1
|
Lodge M, Dykes R, Kennedy A. Regulation of Fructose Metabolism in Nonalcoholic Fatty Liver Disease. Biomolecules 2024; 14:845. [PMID: 39062559 PMCID: PMC11274671 DOI: 10.3390/biom14070845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Elevations in fructose consumption have been reported to contribute significantly to an increased incidence of obesity and metabolic diseases in industrial countries. Mechanistically, a high fructose intake leads to the dysregulation of glucose, triglyceride, and cholesterol metabolism in the liver, and causes elevations in inflammation and drives the progression of nonalcoholic fatty liver disease (NAFLD). A high fructose consumption is considered to be toxic to the body, and there are ongoing measures to develop pharmaceutical therapies targeting fructose metabolism. Although a large amount of work has summarized the effects fructose exposure within the intestine, liver, and kidney, there remains a gap in our knowledge regarding how fructose both indirectly and directly influences immune cell recruitment, activation, and function in metabolic tissues, which are essential to tissue and systemic inflammation. The most recent literature demonstrates that direct fructose exposure regulates oxidative metabolism in macrophages, leading to inflammation. The present review highlights (1) the mechanisms by which fructose metabolism impacts crosstalk between tissues, nonparenchymal cells, microbes, and immune cells; (2) the direct impact of fructose on immune cell metabolism and function; and (3) therapeutic targets of fructose metabolism to treat NAFLD. In addition, the review highlights how fructose disrupts liver tissue homeostasis and identifies new therapeutic targets for treating NAFLD and obesity.
Collapse
Affiliation(s)
| | | | - Arion Kennedy
- Department of Molecular and Structural Biochemistry, North Carolina State University, 128 Polk Hall Campus, Box 7622, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Fauste E, Panadero MI, Pérez-Armas M, Donis C, López-Laiz P, Sevillano J, Sánchez-Alonso MG, Ramos-Álvarez MP, Otero P, Bocos C. Maternal fructose intake aggravates the harmful effects of a Western diet in rat male descendants impacting their cholesterol metabolism. Food Funct 2024; 15:6147-6163. [PMID: 38767501 DOI: 10.1039/d4fo01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Scope: fructose consumption from added sugars correlates with the epidemic rise in MetS and CVD. Maternal fructose intake has been described to program metabolic diseases in progeny. However, consumption of fructose-containing beverages is allowed during gestation. Cholesterol is also a well-known risk factor for CVD. Therefore, it is essential to study Western diets which combine fructose and cholesterol and how maternal fructose can influence the response of progeny to these diets. Methods and results: a high-cholesterol (2%) diet combined with liquid fructose (10%), as a model of an unhealthy Western diet, was administered to descendants from control and fructose-fed mothers. Gene (mRNA and protein) expression and plasma, fecal and tissue parameters of cholesterol metabolism were measured. Interestingly, progeny from fructose-fed dams consumed less liquid fructose and cholesterol-rich chow than males from control mothers. Moreover, descendants of fructose-fed mothers fed a Western diet showed an increased cholesterol elimination through bile and feces than males from control mothers. Despite these mitigating circumstances to develop a proatherogenic profile, the same degree of hypercholesterolemia and severity of steatosis were observed in all descendants fed a Western diet, independently of maternal intake. An increased intestinal absorption of cholesterol, synthesis, esterification, and assembly into lipoprotein found in males from fructose-fed dams consuming a Western diet could be the cause. Moreover, an augmented GLP2 signalling seen in these animals would explain this enhanced lipid absorption. Conclusions: maternal fructose intake, through a fetal programming, makes a Western diet considerably more harmful in their descendants than in the offspring from control mothers.
Collapse
Affiliation(s)
- E Fauste
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - M I Panadero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - M Pérez-Armas
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - C Donis
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - P López-Laiz
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - J Sevillano
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - M G Sánchez-Alonso
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - M P Ramos-Álvarez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - P Otero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| | - C Bocos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Montepríncipe, Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
3
|
El-Wakf AM, El-Sawi MR, El-Nigomy HM, El-Nashar EM, Al-Zahrani NS, Alqahtani NG, Aldahhan RA, Eldken ZH. Fennel seeds extract prevents fructose-induced cardiac dysfunction in a rat model of metabolic syndrome via targeting abdominal obesity, hyperuricemia and NF-κβ inflammatory pathway. Tissue Cell 2024; 88:102385. [PMID: 38678740 DOI: 10.1016/j.tice.2024.102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Metabolic syndrome (MetS) is commonly associated with increased risk of cardiac disease that affects a large number of world populations. OBJECTIVE This research attempted to investigate the efficacy of fennel seeds extract (FSE) in preventing development of cardiac dysfunction in rats on fructose enriched diet for 3 months, as a model of MetS. MATERIALS & METHODS Thirty adult Wistar male rats (160-170 g) were assigned into 5 groups including control, vehicle, FSE (200 mg/kg BW) and fructose (60%) fed rats with and without FSE. Following the last treatment, blood pressure, ECG and heart rate were measured. Next, blood and cardiac tissues were taken for biochemical and histological investigations. RESULTS Feeding fructose exhibited characteristic features of MetS involving, hypertension, abnormal ECG, elevated heart rate, serum glucose, insulin, lipids and insulin resistance, accompanied by abdominal obesity, cardiac hypertrophy and hyperuricemia. Fructose fed rats also showed significant reduction in cardiac antioxidants (GSH, SOD, CAT) with elevation in oxidative stress indices (NADPH oxidase, O2.-, H2O2, MDA, PCO), NF-κβ, pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), adhesion molecules (ICAM-1, VCAM-1) and serum cardiac biomarkers (AST, LDH, CK-MB, cTn-I). Histopathological changes evidenced by destruction of cardiac myofibrils, cytoplasmic vacuolization, and aggregation of inflammatory cells were also detected. Consumption of FSE showed high ability to alleviate fructose-induced hypertension, ECG abnormalities, cardiac hypertrophy, metabolic alterations, oxidative stress, inflammation and histological injury. CONCLUSION Findings could suggest FSE as a complementary supplement for preventing MetS and associated cardiac outcomes. However, well controlled clinical studies are still needed.
Collapse
Affiliation(s)
| | | | | | - Eman Mohamad El-Nashar
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia.
| | - Norah Saeed Al-Zahrani
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Nasser G Alqahtani
- Cardiology, Department of Internal Medicine, College of Medicine, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | - Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam 31451, Saudi Arabia
| | - Zienab Helmy Eldken
- Department of Medical physiology, Faculty of Medicine, Mansoura University, Egypt; Department of Basic Medical Sciences, Ibn Sina University for Medical Sciences, Amman 11104, Jordan.
| |
Collapse
|
4
|
Paunovic M, Milosevic M, Mitrovic-Ajtic O, Velickovic N, Micic B, Nedic O, Todorovic V, Vucic V, Petrovic S. Polyphenol-rich black currant and cornelian cherry juices ameliorate metabolic syndrome induced by a high-fat high-fructose diet in Wistar rats. Heliyon 2024; 10:e27709. [PMID: 38590904 PMCID: PMC10999883 DOI: 10.1016/j.heliyon.2024.e27709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/10/2024] Open
Abstract
Diets high in fat and sugar lead to metabolic syndrome (MetS) and related chronic diseases. We investigated the effects of commercially available, cold-pressed polyphenol-rich black currant (BC) and cornelian cherry (CC) juices on the prevention of MetS in Wistar rats induced by a 10-weeks high-fat high-fructose (HFF) diet. Juice consumption, either BC or CC, with a HFF diet resulted in lower serum triglycerides compared to only the HFF consumption. Both juices also mitigated the effects of HFF on the liver, pancreas, and adipose tissue, by preserving liver and pancreas histomorphology and reducing visceral fat and adipocyte size. Furthermore, supplementation with both juices reduced glucagon and up-regulated insulin expression in the pancreas of the rats on the HFF diet, whereas the BC also showed improved glucose regulation. BC juice also reduced the expression of IL-6 and hepatic inflammation compared to the group only on HFF diet. Both juices, especially BC, could be a convenient solution for the prevention of MetS in humans.
Collapse
Affiliation(s)
- Marija Paunovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Maja Milosevic
- Group for Neuroendocrinology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Olivera Mitrovic-Ajtic
- Group for Molecular Oncology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Natasa Velickovic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Bojana Micic
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”, National Institute of the Republic of Serbia, University of Belgrade, 11060, Belgrade, Serbia
| | - Olgica Nedic
- Institute for the Application of Nuclear Energy (INEP), University of Belgrade, 11080, Belgrade, Serbia
| | - Vanja Todorovic
- Department of Bromatology, University of Belgrade - Faculty of Pharmacy, 11221, Belgrade, Serbia
| | - Vesna Vucic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Snjezana Petrovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| |
Collapse
|
5
|
Singh R, Gholipourmalekabadi M, Shafikhani SH. Animal models for type 1 and type 2 diabetes: advantages and limitations. Front Endocrinol (Lausanne) 2024; 15:1359685. [PMID: 38444587 PMCID: PMC10912558 DOI: 10.3389/fendo.2024.1359685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Diabetes mellitus, commonly referred to as diabetes, is a group of metabolic disorders characterized by chronic elevation in blood glucose levels, resulting from inadequate insulin production, defective cellular response to extracellular insulin, and/or impaired glucose metabolism. The two main types that account for most diabetics are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), each with their own pathophysiological features. T1D is an autoimmune condition where the body's immune system attacks and destroys the insulin-producing beta cells in the pancreas. This leads to lack of insulin, a vital hormone for regulating blood sugar levels and cellular glucose uptake. As a result, those with T1D depend on lifelong insulin therapy to control their blood glucose level. In contrast, T2DM is characterized by insulin resistance, where the body's cells do not respond effectively to insulin, coupled with a relative insulin deficiency. This form of diabetes is often associated with obesity, sedentary lifestyle, and/or genetic factors, and it is managed with lifestyle changes and oral medications. Animal models play a crucial role in diabetes research. However, given the distinct differences between T1DM and T2DM, it is imperative for researchers to employ specific animal models tailored to each condition for a better understanding of the impaired mechanisms underlying each condition, and for assessing the efficacy of new therapeutics. In this review, we discuss the distinct animal models used in type 1 and type 2 diabetes mellitus research and discuss their strengths and limitations.
Collapse
Affiliation(s)
- Raj Singh
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL, United States
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sasha H Shafikhani
- Department of Medicine, Division of Hematology, Oncology, & Cell Therapy, Rush University Medical Center, Chicago, IL, United States
- Cancer Center, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
6
|
Prasad M, Jayaraman S, Natarajan SR, Veeraraghavan VP, Krishnamoorthy R, Gatasheh MK, Palanisamy CP, Elrobh M. Piperine modulates IR/Akt/GLUT4 pathways to mitigate insulin resistance: Evidence from animal and computational studies. Int J Biol Macromol 2023; 253:127242. [PMID: 37797864 DOI: 10.1016/j.ijbiomac.2023.127242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
The global prevalence of diabetes mellitus is rising, especially in India. Medicinal herbs, whether used alone or in combination with conventional medicines, have shown promise in managing diabetes and improving overall well-being. Piperine (PIP), a major bioactive compound found in pepper, is gaining attention for its beneficial properties. This study aimed to assess whether PIP could alleviate diabetes by targeting insulin pathway-related molecules in the adipose tissue of rats on a high-fat diet (HFD). After 60 days on the HFD, rats received PIP at a dose of 40 mg/kg body weight for one month. The results showed that PIP significantly improved metabolic indicators, antioxidant enzymes, and carbohydrate metabolic enzymes. It also regulated the mRNA and protein expression of insulin signaling, which had been disrupted by the diet and sucrose intake. Molecular docking analysis also revealed strong binding of PIP to key diabetes-related regulatory proteins, including Akt (-6.2 kcal/mol), IR (-7.02 kcal/mol), IRS-1 (-6.86 kcal/mol), GLUT4 (-6.24 kcal/mol), AS160 (-6.28 kcal/mol), and β-arrestin (-6.01 kcal/mol). Hence, PIP may influence the regulation of glucose metabolism through effective interactions with these proteins, thereby controlling blood sugar levels due to its potent antilipidemic and antioxidant properties. In conclusion, our study provides in vivo experimental evidence against the HFD-induced T2DM model for the first time, making PIP a potential natural remedy to enhance the quality of life for diabetic patients and aid in their management.
Collapse
Affiliation(s)
- Monisha Prasad
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Sathan Raj Natarajan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| | - Rajapandiyan Krishnamoorthy
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia.
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Materials and Green Paper Making, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250316, China.
| | - Mohamed Elrobh
- Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
7
|
Elkattawy HA, Mahmoud SM, Hassan AES, Behiry A, Ebrahim HA, Ibrahim AM, Zaghamir DEF, El-Sherbiny M, El-Sayed SF. Vagal Stimulation Ameliorates Non-Alcoholic Fatty Liver Disease in Rats. Biomedicines 2023; 11:3255. [PMID: 38137476 PMCID: PMC10741668 DOI: 10.3390/biomedicines11123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The harmful consequences of non-alcoholic fatty liver disease (NAFLD) are posing an increasing threat to public health as the incidence of diabetes and obesity increases globally. A non-invasive treatment with a range of autonomic and metabolic benefits is transcutaneous vagus nerve stimulation (tVNS). AIM OF THE STUDY To investigate the possible preventive impacts of VNS against adult rats' NAFLD caused by a high-fat diet (HFD) and to clarify the underlying mechanisms. METHODS A total of thirty-two adult male rats were split into two groups: the HFD-induced NAFLD group (n = 24) and the control normal group (n = 8). The obesogenic diet was maintained for 12 weeks to induce hepatic steatosis. The HFD-induced NAFLD group (n = 24) was separated into three groups: the group without treatment (n = 8), the group with sham stimulation (n = 8), and the group with VNS treatment (n = 8). VNS was delivered for 30 min per day for 6 weeks after the establishment of NAFLD using a digital TENS device. The subsequent assessments included hepatic triglyceride, cholesterol content, serum lipid profile, and liver function testing. In this context, inflammatory biomarkers (TNF-α, IL-6) and hepatic oxidative stress (MDA, SOD, and GPx) were also assessed. To clarify the possible mechanisms behind the protective benefits of VNS, additional histological inspection and immunohistochemistry analysis of TNF-α and Caspase-3 were performed. RESULTS In the NAFLD-affected obese rats, VNS markedly decreased the rats' body mass index (BMI) and abdominal circumference (AC). Liver function markers (albumin, ALT, and AST) and the serum lipid profile-which included a notable decrease in the amounts of hepatic triglycerides and cholesterol-were both markedly improved. Additionally, oxidative stress and inflammatory indicators showed a considerable decline with VNS. Notably, the liver tissues examined by histopathologists revealed that there is evidence of the protective impact of VNS on the oxidative and inflammatory states linked to HFD-induced NAFLD while maintaining the architectural and functional condition of the liver. CONCLUSIONS Our findings suggest that VNS may represent a promising therapeutic candidate for managing NAFLD induced by obesity. It can be considered to be an effective adjuvant physiological intervention for the obese population with NAFLD to spare the liver against obesity-induced deleterious injury.
Collapse
Affiliation(s)
- Hany A. Elkattawy
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11579, Saudi Arabia;
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt; (A.E.-S.H.); (S.F.E.-S.)
| | - Samar Mortada Mahmoud
- Department of Human Anatomy and Embryology, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt;
| | - Ahmed El-Sayed Hassan
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt; (A.E.-S.H.); (S.F.E.-S.)
- Department of Basic Medical Sciences, College of Medicine, Sulaiman Al-Rajhi University, Bukayriah 51941, Saudi Arabia
| | - Ahmed Behiry
- Department of Tropical Medicine and Endemic Diseases, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt;
| | - Hasnaa Ali Ebrahim
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ateya Megahed Ibrahim
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.M.I.); (D.E.F.Z.)
- Department of Family and Community Health Nursing, Faculty of Nursing, Port Said University, Port Said P.O. Box 42511, Egypt
| | - Donia Elsaid Fathi Zaghamir
- Department of Nursing, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (A.M.I.); (D.E.F.Z.)
- Department of Pediatric Nursing, Faculty of Nursing, Port Said University, Port Said P.O. Box 42511, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11579, Saudi Arabia;
| | - Sherein F. El-Sayed
- Medical Physiology Department, College of Medicine, Zagazig University, Zagazig P.O. Box 44519, Egypt; (A.E.-S.H.); (S.F.E.-S.)
| |
Collapse
|
8
|
Putri IS, Siwi GN, Budiani DR, Rezkita BE. Protective effect of moringa seed extract on kidney damage in rats fed a high-fat and high-fructose diet. J Taibah Univ Med Sci 2023; 18:1545-1552. [PMID: 37701847 PMCID: PMC10494169 DOI: 10.1016/j.jtumed.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/10/2023] [Accepted: 07/01/2023] [Indexed: 09/14/2023] Open
Abstract
Objective Moringa is a common plant that contains high levels of antioxidants. In this study, we aimed to analyze the protective effect of moringa seed extract on the kidneys of a rat model maintained on a high-fat and high-fructose (HFHF) diet. Methods An experiment with a pretest-posttest control group design was used to measure metabolic parameters and determine kidney function, while a posttest-only method was used for the control group to determine glomerular volume and superoxide dismutase (SOD) expression. Purposive sampling was used on 28 rats divided into four groups: a control (K1) group, and three groups fed a HFHF diet for 53 days (K2, K3, and K4). Subsequently, K3 and K4 were given 150 and 200 mg/kg BW per day moringa seed extract for 28 days. Data were analyzed using IBM® SPSS® Statistics version 22 software. Results Analysis showed that the diet increased the risk of metabolic syndrome, as evidenced by weight gain, glucose, and triglycerides. The optimal dose of moringa seed extract significantly improved glomerular volume (p = 0.001). The expression of SOD in kidney tubules and glomeruli was significantly different with each group (p = 0.002 and p = 0.001) respectively. Conclusion The administration of moringa seed extract provided a protective effect on the kidney by reducing serum creatinine levels, improving overall structure, and increasing the expression of SOD, a key antioxidant.
Collapse
Affiliation(s)
- Indah S. Putri
- Faculty of Medicine Sebelas Maret University, Surakarta, Indonesia
| | - Gita N. Siwi
- Faculty of Medicine Sebelas Maret University, Surakarta, Indonesia
| | - Dyah R. Budiani
- Department of Pathological Anatomy, Dr. Moewardi Hospital, Faculty of Medicine Sebelas Maret University, Surakarta, Indonesia
| | | |
Collapse
|
9
|
Zhang Y, Lin Y, Wu K, Jiang M, Li L, Liu Y. Pleurotus abieticola Polysaccharide Alleviates Hyperlipidemia Symptoms via Inhibition of Nuclear Factor-κB/Signal Transducer and Activator of Transcription 3-Mediated Inflammatory Responses. Nutrients 2023; 15:4904. [PMID: 38068762 PMCID: PMC10708251 DOI: 10.3390/nu15234904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Hyperlipidemia (HLP) is a metabolic syndrome induced by obesity, which has been widely recognized as a significant threat to human health. Pleurotus abieticola, an edible lignin-degrading fungus, remains relatively understudied in terms of its bioactivity and medicinal properties. In this study, the lipid-lowering effect of Pleurotus abieticola polysaccharide (PAPS1) was systematically explored in high-fat diet (HFD)-induced HLP mice. The findings demonstrated that the administration of PAPS1 significantly inhibited bodyweight gain, ameliorated blood glucose and lipid levels, reduced fat accumulation, and mitigated hepatic injury in HLP mice. In addition, PAPS1 demonstrated the capability to increase the levels of three distinct fecal metabolites while simultaneously reducing the levels of eight other fecal metabolites in HLP mice. According to biological detection, PAPS1 reduced the hepatic level of reactive oxygen species (ROS) and pro-inflammatory factors, such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, -6, -17A, -22, and -23, and increased the expression of anti-inflammatory factor IL-10. Combined with proteomics, Western blot and immunohistochemistry analysis showed that PAPS1 exerted suppressive effects on inflammation and oxidative damage by inhibiting the nuclear factor-κB (NF-κB)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in HLP mice. These findings offer evidence supporting the effectiveness of PAPS1 as a therapeutic agent in reducing lipid levels through its targeting of chronic inflammation.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Yingjie Lin
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Keyi Wu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China;
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (Y.Z.); (Y.L.); (K.W.)
| |
Collapse
|
10
|
Jouenne A, Hamici K, Varlet I, Sourdon J, Daudé P, Lan C, Kober F, Landrier JF, Bernard M, Desrois M. Relationship of cardiac remodeling and perfusion alteration with hepatic lipid metabolism in a prediabetic high fat high sucrose diet female rat model. Biochem Biophys Res Commun 2023; 682:207-215. [PMID: 37826944 DOI: 10.1016/j.bbrc.2023.09.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND AND AIMS Cardiovascular disease (CVD) is known to be linked with metabolic associated fatty liver disease and type 2 diabetes, but few studies assessed this relationship in prediabetes, especially among women, who are at greater risk of CVD. We aimed to evaluate cardiac alterations and its relationship with hepatic lipid metabolism in prediabetic female rats submitted to high-fat-high-sucrose diet (HFS). METHODS AND RESULTS Wistar female rats were divided into 2 groups fed for 5 months with standard or HFS diet. We analyzed cardiac morphology, function, perfusion and fibrosis by Magnetic Resonance Imaging. Hepatic lipid contents along with inflammation and lipid metabolism gene expression were assessed. Five months of HFS diet induced glucose intolerance (p < 0.05), cardiac remodeling characterized by increased left-ventricular volume, wall thickness and mass (p < 0.05). No significant differences were found in left-ventricular ejection fraction and cardiac fibrosis but increased myocardial perfusion (p < 0.01) and reduced cardiac index (p < 0.05) were shown. HFS diet induced hepatic lipid accumulation with increased total lipid mass (p < 0.001) and triglyceride contents (p < 0.05), but also increased mitochondrial (CPT1a, MCAD; (p < 0.001; p < 0.05) and peroxisomal (ACO, LCAD; (p < 0.05; p < 0.001) β-oxidation gene expression. Myocardial wall thickness and perfusion were correlated with hepatic β-oxidation genes expression. Furthermore, myocardial perfusion was also correlated with hepatic lipid content and glucose intolerance. CONCLUSION This study brings new insights on the relationship between cardiac sub-clinical alterations and hepatic metabolism in female prediabetic rats. Further studies are warranted to explore its involvement in the higher CVD risk observed among prediabetic women.
Collapse
Affiliation(s)
- A Jouenne
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - K Hamici
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - I Varlet
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - J Sourdon
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - P Daudé
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - C Lan
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - F Kober
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - J F Landrier
- Aix-Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.
| | - M Bernard
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| | - M Desrois
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.
| |
Collapse
|
11
|
Weiner J, Dommel S, Gebhardt C, Hanschkow M, Popkova Y, Krause K, Klöting N, Blüher M, Schiller J, Heiker JT. Differential expression of immunoregulatory cytokines in adipose tissue and liver in response to high fat and high sugar diets in female mice. Front Nutr 2023; 10:1275160. [PMID: 38024380 PMCID: PMC10655005 DOI: 10.3389/fnut.2023.1275160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
A comprehensive understanding of how dietary components impact immunoregulatory gene expression in adipose tissue (AT) and liver, and their respective contributions to metabolic health in mice, remains limited. The current study aimed to investigate the metabolic consequences of a high-sucrose diet (HSD) and a high-fat diet (HFD) in female mice with a focus on differential lipid- and sucrose-induced changes in immunoregulatory gene expression in AT and liver. Female C57BL/6 J mice were fed a purified and macronutrient matched high fat, high sugar, or control diets for 12 weeks. Mice were extensively phenotyped, including glucose and insulin tolerance tests, adipose and liver gene and protein expression analysis by qPCR and Western blot, tissue lipid analyses, as well as histological analyses. Compared to the control diet, HSD- and HFD-fed mice had significantly higher body weights, with pronounced obesity along with glucose intolerance and insulin resistance only in HFD-fed mice. HSD-fed mice exhibited an intermediate phenotype, with mild metabolic deterioration at the end of the study. AT lipid composition was significantly altered by both diets, and inflammatory gene expression was only significantly induced in HFD-fed mice. In the liver however, histological analysis revealed that both HSD- and HFD-fed mice had pronounced ectopic lipid deposition indicating hepatic steatosis, but more pronounced in HSD-fed mice. This was in line with significant induction of pro-inflammatory gene expression specifically in livers of HSD-fed mice. Overall, our findings suggest that HFD consumption in female mice induces more profound inflammation in AT with pronounced deterioration of metabolic health, whereas HSD induced more pronounced hepatic steatosis and inflammation without yet affecting glucose metabolism.
Collapse
Affiliation(s)
- Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sebastian Dommel
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Claudia Gebhardt
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Martha Hanschkow
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Yulia Popkova
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Kerstin Krause
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - John T. Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Institute for Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| |
Collapse
|
12
|
Mirzaei R, Khosrokhavar R, Arbabi Bidgoli S. The Role of High-Fructose Diet in Liver Function of Rodent Models: A Systematic Review of Molecular Analysis. IRANIAN BIOMEDICAL JOURNAL 2023; 27:326-39. [PMID: 38193285 PMCID: PMC10826909 DOI: 10.52547/ibj.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 07/26/2023] [Indexed: 01/10/2024]
Abstract
The present systematic review of animal studies on long-term fructose intake in rodents revealed a significant decrease in the activities of antioxidant enzymes due to a fructose-rich diet. The reduced activity of these enzymes led to an increase in oxidative stress, which can cause liver damage in rodents. Of eight studies analyzed, 5 (62.5%) and 1 (12.5%) used male and female rats, respectively, while 2 studies (25%) used female mice. Moreover, half of the studies used HFCS, but the other half employed fructose in the diet. Hence, it is essential to monitor dietary habits to ensure public health and nutrition research outcomes.
Collapse
Affiliation(s)
- Roya Mirzaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roya Khosrokhavar
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| | - Sepideh Arbabi Bidgoli
- Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Oyabambi AO, Bamidele O, Boluwatife AB, Adedayo LD. Glucoregulatory effect of butyrate is associated with elevated circulating VEGF and reduced cardiac lactate in high fructose fed rats. Heliyon 2023; 9:e22008. [PMID: 38034766 PMCID: PMC10682615 DOI: 10.1016/j.heliyon.2023.e22008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Background High fructose diet has been linked with impaired body metabolism and cardiovascular diseases. Sodium butyrate (NaB) was documented to improve glucoregulation and cardiometabolic problems associated with high fructose diet (HFrD) but the mechanisms behind it are unclear. As a result, the purpose of this study was to look into the effects of NaB on VEGF and cardiac lactate in HFrD-induced dysmetabolism. Methods Twenty male Wistar rats of weight 130-140 g were assigned randomly after a week of acclimation into four groups: Control diet (CTR), High fructose drink (HFrD); 10 % (w/v), NaB (200 mg/kg bw), and HFrD + NaB (200 mg/kg bw). The animals were induced to be unconscious with 50 mg/kg of pentobarbital sodium intraperitoneally, blood samples were taken via cardiac puncture and cardiac tissue homogenates were obtained for Fasting Blood Sugar (FBS) and plasma insulin, cardiac glycogen, plasma and cardiac glycogen synthase, plasma and cardiac nitric oxide as well as vascular endothelial growth factor (VEGF). Result HFrD resulted in statistical elevation body and cardiac weight, plasma glucose, plasma insulin, cardiac lactate, glycogen and decreased nitric oxide level (NO) when compared with the control group. Administration of NaB reduced cardiac weight, blood glucose, plasma insulin, cardiac lactate while nitric oxide and glycogen increased (P < 0.05). NaB increased plasma glycogen synthase in normal rats, plasma and cardiac circulating VEGF in HFrD administered rats (P < 0.05) while no change was produced in plasma and cardiac glycogen synthase level of HFrD treated rats. Conclusion Sodium butyrate improves glucoregulation by reducing cardiac lactate and increasing circulating VEGF in HFrD-treated rats.
Collapse
Affiliation(s)
- Adewumi Oluwafemi Oyabambi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Physiology Programme, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Olubayode Bamidele
- Physiology Programme, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Aindero Blessing Boluwatife
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lawrence Dayo Adedayo
- Physiology Programme, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| |
Collapse
|
14
|
Liu X, Cai S, Yi J, Chu C. Chinese Sumac Fruits ( Rhus chinesis Mill.) Alleviate Type 2 Diabetes in C57BL/6 Mice through Repairing Islet Cell Functions, Regulating IRS-1/PI3K/AKT Pathways and Promoting the Entry of Nrf2 into the Nucleus. Nutrients 2023; 15:4080. [PMID: 37764863 PMCID: PMC10535436 DOI: 10.3390/nu15184080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
This research aimed to probe the potential alleviative effects of ethanol extracts of Chinese sumac (Rhus chinesis Mill.) fruits against type 2 diabetes mellitus (T2DM) in C57BL/6 mice induced by high-fat/high-fructose diet (HFFD) and streptozotocin. The results showed that the ethanol extracts could significantly regulate blood glucose levels, glycosylated hemoglobin, blood lipids, insulin, and insulin resistance, while also restoring endogenous oxidative stress. Pathological and immunohistochemical analyses revealed that the extracts partially restored the physiological function of islet cells. Furthermore, Western blotting results suggested that the extracts could regulate the protein expression in IRS-1/PI3K/AKT signaling pathway, and immunofluorescence findings demonstrated their potential to promote the translocation of Nrf2 into the nucleus. This study elucidated a novel finding that ethanol extracts derived from Chinese sumac fruits have the potential to alleviate symptoms of T2DM in mice. Moreover, these findings could offer valuable scientific insights into the potential utilization of R. chinensis fruits as nutritional supplement and/or functional food to prevent or ameliorate diabetes.
Collapse
Affiliation(s)
- Xiaojing Liu
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China; (X.L.); (S.C.); (J.Y.)
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China; (X.L.); (S.C.); (J.Y.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Green Food Processing International Science and Technology R & D Center of Kunming City, Kunming 650500, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China; (X.L.); (S.C.); (J.Y.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Green Food Processing International Science and Technology R & D Center of Kunming City, Kunming 650500, China
| | - Chuanqi Chu
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, China; (X.L.); (S.C.); (J.Y.)
- Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China
- Green Food Processing International Science and Technology R & D Center of Kunming City, Kunming 650500, China
| |
Collapse
|
15
|
Pesti-Asbóth G, Szilágyi E, Bíróné Molnár P, Oláh J, Babinszky L, Czeglédi L, Cziáky Z, Paholcsek M, Stündl L, Remenyik J. Monitoring physiological processes of fast-growing broilers during the whole life cycle: Changes of redox-homeostasis effected to trassulfuration pathway predicting the development of non-alcoholic fatty liver disease. PLoS One 2023; 18:e0290310. [PMID: 37590293 PMCID: PMC10434899 DOI: 10.1371/journal.pone.0290310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023] Open
Abstract
In the broiler industry, the average daily gain and feed conversion ratio are extremely favorable, but the birds are beginning to approach the maximum of their genetic capacity. However, as a consequence of strong genetic selection, the occurrence of certain metabolic diseases, such as myopathies, ascites, sudden cardiac death and tibial dyschondroplasia, is increasing. These metabolic diseases can greatly affect the health status and welfare of birds, as well as the quality of meat. The main goal of this study was to investigate the changes in the main parameters of redox homeostasis during the rearing (1-42 days of age) of broilers with high genetic capacity, such as the concentrations of malondialdehyde, vitamin C, vitamin E, and reduced glutathione, the activities of glutathione peroxidase and glutathione reductase, and the inhibition rate of superoxide dismutase. Damage to the transsulfuration pathway during growth and the reason for changes in the level of homocysteine were investigated. Further, the parameters that can characterize the biochemical changes occurring in the birds were examined. Our study is the first characterize plasma albumin saturation. A method was developed to measure the levels of other small molecule thiol components of plasma. Changes in redox homeostasis induce increases in the concentrations of tumor necrosis factor alpha and inflammatory interleukins interleukin 2, interleukin 6 and interleukin 8 in broilers reared according to current large-scale husbandry technology and feeding protocols. A significant difference in all parameters tested was observed on the 21st day. The concentrations of cytokines and homocysteine increased, while the concentrations of glutathione and cysteine in the plasma decreased. Our findings suggest that observed changes in the abovementioned biochemical indices have a negative effect on poultry health.
Collapse
Affiliation(s)
- Georgina Pesti-Asbóth
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - Endre Szilágyi
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - Piroska Bíróné Molnár
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - János Oláh
- Farm and Regional Research Institute of Debrecen, University of Debrecen, Debrecen, Hungary
| | - László Babinszky
- Faculty of Agricultural and Food Sciences and Environmental Management, Department of Animal Nutrition Physiology, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary
| | - Levente Czeglédi
- Faculty of Agricultural and Food Sciences and Environmental Management, Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, Debrecen, Hungary
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Group, University of Nyíregyháza; Nyíregyháza, Hungary
| | - Melinda Paholcsek
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - László Stündl
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
16
|
Osqueei MR, Mahmoudabadi AZ, Bahari Z, Meftahi GH, Movahedi M, Taghipour R, Mousavi N, Huseini HF, Jangravi Z. Eryngium billardieri extract affects cardiac gene expression of master regulators of cardiomyaopathy in rats with high fatdiet-induced insulin resistance. Clin Nutr ESPEN 2023; 56:59-66. [PMID: 37344084 DOI: 10.1016/j.clnesp.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND For years, numerous studies have focused on identifying approaches to increase insulin sensitivity by modifying the signaling factors. In the present study, we examined the effects of Eryngium billardieri extract, as an anti-diabetic herbal medication, on the heart mRNA level of Akt serine/threonine kinase (Akt), mechanistic target of rapamycin kinase (mTOR), peroxisome proliferator-activated receptor gamma (PPARγ), and Forkhead box o1 (Foxo1) in rats with high-fat diet (HFD)-induced insulin resistance (IR). We also assessed the anti-diabetic effects of E. billardieri extract in rats with insulin resistance. METHODS Twenty-seven male Wistar rats were divided into two groups. Nine rats were fed a normal diet (control group), and 18 rats were fed an HFD for 13 weeks (HFD group). To confirm the induction of insulin resistance, the oral glucose tolerance test (OGTT) was performed and homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. Then rats with IR were randomly divided into the following groups: the HFD group, which continued an HFD, and the group treated with E. billardieri extract, which received the extract at a concentration of 50 mg/kg for 30 days. On the 30th day, the animals were sacrificed and serum samples were collected for biochemistry analyses. Furthermore, the expression of Akt, mTOR, PPARγ, and Foxo1 was measured in heart tissue using the real-time polymerase chain reaction (PCR) method. RESULTS Real-time PCR analyses revealed that an HFD can significantly decrease the expression level of Akt, mTOR, and PPARγ in the heart tissue. However, an HFD significantly increased the expression level of Foxo1 in the HFD group compared to the control group (P < 0.05). In addition, our data showed that the administration of E. billardieri extract significantly enhanced the mRNA levels of Akt, PPARγ, and mTOR in the heart tissue compared to the HFD group (P < 0.05), while it significantly decreased the Foxo1 mRNA levels (P < 0.01). CONCLUSION Given that Akt, mTOR, PPARγ, and Foxo1 are critical factors in insulin resistance, the present study suggests that E. billardieri could probably be used as an alternative treatment for IR as a major feature of metabolic syndrome.
Collapse
Affiliation(s)
- Mohaddeseh Rashedi Osqueei
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Zaree Mahmoudabadi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Iran
| | | | - Monireh Movahedi
- Department of Biochemistry, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Reza Taghipour
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Naser Mousavi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hasan Fallah Huseini
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Cargnin-Carvalho A, da Silva MR, Costa AB, Engel NA, Farias BX, Bressan JB, Backes KM, de Souza F, da Rosa N, de Oliveira Junior AN, Goldim MPDS, Correa MEAB, Venturini LM, Fortunato JJ, Prophiro JS, Petronilho F, Silveira PCL, Ferreira GK, Rezin GT. High concentrations of fructose cause brain damage in mice. Biochem Cell Biol 2023; 101:313-325. [PMID: 36947832 DOI: 10.1139/bcb-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Excessive fructose consumption is associated with the incidence of obesity and systemic inflammation, resulting in increased oxidative damage and failure to the function of brain structures. Thus, we hypothesized that fructose consumption will significantly increase inflammation, oxidative damage, and mitochondrial dysfunction in the mouse brain and, consequently, memory damage. The effects of different fructose concentrations on inflammatory and biochemical parameters in the mouse brain were evaluated. Male Swiss mice were randomized into four groups: control, with exclusive water intake, 5%, 10%, and 20% fructose group. The 10% and 20% fructose groups showed an increase in epididymal fat, in addition to higher food consumption. Inflammatory markers were increased in epididymal fat and in some brain structures. In the evaluation of oxidative damage, it was possible to observe significant increases in the hypothalamus, prefrontal cortex, and hippocampus. In the epididymal fat and in the prefrontal cortex, there was a decrease in the activity of the mitochondrial respiratory chain complexes and an increase in the striatum. Furthermore, short memory was impaired in the 10% and 20% groups but not long memory. In conclusion, excess fructose consumption can cause fat accumulation, inflammation, oxidative damage, and mitochondrial dysfunction, which can damage brain structures and consequently memory.
Collapse
Affiliation(s)
- Anderson Cargnin-Carvalho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Ana Beatriz Costa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Nicole Alessandra Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Bianca Xavier Farias
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Joice Benedet Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Kassiane Mathiola Backes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Francielly de Souza
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Naiana da Rosa
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Aloir Neri de Oliveira Junior
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Mariana Pereira de Souza Goldim
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | | | - Ligia Milanez Venturini
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | - Jucélia Jeremias Fortunato
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Josiane Somariva Prophiro
- Immunoparasitology Research Group, Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Fabrícia Petronilho
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Phisiopatology, Postgraduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Santa Catarina, Brazil
| | | | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health ScienceUniversidade do Sul de Santa Catarina, Santa Catarina, Brazil
| |
Collapse
|
18
|
Buniam J, Chansela P, Weerachayaphorn J, Saengsirisuwan V. Dietary Supplementation with 20-Hydroxyecdysone Ameliorates Hepatic Steatosis and Reduces White Adipose Tissue Mass in Ovariectomized Rats Fed a High-Fat, High-Fructose Diet. Biomedicines 2023; 11:2071. [PMID: 37509710 PMCID: PMC10377470 DOI: 10.3390/biomedicines11072071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is defined as hepatic steatosis in combination with overweight, diabetes, or other metabolic risk factors. MAFLD affects a significant number of the global population and imposes substantial clinical and economic burdens. With no approved pharmacotherapy, current treatment options are limited to diet and exercise. Therefore, the development of medicines for MAFLD treatment or prevention is necessary. 20-Hydroxyecdysone (20E) is a natural steroid found in edible plants and has been shown to improve metabolism and dyslipidemia. Therefore, it may be useful for MAFLD treatment. Here, we aimed to determine how dietary supplementation with 20E affects fat accumulation and lipogenesis in the liver and adipose tissue of ovariectomized rats fed a high-fat, high-fructose diet (OHFFD). We found that 20E reduced hepatic triglyceride content and visceral fat deposition. 20E increased the phosphorylation of AMP-activated protein kinase and acetyl CoA carboxylase while reducing the expression of fatty acid synthase in the liver and adipose tissue. Additionally, 20E increased hepatic expression of carnitine palmitoyltransferase-1 and reduced adipose expression of sterol regulatory element-binding protein-1. In conclusion, 20E demonstrated beneficial effects in rats with OHFFD-induced MAFLD. These findings suggest that 20E may represent a promising option for MAFLD prevention or treatment.
Collapse
Affiliation(s)
- Jariya Buniam
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Piyachat Chansela
- Department of Anatomy, Phramongkutklao College of Medicine, Bangkok 10400, Thailand
| | | | - Vitoon Saengsirisuwan
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
19
|
Becerril-Campos AA, Ramos-Gómez M, De Los Ríos-Arellano EA, Ocampo-Anguiano PV, González-Gallardo A, Macotela Y, García-Gasca T, Ahumada-Solórzano SM. Bean Leaves Ameliorate Lipotoxicity in Fatty Liver Disease. Nutrients 2023; 15:2928. [PMID: 37447254 DOI: 10.3390/nu15132928] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Bioactive compounds in plant-based food have protective effects against metabolic alterations, including non-alcoholic fatty liver disease (NAFLD). Bean leaves are widely cultivated in the world and are a source of dietary fiber and polyphenols. High fat/high fructose diet animal models promote deleterious effects in adipose and non-adipose tissues (lipotoxicity), leading to obesity and its comorbidities. Short-term supplementation of bean leaves exhibited anti-diabetic, anti-hyperlipidemic, and anti-obesity effects in high-fat/high-fructose diet animal models. This study aimed to evaluate the effect of bean leaves supplementation in the prevention of lipotoxicity in NAFLD and contribute to elucidating the possible mechanism involved for a longer period of time. During thirteen weeks, male Wistar rats (n = 9/group) were fed with: (1) S: Rodent Laboratory Chow 5001® (RLC); (2) SBL: 90% RLC+ 10% dry bean leaves; (3) H: high-fat/high-fructose diet; (4) HBL: H+ 10% of dry bean leaves. Overall, a HBL diet enhanced impaired glucose tolerance and ameliorated obesity, risk factors in NAFLD development. Additionally, bean leaves exerted antioxidant (↑serum GSH) and anti-inflammatory (↓mRNA TNFα in the liver) effects, prevented hepatic fat accumulation by enhanced ↑mRNA PPARα (β oxidation), and enhanced lipid peroxidation (↓liver MDA). These findings suggest that bean leaves ameliorated hepatic lipotoxicity derived from the consumption of a deleterious diet.
Collapse
Affiliation(s)
- Adriana Araceli Becerril-Campos
- Laboratory of Cellular and Molecular Biology, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. De las Ciencias S/N, Queretaro 76230, Mexico
| | - Minerva Ramos-Gómez
- Food Research and Graduate Department, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico
| | | | - Perla Viridiana Ocampo-Anguiano
- Laboratory of Cellular and Molecular Biology, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. De las Ciencias S/N, Queretaro 76230, Mexico
- Food Research and Graduate Department, School of Chemistry, Autonomous University of Queretaro, Centro Universitario, Cerro de las Campanas S/N, Queretaro 76010, Mexico
| | - Adriana González-Gallardo
- Proteogenomic Unit, Neurobiology Institute, National Autonomous University of Mexico, Campus UNAM-Juriquilla, Queretaro 76230, Mexico
| | - Yazmín Macotela
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Queretaro 76237, Mexico
| | - Teresa García-Gasca
- Laboratory of Cellular and Molecular Biology, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. De las Ciencias S/N, Queretaro 76230, Mexico
| | - Santiaga Marisela Ahumada-Solórzano
- Interdisciplinary Research in Biomedicine, Faculty of Natural Sciences, Autonomous University of Queretaro, Campus Juriquilla, Av. De las Ciencias S/N, Queretaro 76230, Mexico
| |
Collapse
|
20
|
Herzl E, Schmitt EE, Shearrer G, Keith JF. The Effects of a Western Diet vs. a High-Fiber Unprocessed Diet on Health Outcomes in Mice Offspring. Nutrients 2023; 15:2858. [PMID: 37447184 DOI: 10.3390/nu15132858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Diet influences critical periods of growth, including gestation and early development. We hypothesized that a maternal/early life diet reflecting unprocessed dietary components would positively affect offspring metabolic and anthropometric parameters. Using 9 C57BL-6 dams, we simulated exposure to a Western diet, a high-fiber unprocessed diet (HFUD), or a control diet. The dams consumed their respective diets (Western [n = 3], HFUD [n = 3], and control [n = 3]) through 3 weeks of pregnancy and 3 weeks of weaning; their offspring consumed the diet of their mother for 4.5 weeks post weaning. Measurements included dual X-ray absorptiometry (DEXA) scans, feed consumption, body weight, blood glucose, and insulin and glycated hemoglobin (HbA1c) in the offspring. Statistical analyses included one-way ANOVA with Tukey's post hoc analysis. The offspring DEXA measures at 5 and 7.5 weeks post parturition revealed higher lean body mass development in the HFUD and control diet offspring compared to the Western diet offspring. An analysis indicated that blood glucose (p = 0.001) and HbA1c concentrations (p = 0.002) were lower among the HFUD offspring compared to the Western and control offspring. The results demonstrate that diet during gestation and early life consistent with traditional diet patterns may influence hyperglycemia and adiposity in offspring.
Collapse
Affiliation(s)
- Elizabeth Herzl
- Department of Family & Consumer Sciences, University of Wyoming, Laramie, WY 82071, USA
| | - Emily E Schmitt
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY 82071, USA
- WWAMI Medical Education, University of Wyoming, Laramie, WY 82071, USA
| | - Grace Shearrer
- Department of Family & Consumer Sciences, University of Wyoming, Laramie, WY 82071, USA
- WWAMI Medical Education, University of Wyoming, Laramie, WY 82071, USA
| | - Jill F Keith
- Department of Family & Consumer Sciences, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
21
|
Rezaie J, Aboulhassani A, Keyhanmanesh R, Rahbarghazi R, Delkhosh A, Salimi L, Zamani AN, Rahbarghazi A, Ahmadi M, Ghiasi F. Effect of voluntary wheel running on autophagy status in lung tissue of high-fat diet-fed rats. COMPARATIVE EXERCISE PHYSIOLOGY 2023. [DOI: 10.3920/cep210022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Here, we aimed to explore the therapeutic effect of voluntary wheel running (VWR) in high-fat diet-fed rats on pulmonary tissue injury via the modulation of autophagic response. Thirty-two rats were allocated into four groups; normal diet (Control); VWR; high-fat-diet (HFD), and HFD + VWR. After three months, pathological effect of HFD on pulmonary tissue was investigated. The levels of tumour necrosis factor (TNF)-α were detected in the bronchoalveolar lavage fluid (BALF). We monitored the expression of interleukin (IL)-6 and autophagy-related genes in lung tissues. H&E staining showed pathological changes in HFD group coincided with the increase of TNF-α levels in the bronchoalveolar fluid compared to the normal rats. Our results showed the up-regulation of IL-6, becline-1, LC3 and P62 in the HFD group compared to the Control group. VWR inhibited HFD-induced changes and could decrease HFD-induced changes via the regulation of autophagy status.
Collapse
Affiliation(s)
- J. Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, 5714783734 Urmia, Iran
| | - A. Aboulhassani
- Student Research Committee, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - R. Keyhanmanesh
- Drug Applied Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - R. Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - A. Delkhosh
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - L. Salimi
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - A.R. Nezhad Zamani
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - A. Rahbarghazi
- Department of Physical Education and Sports Sciences, Faculty of Educational Science and Psychology, University of Mohaghegh Ardabil, 56199-11367 Ardabil, Iran
| | - M. Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, 5165665931 Tabriz, Iran
| | - F. Ghiasi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Li X, Shi C, Wang S, Wang S, Wang X, Lü X. Uncovering the effect of Moringa oleifera Lam. leaf addition to Fuzhuan Brick Tea on sensory properties, volatile profiles and anti-obesity activity. Food Funct 2023; 14:2404-2415. [PMID: 36786051 DOI: 10.1039/d2fo03531f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As a nutritious plant with valuable potential, the Moringa oleifera Lam. leaf addition to Fuzhuan Brick Tea (FBT) for co-fermentation is an industrial innovation and a new route to make full use of Moringa oleifera Lam. leaves. However, the sensory properties, volatile profiles and anti-obesity activity of Fuzhuan Brick (Moringa oleifera Lam.) tea (MFBT) are still unknown. The results demonstrated that MFBT has richer and more complex smell and taste, better color and higher overall acceptance scores. In total, 57 volatile flavor compounds, consisting of 3 acids, 16 hydrocarbons, 5 esters, 8 ketones, 13 aldehydes, 6 alcohols and others, were identified using HS-SPME-GC-MS. The characteristic odor components in MFBT were 3-buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- and 1-cyclohexene-1-carboxaldehyde, 2,6,6-trimethyl-, which gave it a floral, woody, sweet, herbal and fruity aroma. 2-Octenal, (E) contributed significantly to the aroma of FBT, which could impart fresh, fatty and green aromas. In addition, MFBT could better regulate lipid accumulation, glucose tolerance, insulin tolerance and inflammation response more effectively than FBT. The mechanism is that MFBT could better regulate the dysbiosis of gut microbiota induced by HFFD, mainly increasing the abundance of beneficial bacteria such as SCFA-producing bacteria (Bacteroidetes, Lactobacillaceae, Bacteroidales_S24-7_group and Clostridiaceae_1) and decreasing the abundance of harmful bacteria such as pro-inflammatory/obesity and metabolic syndrome-related bacteria (Proteobacteria, Deferribacteres, Desulfovibrio, Catenibacterium and Helicobacter), which in turn increased feces short-chain fatty acids and lowered circulating lipopolysaccharides. These results suggested that co-fermentation with Moringa oleifera Lam. leaf could significantly improve the quality and enhance the anti-obesity effect of FBT.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Caihong Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuxuan Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Shuang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
23
|
Soleimani M, Barone S, Luo H, Zahedi K. Pathogenesis of Hypertension in Metabolic Syndrome: The Role of Fructose and Salt. Int J Mol Sci 2023; 24:4294. [PMID: 36901725 PMCID: PMC10002086 DOI: 10.3390/ijms24054294] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Metabolic syndrome is manifested by visceral obesity, hypertension, glucose intolerance, hyperinsulinism, and dyslipidemia. According to the CDC, metabolic syndrome in the US has increased drastically since the 1960s leading to chronic diseases and rising healthcare costs. Hypertension is a key component of metabolic syndrome and is associated with an increase in morbidity and mortality due to stroke, cardiovascular ailments, and kidney disease. The pathogenesis of hypertension in metabolic syndrome, however, remains poorly understood. Metabolic syndrome results primarily from increased caloric intake and decreased physical activity. Epidemiologic studies show that an enhanced consumption of sugars, in the form of fructose and sucrose, correlates with the amplified prevalence of metabolic syndrome. Diets with a high fat content, in conjunction with elevated fructose and salt intake, accelerate the development of metabolic syndrome. This review article discusses the latest literature in the pathogenesis of hypertension in metabolic syndrome, with a specific emphasis on the role of fructose and its stimulatory effect on salt absorption in the small intestine and kidney tubules.
Collapse
Affiliation(s)
- Manoocher Soleimani
- Research Services, New Mexico Veterans Health Care Medical Center, Albuquerque, NM 87108, USA
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Sharon Barone
- Research Services, New Mexico Veterans Health Care Medical Center, Albuquerque, NM 87108, USA
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Henry Luo
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kamyar Zahedi
- Research Services, New Mexico Veterans Health Care Medical Center, Albuquerque, NM 87108, USA
- Department of Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| |
Collapse
|
24
|
Oliveira MOA, Leonço ÁR, Pavani VB, Barbosa IR, Campos MM. Omega-3 Effects on Ligature-Induced Periodontitis in Rats with Fructose-Induced Metabolic Syndrome. Inflammation 2023; 46:388-403. [PMID: 36171491 DOI: 10.1007/s10753-022-01741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022]
Abstract
Both periodontal disease (PD) and metabolic syndrome (MS) represent disorders of concern worldwide. Current evidence indicates that PD and MS might negatively influence each other, increasing the risk for cardiovascular diseases (CVD), via mutual inflammatory pathways. A failure of the inflammation resolution mechanisms is crucial for these comorbidities. Fish oil-derived omega-3 has been linked with resolution-driven responses in different pathological conditions during the last years. This study evaluated the impacts of omega-3 supplementation in a rat model combining ligature-induced PD and 10% fructose intake-elicited MS. Our main findings show that 10% fructose ingestion led to an elevation of Lee index and white adipose tissue (WAT) weight, along with hepatic alterations, accompanied by an increase of leptin, and a decrement of adiponectin serum amounts, regardless of PD induction. Noteworthy, the co-induction of PD and MS resulted in higher levels of glycemia and triglycerides, being this latter effect lessened by omega-3 supplementation. In this case, the beneficial effects of omega-3 might be associated with its ability to recover the decline of serum adiponectin levels in rats with PD plus MS. As expected, PD induction led to alveolar bone loss, independent of MS induction. However, the supplementation with omega-3 restored alveolar bone in PD control animals, but not in the rats with PD combined with MS. Our study extends the knowledge about PD and MS as comorbidities, showing novel effects of omega-3 supplementation in this context.
Collapse
Affiliation(s)
- Maysa O A Oliveira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Álvaro R Leonço
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Curso de Graduação em Medicina, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Vinícius B Pavani
- Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil
| | - Isadora R Barbosa
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria M Campos
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Curso de Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
25
|
Effects of anti-inflammatory dietary patterns on non-alcoholic fatty liver disease: a systematic literature review. Eur J Nutr 2023; 62:1563-1578. [PMID: 36690886 DOI: 10.1007/s00394-023-03085-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023]
Abstract
PURPOSE Non-alcoholic fatty liver disease (NAFLD) is the leading chronic hepatic condition. Low-grade chronic inflammation contributes to disease progression. Diet has protective effects on hepatic health and inflammatory pathways. The purpose of this review is to systematically review and describe the effects of anti-inflammatory dietary patterns on NAFLD. METHODS The Cochrane CENTRAL Library, Cumulative Index of Nursing and Allied Health Literature, Embase, MEDLINE and Web of Science databases were searched. A total of 252 records were identified, 7 of which were included in this review. The revised Cochrane risk-of-bias tool was used to conduct a quality assessment for randomised trials. Certainty of evidence was assessed using the grading of recommendations, assessment, development, and evaluation tool. RESULTS Of the 7 included studies, 6 were classified as low risk of bias and studies ranged from high to very low certainty of evidence. In the randomised-controlled studies systematically reviewed, either adherence to the Mediterranean, DASH, or FLiO diet was studied, against usual care or energy matched controls, with a total of 255 participants. Anti-inflammatory dietary pattern adherence significantly reduced the severity of most hepatic and inflammatory markers, and secondary outcomes. A minority of outcomes were improved significantly more than controls. CONCLUSION Anti-inflammatory dietary patterns showed benefits to NAFLD risk factors, severity markers and inflammatory markers compared to the control diet. It is unclear whether reductions in the evaluated parameters are related solely to the anti-inflammatory diet or weight loss resulting from caloric restriction, as improvements in control groups were also evidenced. Current limited body of evidence indicates need for further research including isocaloric dietary patterns, longer interventions, measures of inflammatory markers, and studies including normal-weight subjects to confirm findings at higher certainty. PROSPERO REGISTRATION CRD42021269382.
Collapse
|
26
|
Wang Y, Liu T, Xie Y, Li N, Liu Y, Wen J, Zhang M, Feng W, Huang J, Guo Y, Kabbas Junior T, Wang D, Granato D. Clitoria ternatea blue petal extract protects against obesity, oxidative stress, and inflammation induced by a high-fat, high-fructose diet in C57BL/6 mice. Food Res Int 2022; 162:112008. [DOI: 10.1016/j.foodres.2022.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022]
|
27
|
Theodoro JMV, Grancieri M, Gomes MJC, Toledo RCL, de São José VPB, Mantovani HC, Carvalho CWP, da Silva BP, Martino HSD. Germinated Millet ( Pennisetum glaucum (L.) R. Br.) Flour Improved the Gut Function and Its Microbiota Composition in Rats Fed with High-Fat High-Fructose Diet. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15217. [PMID: 36429936 PMCID: PMC9690063 DOI: 10.3390/ijerph192215217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Germinated millet (Pennisetum glaucum (L.) R. Br.) is a source of phenolic compounds that has potential prebiotic action. This study aims at evaluating the action of germinated pearl millet on gut function and its microbiota composition in Wistar rats fed with a high-fat high-fructose (HFHF) diet. In the first stage, lasting eight weeks, the experiment consisted of two groups: AIN-93M (n = 10) and HFHF group (n = 20). In the second stage, which lasted ten weeks, the animals of the AIN-93M group (n = 10) were kept, while the HFHF group was dismembered into HFHF (HFHF diet, n = 10) and HFHF + millet (HFHF added 28.6% of germinated millet flour, n = 10) groups. After the 18th week, the urine of the animals was collected for the analysis of lactulose and mannitol intestinal permeability by urinary excretion. The histomorphometry was analyzed on the proximal colon and the fecal pH, concentration of short-chain fatty acids (SCFA), and sequencing of microbiota were performed in cecum content. The Mothur v.1.44.3 software was used for data analysis of sequencing. Alpha diversity was estimated by Chao1, Shannon, and Simpson indexes. Beta diversity was assessed by PCoA (Principal Coordinate Analysis). The functional predictive analysis was performed with PICRUSt2 software (version 2.1.2-b). Functional traits attributed to normalized OTU abundance were determined by the Kyoto Encyclopedia of Genes and Genomes (KEGG). In the results, germinated millet flour reduced Oscillibacter genus and Desulfobacterota phylum, while increasing the Eggerthellaceae family. Furthermore, germinated millet flour: increased beta diversity, cecum weight, and cecum/body weight ratio; improved gut histological parameters by increasing the depth and thickness of the crypt and the goblet cell count (p < 0.05); reduced (p < 0.05) the fecal pH and mannitol urinary excretion; increased (p < 0.05) the propionate short-chain fatty acid concentration. Thus, germinated millet has the potential to improve the composition of gut microbiota and the intestinal function of rats fed with an HFHF diet.
Collapse
Affiliation(s)
| | - Mariana Grancieri
- Department of Nutrition and Health, Federal University of Viçosa, Viçosa 36570-900, Brazil
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre 29500-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Wang JH, Hwang SJ, Shin KS, Lim DW, Son CG. Bacillus subtilis-Fermented Amomum xanthioides Ameliorates Metabolic-Syndrome-Like Pathological Conditions in Long-Term HFHFD-Fed Mice. Antioxidants (Basel) 2022; 11:2254. [PMID: 36421440 PMCID: PMC9687221 DOI: 10.3390/antiox11112254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 08/03/2023] Open
Abstract
In modern society, numerous metabolic disorders are widespread globally. The present study aimed to demonstrate whether Bacillus subtilis-fermented Amomum xanthioides (BSAX) exerts anti-metabolic disturbance effects compared with the ethyl acetate fraction of Amomum xanthioides (EFAX), a previously verified functional fraction. Mice fed with a high-fat, high-fructose diet (HFHFD) for 10 wk presented a typical model of metabolic dysfunction, and BSAX significantly attenuated a string of metabolic-syndrome-related pathological parameters, such as body, fat, organ mass, lipid markers (TGs, TC, free fatty acids), and glucose metabolism (glucose, insulin), without influencing appetite. Further, BSAX markedly lowered malondialdehyde (MDA) and ROS in the blood and restored antioxidative parameters (SOD, GSH, and CAT in liver tissue, and total bilirubin in serum) by elevating Nrf2 and HO-1. Moreover, BSAX noticeably restored gut microbiota diversity and normalized lipid-metabolism-associated proteins, including SREBP-1, p-AMPK, and PPAR-α. Generally, most metabolic parameters were improved by BSAX to a greater extent than EFAX, except for liver weight and hepatic TC. In conclusion, BSAX alleviates metabolic dysfunction by enhancing lipid metabolism and antioxidative capacity and is more effective than EFAX. Therefore, the application of high-yield, effective BSAX might be a promising approach for curing and preventing metabolic disorders.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
| | - Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
| | - Kwang-Soo Shin
- Department of Microbiology, Graduate School, Daejeon University, Daejeon 34520, Republic of Korea
| | - Dong-Woo Lim
- Department of Diagnostics, College of Korean Medicine, Dongguk University, Dongguk-Ro 32, Goyang 10326, Republic of Korea
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
- Liver and Immunology Research Center, Daejeon Korean Medicine Hospital, 75, Daedeok-daero 176, Seo-gu, Daejeon 35235, Republic of Korea
| |
Collapse
|
29
|
Apaijit K, Pakdeechote P, Maneesai P, Meephat S, Prasatthong P, Bunbupha S. Hesperidin alleviates vascular dysfunction and remodelling in high-fat/high-fructose diet-fed rats by modulating oxidative stress, inflammation, AdipoR1, and eNOS expression. Tissue Cell 2022; 78:101901. [DOI: 10.1016/j.tice.2022.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
|
30
|
Izadi MS, Eskandari F, Binayi F, Salimi M, Rashidi FS, Hedayati M, Dargahi L, Ghanbarian H, Zardooz H. Oxidative and endoplasmic reticulum stress develop adverse metabolic effects due to the high-fat high-fructose diet consumption from birth to young adulthood. Life Sci 2022; 309:120924. [PMID: 36063978 DOI: 10.1016/j.lfs.2022.120924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/28/2022] [Indexed: 11/27/2022]
Abstract
AIMS The early postnatal dietary intake has been considered a crucial factor affecting the offspring later life metabolic status. Consistently, this study investigated the oxidative and endoplasmic reticulum (ER) stress intervention in the induction of adverse metabolic effects due to the high-fat high-fructose diet (HFHFD) consumption from birth to young adulthood in rat offspring. MATERIALS AND METHODS After delivery, the dams with their pups were randomly allocated into the normal diet (ND) and HFHFD groups. At weaning, the male offspring were divided into ND-None, ND-DMSO, ND-4-phenyl butyric acid (4-PBA), HFHFD-None, HFHFD-DMSO, and HFHFD-4-PBA groups and fed on their respected diets for five weeks. Then, the drug was injected for ten days. Subsequently, glucose and lipid metabolism parameters, oxidative and ER stress markers, and Wolfram syndrome1 (Wfs1) expression were assessed. KEY FINDINGS In the HFHFD group, anthropometrical parameters, plasma high-density lipoprotein (HDL), and glucose-stimulated insulin secretion and content were decreased. Whereas, the levels of plasma leptin, low-density lipoprotein (LDL) and glucose, hypothalamic leptin, pancreatic catalase activity and glutathione (GSH), pancreatic and hypothalamic malondialdehyde (MDA), binding immunoglobulin protein (BIP) and C/EBP homologous protein (CHOP), and pancreatic WFS1 protein were increased. 4-PBA administration in the HFHFD group, decreased the hypothalamic and pancreatic MDA, BIP and CHOP levels. While, increased the Insulin mRNA and glucose-stimulated insulin secretion and content. SIGNIFICANCE HFHFD intake from birth to young adulthood through the development of pancreatic and hypothalamic oxidative and ER stress, increased the pancreatic WFS1 protein and impaired glucose and lipid homeostasis in male rat offspring.
Collapse
Affiliation(s)
- Mina Sadat Izadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Eskandari
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Binayi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Salimi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadat Rashidi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Ghanbarian
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homeira Zardooz
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Ma X, Nan F, Liang H, Shu P, Fan X, Song X, Hou Y, Zhang D. Excessive intake of sugar: An accomplice of inflammation. Front Immunol 2022; 13:988481. [PMID: 36119103 PMCID: PMC9471313 DOI: 10.3389/fimmu.2022.988481] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
High sugar intake has long been recognized as a potential environmental risk factor for increased incidence of many non-communicable diseases, including obesity, cardiovascular disease, metabolic syndrome, and type 2 diabetes (T2D). Dietary sugars are mainly hexoses, including glucose, fructose, sucrose and High Fructose Corn Syrup (HFCS). These sugars are primarily absorbed in the gut as fructose and glucose. The consumption of high sugar beverages and processed foods has increased significantly over the past 30 years. Here, we summarize the effects of consuming high levels of dietary hexose on rheumatoid arthritis (RA), multiple sclerosis (MS), psoriasis, inflammatory bowel disease (IBD) and low-grade chronic inflammation. Based on these reported findings, we emphasize that dietary sugars and mixed processed foods may be a key factor leading to the occurrence and aggravation of inflammation. We concluded that by revealing the roles that excessive intake of hexose has on the regulation of human inflammatory diseases are fundamental questions that need to be solved urgently. Moreover, close attention should also be paid to the combination of high glucose-mediated immune imbalance and tumor development, and strive to make substantial contributions to reverse tumor immune escape.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Nan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hantian Liang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Panyin Shu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinzou Fan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanfeng Hou
- Department of Rheumatology and Autoimmunology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong medicine and Health Key Laboratory of Rheumatism, Jinan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Bayliak MM, Vatashchuk MV, Gospodaryov DV, Hurza VV, Demianchuk OI, Ivanochko MV, Burdyliuk NI, Storey KB, Lushchak O, Lushchak VI. High fat high fructose diet induces mild oxidative stress and reorganizes intermediary metabolism in male mouse liver: Alpha-ketoglutarate effects. Biochim Biophys Acta Gen Subj 2022; 1866:130226. [PMID: 35987369 DOI: 10.1016/j.bbagen.2022.130226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Diets rich in fats and/or carbohydrates are used to study obesity and related metabolic complications. We studied the effects of a high fat high fructose diet (HFFD) on intermediary metabolism and the development of oxidative stress in mouse liver and tested the ability of alpha-ketoglutarate to prevent HFFD-induced changes. METHODS Male mice were fed a standard diet (10% kcal fat) or HFFD (45% kcal fat, 15% kcal fructose) with or without addition of 1% alpha-ketoglutarate (AKG) in drinking water for 8 weeks. RESULTS The HFFD had no effect on body mass but activated fructolysis and glycolysis and induced inflammation and oxidative stress with a concomitant increase in activity of antioxidant enzymes in the mouse liver. HFFD-fed mice also showed lower mRNA levels of pyruvate dehydrogenase kinase 4 (PDK4) and slightly increased intensity of mitochondrial respiration in liver compared to mice on the standard diet. No significant effects of HFFD on transcription of PDK2 and PGC1α, a peroxisome proliferator-activated receptor co-activator-1α, or protein levels of p-AMPK, an active form of AMP-activated protein kinase, were found. The addition of AKG to HFFD decreased oxidized glutathione levels, did not affect levels of lipid peroxides and PDK4 transcripts but increased activities of hexokinase and phosphofructokinase in mouse liver. CONCLUSIONS Supplementation with AKG had weak modulating effects on HFFD-induced oxidative stress and changes in energetics in mouse liver. GENERAL SIGNIFICANCE Our research expands the understanding of diet-induced metabolic switching and elucidates further roles of alpha-ketoglutarate as a metabolic regulator.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine.
| | - Myroslava V Vatashchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Viktoria V Hurza
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Oleh I Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Marian V Ivanochko
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Nadia I Burdyliuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine
| | - Kenneth B Storey
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Oleh Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str., Ivano-Frankivsk 76018, Ukraine; Research and Development University, 13a Shota Rustaveli Str., Ivano-Frankivsk 76018, Ukraine.
| |
Collapse
|
33
|
Pei J, Prasad M, Mohamed Helal G, El-Sherbiny M, Abdelmonem Elsherbini DM, Rajagopal P, Palanisamy CP, Veeraraghavan VP, Jayaraman S, Surapaneni KM. Beta-Sitosterol Facilitates GLUT4 Vesicle Fusion on the Plasma Membrane via the Activation of Rab/IRAP/Munc 18 Signaling Pathways in Diabetic Gastrocnemius Muscle of Adult Male Rats. Bioinorg Chem Appl 2022; 2022:7772305. [PMID: 35992048 PMCID: PMC9388314 DOI: 10.1155/2022/7772305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/21/2022] [Indexed: 12/18/2022] Open
Abstract
Nutritional overload in the form of high-fat and nonglycolysis sugar intake contributes towards the accelerated creation of reactive oxygen species (ROS), hyperglycemia, and dyslipidemia. Glucose absorption and its subsequent oxidation processes in fat and muscle tissues alter as a consequence of these modifications. Insulin resistance (IR) caused glucose transporter 4 (GLUT4) translocation to encounter a challenge that manifested itself as changes in glycolytic pathways and insulin signaling. We previously found that beta (β)-sitosterol reduces IR in fat tissue via IRS-1/PI3K/Akt facilitated signaling due to its hypolipidemic and hypoglycemic activity. The intention of this research was to see whether the phytosterol β-sitosterol can aid in the translocation of GLUT4 in rats fed on high-fat diet (HFD) and sucrose by promoting Rab/IRAP/Munc 18 signaling molecules. The rats were labeled into four groups, namely control rats, HFD and sucrose-induced diabetic control rats, HFD and sucrose-induced diabetic rats given oral dose of 20 mg/kg body wt./day of β-sitosterol treatment for 30 days, and HFD and sucrose-induced diabetic animals given oral administration of 50 mg/kg body wt./day metformin for 30 days. Diabetic rats administered with β-sitosterol and normalized the titers of blood glucose, serum insulin, serum testosterone, and the status of insulin tolerance and oral glucose tolerance. In comparison with the control group, β-sitosterol effectively regulated both glycolytic and gluconeogenesis enzymes. Furthermore, qRT-PCR analysis of the mRNA levels of key regulatory genes such as SNAP23, VAMP-2, syntaxin-4, IRAP, vimentin, and SPARC revealed that β-sitosterol significantly regulated the mRNA levels of the above genes in diabetic gastrocnemius muscle. Protein expression analysis of Rab10, IRAP, vimentin, and GLUT4 demonstrated that β-sitosterol had a positive effect on these proteins, resulting in effective GLUT4 translocation in skeletal muscle. According to the findings, β-sitosterol reduced HFD and sucrose-induced IR and augmented GLUT4 translocation in gastrocnemius muscle through insulin signaling modulation via Rab/IRAP/Munc 18 and glucose metabolic enzymes. The present work is the first of its kind to show that β-sitosterol facilitates GLUT4 vesicle fusion on the plasma membrane via Rab/IRAP/Munc 18 signaling molecules in gastrocnemius muscle.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains, Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Monisha Prasad
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ghada Mohamed Helal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai 600078, India
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry,Molecular Virology,Medical Education,Research,Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| |
Collapse
|
34
|
Bugga P, Mohammed SA, Alam MJ, Katare P, Meghwani H, Maulik SK, Arava S, Banerjee SK. Empagliflozin prohibits high-fructose diet-induced cardiac dysfunction in rats via attenuation of mitochondria-driven oxidative stress. Life Sci 2022; 307:120862. [DOI: 10.1016/j.lfs.2022.120862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/01/2022] [Indexed: 12/19/2022]
|
35
|
Xie J, Shi S, Liu Y, Wang S, Rajput SA, Song T. Fructose metabolism and its role in pig production: A mini-review. Front Nutr 2022; 9:922051. [PMID: 35967778 PMCID: PMC9373593 DOI: 10.3389/fnut.2022.922051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Epidemiological studies have shown that excessive intake of fructose is largely responsible for the increasing incidence of non-alcoholic fatty liver, obesity, and diabetes. However, depending on the amount of fructose consumption from diet, the metabolic role of fructose is controversial. Recently, there have been increasing studies reporting that diets low in fructose expand the surface area of the gut and increase nutrient absorption in mouse model, which is widely used in fructose-related studies. However, excessive fructose consumption spills over from the small intestine into the liver for steatosis and increases the risk of colon cancer. Therefore, suitable animal models may be needed to study fructose-induced metabolic changes. Along with its use in global meat production, pig is well-known as a biomedical model with an advantage over murine and other animal models as it has similar nutrition and metabolism to human in anatomical and physiological aspects. Here, we review the characteristics and metabolism of fructose and summarize observations of fructose in pig reproduction, growth, and development as well as acting as a human biomedical model. This review highlights fructose metabolism from the intestine to the blood cycle and presents the critical role of fructose in pig, which could provide new strategies for curbing human metabolic diseases and promoting pig production.
Collapse
Affiliation(s)
- Jiahao Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiyi Shi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yucheng Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaoshuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
36
|
Saiyasit N, Butlig EAR, Chaney SD, Traylor MK, Hawley NA, Randall RB, Bobinger HV, Frizell CA, Trimm F, Crook ED, Lin M, Hill BD, Keller JL, Nelson AR. Neurovascular Dysfunction in Diverse Communities With Health Disparities-Contributions to Dementia and Alzheimer's Disease. Front Neurosci 2022; 16:915405. [PMID: 35844216 PMCID: PMC9279126 DOI: 10.3389/fnins.2022.915405] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease and related dementias (ADRD) are an expanding worldwide crisis. In the absence of scientific breakthroughs, the global prevalence of ADRD will continue to increase as more people are living longer. Racial or ethnic minority groups have an increased risk and incidence of ADRD and have often been neglected by the scientific research community. There is mounting evidence that vascular insults in the brain can initiate a series of biological events leading to neurodegeneration, cognitive impairment, and ADRD. We are a group of researchers interested in developing and expanding ADRD research, with an emphasis on vascular contributions to dementia, to serve our local diverse community. Toward this goal, the primary objective of this review was to investigate and better understand health disparities in Alabama and the contributions of the social determinants of health to those disparities, particularly in the context of vascular dysfunction in ADRD. Here, we explain the neurovascular dysfunction associated with Alzheimer's disease (AD) as well as the intrinsic and extrinsic risk factors contributing to dysfunction of the neurovascular unit (NVU). Next, we ascertain ethnoregional health disparities of individuals living in Alabama, as well as relevant vascular risk factors linked to AD. We also discuss current pharmaceutical and non-pharmaceutical treatment options for neurovascular dysfunction, mild cognitive impairment (MCI) and AD, including relevant studies and ongoing clinical trials. Overall, individuals in Alabama are adversely affected by social and structural determinants of health leading to health disparities, driven by rurality, ethnic minority status, and lower socioeconomic status (SES). In general, these communities have limited access to healthcare and healthy food and other amenities resulting in decreased opportunities for early diagnosis of and pharmaceutical treatments for ADRD. Although this review is focused on the current state of health disparities of ADRD patients in Alabama, future studies must include diversity of race, ethnicity, and region to best be able to treat all individuals affected by ADRD.
Collapse
Affiliation(s)
- Napatsorn Saiyasit
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Evan-Angelo R. Butlig
- Department of Neurology, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samantha D. Chaney
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Miranda K. Traylor
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Nanako A. Hawley
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Ryleigh B. Randall
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Hanna V. Bobinger
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Carl A. Frizell
- Department of Physician Assistant Studies, University of South Alabama, Mobile, AL, United States
| | - Franklin Trimm
- College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Errol D. Crook
- Department of Internal Medicine, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Mike Lin
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| | - Benjamin D. Hill
- Department of Psychology, University of South Alabama, Mobile, AL, United States
| | - Joshua L. Keller
- Department of Health, Kinesiology, and Sport, University of South Alabama, Mobile, AL, United States
| | - Amy R. Nelson
- Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, United States
| |
Collapse
|
37
|
Kiernan R, Persand D, Maddie N, Cai W, Carrillo-Sepulveda MA. Obesity-related vascular dysfunction persists after weight loss and is associated with decreased vascular glucagon-like peptide (GLP-1) receptor in female rats. Am J Physiol Heart Circ Physiol 2022; 323:H301-H311. [PMID: 35749717 PMCID: PMC9291415 DOI: 10.1152/ajpheart.00031.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity-related cardiovascular complications are a major health problem worldwide. Overconsumption of the Western diet is a well-known culprit for the development of obesity. While short-term weight loss through switching from a Western diet to a normal diet is known to promote metabolic improvement, its short-term effects on vascular parameters are not well-characterized. Glucagon-like peptide 1 (GLP-1), an incretin with vasculo-protective properties, is decreased in plasma from obese patients. We hypothesize that obesity causes persistent vascular dysfunction in association with downregulation of vascular GLP-1R. Female Wistar rats were randomized into three groups: lean received a chow diet for 28 weeks, obese received a Western diet for 28 weeks, and reverse obese received a Western diet for 18 weeks followed by 12 weeks of standard chow diet. The obese group exhibited increased body weight and body mass index, while the reverse obese group lost weight. Weight loss failed to reverse impaired vasodilation and high systolic blood pressure in obese rats. Strikingly, our results show that obese rats exhibit decreased serum levels of GLP-1 accompanied by decreased vascular GLP-1R expression. Weight loss recovered GLP-1 serum levels, however GLP-1R expression remained downregulated. Decreased Akt phosphorylation was observed in the obese and reverse obese group, suggesting that GLP-1/Akt signaling is persistently downregulated. Our results support that GLP-1 signaling is associated with obesity-related vascular dysfunction in females and short-term weight loss does not guarantee recovery of vascular function. This study suggests that GLP-1R may be a potential target for therapeutic intervention in obesity-related hypertension in females.
Collapse
Affiliation(s)
- Risa Kiernan
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | - Dhandevi Persand
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | - Nicole Maddie
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, United States
| | | |
Collapse
|
38
|
Casagrande BP, Bueno AA, Pisani LP, Estadella D. Hepatic glycogen participates in the regulation of hypothalamic pAkt/Akt ratio in high-sugar/high-fat diet-induced obesity. Metab Brain Dis 2022; 37:1423-1434. [PMID: 35316448 DOI: 10.1007/s11011-022-00944-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 01/07/2023]
Abstract
The hypothalamus is a major integrating centre that controls energy homeostasis and plays a major role in hepatic glycogen (HGlyc) turnover. Not only do hypothalamic and hepatic Akt levels influence glucose homeostasis and glycogen synthesis, but exposure to high-sugar/high-fat diets (HSHF) can also lead to hypothalamic inflammation and HGlyc accumulation. HSHF withdrawal overall restores energy and glucose homeostasis, but the actual relationship between hypothalamic inflammation and HGlyc after short-term HSHF withdrawal has not yet been fully elucidated. Here we investigated the short-term effects of HSHF withdrawal preceded by a 30-day HSHF intake on the liver-hypothalamus crosstalk and glucose homeostasis. Sixty-day old male Wistar rats were fed for 30 days a control chow (n = 10) (Ct), or an HSHF diet (n = 20). On the 30th day of dietary intervention, a random HSHF subset (n = 10) had their diets switched to control chow for 48 h (Hw) whilst the remaining HSHF rats remained in the HSHF diet (n = 10) (Hd). All rats were anaesthetized and euthanized at the end of the protocol. We quantified HGlyc, Akt phosphorylation, inflammation and glucose homeostasis biomarkers. We also assessed the effect of propensity to obesity on those biomarkers, as detailed previously. Hd rats showed impaired glucose homeostasis, higher HGlyc and hypothalamic inflammation, and lower pAkt/Akt. Increased HGlyc was significantly associated with HSHF intake on pAkt/Akt lowered levels. We also found that HGlyc breakdown may have prevented a further pAkt/Akt drop after HSHF withdrawal. Propensity to obesity showed no apparent effect on hypothalamic inflammation or glucose homeostasis. Our findings suggest a comprehensive role of HGlyc as a structural and functional modulator of energy metabolism, and such roles may come into play relatively rapidly.
Collapse
Affiliation(s)
- Breno P Casagrande
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo-UNIFESP/BS, 1015-020, Santos, São Paulo, Brazil
| | - Allain A Bueno
- College of Health, Life and Environmental Sciences, University of Worcester, Henwick Grove, WR2 6AJ, Worcester, United Kingdom
| | - Luciana P Pisani
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo-UNIFESP/BS, 1015-020, Santos, São Paulo, Brazil
| | - Debora Estadella
- Biosciences Department, Institute of Health and Society, Federal University of São Paulo-UNIFESP/BS, 1015-020, Santos, São Paulo, Brazil.
| |
Collapse
|
39
|
Zhao Y, Wang QY, Zeng LT, Wang JJ, Liu Z, Fan GQ, Li J, Cai JP. Long-Term High-Fat High-Fructose Diet Induces Type 2 Diabetes in Rats through Oxidative Stress. Nutrients 2022; 14:nu14112181. [PMID: 35683981 PMCID: PMC9182436 DOI: 10.3390/nu14112181] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/25/2022] Open
Abstract
Long-term consumption of a Western diet is a major cause of type 2 diabetes mellitus (T2DM). However, the effects of diet on pancreatic structure and function remain unclear. Rats fed a high-fat, high-fructose (HFHF) diet were compared with rats fed a normal diet for 3 and 18 months. Plasma biochemical parameters and inflammatory factors were used to reflect metabolic profile and inflammatory status. The rats developed metabolic disorders, and the size of the islets in the pancreas increased after 3 months of HFHF treatment but decreased and became irregular after 18 months. Fasting insulin, C-peptide, proinsulin, and intact proinsulin levels were significantly higher in the HFHF group than those in the age-matched controls. Plasmatic oxidative parameters and nucleic acid oxidation markers (8-oxo-Gsn and 8-oxo-dGsn) became elevated before inflammatory factors, suggesting that the HFHF diet increased the degree of oxidative stress before affecting inflammation. Single-cell RNA sequencing also verified that the transcriptional level of oxidoreductase changed differently in islet subpopulations with aging and long-term HFHF diet. We demonstrated that long-term HFHF diet and aging-associated structural and transcriptomic changes that underlie pancreatic islet functional decay is a possible underlying mechanism of T2DM, and our study could provide new insights to prevent the development of diet-induced T2DM.
Collapse
Affiliation(s)
- Yue Zhao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China; (Y.Z.); (Q.-Y.W.); (Z.L.); (G.-Q.F.); (J.L.)
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Qing-Yu Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China; (Y.Z.); (Q.-Y.W.); (Z.L.); (G.-Q.F.); (J.L.)
| | - Lv-Tao Zeng
- Peking University Fifth School of Clinical Medicine, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China;
| | - Jing-Jing Wang
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou 450066, China;
| | - Zhen Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China; (Y.Z.); (Q.-Y.W.); (Z.L.); (G.-Q.F.); (J.L.)
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Guo-Qing Fan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China; (Y.Z.); (Q.-Y.W.); (Z.L.); (G.-Q.F.); (J.L.)
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China; (Y.Z.); (Q.-Y.W.); (Z.L.); (G.-Q.F.); (J.L.)
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China; (Y.Z.); (Q.-Y.W.); (Z.L.); (G.-Q.F.); (J.L.)
- Graduate School of Peking Union Medical College, Beijing 100730, China
- Correspondence: ; Tel.: +86-010-58115080
| |
Collapse
|
40
|
Shalaby A, Al-Gholam M, Elfiky S, Elgarawany G. Impact of High Aspartame and High Fructose Diet on Vascular Reactivity, Glucose Metabolism and Liver Structure in Diabetic Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Diabetes mellitus is a chronic metabolic disorder, affected by fructose, and artificial sweeteners. Aspartame and fructose are popularly used, by diabetics, as substitutes to glucose.
AIM: This study evaluated the effect of high aspartame and fructose on vascular reactivity, glucose, and hepatic metabolism in diabetic rats.
MATERIALS AND METHODS: Forty-eight male rats were divided into six groups: Control, control-diabetic, aspartame, aspartame-diabetic, fructose, and fructose-diabetic. After 60 days, blood pressure, vascular reactivity to norepinephrine, Lipid profile, fasting glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), leptin, and Malondialdehyde (MDA) were measured.
RESULTS: High aspartame alone or with diabetes, decreased leptin, vascular reactivity, and increased triglyceride, cholesterol, MDA, and fasting blood glucose. Hepatic tissues showed dilated congested vessels, cellular infiltration, decreased Periodic Acid Schiff’s reaction, and increased collagenous fibers. High fructose decreased leptin, high-density lipoprotein, vascular reactivity, and increased cholesterol, Low-density lipoprotein, MDA, glucose, and HOMA-IR. Hepatic tissues showed more fatty infiltration, glycogen deposition, and increased collagenous-fibers. The condition became worse in diabetes-treated rats.
CONCLUSION: High aspartame and high fructose diet caused deleterious effects on diabetic rats by atherogenic, oxidative stress, vascular, glucose, and hepatic tissue metabolism impairment.
Collapse
|
41
|
Abd‐Elrazek AM, Ibrahim SR, El‐dash HA. The ameliorative effect of Apium graveolens & curcumin against Non-alcoholic fatty liver disease induced by high fructose-high fat diet in rats. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Non-alcoholic fatty liver disease (NAFLD) is a condition resulting from fat aggregates in liver cells and is associated with metabolic syndrome, obesity, and oxidative stress. The present work was designed to investigate the role of celery and curcumin against high-fructose–high-fat (HFHF) diet-induced NAFLD in rats. Thirty male rats were classified into five groups: GP1: control group (rats were fed a normal control diet), GP2: HFHF group as a positive control (rats were fed a HFHF diet) for 20 weeks, GP3: HFHF + sily group, GP4: HFHF + celery group, and GP5: HFHF + cur group (rats in 3, 4, and 5 were treated as in the HFHF group for 16 weeks, then combined treatment daily by gavage for 4 weeks with either silymarin (as a reference drug, 50 mg/kg bw) or celery (300 mg/kg bw) or curcumin (200 mg/kg bw), respectively. The progression of NAFLD was evaluated by estimating tissue serum liver enzymes, glycemic profile, lipid profile, oxidative stress markers in liver tissue, and histopathological examination. Moreover, DNA fragmentation and the released lysosomal enzymes (acid phosphatase, β-galactosidase, and N-acetyl-B-glucosaminidase) were estimated.
Results
Our results showed that HFHF administration for 16 weeks caused liver enzymes elevation, hyperglycemia, and hyperlipidemia. Furthermore, increased hepatic MDA levels along with a decline in GSH levels were observed in the HFHF group as compared to the control group. The results were confirmed by a histopathological study, which showed pathological changes in the HFHF group. DNA fragmentation was also observed, and the lysosomal enzyme activities were increased. On the other hand, oral supplementation of celery and cur improved all these changes compared with positive control groups and HFHF + sily (as a reference drug). Moreover, celery, as well as curcumin co-treatment, reduced HFHF-enhanced DNA fragmentation and inhibited elevated lysosomal enzymes. The celery combined treatment showed the most pronounced ameliorative impact, even more than silymarin did.
Conclusion
Our findings suggest that celery and curcumin consumption may exhibit ameliorative impacts against NALFD progression, while celery showed more ameliorative effect in all parameters.
Collapse
|
42
|
You S, Jang M, Kim GH. Mori Cortex radicis extract protected against diet-induced neuronal damage by suppressing the AGE-RAGE/MAPK signaling pathway in C. elegans and mouse model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
43
|
Zhu T, Li M, Zhu M, Liu X, Huang K, Li W, Wang SX, Yin Y, Li P. Epigallocatechin-3-gallate alleviates type 2 diabetes mellitus via β-cell function improvement and insulin resistance reduction. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:483-488. [PMID: 35656076 PMCID: PMC9150804 DOI: 10.22038/ijbms.2022.58591.13016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 04/18/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVES Epigallocatechin-3-gallate (EGCG) has a good therapeutic effect on type 2 diabetes mellitus (T2DM). This work was designed to explore EGCG's effectiveness in insulin resistance (IR) and pancreas islet β-cell function in a rat model of T2DM. MATERIALS AND METHODS Eight-week-old male Sprague Dawley rats were randomly divided into 6 groups, including the Control (normal diet), Diabetes (high-sucrose high-fat [HSHF] diet combined with tail vein injection of streptozotocin [STZ] for T2DM induction) and Treatment Diabetic rats which were treated with metformin [500 mg/kg/d] or EGCG [25, 50 or 100 mg/kg/d] intragastric administration for 10 weeks. With the exception of control animals, the other groups were fed the HSHF diet. EGCG's effects on IR and insulin secretion were assessed by measuring body weights, and fasting blood glucose (FBG), postprandial blood glucose (PBG) and insulin levels. The morphological and molecular changes of pancreas islet β-cells were examined by hematoxylin-eosin (H&E) staining, transmission electron microscopy (TEM) and immunofluorescence. RESULTS Rats fed the HSHF diet combined with STZ treatment had increased body weights and blood glucose amounts, accompanied by IR and impaired β-cell function, induced T2DM, and EGCG dose-dependently restored the above indicators. Additionally, EGCG upregulated the pancreatic transcription factors pancreatic duodenal homeobox protein-1 (PDX-1) and musculoaponeurotic fibrosarcoma oncogene homolog A (MafA). CONCLUSION These results suggest that EGCG reduces blood glucose amounts, and improve IR and islet β-cell disorder in T2DM.
Collapse
Affiliation(s)
- Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China, These authors contributed equally to this work
| | - Minghui Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China, These authors contributed equally to this work
| | - Moli Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Xu Liu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Keke Huang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Wenru Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shuang-Xi Wang
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China, These authors contributed equally to this work
| | - Yaling Yin
- Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China,School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China,Corresponding authors: Yaling Yin. School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang 453003, Henan, China. Tel: 86-0373-3029918; Fax: 86-0373-3029918; ; Peng Li. College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang 453003, Henan, China. Tel: +86 18530238975; Fax: +86 2039358270;
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China,Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China,Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China,Corresponding authors: Yaling Yin. School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang 453003, Henan, China. Tel: 86-0373-3029918; Fax: 86-0373-3029918; ; Peng Li. College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang 453003, Henan, China. Tel: +86 18530238975; Fax: +86 2039358270;
| |
Collapse
|
44
|
Chenni A, Cherif FZH, Chenni K, Elius EE, Pucci L, Yahia DA. Effects of Pumpkin ( Cucurbita pepo L.) Seed Protein on Blood Pressure, Plasma Lipids, Leptin, Adiponectin, and Oxidative Stress in Rats with Fructose-Induced Metabolic Syndrome. Prev Nutr Food Sci 2022; 27:78-88. [PMID: 35465120 PMCID: PMC9007700 DOI: 10.3746/pnf.2022.27.1.78] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
This study evaluates the potential effects of pumpkin seeds protein on blood pressure (BP), plasma adiponectin, leptin levels, and oxidative stress in rats with fructose-induced metabolic syndrome. Twenty four male Wistar albino rats were divided into four groups and fed a 20% casein diet, 20% casein diet supplemented with pumpkin protein, 20% casein diet with 64% D-fructose, or 20% casein diet with pumpkin protein and 64% D-fructose for 8 weeks. Contin-uous fructose feeding induced an increase in plasma insulin/glucose ratio, BP, insulin and glucose, aspartate aminotrans-ferase, alanine aminotransferase (ALT), alkaline phosphatase (ALP), creatinine, urea, and uric acid levels, and a decrease in the liver and muscle glycogen stores. In addition, elevated levels of total cholesterol (TC), triglycerides (TG), and leptin and lowered adiponectin levels were observed in rats fed a fructose-enriched diet. These groups also exhibited lower plasma levels of ascorbic acid and glutathione, higher thiobarbituric acid-reactive substances, hydroperoxide, carbonyl, and nitric oxide in both the liver and kidneys than rats fed the control diet. Interestingly, pumpkin seed protein treatment significantly counteracted alterations induced by fructose improving glucose, insulin, BP, TG, TC, ALT, and ALP levels, increasing liver and muscle glycogen stores, adiponectin level, and adiponectin/leptin ratio, and reducing plasma leptin lev-els. In addition, rats fed pumpkin protein with a high-fructose diet improved oxidative stress in the liver and kidneys. In conclusion, proteins from Cucurbita pepo L. seeds effectively improve metabolic parameters and protect against oxidative stress induced by a high-fructose diet.
Collapse
Affiliation(s)
- Abdelkader Chenni
- Department of Biotechnology, Faculty of Nature and Life Sciences, Oran University of Science and Technology-Mohamed Boudiaf, Bir El Djir 31000, Algeria
| | - Fatima Zohr Hamza Cherif
- Department of Biology, Faculty of Nature and Life Sciences, University of Oran1-Ahmed Ben Bella, Oran 31000, Algeria
| | - Karima Chenni
- Biostatistics and Clinical Epidemiology Laboratory, Faculty of Medicine, University of Oran1-Ahmed Ben Bella, Oran 31000, Algeria
| | - Elif Erdogan Elius
- Department of Food Technology, Technical Sciences Vocational School, Mersin University, Mersin 33110, Turkey
| | - Laura Pucci
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa 56124, Italy
| | - Dalila Ait Yahia
- Department of Biology, Faculty of Nature and Life Sciences, University of Oran1-Ahmed Ben Bella, Oran 31000, Algeria
| |
Collapse
|
45
|
Krisnamurti DGB, Purwaningsih EH, Tarigan TJE, Nugroho CMH, Soetikno V, Louisa M. Alterations of Liver Functions and Morphology in a Rat Model of Prediabetes After a Short-term Treatment of a High-fat High-glucose and Low-dose Streptozotocin. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The administration of high-fat and high-glucose in diet followed by a low-dose streptozotocin injection in rats could mimic hyperglycemia, prediabetic, or diabetic conditions in humans. However, whether the rat model may lead to early liver impairment was still unclear.
AIM: This study was aimed to investigate the possible changes in liver functions and morphology in the rat model of prediabetes after a short-term administration of a high-fat and high-glucose diet followed by low-dose streptozotocin injection.
METHODS: Eighteen male Wistar rats were divided into nine rats in the control group and nine in the prediabetic group. To induce prediabetic rats, high-fat high-glucose in daily diets for 3 weeks continued with once to twice low-dose streptozotocin was given. Rats in control groups were fed with a standard diet for 2 months. Afterward, we analyzed glucose control parameters, liver functions, and liver histology of the rats.
RESULTS: High-fat, high-glucose diet combined with a low dose of streptozotocin successfully caused prediabetics in the rats. There was a significant increase in several liver enzymes, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyl transferase (GGT). However, no significant changes were found in the serum lactate dehydrogenase (LDH) and alkaline phosphatase (ALP) levels. The histological changes in the liver confirmed the increase in liver enzymes.
CONCLUSION: Short-term administration of high-fat high-glucose in combination with low-dose streptozotocin triggers alterations in liver functions marker and liver morphology.
Collapse
|
46
|
Prasad M, Jayaraman S, Eladl MA, El-Sherbiny M, Abdelrahman MAE, Veeraraghavan VP, Vengadassalapathy S, Umapathy VR, Jaffer Hussain SF, Krishnamoorthy K, Sekar D, Palanisamy CP, Mohan SK, Rajagopal P. A Comprehensive Review on Therapeutic Perspectives of Phytosterols in Insulin Resistance: A Mechanistic Approach. Molecules 2022; 27:molecules27051595. [PMID: 35268696 PMCID: PMC8911698 DOI: 10.3390/molecules27051595] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Natural products in the form of functional foods have become increasingly popular due to their protective effects against life-threatening diseases, low risk of adverse effects, affordability, and accessibility. Plant components such as phytosterol, in particular, have drawn a lot of press recently due to a link between their consumption and a modest incidence of global problems, such as Type 2 Diabetes mellitus (T2DM), cancer, and cardiovascular disease. In the management of diet-related metabolic diseases, such as T2DM and cardiovascular disorders, these plant-based functional foods and nutritional supplements have unquestionably led the market in terms of cost-effectiveness, therapeutic efficacy, and safety. Diabetes mellitus is a metabolic disorder categoriszed by high blood sugar and insulin resistance, which influence major metabolic organs, such as the liver, adipose tissue, and skeletal muscle. These chronic hyperglycemia fallouts result in decreased glucose consumption by body cells, increased fat mobilisation from fat storage cells, and protein depletion in human tissues, keeping the tissues in a state of crisis. In addition, functional foods such as phytosterols improve the body’s healing process from these crises by promoting a proper physiological metabolism and cellular activities. They are plant-derived steroid molecules having structure and function similar to cholesterol, which is found in vegetables, grains, nuts, olive oil, wood pulp, legumes, cereals, and leaves, and are abundant in nature, along with phytosterol derivatives. The most copious phytosterols seen in the human diet are sitosterol, stigmasterol, and campesterol, which can be found in free form, as fatty acid/cinnamic acid esters or as glycosides processed by pancreatic enzymes. Accumulating evidence reveals that phytosterols and diets enriched with them can control glucose and lipid metabolism, as well as insulin resistance. Despite this, few studies on the advantages of sterol control in diabetes care have been published. As a basis, the primary objective of this review is to convey extensive updated information on the possibility of managing diabetes and associated complications with sterol-rich foods in molecular aspects.
Collapse
Affiliation(s)
- Monisha Prasad
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India; (M.P.); (K.K.)
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India; (M.P.); (K.K.)
- Correspondence: (S.J.); (V.P.V.); (P.R.)
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia; (M.E.-S.); (M.A.E.A.)
| | | | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India; (M.P.); (K.K.)
- Correspondence: (S.J.); (V.P.V.); (P.R.)
| | - Srinivasan Vengadassalapathy
- Department of Pharmacology, Saveetha Medical College and Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 602105, India;
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai 600100, India;
| | | | - Kalaiselvi Krishnamoorthy
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai 600077, India; (M.P.); (K.K.)
| | - Durairaj Sekar
- Cellular and Molecular Research Centre, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India;
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China;
| | - Surapaneni Krishna Mohan
- Departments of Biochemistry, Molecular Virology, Research, Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India;
| | - Ponnulakshmi Rajagopal
- Department of Central Research Laboratory, Meenakshi Ammal Dental College and Hospitals, Chennai 600095, India
- Correspondence: (S.J.); (V.P.V.); (P.R.)
| |
Collapse
|
47
|
Nimbkar S, Leena MM, Moses JA, Anandharamakrishnan C. Medium chain triglycerides (MCT): State-of-the-art on chemistry, synthesis, health benefits and applications in food industry. Compr Rev Food Sci Food Saf 2022; 21:843-867. [PMID: 35181994 DOI: 10.1111/1541-4337.12926] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 12/07/2021] [Accepted: 01/16/2022] [Indexed: 12/21/2022]
Abstract
Medium chain triglycerides (MCT) are esters of fatty acids with 6 to 12 carbon atom chains. Naturally, they occur in various sources; their composition and bioactivity are source and extraction process-linked. The molecular size of MCT oil permits unique metabolic pathways and energy production rates, making MCT oil a high-value functional food. This review details the common sources of MCT oil, presenting critical information on the various approaches for MCT oil extraction or synthesis. Apart from conventional techniques, non-thermal processing methods that show promising prospects are analyzed. The biological effects of MCT oil are summarized, and the range of need-driven modification approaches are elaborated. A section is devoted to highlighting the recent trends in the application of MCT oil for food, nutraceuticals, and allied applications. While much is debated about the role of MCT oil in human health and wellness, there is limited information on daily requirements, impact on specific population groups, and effects of long-term consumption. Nonetheless, several studies have been conducted and continue to identify the most effective methods for MCT oil extraction, processing, handling, and storage. A knowledge gap exists and future research must focus on technology packages for scalability and sustainability.
Collapse
Affiliation(s)
- Shubham Nimbkar
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - M Maria Leena
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - J A Moses
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| | - C Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, National Institute of Food Technology, Entrepreneurship and Management - Thanjavur, Ministry of Food Processing Industries, Government of India, Thanjavur, Tamil Nadu, 613005, India
| |
Collapse
|
48
|
SULISTYOWATI E, HANDAYANI D, SOEHARTO S, RUDIJANTO A. A high-fat and high-fructose diet lowers the cecal digesta's weight and short-chain fatty acid level of a Sprague-Dawley rat model. Turk J Med Sci 2022; 52:268-275. [PMID: 36161602 PMCID: PMC10734861 DOI: 10.3906/sag-1911-14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/22/2022] [Accepted: 02/20/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND This study aimed to analyze the effect of a high-fat and high-fructose diet (HFFD) on the digesta weight and shortchain fatty acid (SCFA) levels of cecal digesta in rats. METHODS This study was an experimental study with a posttest-only control group design with male Sprague-Dawley strain rats as the samples. A total of 36 rats were divided into two groups with normal diet (N) and modified HFFD. The data of energy intake, nutrients and fiber, body weight, Lee index, abdominal circumference, digesta weight, and SCFA levels of cecal digesta were collected. RESULTS The results showed an 11.94% increase in body weights of rats with HFFD. The total energy intake of the HFFD group was significantly higher than that of N (p = 0.000). The fiber intake and cecal digesta weight in group N were higher than that in the HFFD group (p = 0.00 and p = 0.02, respectively). The concentrations of acetate, butyrate, propionate, and total SCFA in the N group were significantly higher than in the HFFD (p = 0.041,,p = 0.004, p = 0.040, p = 0.013, respectively). A significant negative relationship was observed between the abdominal circumference and cecal digesta concentration (p = 0.029; r = -0.529) and between the Lee index and the SCFA concentration of cecal digesta (p = 0.036, r = -0.206).
Collapse
Affiliation(s)
- Etik SULISTYOWATI
- Department of Nutrition, Malang State Health Polytechnic Ministry of Health, Malang
Indonesia
| | - Dian HANDAYANI
- School of Nutrition, Faculty of Medicine, Brawijaya University, Malang,
Indonesia
| | - Setyawati SOEHARTO
- Department of Pharmacology, Faculty of Medicine, Brawijaya University, Malang,
Indonesia
| | - Achmad RUDIJANTO
- Department of Endocrinology, Faculty of Medicine, Brawijaya University, Malang,
Indonesia
| |
Collapse
|
49
|
Protective role of intergenerational paternal resistance training on fibrosis, inflammatory profile, and redox status in the adipose tissue of rat offspring fed with a high-fat diet. Life Sci 2022; 295:120377. [DOI: 10.1016/j.lfs.2022.120377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/29/2022]
|
50
|
Tavassoli H, Heidarianpour A, Hedayati M. The effects of resistance exercise training followed by de-training on irisin and some metabolic parameters in type 2 diabetic rat model. Arch Physiol Biochem 2022; 128:240-247. [PMID: 31588806 DOI: 10.1080/13813455.2019.1673432] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND We investigated the effects of high-fat diet (HFD) consumption combined with diabetes induction, resistance exercise training (RET) and a de-training period on circulating irisin levels and selective metabolic parameters. MATERIAL AND METHODS Rats were assigned to four groups (n = 8): healthy non-diabetic rats (NDC), non-diabetic rats that performed RET (NDR), sedentary HFD-fed/STZ-treated rats (HFD/STZ) and HFD-fed/STZ-treated rats that performed RET (HFD/STZ + RE). RESULTS HFD consumption reduced irisin level and Quicki (p < .01). After the 12-week period, levels of TC, TG, HOMA1-IR, HOMA2-IR and irisin were also lower in the HFD/STZ + RE group compared to the HFD/STZ group. Body weight and HOMA1-IR showed a positive (r = 0.558 and r = 0.538) whereas TC and LDL-C had a negative correlation (r = -0.461 and r = -0.630) with irisin level (p < .05). CONCLUSIONS Irisin level increased along with the progress of obesity and T2DM. It seems that RET can attenuate the increase of irisin in those conditions by improvement of glucose/lipid metabolic disorders.
Collapse
Affiliation(s)
- Hassan Tavassoli
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Bu-Ali Sina University, Hamedan, Iran
| | - Ali Heidarianpour
- Department of Exercise Physiology, Faculty of Physical Education and Sport Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|