1
|
Long E, Rider CF, Carlsten C. Controlled human exposures: a review and comparison of the health effects of diesel exhaust and wood smoke. Part Fibre Toxicol 2024; 21:44. [PMID: 39444041 PMCID: PMC11515699 DOI: 10.1186/s12989-024-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
One of the most pressing issues in global health is air pollution. Emissions from traffic-related air pollution and biomass burning are two of the most common sources of air pollution. Diesel exhaust (DE) and wood smoke (WS) have been used as models of these pollutant sources in controlled human exposure (CHE) experiments. The aim of this review was to compare the health effects of DE and WS using results obtained from CHE studies. A total of 119 CHE-DE publications and 25 CHE-WS publications were identified for review. CHE studies of DE generally involved shorter exposure durations and lower particulate matter concentrations, and demonstrated more potent dysfunctional outcomes than CHE studies of WS. In the airways, DE induces neutrophilic inflammation and increases airway hyperresponsiveness, but the effects of WS are unclear. There is strong evidence that DE provokes systemic oxidative stress and inflammation, but less evidence exists for WS. Exposure to DE was more prothrombotic than WS. DE generally increased cardiovascular dysfunction, but limited evidence is available for WS. Substantial heterogeneity in experimental methodology limited the comparison between studies. In many areas, outcomes of WS exposures tended to trend in similar directions to those of DE, suggesting that the effects of DE exposure may be useful for inferring possible responses to WS. However, several gaps in the literature were identified, predominantly pertaining to elucidating the effects of WS exposure. Future studies should strongly consider performing head-to-head comparisons between DE and WS using a CHE design to determine the differential effects of these exposures.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Christopher F Rider
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|
2
|
Uski OJ, Rankin G, Wingfors H, Magnusson R, Boman C, Lindgren R, Muala A, Blomberg A, Bosson JA, Sandström T. The Toxic Effects of Petroleum Diesel, Biodiesel, and Renewable Diesel Exhaust Particles on Human Alveolar Epithelial Cells. J Xenobiot 2024; 14:1432-1449. [PMID: 39449421 PMCID: PMC11503417 DOI: 10.3390/jox14040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate matter (PM) emissions from a diesel engine powered by conventional petroleum diesel fuel (SD10) and two biodiesel and renewable diesel fuels in vitro. The fuels used were rapeseed methyl ester (RME), soy methyl ester (SME), and Hydrogenated Vegetable Oil (HVO), either pure or as 50% blends with SD10. Additionally, a 5% RME blend was also used. The highest concentration of polycyclic aromatic hydrocarbon emissions and elemental carbon (EC) was found in conventional diesel and the 5% RME blend. HVO PM samples also exhibited a high amount of EC. A dose-dependent genotoxic response was detected with PM from SD10, pure SME, and RME as well as their blends. Reactive oxygen species levels were several times higher in cells exposed to PM from SD10, pure HVO, and especially the 5% RME blend. Apoptotic cell death was observed in cells exposed to PM from SD10, 5% RME blend, the 50% SME blend, and HVO samples. In conclusion, all diesel PM samples, including biodiesel and renewable diesel fuels, exhibited toxicity.
Collapse
Affiliation(s)
- Oskari J. Uski
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Håkan Wingfors
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden
| | - Roger Magnusson
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden
| | - Christoffer Boman
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Robert Lindgren
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Ala Muala
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Jenny A. Bosson
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| |
Collapse
|
3
|
Wang S, Gong X, Yuan J, Huang J, Zhao R, Ji J, Wang M, Shi X, Xin W, Zhong Y, Zheng Y, Jiang Q. Iron-doped diesel exhaust early-in-life inhalation-induced cardiopulmonary toxicity in chicken embryo: Roles of ferroptosis and acyl hydrocarbon signaling. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125085. [PMID: 39374763 DOI: 10.1016/j.envpol.2024.125085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/14/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Diesel exhaust (DE) is a major contributor to air pollution. Iron-doping could improve diesel burning efficacy and decrease emission, however, it will also change the composition of DE, potentially enhancing the toxicities. This study is aimed to assess iron-doped DE-induced cardiopulmonary toxicity in an established in ovo early-in-life inhalation exposure chicken embryo model, and to explore potential mechanisms. Ferrocene (205, 410, 820,1640 mg/L, equivalent to 75, 150, 300, 600 ppm iron mass) was added to diesel fuel, DE was collected from a diesel generator, and then exposed to embryonic day 18-19 chicken embryo via in ovo inhalation. Hatched chickens were kept for 0, 1, or 3 months, and then sacrificed. Histopathology, electrocardiography along with biochemical methods were used to assess cardiopulmonary toxicities. For mechanistic investigation, inhibitor for ferroptosis (ferrostatin-1) or Acyl hydrocarbon receptor (PDM2) were administered before DE (with or without iron-doping), and the cardiopulmonary toxicities were compared. Characterization of DE particles indicated that addition of ferrocene significantly elevated iron content. Additionally, the contents of major toxic polycyclic aromatic hydrocarbons decreased following addition of 820 mg/L ferrocene, but increased at other doses. Remarkable cardiopulmonary toxicities, in the manifestation of elevated heart rates, cardiac remodeling and cardiac/pulmonary fibrosis were observed in animals exposed to iron-doped DEs, in which the addition of ferrocene significantly enhanced the toxicities. Both ferrostatin-1 and PDM2 pretreatment could effectively alleviate the observed effects in animals exposed to iron-doped DE. Inhibition of AhR signaling seems to be capable of alleviating changes to ferroptosis related molecules following exposure to iron-doped DE, while inhibition of ferroptosis does not seem to affect AhR signaling molecules. In summary, iron-doping with ferrocene to diesel enhanced DE-induced cardiopulmonary toxicities in chicken embryos. Ferroptosis and AhR signaling both seem to participate in this process, in which AhR signaling seems to affect ferroptosis.
Collapse
Affiliation(s)
- Siyi Wang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Xinxian Gong
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Junhua Yuan
- Department of Special Medicine, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Jing Huang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Rui Zhao
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Jing Ji
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Meinan Wang
- Qingdao Product Quality Testing Research Institute, 77 Keyuanweisi Road, Qingdao, China
| | - Xiaoyu Shi
- Qingdao Product Quality Testing Research Institute, 77 Keyuanweisi Road, Qingdao, China
| | - Wenya Xin
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing, China
| | - Yuxin Zheng
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China.
| | - Qixiao Jiang
- Department of Toxicology, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao, China.
| |
Collapse
|
4
|
Li S, Huff RD, Rider CF, Yuen ACY, Carlsten C. Controlled human exposures to diesel exhaust or particle-depleted diesel exhaust with allergen modulates transcriptomic responses in the lung. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173688. [PMID: 38851342 DOI: 10.1016/j.scitotenv.2024.173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/13/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
The evidence associating traffic-related air pollution (TRAP) with allergic asthma is growing, but the underlying mechanisms for this association remain unclear. The airway epithelium is the primary tissue exposed to TRAP, hence understanding its interactions with TRAP and allergen is important. Diesel exhaust (DE), a paradigm of TRAP, consists of particulate matter (PM) and gases. Modern diesel engines often have catalytic diesel particulate filters to reduce PM output, but these may increase gaseous concentrations, and their benefits on human health cannot be assumed. We conducted a randomized, double-blinded, crossover study using our unique in vivo human exposure system to investigate the effects of DE and allergen co-exposure, with or without particle depletion as a proxy for catalytic diesel particulate filters, on the airway epithelial transcriptome. Participants were exposed for 2 h before an allergen inhalation challenge, with each receiving filtered air and saline (FA-S), filtered air and allergen (FA-A), DE and allergen (DE-A), or particle-depleted DE and allergen (PDDE-A), over four different occasions, each separated by a 4-week washout period. Endobronchial brushings were collected 48 h after each exposure, and total RNA was sequenced. Differentially expressed genes (DEGs) were identified using DESeq2, followed by GO enrichment and pathway analysis. FA-A, DE-A, and PDDE-A exposures significantly modulated genes relative to FA-S, with 462 unique DEGs identified. FA-A uniquely modulated the highest number (↑178, ↓155), followed by DE-A (↑44, ↓23), and then PDDE-A exposure (↑15, ↓2); 6 DEGs (↑4, ↓2) were modulated by all three conditions. Exposure to PDDE-A resulted in modulation of 285 DEGs compared to DE-A exposure, further revealing 26 biological process GO terms, including "cellular response to chemokine" and "inflammatory response". The transcriptional epithelial response to diesel exhaust and allergen co-exposure is enriched in inflammatory mediators, the pattern of which is altered upon particle depletion.
Collapse
Affiliation(s)
- Shijia Li
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan D Huff
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher F Rider
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Agnes C Y Yuen
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Chris Carlsten
- Air Pollution Exposure Laboratory (APEL), Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
5
|
Seyyedsalehi MS, Collatuzzo G, Teglia F, Boffetta P. Occupational exposure to diesel exhaust and head and neck cancer: a systematic review and meta-analysis of cohort studies. Eur J Cancer Prev 2024; 33:425-432. [PMID: 38502528 DOI: 10.1097/cej.0000000000000876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Exposure to diesel exhaust (DE) and other fossil fuels in the workplace can cause several health effects including cancer. We conducted a systematic review and meta-analysis of cohort studies examining the association between occupational DE exposure and the risk of head and neck cancer (HNC), including cancer of the oral cavity, pharynx and larynx. We included cohort studies mentioned in the Monograph of the International Agency for Research on Cancer, 2014, on DE. Forest plots of relative risk (RR) were constructed for HNC overall and its anatomical subtypes. A random-effects model was used to address heterogeneity between studies. Fifteen articles were included after removing duplicates and irrelevant reports. The summary RR for DE exposure was 1.08 [95% confidence interval (CI) = 1.01-1.17, P heterogeneity = <0.001] for HNC overall, 0.98 (95% CI = 0.87-1.11) for oral cavity, 1.05 (95% CI = 0.77-1.43) for pharyngeal, 1.15 (95% CI = 0.96-1.38) for oral cavity and pharyngeal combined, and 1.13 (95% CI = 1.03-1.24) for laryngeal cancer. There were elevated RRs for incidence studies of HNC (RR = 1.13; 95% CI = 1.05-1.22, P = 0.001), European studies (RR = 1.13; 95% CI = 1.05-1.23, P = 0.001), and female studies (RR = 1.77; 95% CI = 1.31-2.39, P = 0.003). Our study suggested an association between occupational DE exposure and the risk of HNC, particularly laryngeal cancer. Although residual confounding cannot be ruled out, our results support the importance of controlling occupational DE exposure.
Collapse
Affiliation(s)
- Monireh Sadat Seyyedsalehi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Giulia Collatuzzo
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Federica Teglia
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
6
|
Soler-Segovia D, de Homdedeu M, Sánchez-Díez S, Romero-Mesones C, Espejo D, Marain F, Vanoirbeek J, Munoz X, Cruz MJ. Immunological Effects of Diesel Particles in a Murine Model of Healthy Mice. TOXICS 2024; 12:530. [PMID: 39195632 PMCID: PMC11359652 DOI: 10.3390/toxics12080530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/29/2024]
Abstract
Introduction: Exposure to environmental pollutants such as diesel exhaust particles (DEP) increases the risk of respiratory disease exacerbation. However, the possible effects of these particles on the general population remain poorly understood. The present study aimed to assess the immunomodulatory and inflammatory effects of the inhalation of DEP in a model of healthy mice undergoing short-, mid- and long-term exposure. Materials and Methods: BALB/c ByJ mice were randomly divided into five experimental groups. The control group received three intranasal instillations of saline over 8 days while the other four groups received intranasal instillations of 150 µg of DEP 3 days per week for 8, 17, 26, and 53 days. Lung function assessment and flow cytometry were performed. Results: In lung tissue, intranasal exposure to DEP decreased total monocytes (p < 0.015 in all groups). At 26 days, a reduction in inflammatory monocytes and an increase in resident monocytes were observed, p = 0.001 and 0.0001, respectively. Eosinophils and neutrophils decreased at 26 days (p = 0.017 and p = 0.041, respectively). The intranasal challenges of DEP increased the total population of dendritic cells (DC) at 26 and 53 days (p = 0.017 and p = 0.022, respectively) and decreased the total and alveolar populations of macrophages (p < 0.003 for all groups compared to control), while interstitial macrophage populations increased over the time period (p = 0.0001 for all groups compared to control). Conclusions: Continuous DEP exposure triggers immune mechanisms that predispose healthy individuals to a pro-inflammatory and hyper-reactive microenvironment. This mouse model provides evidence of the capacity of DEP to increase DC, interstitial macrophages, and resident monocytes.
Collapse
Affiliation(s)
- David Soler-Segovia
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Miquel de Homdedeu
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Silvia Sánchez-Díez
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Christian Romero-Mesones
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - David Espejo
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Fopke Marain
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, KU Leuven, 3000 Leuven, Belgium;
| | - Jeroen Vanoirbeek
- Centre of Environment and Health, Department of Public Health and Primary Care, KU Leuven, 3000 Leuven, Belgium;
| | - Xavier Munoz
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - María-Jesús Cruz
- Pulmonology Service, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain; (D.S.-S.); (M.d.H.); (S.S.-D.); (C.R.-M.); (D.E.); (M.-J.C.)
- CIBER Enfermedades Respiratorias (CibeRes), 08035 Barcelona, Spain
- Medicine Department, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
7
|
Wardhani K, Yazzie S, Edeh O, Grimes M, Dixson C, Jacquez Q, Zychowski KE. Neuroinflammation is dependent on sex and ovarian hormone presence following acute woodsmoke exposure. Sci Rep 2024; 14:12995. [PMID: 38844478 PMCID: PMC11156661 DOI: 10.1038/s41598-024-63562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Woodsmoke (WS) exposure is associated with significant health-related sequelae. Different populations can potentially exhibit varying susceptibility, based on endocrine phenotypes, to WS and investigating neurological impacts following inhaled WS is a growing area of research. In this study, a whole-body inhalation chamber was used to expose both male and female C57BL/6 mice (n = 8 per group) to either control filtered air (FA) or acute WS (0.861 ± 0.210 mg/m3) for 4 h/d for 2 days. Neuroinflammatory and lipid-based biological markers were then assessed. In a second set of studies, female mice were divided into two groups: one group was ovariectomized (OVX) to simulate an ovarian hormone-deficient state (surgical menopause), and the other underwent Sham surgery as controls, to mechanistically assess the impact of ovarian hormone presence on neuroinflammation following FA and acute WS exposure to simulate an acute wildfire episode. There was a statistically significant impact of sex (P ≤ 0.05) and statistically significant interactions between sex and treatment in IL-1β, CXCL-1, TGF-β, and IL-6 brain relative gene expression. Hippocampal and cortex genes also exhibited significant changes in acute WS-exposed Sham and OVX mice, particularly in TGF-β (hippocampus) and CCL-2 and CXCL-1 (cortex). Cortex GFAP optical density (OD) showed a notable elevation in male mice exposed to acute WS, compared to the control FA. Sham and OVX females demonstrated differential GFAP expression, depending on brain region. Overall, targeted lipidomics in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) serum and brain lipids demonstrated more significant changes between control FA and acute WS exposure in female mice, compared to males. In summary, male and female mice show distinct neuroinflammatory markers in response to acute WS exposure. Furthermore, ovarian hormone deficiency may impact the neuroinflammatory response following an acute WS event.
Collapse
Affiliation(s)
- Kartika Wardhani
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sydnee Yazzie
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Onamma Edeh
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Martha Grimes
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Connor Dixson
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Quiteria Jacquez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Katherine E Zychowski
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
8
|
Zuidema C, Paulsen M, Simpson CD, Jovan SE. Evaluation of Orthotrichum lyellii moss as a biomonitor of diesel exhaust. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171306. [PMID: 38423310 PMCID: PMC10964952 DOI: 10.1016/j.scitotenv.2024.171306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/11/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Exhaust from diesel combustion engines is an important contributor to urban air pollution and poses significant risk to human health. Diesel exhaust contains a chemical class known as nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) and is enriched in 1-nitropyrene (1-NP), which has the potential to serve as a marker of diesel exhaust. The isomeric nitro-PAHs 2-nitropyrene (2-NP) and 2-nitrofluoranthene (2-NFL) are secondary pollutants arising from photochemical oxidation of pyrene and fluoranthene, respectively. Like other important air toxics, there is not extensive monitoring of nitro-PAHs, leading to gaps in knowledge about relative exposures and urban hotspots. Epiphytic moss absorbs water, nutrients, and pollutants from the atmosphere and may hold potential as an effective biomonitor for nitro-PAHs. In this study we investigate the suitability of Orthotrichum lyellii as a biomonitor of diesel exhaust by analyzing samples of the moss for 1-NP, 2-NP, and 2-NFL in the Seattle, WA metropolitan area. Samples were collected from rural parks, urban parks, residential, and commercial/industrial areas (N = 22 locations) and exhibited increasing concentrations across these land types. Sampling and laboratory method performance varied by nitro-PAH, but was generally good. We observed moderate to moderately strong correlation between 1-NP and select geographic variables, including summer normalized difference vegetation index (NDVI) within 250 m (r = -0.88, R2 = 0.77), percent impervious surface within 50 m (r = 0.83, R2 = 0.70), percent high development land use within 500 m (r = 0.77, R2 = 0.60), and distance to nearest secondary and connecting road (r = -0.75, R2 = 0.56). The relationships between 2-NP and 2-NFL and the geographic variables were generally weaker. Our results suggest O. lyellii is a promising biomonitor of diesel exhaust, specifically for 1-NP. To our knowledge this pilot study is the first to evaluate using moss concentrations of nitro-PAHs as biomonitors of diesel exhaust.
Collapse
Affiliation(s)
- Christopher Zuidema
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA; Pacific Northwest Research Station, USDA Forest Service, 400 N 34th St., Seattle, WA 98103, USA
| | - Michael Paulsen
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA
| | - Christopher D Simpson
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, Seattle, WA 98105, USA
| | - Sarah E Jovan
- Pacific Northwest Research Station, USDA Forest Service, 1220 SW 3(rd) Ave., Suite 1410, Portland, OR 97204, USA.
| |
Collapse
|
9
|
Tanos F, Razzouk A, Lesage G, Cretin M, Bechelany M. A Comprehensive Review on Modification of Titanium Dioxide-Based Catalysts in Advanced Oxidation Processes for Water Treatment. CHEMSUSCHEM 2024; 17:e202301139. [PMID: 37987138 DOI: 10.1002/cssc.202301139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
It has become necessary to develop effective strategies to prevent and reduce water pollution as a result of the increase in dangerous pollutants in water reservoirs. Consequently, there is a need to design new catalyst materials to promote the efficiency of advanced oxidation processes (AOPs) in the field of wastewater treatment plant to ensure the mineralization of trace organic contaminants. A notable approach gaining attention involves the coupling of sulfate radicals-based AOPs to photocatalysis or electrocatalysis processes, aiming to achieve the complete removal of refractory contaminants into water and carbon dioxide. Titanium dioxide as metal oxide has received great attention for its catalytic application in water purification. TiO2 catalysts offer a multitude of advantages in AOPs. They are characterized by their high photocatalytic activity under both ultraviolet and visible light, making them environmentally friendly due to the absence of toxic byproducts during oxidation. Their versatility is remarkable, finding utility in various AOPs, from photocatalysis to photo-Fenton processes. TiO2's durability ensures long-lasting catalytic activity, which is crucial for continuous treatment processes, and their cost-effectiveness is particularly advantageous. Furthermore, their chemical stability allows it to withstand varying pH conditions. However, the large band gap energy and low electrical conductivity hinder the catalytic reaction effectiveness. This review aims to examine various approaches to enhance the catalytic performance of titanium dioxide, with the objective of enabling more efficient water purification methods.
Collapse
Affiliation(s)
- Fida Tanos
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Antonio Razzouk
- Laboratoire d'Analyses Chimiques, Faculty of Sciences, LAC-Lebanese University, Jdeidet, 90656, Lebanon
| | - Geoffroy Lesage
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Marc Cretin
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Univ Montpellier, ENSCM, Centre national de la recherche scientifique (CNRS), Place Eugène Bataillon, 34095, Montpellier, France
- Gulf University for Science and Technology, GUST, 32093, Hawally, Kuwait
| |
Collapse
|
10
|
Fang ZF, Wang ZN, Chen Z, Peng Y, Fu Y, Yang Y, Han HL, Teng YB, Zhou W, Xu D, Liu XY, Xie JX, Zhang JJ, Zhong NS. Fine particulate matter contributes to COPD-like pathophysiology: experimental evidence from rats exposed to diesel exhaust particles. Respir Res 2024; 25:14. [PMID: 38178075 PMCID: PMC10765838 DOI: 10.1186/s12931-023-02623-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Ambient fine particulate matter (PM2.5) is considered a plausible contributor to the onset of chronic obstructive pulmonary disease (COPD). Mechanistic studies are needed to augment the causality of epidemiologic findings. In this study, we aimed to test the hypothesis that repeated exposure to diesel exhaust particles (DEP), a model PM2.5, causes COPD-like pathophysiologic alterations, consequently leading to the development of specific disease phenotypes. Sprague Dawley rats, representing healthy lungs, were randomly assigned to inhale filtered clean air or DEP at a steady-state concentration of 1.03 mg/m3 (mass concentration), 4 h per day, consecutively for 2, 4, and 8 weeks, respectively. Pulmonary inflammation, morphologies and function were examined. RESULTS Black carbon (a component of DEP) loading in bronchoalveolar lavage macrophages demonstrated a dose-dependent increase in rats following DEP exposures of different durations, indicating that DEP deposited and accumulated in the peripheral lung. Total wall areas (WAt) of small airways, but not of large airways, were significantly increased following DEP exposures, compared to those following filtered air exposures. Consistently, the expression of α-smooth muscle actin (α-SMA) in peripheral lung was elevated following DEP exposures. Fibrosis areas surrounding the small airways and content of hydroxyproline in lung tissue increased significantly following 4-week and 8-week DEP exposure as compared to the filtered air controls. In addition, goblet cell hyperplasia and mucus hypersecretions were evident in small airways following 4-week and 8-week DEP exposures. Lung resistance and total lung capacity were significantly increased following DEP exposures. Serum levels of two oxidative stress biomarkers (MDA and 8-OHdG) were significantly increased. A dramatical recruitment of eosinophils (14.0-fold increase over the control) and macrophages (3.2-fold increase) to the submucosa area of small airways was observed following DEP exposures. CONCLUSIONS DEP exposures over the courses of 2 to 8 weeks induced COPD-like pathophysiology in rats, with characteristic small airway remodeling, mucus hypersecretion, and eosinophilic inflammation. The results provide insights on the pathophysiologic mechanisms by which PM2.5 exposures cause COPD especially the eosinophilic phenotype.
Collapse
Affiliation(s)
- Zhang-Fu Fang
- Department of Respirology & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, 518020, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhao-Ni Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Zhe Chen
- Laboratory of Cough, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, 215300, Jiangsu, China
| | - Yang Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yu Fu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Yang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Hai-Long Han
- Global Health Research Center, Duke Kunshan University, Kunshan, 215316, Jiangsu Province, China
| | - Yan-Bo Teng
- Global Health Research Center, Duke Kunshan University, Kunshan, 215316, Jiangsu Province, China
| | - Wei Zhou
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518061, China
| | - Damo Xu
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518061, China
| | - Xiao-Yu Liu
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Institute of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen, 518061, China
| | - Jia-Xing Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Junfeng Jim Zhang
- Global Health Research Center, Duke Kunshan University, Kunshan, 215316, Jiangsu Province, China.
- Nicholas School of the Environment and Global Health Institute, Duke University, Durham, NC, 27708, USA.
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
- Guangzhou Laboratory, Guangzhou, 510000, China.
| |
Collapse
|
11
|
Sanchez-Rodriguez L, Galvez-Fernandez M, Rojas-Benedicto A, Domingo-Relloso A, Amigo N, Redon J, Monleon D, Saez G, Tellez-Plaza M, Martin-Escudero JC, Ramis R. Traffic Density Exposure, Oxidative Stress Biomarkers and Plasma Metabolomics in a Population-Based Sample: The Hortega Study. Antioxidants (Basel) 2023; 12:2122. [PMID: 38136241 PMCID: PMC10740723 DOI: 10.3390/antiox12122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Exposure to traffic-related air pollution (TRAP) generates oxidative stress, with downstream effects at the metabolic level. Human studies of traffic density and metabolomic markers, however, are rare. The main objective of this study was to evaluate the cross-sectional association between traffic density in the street of residence with oxidative stress and metabolomic profiles measured in a population-based sample from Spain. We also explored in silico the potential biological implications of the findings. Secondarily, we assessed the contribution of oxidative stress to the association between exposure to traffic density and variation in plasma metabolite levels. Traffic density was defined as the average daily traffic volume over an entire year within a buffer of 50 m around the participants' residence. Plasma metabolomic profiles and urine oxidative stress biomarkers were measured in samples from 1181 Hortega Study participants by nuclear magnetic resonance spectroscopy and high-performance liquid chromatography, respectively. Traffic density was associated with 7 (out of 49) plasma metabolites, including amino acids, fatty acids, products of bacterial and energy metabolism and fluid balance metabolites. Regarding urine oxidative stress biomarkers, traffic associations were positive for GSSG/GSH% and negative for MDA. A total of 12 KEGG pathways were linked to traffic-related metabolites. In a protein network from genes included in over-represented pathways and 63 redox-related candidate genes, we observed relevant proteins from the glutathione cycle. GSSG/GSH% and MDA accounted for 14.6% and 12.2% of changes in isobutyrate and the CH2CH2CO fatty acid moiety, respectively, which is attributable to traffic exposure. At the population level, exposure to traffic density was associated with specific urine oxidative stress and plasma metabolites. Although our results support a role of oxidative stress as a biological intermediary of traffic-related metabolic alterations, with potential implications for the co-bacterial and lipid metabolism, additional mechanistic and prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Laura Sanchez-Rodriguez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
- Joint Research Institute-National School of Health (IMIENS), National Distance Education University, 28029 Madrid, Spain
| | - Marta Galvez-Fernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
| | - Ayelén Rojas-Benedicto
- Joint Research Institute-National School of Health (IMIENS), National Distance Education University, 28029 Madrid, Spain
- Department of Communicable Diseases, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain
- CIBER on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Nuria Amigo
- Biosfer Teslab, 43201 Reus, Spain;
- Department of Basic Medical Sciences, Universidad de Rovira i Virgili, 43007 Tarragona, Spain
| | - Josep Redon
- Institute for Biomedical Research, Hospital Clinic de Valencia (INCLIVA), 46010 Valencia, Spain
| | - Daniel Monleon
- Institute for Biomedical Research, Hospital Clinic de Valencia (INCLIVA), 46010 Valencia, Spain
| | - Guillermo Saez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Dentistry, Clinical Analysis Service, Hospital Universitario Dr. Peset-FISABIO, Universitat de Valencia, 46020 Valencia, Spain;
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
| | - Juan Carlos Martin-Escudero
- Department of Internal Medicine, Hospital Universitario Rio Hortega, University of Valladolid, 47012 Valladolid, Spain;
| | - Rebeca Ramis
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, 28029 Madrid, Spain; (L.S.-R.); (A.D.-R.); (R.R.)
- CIBER on Epidemiology and Public Health, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Sriprathum S, Maneedaeng A, Klinkaew N, Sukjit E. Comprehensive analysis of properties of green diesel enhanced by fatty acid methyl esters. RSC Adv 2023; 13:31460-31469. [PMID: 37901271 PMCID: PMC10605866 DOI: 10.1039/d3ra06492a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
This study systematically investigates the lubricating properties of bio-hydrogenated diesel (BHD), a synthetic diesel produced through biomass hydrogenation of vegetable oil. Despite having similar chemical properties to petroleum diesel, BHD has poor lubricating properties due to the removal of sulfur and oxygenated compounds during the hydrogenation process, which could damage the engine. To address this issue, fatty acid methyl esters (FAME) was added as an additive to BHD to enhance its fuel and lubricating properties. FAME is a polar molecule with good lubricating properties that adsorb on the surface to protect against wear. The study found that adding as little as 5% FAME significantly improved the lubricating properties of BHD. The wear scar diameter (WSD) decreased from 609 μm to 249 μm, and the average film was 94% with an average coefficient of friction of 0.138 by only 5% FAME addition investigated by High Frequency Reciprocating Rig with ISO 12156-1: 2018. This shows that blending FAME with BHD could reduce engine wear and improve its lubricating properties. Disc samples were analyzed using a Scanning Electron Microscope (SEM), OLS5100 3D laser microscopy, and Fourier Transform Infrared Microscopy (FTIR) to examine the worn surface both physically and chemically. An increase in the percentage of FAME addition to BHD resulted in a smoother worn surface, exhibiting reduced delamination and debris compared to pure BHD. This effect was attributed to the protective film formed by FAME. The study highlights the potential of FAME as an additive to enhance the lubricating properties of BHD and reduce engine wear.
Collapse
Affiliation(s)
- Sarunporn Sriprathum
- School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Atthaphon Maneedaeng
- School of Chemical Engineering, Institute of Engineering, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Niti Klinkaew
- Institute of Research and Development, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Ekarong Sukjit
- School of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
13
|
Aubourg MA, Sawtell G, Deanes L, Fabricant N, Thomas M, Spicer K, Wagar C, Campbell S, Ulman A, Heaney CD. Community-driven research and capacity building to address environmental justice concerns with industrial air pollution in Curtis Bay, South Baltimore. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1198321. [PMID: 38099060 PMCID: PMC10720608 DOI: 10.3389/fepid.2023.1198321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/20/2023] [Indexed: 12/17/2023]
Abstract
Introduction Curtis Bay (CB) is an environmental justice (EJ) community in South Baltimore. With a high concentration of industrial polluters and compounding non-chemical stressors, CB has experienced socioeconomic, quality of life, and health burdens for over 100 years. Today, these polluters include the open-air CSX Coal Terminal, waste-to-energy incinerators, and heavy diesel traffic through residential areas. The Community of Curtis Bay Association, Free Your Voice, and South Baltimore Community Land Trust are local organizations enacting a vision for equitable, healthy, and community-led development without industrial encroachment. In response to community-identified EJ concerns and an explosion at the CSX Coal Terminal, CB community groups partnered with academic researchers to develop a community-driven hyperlocal air monitoring and capacity building approach. This paper describes this approach to characterizing hyperlocal air quality in CB, building bridges between community residents and regulatory agencies, and nurturing a cohesive and effective community-academic partnership toward EJ. Methods Using hyperlocal air monitoring, we are collecting real-time air pollution (particulate matter, black carbon, and ground-level gas species) and meteorological data from 15 low-cost sensors in residential and industrial areas of CB. We also use trail cameras to record activities at the CSX Coal Terminal. We merge air pollution and industrial activity data to evaluate the following: overall air quality in CB, multi-air pollutant profiles of elevated events, spatiotemporal changes in air quality in the community, patterns of industrial activity, and potential correlations between air quality and observed industrial activity. Members of our partnership also lead a high school course educating students about the history and ongoing efforts of the EJ movement in their community. Students in this course learn how to employ qualitative and quantitative data collection and analysis methods to bring scientific support to community EJ concerns. Results and Discussion Our hyperlocal air monitoring network and community-academic partnership are continuing to evolve and have already demonstrated the ability to respond to community-identified EJ issues with real-time data while developing future EJ leaders. Our reflections can assist other community and academic groups in developing strong and fruitful partnerships to address similar EJ issues.
Collapse
Affiliation(s)
- Matthew A. Aubourg
- Community Science and Innovation for Environmental Justice (CSI EJ) Initiative, Center for a Livable Future, Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Greg Sawtell
- Community of Curtis Bay Association, Curtis Bay, Baltimore, MD, United States
- South Baltimore Community Land Trust, Curtis Bay, Baltimore, MD, United States
| | - Lauren Deanes
- Community Science and Innovation for Environmental Justice (CSI EJ) Initiative, Center for a Livable Future, Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Nicole Fabricant
- Department of Anthropology, Sociology, and Criminal Justice, Towson University, Towson, MD, United States
| | - Meleny Thomas
- Community of Curtis Bay Association, Curtis Bay, Baltimore, MD, United States
- South Baltimore Community Land Trust, Curtis Bay, Baltimore, MD, United States
| | - Kristoffer Spicer
- Community Science and Innovation for Environmental Justice (CSI EJ) Initiative, Center for a Livable Future, Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Caila Wagar
- Community Science and Innovation for Environmental Justice (CSI EJ) Initiative, Center for a Livable Future, Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Shashawnda Campbell
- Community of Curtis Bay Association, Curtis Bay, Baltimore, MD, United States
- South Baltimore Community Land Trust, Curtis Bay, Baltimore, MD, United States
| | - Abigail Ulman
- Community Science and Innovation for Environmental Justice (CSI EJ) Initiative, Center for a Livable Future, Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Christopher D. Heaney
- Community Science and Innovation for Environmental Justice (CSI EJ) Initiative, Center for a Livable Future, Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
14
|
Vallabani NVS, Gruzieva O, Elihn K, Juárez-Facio AT, Steimer SS, Kuhn J, Silvergren S, Portugal J, Piña B, Olofsson U, Johansson C, Karlsson HL. Toxicity and health effects of ultrafine particles: Towards an understanding of the relative impacts of different transport modes. ENVIRONMENTAL RESEARCH 2023; 231:116186. [PMID: 37224945 DOI: 10.1016/j.envres.2023.116186] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/05/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a wide range of adverse health effects, but it is still unclear how particles from various transport modes differ in terms of toxicity and associations with different human health outcomes. This literature review aims to summarize toxicological and epidemiological studies of the effect of ultrafine particles (UFPs), also called nanoparticles (NPs, <100 nm), from different transport modes with a focus on vehicle exhaust (particularly comparing diesel and biodiesel) and non-exhaust as well as particles from shipping (harbor), aviation (airport) and rail (mainly subway/underground). The review includes both particles collected in laboratory tests and the field (intense traffic environments or collected close to harbor, airport, and in subway). In addition, epidemiological studies on UFPs are reviewed with special attention to studies aimed at distinguishing the effects of different transport modes. Results from toxicological studies indicate that both fossil and biodiesel NPs show toxic effects. Several in vivo studies show that inhalation of NPs collected in traffic environments not only impacts the lung, but also triggers cardiovascular effects as well as negative impacts on the brain, although few studies compared NPs from different sources. Few studies were found on aviation (airport) NPs, but the available results suggest similar toxic effects as traffic-related particles. There is still little data related to the toxic effects linked to several sources (shipping, road and tire wear, subway NPs), but in vitro results highlighted the role of metals in the toxicity of subway and brake wear particles. Finally, the epidemiological studies emphasized the current limited knowledge of the health impacts of source-specific UFPs related to different transport modes. This review discusses the necessity of future research for a better understanding of the relative potencies of NPs from different transport modes and their use in health risk assessment.
Collapse
Affiliation(s)
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | | | - Sarah S Steimer
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden
| | - Jana Kuhn
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sanna Silvergren
- Environment and Health Administration, 104 20, Stockholm, Sweden
| | - José Portugal
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, CSIC, 08034, Barcelona, Spain
| | - Ulf Olofsson
- Department of Machine Design, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christer Johansson
- Department of Environmental Science, Stockholm University, 11418, Stockholm, Sweden; Environment and Health Administration, 104 20, Stockholm, Sweden
| | - Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
15
|
Shearston JA, Rowland ST, Butt T, Chillrud SN, Casey JA, Edmondson D, Hilpert M, Kioumourtzoglou MA. Can traffic-related air pollution trigger myocardial infarction within a few hours of exposure? Identifying hourly hazard periods. ENVIRONMENT INTERNATIONAL 2023; 178:108086. [PMID: 37429056 PMCID: PMC10528226 DOI: 10.1016/j.envint.2023.108086] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
INTRODUCTION Traffic-related air pollution can trigger myocardial infarction (MI). However, the hourly hazard period of exposure to nitrogen dioxide (NO2), a common traffic tracer, for incident MI has not been fully evaluated. Thus, the current hourly US national air quality standard (100 ppb) is based on limited hourly-level effect estimates, which may not adequately protect cardiovascular health. OBJECTIVES We characterized the hourly hazard period of NO2 exposure for MI in New York state (NYS), USA, from 2000 to 2015. METHODS For nine cities in NYS, we obtained data on MI hospitalizations from the NYS Department of Health Statewide Planning and Research Cooperative System and hourly NO2 concentrations from the US Environmental Protection Agency's Air Quality System database. We used city-wide exposures and a case-crossover study design with distributed lag non-linear terms to assess the relationship between hourly NO2 concentrations over 24 h and MI, adjusting for hourly temperature and relative humidity. RESULTS The mean NO2 concentration was 23.2 ppb (standard deviation: 12.6 ppb). In the six hours preceding MI, we found linearly increased risk with increasing NO2 concentrations. At lag hour 0, a 10 ppb increase in NO2 was associated with 0.2 % increased risk of MI (Rate Ratio [RR]: 1.002; 95 % Confidence Interval [CI]: 1.000, 1.004). We estimated a cumulative RR of 1.015 (95 % CI: 1.008, 1.021) for all 24 lag hours per 10 ppb increase in NO2. Lag hours 2-3 had consistently elevated risk ratios in sensitivity analyses. CONCLUSIONS We found robust associations between hourly NO2 exposure and MI risk at concentrations far lower than current hourly NO2 national standards. Risk of MI was most elevated in the six hours after exposure, consistent with prior studies and experimental work evaluating physiologic responses after acute traffic exposure. Our findings suggest that current hourly standards may be insufficient to protect cardiovascular health.
Collapse
Affiliation(s)
- Jenni A Shearston
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168(th) St, 11(th) Floor, Suite 1107, New York City, NY 10032, USA.
| | - Sebastian T Rowland
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168(th) St, 11(th) Floor, Suite 1107, New York City, NY 10032, USA; PSE Healthy Energy, 1440 broadway, Suite 750, Oakland, CA 94612, USA
| | - Tanya Butt
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168(th) St, 11(th) Floor, Suite 1107, New York City, NY 10032, USA
| | - Steven N Chillrud
- Columbia University Lamont Doherty Earth Observatory, 61 Rte 9W, Palisades, NY 10964, USA
| | - Joan A Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168(th) St, 11(th) Floor, Suite 1107, New York City, NY 10032, USA; Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Box 351618, Seattle, WA 98195, USA
| | - Donald Edmondson
- Center for Behavioral Cardiovascular Health, Columbia University Irving Medical Center, 622 W 168(th) St, 9(th) Floor, New York City, NY 10032, USA
| | - Markus Hilpert
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168(th) St, 11(th) Floor, Suite 1107, New York City, NY 10032, USA
| | - Marianthi-Anna Kioumourtzoglou
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168(th) St, 11(th) Floor, Suite 1107, New York City, NY 10032, USA
| |
Collapse
|
16
|
Xu H, Song J, He X, Guan X, Wang T, Zhu Y, Xu X, Li M, Liu L, Zhang B, Fang J, Zhao Q, Song X, Xu B, Huang W. Ambient Anthropogenic Carbons and Pediatric Respiratory Infections: A Case-Crossover Analysis in the Megacity Beijing. GEOHEALTH 2023; 7:e2023GH000820. [PMID: 37534336 PMCID: PMC10392781 DOI: 10.1029/2023gh000820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Carbon loading in airway cells has shown to worsen function of antimicrobial peptides, permitting increased survival of pathogens in the respiratory tract; however, data on the impacts of carbon particles on childhood acute respiratory infection (ARI) is limited. We assembled daily health data on outpatient visits for ARI (bronchitis, pneumonia, and total upper respiratory infection [TURI]) in children aged 0-14 years between 2015 and 2019 in Beijing, China. Anthropogenic carbons, including black carbon (BC) and its emission sources, and wood smoke particles (delta carbon, ultra-violet absorbing particulate matter, and brown carbon) were continuously monitored. Using a time-stratified case-crossover approach, conditional logistic regression was performed to derive risk estimates for each outcome. A total of 856,899 children were included, and a wide range of daily carbon particle concentrations was observed, with large variations for BC (0.36-20.44) and delta carbon (0.48-57.66 μg/m3). Exposure to these particles were independently associated with ARI, with nearly linear exposure-response relationships. Interquartile range increases in concentrations of BC and delta carbon over prior 0-8 days, we observed elevation of the odd ratio of bronchitis by 1.201 (95% confidence interval, 1.180, 1.221) and 1.048 (95% CI, 1.039, 1.057), respectively. Stronger association was observed for BC from traffic sources, which increased the odd ratio of bronchitis by 1.298 (95% CI, 1.273, 1.324). Carbon particles were also associated with elevated risks of pneumonia and TURI, and subgroup analyses indicated greater risks among children older than 6 years. Our findings suggested that anthropogenic carbons in metropolitan areas may pose a significant threat to clinical manifestations of respiratory infections in vulnerable populations.
Collapse
Affiliation(s)
- Hongbing Xu
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Jing Song
- The First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Xinghou He
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Xinpeng Guan
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Tong Wang
- Key Lab of Medical Protection for Electromagnetic RadiationMinistry of Education of ChinaInstitute of ToxicologyCollege of Preventive MedicineArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yutong Zhu
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Xin Xu
- China National Clinical Research Center of Respiratory DiseasesRespiratory Department of Beijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Mengyao Li
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Lingyan Liu
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Bin Zhang
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Jiakun Fang
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Qian Zhao
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Xiaoming Song
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Baoping Xu
- China National Clinical Research Center of Respiratory DiseasesRespiratory Department of Beijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijingChina
| | - Wei Huang
- Department of Occupational and Environmental Health SciencesPeking University School of Public HealthPeking University Institute of Environmental MedicineBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| |
Collapse
|
17
|
Howarth MV, Eiser AR. Environmentally Mediated Health Disparities. Am J Med 2023; 136:518-522. [PMID: 36828212 PMCID: PMC10213113 DOI: 10.1016/j.amjmed.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
We describe important settings where environmental exposure leads to disease disparities. Lead exposure in urban settings disproportionately impacts the urban Black poor. Native Americans have been forcibly relocated to areas of the West that have arsenic-contaminated groundwater or exposure to radionuclides near mines and nuclear development. Latino farm workers are disproportionately exposed to pesticides and herbicides. These chemicals are associated with cancer, neuropsychiatric disorders, renal failure, and respiratory disorders. The rural poor, both white and of color, are disproportionately impacted by hydraulic fracturing, exposing residents to volatile organic compounds such as toluene and benzene and heavy metals such as lead and arsenic. The urban and rural poor are both exposed to air pollution that significantly impact health. Short- and long-term ambient air pollution exposure has been associated with all-cause cardiovascular disease, stroke, blood pressure, and ischemic heart disease. Cancer due to air pollution has disproportionately impacted poor communities like "Cancer Alley" where numerous industrial sources are geographically clustered. Understanding local environmental hazards and available resources to address them can enhance the quality of medical care.
Collapse
Affiliation(s)
- Marilyn V Howarth
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Arnold R Eiser
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
18
|
Fan J, Li A, Ilahi A, Gao K. Emission impacts of left-turn lane on light-heavy-duty mixed traffic in signalized intersections: Optimization and empirical analysis. Heliyon 2023; 9:e16260. [PMID: 37251910 PMCID: PMC10209403 DOI: 10.1016/j.heliyon.2023.e16260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 05/31/2023] Open
Abstract
Reducing emissions from the transport sector is one of the crucial countermeasures for climate action. This study focuses on the optimization and emission analysis regarding the impacts of left-turn lanes on the emissions of mixed traffic flow (CO, HC, and NOx) with both heavy-duty vehicles (HDV) and light-duty vehicles (LDV) at urban intersections, combining high-resolution field emission data and simulation tools. Based on high-precision field emission data collected by Portable OBEAS-3000, this study first develops instantaneous emission models for HDV and LDV under various operating conditions. Then, a tailored model is formulated to determine the optimal left-lane length for mixed traffic. Afterward, we empirically validate the model and analyze the effect of the left-turn lane (before and after optimization) on the emissions at the intersections using the established emission models and VISSIM simulations. The proposed method can reduce CO, HC, and NOx emissions crossing intersections by around 30% compared to the original scenario. The proposed method significantly reduces average traffic delays after optimization by 16.67% (North), 21.09% (South), 14.61% (West), and 2.68% (East) in different entrance directions. The maximum queue lengths decrease by 79.42%, 39.09%, and 37.02% in different directions. Even though HDVs account for only a minor traffic volume, they contribute the most to CO, HC, and NOx emissions at the intersection. The optimality of the proposed method is validated through an enumeration process. Overall, the method provides useful guidance and design methods for traffic designers to alleviate traffic congestion and emissions at urban intersections by strengthening left-turn lanes and improving traffic efficiency.
Collapse
Affiliation(s)
- Jieyu Fan
- Faculty of Engineering, Computer Science and Psychology, Department of Human Factors, Ulm University, Ulm, 89069, Germany
| | - Aoyong Li
- State Key Laboratory of Automotive Safety & Energy, School of Vehicle and Mobility, Tsinghua University, Beijing, 115003, China
| | - Anugrah Ilahi
- Institute for Transport Studies, University of Natural Resources and Life Sciences (BOKU), 1190, Vienna, Austria
| | - Kun Gao
- Department of Architecture and Civil Engineering, Chalmers University of Technology, 412 96, Goteborg, Sweden
| |
Collapse
|
19
|
Rauchman SH, Locke B, Albert J, De Leon J, Peltier MR, Reiss AB. Toxic External Exposure Leading to Ocular Surface Injury. Vision (Basel) 2023; 7:vision7020032. [PMID: 37092465 PMCID: PMC10123707 DOI: 10.3390/vision7020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/07/2023] Open
Abstract
The surface of the eye is directly exposed to the external environment, protected only by a thin tear film, and may therefore be damaged by contact with ambient particulate matter, liquids, aerosols, or vapors. In the workplace or home, the eye is subject to accidental or incidental exposure to cleaning products and pesticides. Organic matter may enter the eye and cause infection. Ocular surface damage can trigger a range of symptoms such as itch, discharge, hyperemia, photophobia, blurred vision, and foreign body sensation. Toxin exposure can be assessed clinically in multiple ways, including via measurement of tear production, slit-lamp examination, corneal staining, and conjunctival staining. At the cellular level, environmental toxins can cause oxidative damage, apoptosis of corneal and conjunctival cells, cell senescence, and impaired motility. Outcomes range from transient and reversible with complete healing to severe and sight-compromising structural changes. Classically, evaluation of tolerance and safety was carried out using live animal testing; however, new in vitro and computer-based, in silico modes are superseding the gold standard Draize test. This review examines how environmental features such as pollutants, temperature, and seasonality affect the ocular surface. Chemical burns to the eye are considered, and approaches to protect the ocular surface are detailed.
Collapse
Affiliation(s)
| | - Brandon Locke
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Jacqueline Albert
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Morgan R. Peltier
- Department of Psychiatry and Behavioral Health, Jersey Shore University Medical Center, Neptune, NJ 07753, USA
| | - Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
20
|
Ramar M, Yano N, Fedulov AV. Intra-Airway Treatment with Synthetic Lipoxin A4 and Resolvin E2 Mitigates Neonatal Asthma Triggered by Maternal Exposure to Environmental Particles. Int J Mol Sci 2023; 24:ijms24076145. [PMID: 37047118 PMCID: PMC10093944 DOI: 10.3390/ijms24076145] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Particulate matter in the air exacerbates airway inflammation (AI) in asthma; moreover, prenatal exposure to concentrated urban air particles (CAPs) and diesel exhaust particles (DEPs) predisposes the offspring to asthma and worsens the resolution of AI in response to allergens. We previously tested the hypothesis that such exposure impairs the pathways of specialized proresolving mediators that are critical for resolution and found declined Lipoxin A4 (LxA4) and Resolvin E2 (RvE2) levels in the "at-risk" pups of exposed mothers. Here, we hypothesized that supplementation with synthetic LxA4 or RvE2 via the airway can ameliorate AI after allergen exposure, which has not been tested in models with environmental toxicant triggers. BALB/c newborns with an asthma predisposition resultant from prenatal exposure to CAPs and DEPs were treated once daily for 3 days with 750 ng/mouse of LxA4 or 300 ng/mouse of RvE2 through intranasal instillation, and they were tested with the intentionally low-dose ovalbumin protocol that elicits asthma in the offspring of particle-exposed mothers but not control mothers, mimicking the enigmatic maternal transmission of asthma seen in humans. LxA4 and RvE2 ameliorated the asthma phenotype and improved AI resolution, which was seen as declining airway eosinophilia, lung tissue infiltration, and proallergic cytokine levels.
Collapse
Affiliation(s)
- Mohankumar Ramar
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Naohiro Yano
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Alexey V Fedulov
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
21
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Respiratory Health Effects of In Vivo Sub-Chronic Diesel and Biodiesel Exhaust Exposure. Int J Mol Sci 2023; 24:ijms24065130. [PMID: 36982203 PMCID: PMC10049281 DOI: 10.3390/ijms24065130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
22
|
Orach J, Rider CF, Yuen ACY, Carlsten C. Concentration-dependent increase in symptoms due to diesel exhaust in a controlled human exposure study. Part Fibre Toxicol 2022; 19:66. [DOI: 10.1186/s12989-022-00506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Traffic-related air pollution (TRAP) exposure causes adverse effects on wellbeing and quality of life, which can be studied non-invasively using self-reported symptoms. However, little is known about the effects of different TRAP concentrations on symptoms following controlled exposures, where acute responses can be studied with limited confounding. We investigated the concentration–response relationship between diesel exhaust (DE) exposure, as a model TRAP, and self-reported symptoms.
Methods
We recruited 17 healthy non-smokers into a double-blind crossover study where they were exposed to filtered air (FA) and DE standardized to 20, 50, 150 µg/m3 PM2.5 for 4 h, with a ≥ 4-week washout between exposures. Immediately before, and at 4 h and 24 h from the beginning of the exposure, we administered visual analog scale (VAS) questionnaires and grouped responses into chest, constitutional, eye, neurological, and nasal categories. Additionally, we assessed how the symptom response was related to exposure perception and airway function.
Results
An increase in DE concentration raised total (β ± standard error = 0.05 ± 0.03, P = 0.04), constitutional (0.01 ± 0.01, P = 0.03) and eye (0.02 ± 0.01, P = 0.05) symptoms at 4 h, modified by perception of temperature, noise, and anxiety. These symptoms were also correlated with airway inflammation. Compared to FA, symptoms were significantly increased at 150 µg/m3 for the total (8.45 ± 3.92, P = 0.04) and eye (3.18 ± 1.55, P = 0.05) categories, with trends towards higher values in the constitutional (1.49 ± 0.86, P = 0.09) and nasal (1.71 ± 0.96, P = 0.08) categories.
Conclusion
DE exposure induced a concentration-dependent increase in symptoms, primarily in the eyes and body, that was modified by environmental perception. These observations emphasize the inflammatory and sensory effects of TRAP, with a potential threshold below 150 µg/m3 PM2.5. We demonstrate VAS questionnaires as a useful tool for health monitoring and provide insight into the TRAP concentration–response at exposure levels relevant to public health policy.
Collapse
|
23
|
Nano-Iron Oxide-Ethylene Glycol-Water Nanofluid Based Photovoltaic Thermal (PV/T) System with Spiral Flow Absorber: An Energy and Exergy Analysis. ENERGIES 2022. [DOI: 10.3390/en15113870] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Both electrical and thermal efficiencies combine in determining and evaluating the performance of a PV/T collector. In this study, two PV/T systems consisting of poly and monocrystalline PV panels were used, which are connected from the bottom by a heat exchanger consisting of a spiral tube through which a nanofluid circulates. In this study, a base fluid, water, and ethylene glycol were used, and iron oxide nanoparticles (nano-Fe2O3) were used as an additive. The mixing was carried out according to the highest specifications adopted by the researchers, and the thermophysical properties of the fluid were carefully examined. The prepared nanofluid properties showed a limited effect of the nanoparticles on the density and viscosity of the resulting fluid. As for the thermal conductivity, it increased by increasing the mass fraction added to reach 140% for the case of adding 2% of nano-Fe2O3. The results of the zeta voltage test showed that the supplied suspensions had high stability. When a mass fraction of 0.5% nano-Fe2O3 was added the zeta potential was 68 mV, while for the case of 2%, it reached 49 mV. Performance tests showed a significant increase in the efficiencies with increased mass flow rate. It was found when analyzing the performance of the two systems for nanofluid flow rates from 0.08 to 0.17 kg/s that there are slight differences between the monocrystalline, and polycrystalline systems operating in the spiral type of exchanger. As for the case of using monocrystalline PV the electrical, thermal, and total PV/T efficiencies with 2% added Fe2O3 ranged between 10% to 13.3%, 43–59%, and 59 to 72%, respectively, compared to a standalone PV system. In the case of using polycrystalline PV, the electrical, thermal, and total PV/T efficiencies ranged from 11% to 13.75%, 40.3% to 63%, and 55.5% to 77.65%, respectively, compared to the standalone PV system. It was found that the PV/T electrical exergy was between 45, and 64 W with thermal exergy ranged from 40 to 166 W, and total exergy from 85 to 280 W, in the case of using a monocrystalline panel. In the case of using polycrystalline, the PV/T electrical, thermal, and total exergy were between 45 and 66 W, 42–172 W, and 85–238 W, respectively. The results showed that both types of PV panels can be used in the harsh weather conditions of the city of Baghdad with acceptable, and efficient productivity.
Collapse
|
24
|
Long E, Schwartz C, Carlsten C. Controlled human exposure to diesel exhaust: a method for understanding health effects of traffic-related air pollution. Part Fibre Toxicol 2022; 19:15. [PMID: 35216599 PMCID: PMC8876178 DOI: 10.1186/s12989-022-00454-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Diesel exhaust (DE) is a major component of air pollution in urban centers. Controlled human exposure (CHE) experiments are commonly used to investigate the acute effects of DE inhalation specifically and also as a paradigm for investigating responses to traffic-related air pollution (TRAP) more generally. Given the critical role this model plays in our understanding of TRAP's health effects mechanistically and in support of associated policy and regulation, we review the methodology of CHE to DE (CHE-DE) in detail to distill critical elements so that the results of these studies can be understood in context. From 104 eligible publications, we identified 79 CHE-DE studies and extracted information on DE generation, exposure session characteristics, pollutant and particulate composition of exposures, and participant demographics. Virtually all studies had a crossover design, and most studies involved a single DE exposure per participant. Exposure sessions were typically 1 or 2 h in duration, with participants alternating between exercise and rest. Most CHE-DE targeted a PM concentration of 300 μg/m3. There was a wide range in commonly measured co-pollutants including nitrogen oxides, carbon monoxide, and total organic compounds. Reporting of detailed parameters of aerosol composition, including particle diameter, was inconsistent between studies, and older studies from a given lab were often cited in lieu of repeating measurements for new experiments. There was a male predominance in participants, and over half of studies involved healthy participants only. Other populations studied include those with asthma, atopy, or metabolic syndrome. Standardization in reporting exposure conditions, potentially using current versions of engines with modern emissions control technology, will allow for more valid comparisons between studies of CHE-DE, while recognizing that diesel engines in much of the world remain old and heterogeneous. Inclusion of female participants as well as populations more susceptible to TRAP will broaden the applicability of results from CHE-DE studies.
Collapse
Affiliation(s)
- Erin Long
- Faculty of Medicine, University of British Columbia, 317 - 2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Carley Schwartz
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada
| | - Christopher Carlsten
- Department of Medicine, Division of Respiratory Medicine, University of British Columbia, 2775 Laurel Street 7th Floor, Vancouver, BC, V5Z 1M9, Canada.
| |
Collapse
|