 (H1N1), whereas two isolates belonged to clade 6B.1A1 and clustered with A/Brisbane/02/2018 (H1N1). Interestingly, we observed additional mutations at antigenic sites (S91R, S181T, T202I) as well as a unique mutation at a receptor binding site (S200P). Three-dimensional (3D) protein structure analysis of hemagglutinin protein reveals that this unique mutation may lead to the altered binding of the HA protein to a sialic acid receptor. A/H3N2 isolates were found to belong to clade 3C.2a2 and 3C.2a1b, clustering with A/Switzerland/8060/2017 (H3N2) and A/South Australia/34/2019 (H3N2), respectively. Amino acid sequence analysis revealed 10 mutations at antigenic sites including T144A/I, T151K, Q213R, S214P, T176K, D69N, Q277R, N137K, N187K, and E78K/G. All influenza B isolates in this study belong to the Victoria lineage. Five out of six isolates belong to clade 1A3-DEL, which relate closely to B/Washington/02/2009, with one isolate lacking the three amino acid deletion on the HA segment at position K162, N163, and D164. In comparison to the B/Colorado/06/2017, which is the representative of influenza B Victoria lineage vaccine strain, these substitutions include G129D, G133R, K136E, and V180R for HA protein. Importantly, the susceptibility to oseltamivir of influenza B isolates, but not A/H1N1 and A/H3N2 isolates, were reduced as assessed by the phenotypic assay. This study demonstrates the importance of monitoring genetic variation in influenza viruses regarding how acquired mutations could be associated with an improved adaptability for efficient transmission.
Collapse
Affiliation(s)
- Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.B.); (D.S.); (K.J.); (F.S.W.); (N.K.)
| | - Chayasin Mansanguan
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Dennis Schuerch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.B.); (D.S.); (K.J.); (F.S.W.); (N.K.)
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Hatairat Lerdsamran
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (H.L.); (J.P.)
| | - Kultida Jiamsomboon
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.B.); (D.S.); (K.J.); (F.S.W.); (N.K.)
| | - Fanny Sae Wang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.B.); (D.S.); (K.J.); (F.S.W.); (N.K.)
| | - Arun Huntrup
- Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Jarunee Prasertsopon
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (H.L.); (J.P.)
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.B.); (D.S.); (K.J.); (F.S.W.); (N.K.)
| | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (H.L.); (J.P.)
| |
Collapse
|
8
|
Zyryanov SK, Butranova OI, Gaidai DS, Kryshen KL. [Pharmacotherapy for acute respiratory infections caused by influenza viruses: current possibilities]. TERAPEVT ARKH 2021; 93:114-124. [PMID: 33720636 DOI: 10.26442/00403660.2021.01.200551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/08/2023]
Abstract
Routinely the influenza virus significantly contributes to the formation of the annual incidence of acute respiratory infections, with a peak in winter season. The high level of mutagenic potential of influenza viruses is a standard factor determining the complexity of the rational choice of pharmacotherapy. The upcoming epidemiological season 20202021 brings additional challenges for health care practitioners mediated by the widespread prevalence in the human population of a new infection caused by the SARS-CoV-2 virus affecting the respiratory system among many organs and systems. An adequate choice of pharmacotherapy tools should be based on high efficiency and safety of drugs, with a possible reduction in such negative factors as polypharmacy. This review includes comparative pharmacological characteristics of drugs with activity against RNA viruses, along with parameters of their clinical efficacy.
Collapse
Affiliation(s)
- S K Zyryanov
- People's Friendship University of Russia.,City Clinical Hospital №24
| | | | | | | |
Collapse
|