1
|
Bandyopadhyay U, Sen D, Ahuja D, Mahapatra SP, Biswas D, Maiti R, Chakraborty S, Hazra A, Parua S, Basak AK, Das A, Paul N, Purkait MP, Syamal AK, Dey R, Bhattacharya K, Adhikary K, Bhattacharjee A. Interplay of calcium, vitamin D, and parathormone in the milieu of infections and immunity: Reassessed in the context of COVID-19. J Steroid Biochem Mol Biol 2025; 245:106624. [PMID: 39389269 DOI: 10.1016/j.jsbmb.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is recognized for inducing severe respiratory symptoms like cough, and shortness of breathing. Although symptom severity varies, some individuals remain asymptomatic. This virus has sparked a global pandemic, imposing a substantial rate of mortality or morbidity, with extended periods of illness reported. People with underlying medical issues and the elderly are more likely to experience adverse results. The virus's frequent mutations pose challenges for medical professionals, necessitating adaptable therapeutic and preventive strategies. Vitamin D, a versatile regulatory molecule, not only influences physiological processes such as serum calcium regulation but also exhibits immunomodulatory functions. Calcium ions play a crucial role as secondary signal transduction molecules, impacting diverse cellular functions and maintaining homeostasis through ion channel regulation. Parathormone, another key regulator of serum calcium, often acts antagonistically to vitamin D. This review delves into the interplay of vitamin D, calcium, and parathormone, exploring their possible influence on the progression of COVID-19. The intricate signaling involving these elements contributes to adverse prognosis, emphasizing the need for comprehensive understanding. Monitoring and controlling these physiological factors and associated pathways have shown the potential to alter disease outcomes, underscoring the importance of a holistic approach.
Collapse
Affiliation(s)
- Upasana Bandyopadhyay
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India
| | - Debanjana Sen
- Post Graduate Department of Physiology, Hooghly Mohsin College, University of Burdwan, West Bengal, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India
| | - Smit Pratik Mahapatra
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India
| | - Debjit Biswas
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India
| | - Rajkumar Maiti
- Department of Physiology, Bankura Christian College, Bankura, West Bengal, India
| | - Sutanu Chakraborty
- Abhinav Bindra Targeting Performance (ABTP), Sports Science Centre, Kalinga Stadium, Bhubaneswar, Odisha, India
| | - Anukona Hazra
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India
| | - Suparna Parua
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India
| | - Asim Kumar Basak
- School of Allied Health Sciences, Brainware University, Barasat, West-Bengal, India.
| | - Arnab Das
- Department of Sports Science & Yoga, Ramakrishna Mission Vivekananda Educational & Research Institute, Belur Math, Howrah, India
| | - Nimisha Paul
- Department of General Human Physiology and Biochemistry, Hitkarini Dental College and Hospital, Jabalpur, Madhya Pradesh, India
| | | | - Alak Kumar Syamal
- Post Graduate Department of Physiology, Hooghly Mohsin College, University of Burdwan, West Bengal, India
| | - Rajen Dey
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Barrackpore, West Bengal, India.
| | - Koushik Bhattacharya
- School of Paramedics and Allied Health Sciences, Centurion University of Technology and Management, Khurda Road, Jatani, Odisha, India.
| | - Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology and Management, Khurda Road, Bhubaneswar, Odisha, India
| | - Aniruddha Bhattacharjee
- Department of Physiology, International Medical School, Management and Science University, Selangor, Malaysia
| |
Collapse
|
2
|
Rodriguez L, Lee HW, Li J, Martin R, Han D, Xu S, Moshiri J, Peinovich N, Camus G, Perry JK, Hyland RH, Porter DP, Abdelghany M, Götte M, Hedskog C. SARS-CoV-2 resistance analyses from the Phase 3 PINETREE study of remdesivir treatment in nonhospitalized participants. Antimicrob Agents Chemother 2024:e0123824. [PMID: 39699245 DOI: 10.1128/aac.01238-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
Remdesivir inhibits the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp; Nsp12). Here, we conducted viral resistance analyses from the Phase 3 PINETREE trial of remdesivir in nonhospitalized participants at risk of severe COVID-19. Nasopharyngeal swabs (collected at baseline [Day 1], Days 2, 3, 7, and 14) were eligible for analysis if their viral load was above the lower limit of quantification for the RT-qPCR assay (2228 copies/mL). The SARS-CoV-2 genome was sequenced for all remdesivir participants and 50% of placebo participants (baseline, Days 3, 7, and 14) and for participants who progressed to COVID-19-related hospitalization or all-cause death (all time points). Emergent substitutions in Nsp12 and other replication complex proteins were phenotyped using site-directed mutagenesis in a SARS-CoV-2 subgenomic replicon system. Overall, emergent Nsp12 substitutions were detected in 8/115 (7.0%) remdesivir participants and 7/129 (5.4%) placebo participants (1 substitution overlap between groups). Based on a structural analysis, none of the emergent Nsp12 substitutions were in direct contact with the incoming nucleoside triphosphate substrate, the RNA, or the RNA template 5' overhang. One substitution (A376V) showed reduced susceptibility to remdesivir (12.6-fold change in remdesivir half-maximal concentration [EC50]); it also showed reduced fitness when introduced in the SARS-CoV-2 replicon and virus in vitro. Other substitutions had <1.1-fold change in remdesivir EC50. None of the emergent substitutions in Nsp8, Nsp10, Nsp13, or Nsp14 (remdesivir, 10/115 [8.7%]; placebo, 10/129 [7.8%]) showed reduced remdesivir susceptibility. In conclusion, emergent substitutions in the SARS-CoV-2 RdRp complex with reduced remdesivir susceptibility were uncommon, indicating a high barrier to remdesivir resistance.CLINICAL TRIALSThis study is registered with ClinicalTrials.gov as NCT04501952.
Collapse
Affiliation(s)
| | - Hery W Lee
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jiani Li
- Gilead Sciences, Inc., Foster City, California, USA
| | - Ross Martin
- Gilead Sciences, Inc., Foster City, California, USA
| | - Dong Han
- Gilead Sciences, Inc., Foster City, California, USA
| | - Simin Xu
- Gilead Sciences, Inc., Foster City, California, USA
| | | | | | | | | | | | | | | | - Matthias Götte
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
3
|
Dhamotharan K, Korn SM, Wacker A, Becker MA, Günther S, Schwalbe H, Schlundt A. A core network in the SARS-CoV-2 nucleocapsid NTD mediates structural integrity and selective RNA-binding. Nat Commun 2024; 15:10656. [PMID: 39653699 PMCID: PMC11628620 DOI: 10.1038/s41467-024-55024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
The SARS-CoV-2 nucleocapsid protein is indispensable for viral RNA genome processing. Although the N-terminal domain (NTD) is suggested to mediate specific RNA-interactions, high-resolution structures with viral RNA are still lacking. Available hybrid structures of the NTD with ssRNA and dsRNA provide valuable insights; however, the precise mechanism of complex formation remains elusive. Similarly, the molecular impact of nucleocapsid NTD mutations that have emerged since 2019 has not yet been fully explored. Using crystallography and solution NMR, we investigate how NTD mutations influence structural integrity and RNA-binding. We find that both features rely on a core network of residues conserved in Betacoronaviruses, crucial for protein stability and communication among flexible loop-regions that facilitate RNA-recognition. Our comprehensive structural analysis demonstrates that contacts within this network guide selective RNA-interactions. We propose that the core network renders the NTD evolutionarily robust in stability and plasticity for its versatile RNA processing roles.
Collapse
Affiliation(s)
- Karthikeyan Dhamotharan
- Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany
| | - Sophie M Korn
- Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| | - Anna Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | - Matthias A Becker
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | - Sebastian Günther
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, Hamburg, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany
- Institute for Organic Chemistry and Chemical Biology, Goethe University, Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt, Germany.
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
4
|
Bist PS, Tayara H, Chong KT. Generative AI in the Advancement of Viral Therapeutics for Predicting and Targeting Immune-Evasive SARS-CoV-2 Mutations. IEEE J Biomed Health Inform 2024; 28:6974-6982. [PMID: 39042543 DOI: 10.1109/jbhi.2024.3432649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The emergence of immune-evasive mutations in the SARS-CoV-2 spike protein is consistently challenging existing vaccines and therapies, making precise prediction of their escape potential a critical imperative. Artificial Intelligence(AI) holds great promise for deciphering the intricate language of protein. Here, we employed a Generative Adversarial Network to decipher the hidden escape pathways within the spike protein by generating spikes that closely resemble natural ones. Through comprehensive analysis, we demonstrated that generated sequences capture natural escape characteristics. Moreover, incorporating these sequences into an AI-based escape prediction model significantly enhanced its performance, achieving a 7% increase in detecting natural escape mutations on the experimentally validated Greaney dataset. Similar improvements were observed on other datasets, demonstrating the model's generalizability. Precisely predicting immune-evasive spikes not only enables the design of strategically targeted therapies but also has the potential to expedite future viral therapeutics. This breakthrough carries profound implications for shaping a more resilient future against viral threats.
Collapse
|
5
|
Katiyar H, Arduini A, Li Y, Liang C. SARS-CoV-2 Assembly: Gaining Infectivity and Beyond. Viruses 2024; 16:1648. [PMID: 39599763 PMCID: PMC11598957 DOI: 10.3390/v16111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was responsible for causing the COVID-19 pandemic. Intensive research has illuminated the complex biology of SARS-CoV-2 and its continuous evolution during and after the COVID-19 pandemic. While much attention has been paid to the structure and functions of the viral spike protein and the entry step of viral infection, partly because these are targets for neutralizing antibodies and COVID-19 vaccines, the later stages of SARS-CoV-2 replication, including the assembly and egress of viral progenies, remain poorly characterized. This includes insight into how the activities of the viral structural proteins are orchestrated spatially and temporally, which cellular proteins are assimilated by the virus to assist viral assembly, and how SARS-CoV-2 counters and evades the cellular mechanisms antagonizing virus assembly. In addition to becoming infectious, SARS-CoV-2 progenies also need to survive the hostile innate and adaptive immune mechanisms, such as recognition by neutralizing antibodies. This review offers an updated summary of the roles of SARS-CoV-2 structural proteins in viral assembly, the regulation of assembly by viral and cellular factors, and the cellular mechanisms that restrict this process. Knowledge of these key events often reveals the vulnerabilities of SARS-CoV-2 and aids in the development of effective antiviral therapeutics.
Collapse
Affiliation(s)
- Harshita Katiyar
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ariana Arduini
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - Yichen Li
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (H.K.); (A.A.); (Y.L.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
6
|
Abavisani M, Ansari B, Ebadpour N, Sahebkar A. How does geographical diversity shape vaccine efficacy? Clin Exp Vaccine Res 2024; 13:271-300. [PMID: 39525670 PMCID: PMC11543789 DOI: 10.7774/cevr.2024.13.4.271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/22/2024] [Accepted: 06/04/2024] [Indexed: 11/16/2024] Open
Abstract
Vaccination is a cornerstone of public health, saving millions of lives each year by preventing a variety of infectious diseases. Yet, despite global vaccination efforts, emerging research highlights significant geographical disparities in vaccine efficacy and immunogenicity. These variations underscore the critical interplay between immunological factors and environmental, genetic, and nutritional elements across different populations. Our review article aimed to explore the multifactorial reasons behind geographical variations in vaccine efficacy. Also, this study has shown how important host factors like age, obesity, gender, and genetic diversity, especially within the major histocompatibility complex, are in determining how well a vaccine works. Nutritional status, namely deficiencies in micronutrients such as vitamins and zinc, and lifestyle factors including stress, sleep, alcohol consumption, and physical activity are also shown to have profound effects on vaccine-induced immunity. Importantly, our paper also brought to light the influence of microbial and ecological factors, such as the gut microbiome and environmental pollutants, on the immune system's response to vaccination. The findings emphasize the importance of tailoring vaccination strategies to accommodate the unique immunological landscapes shaped by geographical and societal factors. This tailored approach could enhance vaccine efficacy, reduce disparities in vaccine response, and ultimately contribute to the global fight against infectious diseases.
Collapse
Affiliation(s)
- Mohammad Abavisani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Ansari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negar Ebadpour
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Lee YR, Liou CW, Liu IH, Chang JM. A nonadjuvanted HLA-restricted peptide vaccine induced both T and B cell immunity against SARS-CoV-2 spike protein. Sci Rep 2024; 14:20579. [PMID: 39242614 PMCID: PMC11379847 DOI: 10.1038/s41598-024-71663-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
During COVID-19 pandemic, cases of postvaccination infections and restored SARS-CoV-2 virus have increased after full vaccination, which might be contributed to by immune surveillance escape or virus rebound. Here, artificial linear 9-mer human leucocyte antigen (HLA)-restricted UC peptides were designed based on the well-conserved S2 region of the SARS-CoV-2 spike protein regardless of rapid mutation and glycosylation hindrance. The UC peptides were characterized for its effect on immune molecules and cells by HLA-tetramer refolding assay for HLA-binding ability, by HLA-tetramer specific T cell assay for engaged cytotoxic T lymphocytes (CTLs) involvement, by HLA-dextramer T cell assay for B cell activation, by intracellular cytokine release assay for polarization of immune response, Th1 or Th2. The specific lysis activity assay of T cells was performed for direct activation of cytotoxic T lymphocytes by UC peptides. Mice were immunized for immunogenicity of UC peptides in vivo and immunized sera was assay for complement cytotoxicity assay. Results appeared that through the engagement of UC peptides and immune molecules, HLA-I and II, that CTLs elicited cytotoxic activity by recognizing SARS-CoV-2 spike-bearing cells and preferably secreting Th1 cytokines. The UC peptides also showed immunogenicity and generated a specific antibody in mice by both intramuscular injection and oral delivery without adjuvant formulation. In conclusion, a T-cell vaccine could provide long-lasting protection against SARS-CoV-2 either during reinfection or during SARS-CoV-2 rebound. Due to its ability to eradicate SARS-CoV-2 virus-infected cells, a COVID-19 T-cell vaccine might provide a solution to lower COVID-19 severity and long COVID-19.
Collapse
Affiliation(s)
- Yi-Ru Lee
- Vacino Biotech Co., Ltd., 4F, No. 99, Lane 130, Sec 1, Academia Rd., Nangang District, Taipei, 11571, Taiwan, ROC
| | - Chiung-Wen Liou
- Vacino Biotech Co., Ltd., 4F, No. 99, Lane 130, Sec 1, Academia Rd., Nangang District, Taipei, 11571, Taiwan, ROC
| | - I-Hua Liu
- Vacino Biotech Co., Ltd., 4F, No. 99, Lane 130, Sec 1, Academia Rd., Nangang District, Taipei, 11571, Taiwan, ROC
| | - Jia-Ming Chang
- Vacino Biotech Co., Ltd., 4F, No. 99, Lane 130, Sec 1, Academia Rd., Nangang District, Taipei, 11571, Taiwan, ROC.
| |
Collapse
|
8
|
Zhang S, Zhang Y, Jiang J, Charconnet M, Peng Y, Zhang L, Lawrie CH. Shape-Specific Gold Nanoparticles for Multiplex Biosensing Applications. ACS OMEGA 2024; 9:37163-37169. [PMID: 39246468 PMCID: PMC11375896 DOI: 10.1021/acsomega.4c04385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/10/2024]
Abstract
The biosensing field faces a significant challenge in efficiently detecting multiple analytes in a single diagnostic sample in order to compete with other established multiplex molecular diagnostic technologies such as PCR and ELISA. In response, we have developed a colorimetric nanobiosensor based on multiple morphological forms of functionalized gold nanoparticles (AuNPs) for the simultaneous detection of the influenza virus and SARS-CoV-2 virus. Gold nanospheres (GNSp) were modified with oligonucleotides specific for the influenza A virus, while gold nanoshells (GNSh) were modified with oligonucleotides specific for the SARS-CoV-2 virus. In the presence of their respective targets, AuNPs remain stable due to DNA-DNA interactions; conversely, in the absence of targets, AuNPs aggregate. Consequently, the hybrid system exhibits an indigo color with the SARS-CoV-2 target, a blue color with the Influenza A target, and a purple color with both targets, visible to the naked eye. Analytical sensitivity was 100 nM, and no cross-reactivity was observed with potentially confounding pathogens. This approach holds great promise for the simultaneous identification of multiple pathogens in a rapid manner without the need for equipment or trained personnel.
Collapse
Affiliation(s)
- Shixi Zhang
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201899, China
- School of Microelectronics, Shanghai University, Shanghai 201899, China
| | - Yuhan Zhang
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201899, China
- School of Microelectronics, Shanghai University, Shanghai 201899, China
| | - Jiaye Jiang
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201899, China
- School of Microelectronics, Shanghai University, Shanghai 201899, China
| | - Mathias Charconnet
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201899, China
- School of Microelectronics, Shanghai University, Shanghai 201899, China
| | - Yuan Peng
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201899, China
- School of Microelectronics, Shanghai University, Shanghai 201899, China
| | - Lei Zhang
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201899, China
- School of Microelectronics, Shanghai University, Shanghai 201899, China
| | - Charles H Lawrie
- Sino-Swiss Institute of Advanced Technology (SSIAT), Shanghai University, Shanghai 201899, China
- Biogipuzkoa Health Research Institute, San Sebastian 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao E-48009, Spain
- Radcliffe Department of Medicine, University of Oxford, Oxford OX1 4BH, United Kingdom
| |
Collapse
|
9
|
Seadawy MG, Marei MI, Mohanad M, Hmed AA, Sofy AR. Genome sequencing of SARS-Co-V-2 reveals mutations including F559I and V781D in S protein and LI123-124L in the nsp6 in 21K and 21L clades. Virusdisease 2024; 35:400-419. [PMID: 39464730 PMCID: PMC11502607 DOI: 10.1007/s13337-024-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/17/2024] [Indexed: 10/29/2024] Open
Abstract
Contagious and virulent virus variants like B.1.1.529 have complicated the 2019 global COVID-19 pandemic from Wuhan, China. Omicron, with extensive mutations and high transmissibility, is replacing Delta in some regions. Remarkably, Omicron exhibits reduced disease severity and resistance to certain vaccines and treatments. Our research sought to identify Egypt-specific variants of concern (VOCs) and their mutation patterns, aiming to provide critical insights for tailored public health strategies. We also looked at vaccine compatibility with these VOCs, as well as the efficacy of current treatments against new SARS-CoV-2 variants. We collected 103 PCR-confirmed COVID-19 cases from an Egyptian army hospital and used next-generation sequencing technology to sequence the entire viral genome. The viral genome was then assembled and reconstructed. Nextclade tools aided in clade assignment and Phylogenetic analysis, allowing classification, and understanding of these genomes' Phylogenetic relationships. Our findings reveal that the dominant VOCs in Egypt are the 21K clade, mainly Pango lineages BA.1 (34%), BA.1.1 (30.1%), and BA.1.17 (6.8%), and the 21L clade represented by Pango lineages BA.2. We also identified novel mutations, including F559I in the S protein (consistent in the 21K clade), V781D in the S protein (present in > 50% of both 21K and 21L clades), and LI123-124L in the nsp6 gene (found in both 21K and 21L clades). Finally, our research provides important insights into Egypt's evolving COVID-19 landscape, allowing for tailored responses and risk mitigation strategies for emerging variants in the region.
Collapse
Affiliation(s)
- Mohamed G. Seadawy
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt
- Military Medical Academy, Cairo, Egypt
| | - Mohamed I. Marei
- Biodefense Center for Infectious and Emerging Diseases, Ministry of Defense, Cairo, Egypt
| | - Marwa Mohanad
- Biochemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City, Egypt
| | - Ahmed A. Hmed
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884 Egypt
| | - Ahmed R. Sofy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884 Egypt
| |
Collapse
|
10
|
Kung YA, Chuang CH, Chen YC, Yang HP, Li HC, Chen CL, Janapatla RP, Chen CJ, Shih SR, Chiu CH. Worldwide SARS-CoV-2 Omicron variant infection: Emerging sub-variants and future vaccination perspectives. J Formos Med Assoc 2024:S0929-6646(24)00389-9. [PMID: 39179492 DOI: 10.1016/j.jfma.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has sparked widespread concern globally, particularly with the Omicron variant and its sub-lineages emerging as the predominant cause of infection for nearly two years. Taiwan's successful containment of COVID-19, underscored by broad vaccine coverage, the utilization of anti-viral therapeutics, and timely response strategies, has resulted in reduced excess mortality. Moreover, there is a crucial need for a phased exit strategy, balancing efforts to curtail disease transmission with the mitigation of socioeconomic impacts from rigorous measures. In this review, we examined the evolution and the epidemiological landscape of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron sub-variants in Taiwan as well as other countries of the world. We also critically evaluated the effectiveness of COVID-19 vaccines against various SARS-CoV-2 variants. Additionally, we addressed the advantages of heterologous immunization strategies, fluctuations in neutralizing antibody titers, and complexities in establishing protective correlates among swiftly mutating viral variants.
Collapse
Affiliation(s)
- Yu-An Kung
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hsien Chuang
- Department of Pediatrics, St. Paul's Hospital, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Yi-Ching Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Hsin-Ping Yang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsin-Chieh Li
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Chin-Jung Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
11
|
Abbasian MH, Rahimian K, Mahmanzar M, Bayat S, Kuehu DL, Sisakht MM, Moradi B, Deng Y. Comparative Atlas of SARS-CoV-2 Substitution Mutations: A Focus on Iranian Strains Amidst Global Trends. Viruses 2024; 16:1331. [PMID: 39205305 PMCID: PMC11359407 DOI: 10.3390/v16081331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new emerging coronavirus that caused coronavirus disease 2019 (COVID-19). Whole-genome tracking of SARS-CoV-2 enhanced our understanding of the mechanism of the disease, control, and prevention of COVID-19. METHODS we analyzed 3368 SARS-CoV-2 protein sequences from Iran and compared them with 15.6 million global sequences in the GISAID database, using the Wuhan-Hu-1 strain as a reference. RESULTS Our investigation revealed that NSP12-P323L, ORF9c-G50N, NSP14-I42V, membrane-A63T, Q19E, and NSP3-G489S were found to be the most frequent mutations among Iranian SARS-CoV-2 sequences. Furthermore, it was observed that more than 94% of the SARS-CoV-2 genome, including NSP7, NSP8, NSP9, NSP10, NSP11, and ORF8, had no mutations when compared to the Wuhan-Hu-1 strain. Finally, our data indicated that the ORF3a-T24I, NSP3-G489S, NSP5-P132H, NSP14-I42V, envelope-T9I, nucleocapsid-D3L, membrane-Q19E, and membrane-A63T mutations might be responsible factors for the surge in the SARS-CoV-2 Omicron variant wave in Iran. CONCLUSIONS real-time genomic surveillance is crucial for detecting new SARS-CoV-2 variants, updating diagnostic tools, designing vaccines, and understanding adaptation to new environments.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran 1497716316, Iran;
| | - Karim Rahimian
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 14174, Iran;
| | - Mohammadamin Mahmanzar
- Department of Bioinformatics, Kish International Campus University of Tehran, Kish 7941639982, Iran;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Saleha Bayat
- Department of Biology & Research Center for Animal Development Applied Biology, Mashhad Branch, Islamic Azad University, Mashhad 9187147578, Iran;
| | - Donna Lee Kuehu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| | - Mahsa Mollapour Sisakht
- Faculty of Pharmacy, Biotechnology Research Center, Tehran University of Medical Sciences, Tehran 1936893813, Iran;
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman 7616913439, Iran;
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| |
Collapse
|
12
|
Navolokin N, Adushkina V, Zlatogorskaya D, Telnova V, Evsiukova A, Vodovozova E, Eroshova A, Dosadina E, Diduk S, Semyachkina-Glushkovskaya O. Promising Strategies to Reduce the SARS-CoV-2 Amyloid Deposition in the Brain and Prevent COVID-19-Exacerbated Dementia and Alzheimer's Disease. Pharmaceuticals (Basel) 2024; 17:788. [PMID: 38931455 PMCID: PMC11206883 DOI: 10.3390/ph17060788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic, caused by infection with the SARS-CoV-2 virus, is associated with cognitive impairment and Alzheimer's disease (AD) progression. Once it enters the brain, the SARS-CoV-2 virus stimulates accumulation of amyloids in the brain that are highly toxic to neural cells. These amyloids may trigger neurological symptoms in COVID-19. The meningeal lymphatic vessels (MLVs) play an important role in removal of toxins and mediate viral drainage from the brain. MLVs are considered a promising target to prevent COVID-19-exacerbated dementia. However, there are limited methods for augmentation of MLV function. This review highlights new discoveries in the field of COVID-19-mediated amyloid accumulation in the brain associated with the neurological symptoms and the development of promising strategies to stimulate clearance of amyloids from the brain through lymphatic and other pathways. These strategies are based on innovative methods of treating brain dysfunction induced by COVID-19 infection, including the use of photobiomodulation, plasmalogens, and medicinal herbs, which offer hope for addressing the challenges posed by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Nikita Navolokin
- Department of Pathological Anatomy, Saratov Medical State University, Bolshaya Kazachaya Str. 112, 410012 Saratov, Russia;
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Viktoria Adushkina
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Daria Zlatogorskaya
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Valeria Telnova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Arina Evsiukova
- Department of Biology, Saratov State University, Astrakhanskaya 82, 410012 Saratov, Russia; (V.A.); (D.Z.); (V.T.); (A.E.)
| | - Elena Vodovozova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
| | - Anna Eroshova
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Elina Dosadina
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
| | - Sergey Diduk
- Department of Biotechnology, Leeners LLC, Nagornyi Proezd 3a, 117105 Moscow, Russia; (A.E.); (E.D.); (S.D.)
- Research Institute of Carcinogenesis of the N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia, Kashirskoe Shosse 24, 115522 Moscow, Russia
| | | |
Collapse
|
13
|
Suljič A, Zorec TM, Zakotnik S, Vlaj D, Kogoj R, Knap N, Petrovec M, Poljak M, Avšič-Županc T, Korva M. Efficient SARS-CoV-2 variant detection and monitoring with Spike Screen next-generation sequencing. Brief Bioinform 2024; 25:bbae263. [PMID: 38833323 PMCID: PMC11149657 DOI: 10.1093/bib/bbae263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/23/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
The emergence and rapid spread of SARS-CoV-2 prompted the global community to identify innovative approaches to diagnose infection and sequence the viral genome because at several points in the pandemic positive case numbers exceeded the laboratory capacity to characterize sufficient samples to adequately respond to the spread of emerging variants. From week 10, 2020, to week 13, 2023, Slovenian routine complete genome sequencing (CGS) surveillance network yielded 41 537 complete genomes and revealed a typical molecular epidemiology with early lineages gradually being replaced by Alpha, Delta, and finally Omicron. We developed a targeted next-generation sequencing based variant surveillance strategy dubbed Spike Screen through sample pooling and selective SARS-CoV-2 spike gene amplification in conjunction with CGS of individual cases to increase throughput and cost-effectiveness. Spike Screen identifies variant of concern (VOC) and variant of interest (VOI) signature mutations, analyses their frequencies in sample pools, and calculates the number of VOCs/VOIs at the population level. The strategy was successfully applied for detection of specific VOC/VOI mutations prior to their confirmation by CGS. Spike Screen complemented CGS efforts with an additional 22 897 samples sequenced in two time periods: between week 42, 2020, and week 24, 2021, and between week 37, 2021, and week 2, 2022. The results showed that Spike Screen can be applied to monitor VOC/VOI mutations among large volumes of samples in settings with limited sequencing capacity through reliable and rapid detection of novel variants at the population level and can serve as a basis for public health policy planning.
Collapse
Affiliation(s)
- Alen Suljič
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tomaž Mark Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Samo Zakotnik
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Doroteja Vlaj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| |
Collapse
|
14
|
Wu F, Jiang Y, Yang H, Ma L. Development of Detection Antibody Targeting the Linear Epitope in SARS-CoV-2 Nucleocapsid Protein with Ultra-High Sensitivity. Int J Mol Sci 2024; 25:4436. [PMID: 38674021 PMCID: PMC11050370 DOI: 10.3390/ijms25084436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 highlighted the importance of reliable detection methods for disease control and surveillance. Optimizing detection antibodies by rational screening antigens would improve the sensitivity and specificity of antibody-based detection methods such as colloidal gold immunochromatography. In this study, we screened three peptide antigens with conserved sequences in the N protein of SARS-CoV-2 using bioinformatical and structural biological analyses. Antibodies that specifically recognize these peptides were prepared. The epitope of the peptide that had the highest binding affinity with its antibody was located on the surface of the N protein, which was favorable for antibody binding. Using the optimal antibody that can recognize this epitope, we developed colloidal gold immunochromatography, which can detect the N protein at 10 pg/mL. Importantly, this antibody could effectively recognize both the natural peptide antigen and mutated peptide antigen in the N protein, showing the feasibility of being applied in the large-scale population testing of SARS-CoV-2. Our study provides a platform with reference significance for the rational screening of detection antibodies with high sensitivity, specificity, and reliability for SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Feng Wu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (H.Y.)
- Shenzhen Institute of Drug Control, Shenzhen 518057, China
| | - Yike Jiang
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China;
| | - Hongtian Yang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (H.Y.)
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China;
| | - Lan Ma
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (H.Y.)
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China;
- State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
15
|
Hussein HAM, Thabet AA, Wardany AA, El-Adly AM, Ali M, Hassan MEA, Abdeldayem MAB, Mohamed ARMA, Sobhy A, El-Mokhtar MA, Afifi MM, Fathy SM, Sultan S. SARS-CoV-2 outbreak: role of viral proteins and genomic diversity in virus infection and COVID-19 progression. Virol J 2024; 21:75. [PMID: 38539202 PMCID: PMC10967059 DOI: 10.1186/s12985-024-02342-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 03/12/2024] [Indexed: 05/15/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection is the cause of coronavirus disease 2019 (COVID-19); a severe respiratory distress that has emerged from the city of Wuhan, Hubei province, China during December 2019. COVID-19 is currently the major global health problem and the disease has now spread to most countries in the world. COVID-19 has profoundly impacted human health and activities worldwide. Genetic mutation is one of the essential characteristics of viruses. They do so to adapt to their host or to move to another one. Viral genetic mutations have a high potentiality to impact human health as these mutations grant viruses unique unpredicted characteristics. The difficulty in predicting viral genetic mutations is a significant obstacle in the field. Evidence indicates that SARS-CoV-2 has a variety of genetic mutations and genomic diversity with obvious clinical consequences and implications. In this review, we comprehensively summarized and discussed the currently available knowledge regarding SARS-CoV-2 outbreaks with a fundamental focus on the role of the viral proteins and their mutations in viral infection and COVID-19 progression. We also summarized the clinical implications of SARS-CoV-2 variants and how they affect the disease severity and hinder vaccine development. Finally, we provided a massive phylogenetic analysis of the spike gene of 214 SARS-CoV-2 isolates from different geographical regions all over the world and their associated clinical implications.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt.
| | - Ali A Thabet
- Department of Zoology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Ahmed A Wardany
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Ahmed M El-Adly
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed Ali
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed E A Hassan
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed A B Abdeldayem
- Department of Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut, Egypt
| | | | - Ali Sobhy
- Department of Clinical Pathology, Faculty of Medicine, Al-Azhar University, 71524, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos Campus, Lebanon
| | - Magdy M Afifi
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Samah M Fathy
- Department of Zoology, Faculty of Science, Fayoum University, Fayoum, Egypt.
| | - Serageldeen Sultan
- Department of Microbiology, Virology Division, Faculty of Veterinary medicine, South Valley University, 83523, Qena, Egypt.
| |
Collapse
|
16
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
17
|
Muradyan N, Arakelov V, Sargsyan A, Paronyan A, Arakelov G, Nazaryan K. Impact of mutations on the stability of SARS-CoV-2 nucleocapsid protein structure. Sci Rep 2024; 14:5870. [PMID: 38467657 PMCID: PMC10928099 DOI: 10.1038/s41598-024-55157-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
The nucleocapsid (N) protein of SARS-CoV-2 is known to participate in various host cellular processes, including interferon inhibition, RNA interference, apoptosis, and regulation of virus life cycles. Additionally, it has potential as a diagnostic antigen and/or immunogen. Our research focuses on examining structural changes caused by mutations in the N protein. We have modeled the complete tertiary structure of native and mutated forms of the N protein using Alphafold2. Notably, the N protein contains 3 disordered regions. The focus was on investigating the impact of mutations on the stability of the protein's dimeric structure based on binding free energy calculations (MM-PB/GB-SA) and RMSD fluctuations after MD simulations. The results demonstrated that 28 mutations out of 37 selected mutations analyzed, compared with wild-type N protein, resulted in a stable dimeric structure, while 9 mutations led to destabilization. Our results are important to understand the tertiary structure of the N protein dimer of SARS-CoV-2 and the effect of mutations on it, their behavior in the host cell, as well as for the research of other viruses belonging to the same genus additionally, to anticipate potential strategies for addressing this viral illness․.
Collapse
Affiliation(s)
- Nelli Muradyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia (NAS RA), 0014, Yerevan, Armenia
| | - Vahram Arakelov
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia (NAS RA), 0014, Yerevan, Armenia
| | - Arsen Sargsyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia (NAS RA), 0014, Yerevan, Armenia
- Russian-Armenian University, 0051, Yerevan, Armenia
| | - Adrine Paronyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia (NAS RA), 0014, Yerevan, Armenia
- Russian-Armenian University, 0051, Yerevan, Armenia
| | - Grigor Arakelov
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia (NAS RA), 0014, Yerevan, Armenia.
- Russian-Armenian University, 0051, Yerevan, Armenia.
| | - Karen Nazaryan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of the National Academy of Sciences of the Republic of Armenia (NAS RA), 0014, Yerevan, Armenia
- Russian-Armenian University, 0051, Yerevan, Armenia
| |
Collapse
|
18
|
Nederlof RA, de la Garza MA, Bakker J. Perspectives on SARS-CoV-2 Cases in Zoological Institutions. Vet Sci 2024; 11:78. [PMID: 38393096 PMCID: PMC10893009 DOI: 10.3390/vetsci11020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in a zoological institution were initially reported in March 2020. Since then, at least 94 peer-reviewed cases have been reported in zoos worldwide. Among the affected animals, nonhuman primates, carnivores, and artiodactyls appear to be most susceptible to infection, with the Felidae family accounting for the largest number of reported cases. Clinical symptoms tend to be mild across taxa; although, certain species exhibit increased susceptibility to disease. A variety of diagnostic tools are available, allowing for initial diagnostics and for the monitoring of infectious risk. Whilst supportive therapy proves sufficient in most cases, monoclonal antibody therapy has emerged as a promising additional treatment option. Effective transmission of SARS-CoV-2 in some species raises concerns over potential spillover and the formation of reservoirs. The occurrence of SARS-CoV-2 in a variety of animal species may contribute to the emergence of variants of concern due to altered viral evolutionary constraints. Consequently, this review emphasizes the need for effective biosecurity measures and surveillance strategies to prevent and control SARS-CoV-2 infections in zoological institutions.
Collapse
Affiliation(s)
| | - Melissa A. de la Garza
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Jaco Bakker
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
19
|
Bartsch SM, O'Shea KJ, John DC, Strych U, Bottazzi ME, Martinez MF, Ciciriello A, Chin KL, Weatherwax C, Velmurugan K, Heneghan J, Scannell SA, Hotez PJ, Lee BY. The potential epidemiologic, clinical, and economic value of a universal coronavirus vaccine: a modelling study. EClinicalMedicine 2024; 68:102369. [PMID: 38545093 PMCID: PMC10965405 DOI: 10.1016/j.eclinm.2023.102369] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2025] Open
Abstract
Background With efforts underway to develop a universal coronavirus vaccine, otherwise known as a pan-coronavirus vaccine, this is the time to offer potential funders, researchers, and manufacturers guidance on the potential value of such a vaccine and how this value may change with differing vaccine and vaccination characteristics. Methods Using a computational model representing the United States (U.S.) population, the spread of SARS-CoV-2 and the various clinical and economic outcomes of COVID-19 such as hospitalisations, deaths, quality-adjusted life years (QALYs) lost, productivity losses, direct medical costs, and total societal costs, we explored the impact of a universal vaccine under different circumstances. We developed and populated this model using data reported by the CDC as well as observational studies conducted during the COVID-19 pandemic. Findings A pan-coronavirus vaccine would be cost saving in the U.S. as a standalone intervention as long as its vaccine efficacy is ≥10% and vaccination coverage is ≥10%. Every 1% increase in efficacy between 10% and 50% could avert an additional 395,000 infections and save $1.0 billion in total societal costs ($45.3 million in productivity losses, $1.1 billion in direct medical costs). It would remain cost saving even when a strain-specific coronavirus vaccine would be subsequently available, as long as it takes at least 2-3 months to develop, test, and bring that more specific vaccine to the market. Interpretation Our results provide support for the development and stockpiling of a pan-coronavirus vaccine and help delineate the vaccine characteristics to aim for in development of such a vaccine. Funding The National Science Foundation, the Agency for Healthcare Research and Quality, the National Institute of General Medical Sciences, the National Center for Advancing Translational Sciences, and the City University of New York.
Collapse
Affiliation(s)
- Sarah M. Bartsch
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Pandemic Response Institute, New York City, NY, USA
| | - Kelly J. O'Shea
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Pandemic Response Institute, New York City, NY, USA
| | - Danielle C. John
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Pandemic Response Institute, New York City, NY, USA
| | - Ulrich Strych
- National School of Tropical Medicine, Department of Pediatrics, and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Department of Pediatrics, and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Marie F. Martinez
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Pandemic Response Institute, New York City, NY, USA
| | - Allan Ciciriello
- National School of Tropical Medicine, Department of Pediatrics, and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Kevin L. Chin
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Pandemic Response Institute, New York City, NY, USA
| | - Colleen Weatherwax
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Pandemic Response Institute, New York City, NY, USA
| | - Kavya Velmurugan
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Pandemic Response Institute, New York City, NY, USA
| | - Jessie Heneghan
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Pandemic Response Institute, New York City, NY, USA
| | - Sheryl A. Scannell
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Pandemic Response Institute, New York City, NY, USA
| | - Peter J. Hotez
- National School of Tropical Medicine, Department of Pediatrics, and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Bruce Y. Lee
- Public Health Informatics, Computational, and Operations Research (PHICOR), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Center for Advanced Technology and Communication in Health (CATCH), CUNY Graduate School of Public Health and Health Policy, New York City, NY, USA
- Pandemic Response Institute, New York City, NY, USA
| |
Collapse
|
20
|
Lim S, Kwon HJ, Jeong DG, Nie H, Lee S, Ko SR, Lee KS, Ryu YB, Mason HS, Kim HS, Shin AY, Kwon SY. Enhanced binding and inhibition of SARS-CoV-2 by a plant-derived ACE2 protein containing a fused mu tailpiece. Biotechnol J 2024; 19:e2300319. [PMID: 37853601 DOI: 10.1002/biot.202300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Infectious diseases such as Coronavirus disease 2019 (COVID-19) and Middle East respiratory syndrome (MERS) present an increasingly persistent crisis in many parts of the world. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The angiotensin-converting enzyme 2 (ACE2) is a crucial cellular receptor for SARS-CoV-2 infection. Inhibition of the interaction between SARS-CoV-2 and ACE2 has been proposed as a target for the prevention and treatment of COVID-19. We produced four recombinant plant-derived ACE2 isoforms with or without the mu tailpiece (μ-tp) of immunoglobulin M (IgM) and the KDEL endoplasmic reticulum retention motif in a plant expression system. The plant-derived ACE2 isoforms bound whole SARS-CoV-2 virus and the isolated receptor binding domains of SARS-CoV-2 Alpha, Beta, Gamma, Delta, and Omicron variants. Fusion of μ-tp and KDEL to the ACE2 protein (ACE2 μK) had enhanced binding activity with SARS-CoV-2 in comparison with unmodified ACE2 protein derived from CHO cells. Furthermore, the plant-derived ACE2 μK protein exhibited no cytotoxic effects on Vero E6 cells and effectively inhibited SARS-CoV-2 infection. The efficient and rapid scalability of plant-derived ACE2 μK protein offers potential for the development of preventive and therapeutic agents in the early response to future viral outbreaks.
Collapse
Affiliation(s)
- Sohee Lim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Bio-Analytical Science Division, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Hualin Nie
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sanghee Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Seo-Rin Ko
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Kyu-Sun Lee
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Bio-Analytical Science Division, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Young Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Hugh S Mason
- Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute at ASU, Tempe, Arizona, USA
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Ah-Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioinformatics, Korea Research Institute of Bioscience and Biotechnology School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Biosystems and Bioengineering Program, Korea Research Institute of Bioscience and Biotechnology School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
21
|
Tambe LAM, Mathobo P, Matume ND, Munzhedzi M, Edokpayi JN, Viraragavan A, Glanzmann B, Tebit DM, Mavhandu-Ramarumo LG, Street R, Johnson R, Kinnear C, Bessong PO. Molecular epidemiology of SARS-CoV-2 in Northern South Africa: wastewater surveillance from January 2021 to May 2022. Front Public Health 2023; 11:1309869. [PMID: 38174083 PMCID: PMC10764116 DOI: 10.3389/fpubh.2023.1309869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Wastewater-based genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides a comprehensive approach to characterize evolutionary patterns and distribution of viral types in a population. This study documents the molecular epidemiology of SARS-CoV-2, in Northern South Africa, from January 2021 to May 2022. Methodology A total of 487 wastewater samples were collected from the influent of eight wastewater treatment facilities and tested for SARS-CoV-2 RNA using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). SARS-CoV-2 positive samples with genome copies/mL ≥1,500 were subjected to allele-specific genotyping (ASG) targeting the Spike protein; 75 SARS-CoV-2 positive samples were subjected to whole genome sequencing (WGS) on the ATOPlex platform. Variants of concern (VoC) and lineages were assigned using the Nextclade and PangoLIN Software. Concordance for VoC between ASG and WGS analyses was determined. Sequence relationship was determined by phylogenetic analysis. Results Seventy-five percent (365/487) of the influent samples were positive for SARS-CoV-2 RNA. Delta and Omicron VoC were more predominant at a prevalence of 45 and 32%, respectively, and they were detected as early as January and February 2021, while Beta VoC was least detected at a prevalence of 5%. A total of 11/60 (18%) sequences were assigned lineages and clades only, but not a specific VoC name. Phylogenetic analysis was used to investigate the relationship of these sequences to other study sequences, and further characterize them. Concordance in variant assignment between ASG and WGS was seen in 51.2% of the study sequences. There was more intra-variant diversity among Beta VoC sequences; mutation E484K was absent. Three previously undescribed mutations (A361S, V327I, D427Y) were seen in Delta VoC. Discussion and Conclusion The detection of Delta and Omicron VoCs in study sites earlier in the outbreak than has been reported in other regions of South Africa highlights the importance of population-based approaches over individual sample-based approaches in genomic surveillance. Inclusion of non-Spike protein targets could improve the specificity of ASG, since all VoCs share similar Spike protein mutations. Finally, continuous molecular epidemiology with the application of sensitive technologies such as next generation sequencing (NGS) is necessary for the documentation of mutations whose implications when further investigated could enhance diagnostics, and vaccine development efforts.
Collapse
Affiliation(s)
- Lisa Arrah Mbang Tambe
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Phindulo Mathobo
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Nontokozo D. Matume
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Mukhethwa Munzhedzi
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Joshua Nosa Edokpayi
- Water and Environmental Management Research Group, University of Venda, Thohoyandou, South Africa
| | - Amsha Viraragavan
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Brigitte Glanzmann
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Denis M. Tebit
- Global Biomed Laboratories Inc., Lynchburg, VA, United States
| | - Lufuno Grace Mavhandu-Ramarumo
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Renee Street
- Environment and Health Research Unit, South African Medical Research Council, Johannesburg, South Africa
| | - Rabia Johnson
- Biomedical Research and Innovation Platform, South African Medical Research Council, Cape Town, South Africa
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Centre for Cardiometabolic Research in Africa, Stellenbosch University, Stellenbosch, South Africa
| | - Craig Kinnear
- South African Medical Research Council Genomics Platform, Tygerberg, South Africa
| | - Pascal Obong Bessong
- HIV/AIDS & Global Health Research Programme, University of Venda, Thohoyandou, South Africa
- Center for Global Health Equity, School of Medicine, University of Virginia, Charlottesville, VA, United States
- School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
22
|
Konkel R, Milewska A, Do NDT, Barreto Duran E, Szczepanski A, Plewka J, Wieczerzak E, Iliakopoulou S, Kaloudis T, Jochmans D, Neyts J, Pyrc K, Mazur-Marzec H. Anti-SARS-CoV-2 activity of cyanopeptolins produced by Nostoc edaphicum CCNP1411. Antiviral Res 2023; 219:105731. [PMID: 37838220 DOI: 10.1016/j.antiviral.2023.105731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/18/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
Despite the advances in contemporary medicine and availability of numerous innovative therapies, effective treatment and prevention of SARS-CoV-2 infections pose a challenge. In the search for new anti-SARS-CoV-2 drug candidates, natural products are frequently explored. Here, fifteen cyanopeptolins (CPs) were isolated from the Baltic cyanobacterium Nostoc edaphicum and tested against SARS-CoV-2. Of these depsipeptides, the Arg-containing structural variants showed the strongest inhibition of the Delta SARS-CoV-2 infection in A549ACE2/TMPRSS2 cells. The functional assays indicated a direct interaction of the Arg-containing CP978 with the virions. CP978 also induced a significant decline in virus replication in the primary human airway epithelial cells (HAE). Of the four tested SARS-CoV-2 variants, Wuhan, Alpha, Omicron and Delta, only Wuhan was not affected by CP978. Finally, the analyses with application of confocal microscopy and with the SARS-CoV-2 pseudoviruses showed that CP978-mediated inhibition of viral infection results from the direct binding of the cyanopeptolin with the coronaviral S protein. Considering the potency of viral inhibition and the mode of action of CP978, the significance of the peptide as antiviral drug candidate should be further explored.
Collapse
Affiliation(s)
- Robert Konkel
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Gdynia, Poland
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Nguyen Dan Thuc Do
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Emilia Barreto Duran
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Szczepanski
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jacek Plewka
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland; Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Ewa Wieczerzak
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Sofia Iliakopoulou
- Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Triantafyllos Kaloudis
- Institute of Nanoscience & Nanotechnology, NCSR Demokritos, Agia Paraskevi, Greece; Laboratory of Organic Micropollutants, Water Quality Control Department, EYDAP SA, Menidi, Athens, Greece
| | - Dirk Jochmans
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Johan Neyts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Krzysztof Pyrc
- Virogenetics Laboratory of Virology, Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, Faculty of Oceanography and Geography, University of Gdańsk, Gdynia, Poland.
| |
Collapse
|
23
|
Coelho FF, da Silva MA, Lopes TB, Polatto JM, de Castro NS, Andrade LAF, Lourenço KL, Sato HI, de Carvalho AF, Coelho HP, Bagno FF, Luz D, Viala VL, Cattony PQ, Melo BDS, Moro AM, Quintilio W, Barbosa AP, Bomfim CG, Soares CP, Guzzo CR, Fonseca FG, Durigon EL, Gazzinelli RT, Ribeiro Teixeira SM, Piazza RMF, Fernandes AP. SARS-CoV-2 Rapid Antigen Test Based on a New Anti-Nucleocapsid Protein Monoclonal Antibody: Development and Real-Time Validation. Microorganisms 2023; 11:2422. [PMID: 37894080 PMCID: PMC10608853 DOI: 10.3390/microorganisms11102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 10/29/2023] Open
Abstract
SARS-CoV-2 diagnostic tests have become an important tool for pandemic control. Among the alternatives for COVID-19 diagnosis, antigen rapid diagnostic tests (Ag-RDT) are very convenient and widely used. However, as SARS-CoV-2 variants may continuously emerge, the replacement of tests and reagents may be required to maintain the sensitivity of Ag-RDTs. Here, we describe the development and validation of an Ag-RDT during an outbreak of the Omicron variant, including the characterization of a new monoclonal antibody (anti-DTC-N 1B3 mAb) that recognizes the Nucleocapsid protein (N). The anti-DTC-N 1B3 mAb recognized the sequence TFPPTEPKKDKKK located at the C-terminus of the N protein of main SARS-CoV-2 variants of concern. Accordingly, the Ag-RDT prototypes using the anti-DTC-N 1B3 mAB detected all the SARS-CoV-2 variants-Wuhan, Alpha, Gamma, Delta, P2 and Omicron. The performance of the best prototype (sensitivity of 95.2% for samples with Ct ≤ 25; specificity of 98.3% and overall accuracy of 85.0%) met the WHO recommendations. Moreover, results from a patients' follow-up study indicated that, if performed within the first three days after onset of symptoms, the Ag-RDT displayed 100% sensitivity. Thus, the new mAb and the Ag-RDT developed herein may constitute alternative tools for COVID-19 point-of-care diagnosis and epidemiological surveillance.
Collapse
Affiliation(s)
- Fabiana Fioravante Coelho
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Hospital da Polícia Militar de Minas Gerais, Polícia Militar de Minas Gerais, Belo Horizonte 30110-013, Brazil
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Miriam Aparecida da Silva
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Thiciany Blener Lopes
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Juliana Moutinho Polatto
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Natália Salazar de Castro
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Luis Adan Flores Andrade
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Karine Lima Lourenço
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Hugo Itaru Sato
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Alex Fiorini de Carvalho
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Helena Perez Coelho
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Flávia Fonseca Bagno
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Daniela Luz
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Vincent Louis Viala
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Pedro Queiroz Cattony
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Bruna de Sousa Melo
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Ana Maria Moro
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Wagner Quintilio
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Ana Paula Barbosa
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Camila Gasque Bomfim
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (C.G.B.); (C.P.S.); (C.R.G.); (E.L.D.)
| | - Camila Pereira Soares
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (C.G.B.); (C.P.S.); (C.R.G.); (E.L.D.)
| | - Cristiane Rodrigues Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (C.G.B.); (C.P.S.); (C.R.G.); (E.L.D.)
| | - Flavio Guimarães Fonseca
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Edison Luiz Durigon
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil; (C.G.B.); (C.P.S.); (C.R.G.); (E.L.D.)
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Santuza M. Ribeiro Teixeira
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| | - Roxane Maria Fontes Piazza
- Instituto Butantan, São Paulo 05503-900, Brazil; (M.A.d.S.); (J.M.P.); (D.L.); (V.L.V.); (P.Q.C.); (B.d.S.M.); (A.M.M.); (W.Q.); (A.P.B.); (R.M.F.P.)
| | - Ana Paula Fernandes
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
- Centro de Tecnologia em Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte 31310-260, Brazil; (T.B.L.); (N.S.d.C.); (L.A.F.A.); (K.L.L.); (H.I.S.); (A.F.d.C.); (H.P.C.); (F.F.B.); (F.G.F.); (R.T.G.); (S.M.R.T.)
| |
Collapse
|
24
|
Tamayo-Ordóñez MC, Rosas-García NM, Ayil-Gutiérrez BA, Bello-López JM, Tamayo-Ordóñez FA, Anguebes-Franseschi F, Damas-Damas S, Tamayo-Ordóñez YDJ. Non-Structural Proteins (Nsp): A Marker for Detection of Human Coronavirus Families. Pathogens 2023; 12:1185. [PMID: 37764993 PMCID: PMC10537875 DOI: 10.3390/pathogens12091185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 was the cause of the global pandemic that caused a total of 14.9 million deaths during the years 2020 and 2021, according to the WHO. The virus presents a mutation rate between 10-5 and 10-3 substitutions per nucleotide site per cell infection (s/n/c). Due to this, studies aimed at knowing the evolution of this virus could help us to foresee (through the future development of new detection strategies and vaccines that prevent the infection of this virus in human hosts) that a pandemic caused by this virus will be generated again. In this research, we performed a functional annotation and identification of changes in Nsp (non-structural proteins) domains in the coronavirus genome. The comparison of the 13 selected coronavirus pangenomes demonstrated a total of 69 protein families and 57 functions associated with the structural domain's differentials between genomes. A marked evolutionary conservation of non-structural proteins was observed. This allowed us to identify and classify highly pathogenic human coronaviruses into alpha, beta, gamma, and delta groups. The designed Nsp cluster provides insight into the trajectory of SARS-CoV-2, demonstrating that it continues to evolve rapidly. An evolutionary marker allows us to discriminate between phylogenetically divergent groups, viral genotypes, and variants between the alpha and betacoronavirus genera. These types of evolutionary studies provide a window of opportunity to use these Nsp as targets of viral therapies.
Collapse
Affiliation(s)
- María Concepción Tamayo-Ordóñez
- Laboratorio de Ingeniería Genética, Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico;
| | - Ninfa María Rosas-García
- Laboratorio de Biotecnología Ambiental del Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico
| | - Benjamín Abraham Ayil-Gutiérrez
- CONAHCYT-Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Biotecnología Vegetal, Reynosa 88710, Tamaulipas, Mexico
| | - Juan Manuel Bello-López
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Campeche, Mexico
| | - Francisco Alberto Tamayo-Ordóñez
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 N. 4, Av. Concordia Col. Benito Juárez, Ciudad del Carmen 24180, Campeche, Mexico (S.D.-D.)
| | - Francisco Anguebes-Franseschi
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 N. 4, Av. Concordia Col. Benito Juárez, Ciudad del Carmen 24180, Campeche, Mexico (S.D.-D.)
| | - Siprian Damas-Damas
- Facultad de Química, Universidad Autónoma del Carmen, Calle 56 N. 4, Av. Concordia Col. Benito Juárez, Ciudad del Carmen 24180, Campeche, Mexico (S.D.-D.)
| | - Yahaira de Jesús Tamayo-Ordóñez
- Laboratorio de Biotecnología Ambiental del Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Tamaulipas, Mexico
| |
Collapse
|
25
|
Bains A, Guan W, LiWang PJ. The Effect of Select SARS-CoV-2 N-Linked Glycan and Variant of Concern Spike Protein Mutations on C-Type Lectin-Receptor-Mediated Infection. Viruses 2023; 15:1901. [PMID: 37766307 PMCID: PMC10535197 DOI: 10.3390/v15091901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 virion has shown remarkable resilience, capable of mutating to escape immune detection and re-establishing infectious capabilities despite new vaccine rollouts. Therefore, there is a critical need to identify relatively immutable epitopes on the SARS-CoV-2 virion that are resistant to future mutations the virus may accumulate. While hACE2 has been identified as the receptor that mediates SARS-CoV-2 susceptibility, it is only modestly expressed in lung tissue. C-type lectin receptors like DC-SIGN can act as attachment sites to enhance SARS-CoV-2 infection of cells with moderate or low hACE2 expression. We developed an easy-to-implement assay system that allows for the testing of SARS-CoV-2 trans-infection. Using our assay, we assessed how SARS-CoV-2 Spike S1-domain glycans and spike proteins from different strains affected the ability of pseudotyped lentivirions to undergo DC-SIGN-mediated trans-infection. Through our experiments with seven glycan point mutants, two glycan cluster mutants and four strains of SARS-CoV-2 spike, we found that glycans N17 and N122 appear to have significant roles in maintaining COVID-19's infectious capabilities. We further found that the virus cannot retain infectivity upon the loss of multiple glycosylation sites, and that Omicron BA.2 pseudovirions may have an increased ability to bind to other non-lectin receptor proteins on the surface of cells. Taken together, our work opens the door to the development of new therapeutics that can target overlooked epitopes of the SARS-CoV-2 virion to prevent C-type lectin-receptor-mediated trans-infection in lung tissue.
Collapse
Affiliation(s)
- Arjan Bains
- Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Patricia J. LiWang
- Molecular Cell Biology, Health Sciences Research Institute, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| |
Collapse
|
26
|
Di Primio C, Quaranta P, Mignanelli M, Siano G, Bimbati M, Scarlatti A, Piazza CR, Spezia PG, Perrera P, Basolo F, Poma AM, Costa M, Pistello M, Cattaneo A. Severe acute respiratory syndrome coronavirus 2 infection leads to Tau pathological signature in neurons. PNAS NEXUS 2023; 2:pgad282. [PMID: 37731949 PMCID: PMC10508204 DOI: 10.1093/pnasnexus/pgad282] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023]
Abstract
COVID-19 has represented an issue for global health since its outbreak in March 2020. It is now evident that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in a wide range of long-term neurological symptoms and is worryingly associated with the aggravation of Alzheimer's disease. Little is known about the molecular basis of these manifestations. Here, several strain variants were used to infect SH-SY5Y neuroblastoma cells and K18-hACE C57BL/6J mice. The Tau phosphorylation profile and aggregation propensity upon infection were investigated on cellular extracts, subcellular fractions, and brain tissue. The viral proteins spike, nucleocapsid, and membrane were overexpressed in SH-SY5Y cells, and the direct interaction and effect on Tau phosphorylation were checked using immunoblot experiments. Upon infection, Tau is phosphorylated at several pathological epitopes associated with Alzheimer's disease and other tauopathies. Moreover, this event increases Tau's propensity to form insoluble aggregates and alters its subcellular localization. Our data support the hypothesis that SARS-CoV-2 infection in the central nervous system triggers downstream effects altering Tau function, eventually leading to the impairment of neuronal function.
Collapse
Affiliation(s)
- Cristina Di Primio
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa 56124, Italy
| | - Paola Quaranta
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa 56124, Italy
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
| | - Marianna Mignanelli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
| | - Giacomo Siano
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
| | - Matteo Bimbati
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
- Department of Biotechnology, University of Verona, Verona 37134, Italy
| | - Arianna Scarlatti
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
| | - Carmen Rita Piazza
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Piero Giorgio Spezia
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
| | - Paola Perrera
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
| | - Fulvio Basolo
- Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa 56124, Italy
| | - Anello Marcello Poma
- Department of Surgical, Medical and Molecular Pathology, University Hospital of Pisa, Pisa 56124, Italy
| | - Mario Costa
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa 56124, Italy
| | - Mauro Pistello
- Retrovirus Center, Virology Section, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa 56100, Italy
- Virology Unit, Pisa University Hospital, Pisa 56100, Italy
| | - Antonino Cattaneo
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa 56126, Italy
| |
Collapse
|
27
|
Popovic M, Pantović Pavlović M, Pavlović M. Ghosts of the past: Elemental composition, biosynthesis reactions and thermodynamic properties of Zeta P.2, Eta B.1.525, Theta P.3, Kappa B.1.617.1, Iota B.1.526, Lambda C.37 and Mu B.1.621 variants of SARS-CoV-2. MICROBIAL RISK ANALYSIS 2023; 24:100263. [PMID: 37234934 PMCID: PMC10199755 DOI: 10.1016/j.mran.2023.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/07/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
From the perspectives of molecular biology, genetics and biothermodynamics, SARS-CoV-2 is the among the best characterized viruses. Research on SARS-CoV-2 has shed a new light onto driving forces and molecular mechanisms of viral evolution. This paper reports results on empirical formulas, biosynthesis reactions and thermodynamic properties of biosynthesis (multiplication) for the Zeta P.2, Eta B.1.525, Theta P.3, Kappa B.1.617.1, Iota B.1.526, Lambda C.37 and Mu B.1.621 variants of SARS-CoV-2. Thermodynamic analysis has shown that the physical driving forces for evolution of SARS-CoV-2 are Gibbs energy of biosynthesis and Gibbs energy of binding. The driving forces have led SARS-CoV-2 through the evolution process from the original Hu-1 to the newest variants in accordance with the expectations of the evolution theory.
Collapse
Affiliation(s)
- Marko Popovic
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
| | - Marijana Pantović Pavlović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
- University of Belgrade, Centre of Excellence in Chemistry and Environmental Engineering - ICTM, Belgrade, Serbia
| | - Miroslav Pavlović
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
- University of Belgrade, Centre of Excellence in Chemistry and Environmental Engineering - ICTM, Belgrade, Serbia
| |
Collapse
|
28
|
Milton NGN. SARS-CoV-2 amyloid, is COVID-19-exacerbated dementia an amyloid disorder in the making? FRONTIERS IN DEMENTIA 2023; 2:1233340. [PMID: 39081980 PMCID: PMC11285677 DOI: 10.3389/frdem.2023.1233340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2024]
|
29
|
Kollhoff L, Kipping M, Rauh M, Ceglarek U, Barka G, Barka F, Sinz A. Development of a rapid and specific MALDI-TOF mass spectrometric assay for SARS-CoV-2 detection. Clin Proteomics 2023; 20:26. [PMID: 37393264 DOI: 10.1186/s12014-023-09415-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023] Open
Abstract
We have developed a rapid and highly specific assay for detecting and monitoring SARS-CoV-2 infections by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). As MALDI-TOF mass spectrometers are available in a clinical setting, our assay has the potential to serve as alternative to the commonly used reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Sample preparation prior to MALDI-TOF-MS involves the tryptic digestion of SARS-CoV-2 proteins, followed by an enrichment of virus-specific peptides from SARS-CoV-2 nucleoprotein via magnetic antibody beads. Our MALDI-TOF-MS method allows the detection of SARS-CoV-2 nucleoprotein in sample collection medium as low as 8 amol/µl. MALDI-TOF mass spectra are obtained in just a few seconds, which makes our MS-based assay suitable for a high-throughput screening of SARS-CoV-2 in healthcare facilities in addition to PCR. Due to the specific detection of virus peptides, different SARS-CoV-2 variants are readily distinguished from each other. Specifically, we show that our MALDI-TOF-MS assay discriminates SARS-CoV-2 strain B.1.617.2 "delta variant" from all other variants in patients' samples, making our method highly valuable to monitor the emergence of new virus variants.
Collapse
Affiliation(s)
- Lydia Kollhoff
- Department of Pharmaceutical Chemistry and Bioanalytics, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120, Halle (Saale), Germany
| | - Marc Kipping
- Department of Pharmaceutical Chemistry and Bioanalytics, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120, Halle (Saale), Germany
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120, Halle (Saale), Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Friedrich Alexander University, Erlangen-Nürnberg, Germany
| | - Uta Ceglarek
- Institute for Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Günes Barka
- SunChrom Wissenschaftliche Geräte GmbH, 61381, Friedrichsdorf, Germany
| | - Frederik Barka
- SunChrom Wissenschaftliche Geräte GmbH, 61381, Friedrichsdorf, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120, Halle (Saale), Germany.
- Center for Structural Mass Spectrometry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3, D-06120, Halle (Saale), Germany.
| |
Collapse
|
30
|
Jiang N, Malone M, Chizari S. Antigen-specific and cross-reactive T cells in protection and disease. Immunol Rev 2023; 316:120-135. [PMID: 37209375 PMCID: PMC10524458 DOI: 10.1111/imr.13217] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Human T cells have a diverse T-cell receptor (TCR) repertoire that endows them with the ability to identify and defend against a broad spectrum of antigens. The universe of possible antigens that T cells may encounter, however, is even larger. To effectively surveil such a vast universe, the T-cell repertoire must adopt a high degree of cross-reactivity. Likewise, antigen-specific and cross-reactive T-cell responses play pivotal roles in both protective and pathological immune responses in numerous diseases. In this review, we explore the implications of these antigen-driven T-cell responses, with a particular focus on CD8+ T cells, using infection, neurodegeneration, and cancer as examples. We also summarize recent technological advances that facilitate high-throughput profiling of antigen-specific and cross-reactive T-cell responses experimentally, as well as computational biology approaches that predict these interactions.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, 19104
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, 19104
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, 19104
- Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, 19104
| | - Michael Malone
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| | - Shahab Chizari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
31
|
Miteva D, Kitanova M, Batselova H, Lazova S, Chervenkov L, Peshevska-Sekulovska M, Sekulovski M, Gulinac M, Vasilev GV, Tomov L, Velikova T. The End or a New Era of Development of SARS-CoV-2 Virus: Genetic Variants Responsible for Severe COVID-19 and Clinical Efficacy of the Most Commonly Used Vaccines in Clinical Practice. Vaccines (Basel) 2023; 11:1181. [PMID: 37514997 PMCID: PMC10385722 DOI: 10.3390/vaccines11071181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Although the chief of the World Health Organization (WHO) has declared the end of the coronavirus disease 2019 (COVID-19) as a global health emergency, the disease is still a global threat. To be able to manage such pandemics in the future, it is necessary to develop proper strategies and opportunities to protect human life. The data on the SARS-CoV-2 virus must be continuously analyzed, and the possibilities of mutation and the emergence of new, more infectious variants must be anticipated, as well as the options of using different preventive and therapeutic techniques. This is because the fast development of severe acute coronavirus 2 syndrome (SARS-CoV-2) variants of concern have posed a significant problem for COVID-19 pandemic control using the presently available vaccinations. This review summarizes data on the SARS-CoV-2 variants that are responsible for severe COVID-19 and the clinical efficacy of the most commonly used vaccines in clinical practice. The consequences after the disease (long COVID or post-COVID conditions) continue to be the subject of studies and research, and affect social and economic life worldwide.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov str., 1164 Sofia, Bulgaria
| | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, Sofia University "St. Kliment Ohridski", 8 Dragan Tzankov str., 1164 Sofia, Bulgaria
| | - Hristiana Batselova
- Department of Epidemiology and Disaster Medicine, University Hospital "Saint George", Medical University, 6000 Plovdiv, Bulgaria
| | - Snezhina Lazova
- Pediatric Department, University Hospital "N. I. Pirogov," 21 "General Eduard I. Totleben" Blvd, 1606 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health "Prof. Tsekomir Vodenicharov, MD, DSc", Medical University of Sofia, Bialo More 8 str., 1527 Sofia, Bulgaria
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Monika Peshevska-Sekulovska
- Department of Gastroenterology, University Hospital Lozenetz, 1407 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, 1 Kozyak str., 1407 Sofia, Bulgaria
| | - Milena Gulinac
- Department of General and Clinical Pathology, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Georgi V Vasilev
- Clinic of Endocrinology and Metabolic Disorders, UMHAT "Sv. Georgi", 4000 Plovdiv, Bulgaria
| | - Luchesar Tomov
- Department of Informatics, New Bulgarian University, Montevideo 21 str., 1618 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1407 Sofia, Bulgaria
| |
Collapse
|
32
|
Senthilazhagan K, Sakthimani S, Kallanja D, Venkataraman S. SARS-CoV-2: analysis of the effects of mutations in non-structural proteins. Arch Virol 2023; 168:186. [PMID: 37344726 DOI: 10.1007/s00705-023-05818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
A worldwide pandemic that started in China in late 2019 was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded RNA virus belonging to the family Coronaviridae. Due to its structural variability and mutability, this virus continues to evolve and pose a major health threat around the world. Its characteristics, such as transmissibility, antigenicity, and resistance to drugs and vaccines, are continually altered through mutations. Examining mutational hotspots and their structural repercussions can thus aid in the development of more-effective vaccinations and treatment plans. In this study, we used full genome sequences of SARS-CoV-2 variants to predict structural changes in viral proteins. These sequences were obtained from the Global Initiative on Sharing Avian Influenza Data (GISAID), and a set of significant mutations were identified in each of the non-structural proteins (NSP1-16) and structural proteins, including the envelope, nucleocapsid, membrane, and spike proteins. The mutations were characterized as stabilizing or destabilizing based on their effect on protein dynamics and stability, and their impact on structure and function was evaluated. Among all of the proteins, NSP6 stands out as especially variable. The results of this study augment our understanding of how mutational events influence virus pathogenicity and evolution.
Collapse
Affiliation(s)
- Kavya Senthilazhagan
- Department of Biotechnology, Anna University, 600025, Guindy, Chennai, Tamil Nādu, India
| | - Seshagiri Sakthimani
- Department of Biotechnology, Anna University, 600025, Guindy, Chennai, Tamil Nādu, India
| | - Deepthi Kallanja
- Department of Biotechnology, Anna University, 600025, Guindy, Chennai, Tamil Nādu, India
| | - Sangita Venkataraman
- Department of Biotechnology, Anna University, 600025, Guindy, Chennai, Tamil Nādu, India.
| |
Collapse
|
33
|
Osborn LJ, Chen PY, Flores-Vazquez J, Mestas J, Salas E, Glucoft M, Smit MA, Costales C, Dien Bard J. Clinical utility of SARS-CoV-2 subgenomic RT-PCR in a pediatric quaternary care setting. J Clin Virol 2023; 164:105494. [PMID: 37210881 DOI: 10.1016/j.jcv.2023.105494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND During active transcription, SARS-CoV-2 generates subgenomic regions of viral RNA. While standard SARS-CoV-2 RT-PCR amplifies region(s) of genomic RNA, it cannot distinguish active infection from remnant viral genomic material. However, screening for subgenomic RNA (sgRNA) by RT-PCR may aid in the determination of actively transcribing virus. OBJECTIVES To evaluate the clinical utility of SARS-CoV-2 sgRNA RT-PCR testing in a pediatric population. STUDY DESIGN Retrospective analysis was performed on inpatients from February-September 2022 positive for SARS-CoV-2 by RT-PCR with a concomitant order for sgRNA RT-PCR. Chart abstractions were conducted to determine clinical outcomes, management, and infection prevention and control (IPC) practices. RESULTS Of 95 SARS-CoV-2 positive samples from 75 unique patients, 27 (28.4%) were positive by sgRNA RT-PCR. A negative sgRNA RT-PCR test allowed for de-isolation in 68 (71.6%) patient episodes. Regardless of age or sex, a positive sgRNA RT-PCR result significantly correlated with disease severity (P = 0.007), generalized COVID-19 symptoms (P = 0.012), hospitalization for COVID-19 (P = 0.019), and immune status (P = 0.024). Moreover, sgRNA RT-PCR results prompted changes in management in 28 patients (37.3%); specifically, therapeutic escalation in 13/27 (48.1%) positives and de-escalation in 15/68 (22.1%) negatives. CONCLUSIONS Taken together, these findings underscore the clinical utility of sgRNA RT-PCR testing in a pediatric population as we report significant associations between sgRNA RT-PCR results and clinical parameters related to COVID-19. These findings align with the proposed use of sgRNA RT-PCR testing to guide patient management and IPC practices in the hospital setting.
Collapse
Affiliation(s)
- Lucas J Osborn
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Pei Ying Chen
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jessica Flores-Vazquez
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Javier Mestas
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Edahrline Salas
- Department of Infection Prevention and Control, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Marisa Glucoft
- Department of Infection Prevention and Control, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Michael A Smit
- Department of Infection Prevention and Control, Children's Hospital Los Angeles, Los Angeles, CA, United States; Division of Infectious Diseases, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Cristina Costales
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jennifer Dien Bard
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
34
|
Subramoney K, Mtileni N, Giandhari J, Naidoo Y, Ramphal Y, Pillay S, Ramphal U, Maharaj A, Tshiabuila D, Tegally H, Wilkinson E, de Oliveira T, Fielding BC, Treurnicht FK. Molecular Epidemiology of SARS-CoV-2 during Five COVID-19 Waves and the Significance of Low-Frequency Lineages. Viruses 2023; 15:1194. [PMID: 37243279 PMCID: PMC10223853 DOI: 10.3390/v15051194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
SARS-CoV-2 lineages and variants of concern (VOC) have gained more efficient transmission and immune evasion properties with time. We describe the circulation of VOCs in South Africa and the potential role of low-frequency lineages on the emergence of future lineages. Whole genome sequencing was performed on SARS-CoV-2 samples from South Africa. Sequences were analysed with Nextstrain pangolin tools and Stanford University Coronavirus Antiviral & Resistance Database. In 2020, 24 lineages were detected, with B.1 (3%; 8/278), B.1.1 (16%; 45/278), B.1.1.348 (3%; 8/278), B.1.1.52 (5%; 13/278), C.1 (13%; 37/278) and C.2 (2%; 6/278) circulating during the first wave. Beta emerged late in 2020, dominating the second wave of infection. B.1 and B.1.1 continued to circulate at low frequencies in 2021 and B.1.1 re-emerged in 2022. Beta was outcompeted by Delta in 2021, which was thereafter outcompeted by Omicron sub-lineages during the 4th and 5th waves in 2022. Several significant mutations identified in VOCs were also detected in low-frequency lineages, including S68F (E protein); I82T (M protein); P13L, R203K and G204R/K (N protein); R126S (ORF3a); P323L (RdRp); and N501Y, E484K, D614G, H655Y and N679K (S protein). Low-frequency variants, together with VOCs circulating, may lead to convergence and the emergence of future lineages that may increase transmissibility, infectivity and escape vaccine-induced or natural host immunity.
Collapse
Affiliation(s)
- Kathleen Subramoney
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa;
- Centre for Vaccines and Immunology, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Nkhensani Mtileni
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa;
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa; (J.G.); (Y.R.); (S.P.); (U.R.); (A.M.); (H.T.); (T.d.O.)
| | - Yeshnee Naidoo
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.N.); (D.T.); (E.W.)
| | - Yajna Ramphal
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa; (J.G.); (Y.R.); (S.P.); (U.R.); (A.M.); (H.T.); (T.d.O.)
| | - Sureshnee Pillay
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa; (J.G.); (Y.R.); (S.P.); (U.R.); (A.M.); (H.T.); (T.d.O.)
| | - Upasana Ramphal
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa; (J.G.); (Y.R.); (S.P.); (U.R.); (A.M.); (H.T.); (T.d.O.)
| | - Akhil Maharaj
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa; (J.G.); (Y.R.); (S.P.); (U.R.); (A.M.); (H.T.); (T.d.O.)
| | - Derek Tshiabuila
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.N.); (D.T.); (E.W.)
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa; (J.G.); (Y.R.); (S.P.); (U.R.); (A.M.); (H.T.); (T.d.O.)
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.N.); (D.T.); (E.W.)
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa; (J.G.); (Y.R.); (S.P.); (U.R.); (A.M.); (H.T.); (T.d.O.)
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.N.); (D.T.); (E.W.)
| | - Burtram C. Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical BioSciences, University of the Western Cape, Cape Town 7535, South Africa;
| | - Florette K. Treurnicht
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg 2193, South Africa;
| |
Collapse
|
35
|
Diallo BK, Ní Chasaide C, Wong TY, Schmitt P, Lee KS, Weaver K, Miller O, Cooper M, Jazayeri SD, Damron FH, Mills KHG. Intranasal COVID-19 vaccine induces respiratory memory T cells and protects K18-hACE mice against SARS-CoV-2 infection. NPJ Vaccines 2023; 8:68. [PMID: 37179389 PMCID: PMC10182552 DOI: 10.1038/s41541-023-00665-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Current COVID-19 vaccines prevent severe disease, but do not induce mucosal immunity or prevent infection with SARS-CoV-2, especially with recent variants. Furthermore, serum antibody responses wane soon after immunization. We assessed the immunogenicity and protective efficacy of an experimental COVID-19 vaccine based on the SARS-CoV-2 Spike trimer formulated with a novel adjuvant LP-GMP, comprising TLR2 and STING agonists. We demonstrated that immunization of mice twice by the intranasal (i.n.) route or by heterologous intramuscular (i.m.) prime and i.n. boost with the Spike-LP-GMP vaccine generated potent Spike-specific IgG, IgA and tissue-resident memory (TRM) T cells in the lungs and nasal mucosa that persisted for at least 3 months. Furthermore, Spike-LP-GMP vaccine delivered by i.n./i.n., i.m./i.n., or i.m./i.m. routes protected human ACE-2 transgenic mice against respiratory infection and COVID-19-like disease following lethal challenge with ancestral or Delta strains of SARS-CoV-2. Our findings underscore the potential for nasal vaccines in preventing infection with SARS-CoV-2 and other respiratory pathogen.
Collapse
Affiliation(s)
- Béré K Diallo
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Caitlín Ní Chasaide
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ting Y Wong
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Pauline Schmitt
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Katherine S Lee
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Kelly Weaver
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Olivia Miller
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Melissa Cooper
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Seyed D Jazayeri
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - F Heath Damron
- Department of Microbiology, Immunology, and Cell Biology and Vaccine Development Center, West Virginia University, Health Sciences Center, Morgantown, West Virginia, USA
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
36
|
Cordsmeier A, Jungnickl D, Herrmann A, Korn K, Ensser A. Analysis of SARS-CoV-2 Spike Protein Variants with Recombinant Reporter Viruses Created from a Bacmid System. Int J Mol Sci 2023; 24:ijms24098156. [PMID: 37175863 PMCID: PMC10179725 DOI: 10.3390/ijms24098156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, has spread around the world with more than 700 million cases and 6.8 million deaths. Various variants of concern (VoC) have emerged due to mutations and recombination and concurrent selection for increased viral fitness and immune evasion. The viral protein that primarily determines the pathogenicity, infectivity, and transmissibility is the Spike protein. To analyze the specific impact of variant Spike proteins on infection dynamics, we constructed SARS-CoV-2 with a uniform B.1 backbone but with alternative Spike proteins. In addition, ORF6 was replaced by EYFP as a biological safety measure, and for use of this well-established reporter. We show that namely the delta variant Spike proteins cause a distinct phenotype from the wild type (B.1, D614G) and other variants of concern. Furthermore, we demonstrate that the omicron BA.1 Spike results in lower viral loads and a less efficient spread in vitro. Finally, we utilized viruses with the two different reporters EYFP and mCherry to establish a competitive growth assay, demonstrating that most but not all Spike variant viruses were able to outcompete wild type SARS-CoV-2 B.1.
Collapse
Affiliation(s)
- Arne Cordsmeier
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Doris Jungnickl
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Alexandra Herrmann
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Klaus Korn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
37
|
Echaide M, Chocarro de Erauso L, Bocanegra A, Blanco E, Kochan G, Escors D. mRNA Vaccines against SARS-CoV-2: Advantages and Caveats. Int J Mol Sci 2023; 24:ijms24065944. [PMID: 36983017 PMCID: PMC10051235 DOI: 10.3390/ijms24065944] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
The application of BNT162b2 and mRNA-1273 vaccines against SARS-CoV-2 infection has constituted a determinant resource to control the COVID-19 pandemic. Since the beginning of 2021, millions of doses have been administered in several countries of North and South America and Europe. Many studies have confirmed the efficacy of these vaccines in a wide range of ages and in vulnerable groups of people against COVID-19. Nevertheless, the emergence and selection of new variants have led to a progressive decay in vaccine efficacy. Pfizer-BioNTech and Moderna developed updated bivalent vaccines-Comirnaty and Spikevax-to improve responses against the SARS-CoV-2 Omicron variants. Frequent booster doses with monovalent or bivalent mRNA vaccines, the emergence of some rare but serious adverse events and the activation of T-helper 17 responses suggest the need for improved mRNA vaccine formulations or the use of other types of vaccines. In this review, we discuss the advantages and limitations of mRNA vaccines targeting SARS-CoV-2 focusing on the most recent, related publications.
Collapse
Affiliation(s)
- Miriam Echaide
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Luisa Chocarro de Erauso
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Ana Bocanegra
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Ester Blanco
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| | - David Escors
- Oncoimmunology Unit, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), 31008 Pamplona, Spain
| |
Collapse
|
38
|
Damiani V, Pizzinato E, Cicalini I, Demattia G, Zucchelli M, Natale L, Palmarini C, Di Marzio C, Federici L, De Laurenzi V, Pieragostino D. Development of a Method for Detection of SARS-CoV-2 Nucleocapsid Antibodies on Dried Blood Spot by DELFIA Immunoassay. Diagnostics (Basel) 2023; 13:897. [PMID: 36900041 PMCID: PMC10000641 DOI: 10.3390/diagnostics13050897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
Antibodies against the SARS-CoV-2 nucleocapsid protein are produced by the immune system in response to SARS-CoV-2 infection, but most available vaccines developed to fight the pandemic spread target the SARS-CoV-2 spike protein. The aim of this study was to improve the detection of antibodies against the SARS-CoV-2 nucleocapsid by providing a simple and robust method applicable to a large population. For this purpose, we developed a DELFIA immunoassay on dried blood spots (DBSs) by converting a commercially available IVD ELISA assay. A total of forty-seven paired plasma and dried blood spots were collected from vaccinated and/or previously SARS-CoV-2-infected subjects. The DBS-DELFIA resulted in a wider dynamic range and higher sensitivity for detecting antibodies against the SARS-CoV-2 nucleocapsid. Moreover, the DBS-DELFIA showed a good total intra-assay coefficient of variability of 14.6%. Finally, a strong correlation was found between SARS-CoV-2 nucleocapsid antibodies detected by the DBS-DELFIA and ELISA immunoassays (r = 0.9). Therefore, the association of dried blood sampling with DELFIA technology may provide an easier, minimally invasive, and accurate measurement of SARS-CoV-2 nucleocapsid antibodies in previously SARS-CoV-2-infected subjects. In conclusion, these results justify further research to develop a certified IVD DBS-DELFIA assay for detecting SARS-CoV-2 nucleocapsid antibodies useful for diagnostics as well as for serosurveillance studies.
Collapse
Affiliation(s)
- Verena Damiani
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Erika Pizzinato
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gianmaria Demattia
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Mirco Zucchelli
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Natale
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudia Palmarini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Claudia Di Marzio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine and Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
39
|
González-Vázquez LD, Arenas M. Molecular Evolution of SARS-CoV-2 during the COVID-19 Pandemic. Genes (Basel) 2023; 14:407. [PMID: 36833334 PMCID: PMC9956206 DOI: 10.3390/genes14020407] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) produced diverse molecular variants during its recent expansion in humans that caused different transmissibility and severity of the associated disease as well as resistance to monoclonal antibodies and polyclonal sera, among other treatments. In order to understand the causes and consequences of the observed SARS-CoV-2 molecular diversity, a variety of recent studies investigated the molecular evolution of this virus during its expansion in humans. In general, this virus evolves with a moderate rate of evolution, in the order of 10-3-10-4 substitutions per site and per year, which presents continuous fluctuations over time. Despite its origin being frequently associated with recombination events between related coronaviruses, little evidence of recombination was detected, and it was mostly located in the spike coding region. Molecular adaptation is heterogeneous among SARS-CoV-2 genes. Although most of the genes evolved under purifying selection, several genes showed genetic signatures of diversifying selection, including a number of positively selected sites that affect proteins relevant for the virus replication. Here, we review current knowledge about the molecular evolution of SARS-CoV-2 in humans, including the emergence and establishment of variants of concern. We also clarify relationships between the nomenclatures of SARS-CoV-2 lineages. We conclude that the molecular evolution of this virus should be monitored over time for predicting relevant phenotypic consequences and designing future efficient treatments.
Collapse
Affiliation(s)
- Luis Daniel González-Vázquez
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Miguel Arenas
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310 Vigo, Spain
| |
Collapse
|